JP2005152693A - 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 - Google Patents
構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 Download PDFInfo
- Publication number
- JP2005152693A JP2005152693A JP2003390924A JP2003390924A JP2005152693A JP 2005152693 A JP2005152693 A JP 2005152693A JP 2003390924 A JP2003390924 A JP 2003390924A JP 2003390924 A JP2003390924 A JP 2003390924A JP 2005152693 A JP2005152693 A JP 2005152693A
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- manufacturing
- laser beam
- forming
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Surface Treatment Of Glass (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Laser Beam Processing (AREA)
Abstract
【課題】 ガラス基板に対して互いに深さの異なる凹部を形成する際の製造時間を短縮し、製造コストの低減を図ることを可能とする技術を提供すること。
【解決手段】 ガラス基板(10)の第1の凹部を形成すべき領域の表面近傍にレーザ光(12)を照射して当該レーザ光の焦点をガラス基板の面方向に走査することにより、ガラス基板の表面近傍に第1の変質領域(14)を形成する第1工程と、ガラス基板の一方面及び/又は他方面に、第1の凹部よりも深い第2の凹部を形成すべき領域にレーザ光を照射して当該レーザ光の焦点をガラス基板の厚さ方向に走査することにより、ガラス基板の厚さ方向に延在する第2の変質領域(16)を形成する第2工程と、ガラス基板に対してエッチングを行い、第1の変質領域に沿った部位を除去して第1の凹部(18)を形成するとともに、第2の変質領域に沿った部位を除去して第2の凹部(20)を形成する第3工程と、を含む。
【選択図】 図1
【解決手段】 ガラス基板(10)の第1の凹部を形成すべき領域の表面近傍にレーザ光(12)を照射して当該レーザ光の焦点をガラス基板の面方向に走査することにより、ガラス基板の表面近傍に第1の変質領域(14)を形成する第1工程と、ガラス基板の一方面及び/又は他方面に、第1の凹部よりも深い第2の凹部を形成すべき領域にレーザ光を照射して当該レーザ光の焦点をガラス基板の厚さ方向に走査することにより、ガラス基板の厚さ方向に延在する第2の変質領域(16)を形成する第2工程と、ガラス基板に対してエッチングを行い、第1の変質領域に沿った部位を除去して第1の凹部(18)を形成するとともに、第2の変質領域に沿った部位を除去して第2の凹部(20)を形成する第3工程と、を含む。
【選択図】 図1
Description
本発明は、ガラス基板を含んでなる構造体の製造技術に関し、特に液滴吐出ヘッドなどの流体デバイスの製造に好適な製造技術に関する。
近年、MEMS(micro electro mechanical systems)技術を用いたデバイス開発が盛んに行われており、例えば液滴吐出ヘッド、バイオチップ、マイクロポンプその他各種の流体デバイスの製造に応用されている。これらのデバイスの構造については種々研究されており、例えば、シリコン基板とガラス基板との接合体を用いる構造が採用される。このような流体デバイスでは、何らかの溶液をデバイス内に通すための流路を構成したり、所定の動作を実現するためのアクチュエータ(可動部)やその他の機能部などを構成するために、シリコン基板やガラス基板に溝、孔(窪み)、貫通孔などが形成される。
ガラス基板等に流路やその他の機能部等を形成するプロセスは比較的にガラス基板等の表面側での加工が中心となり、当該加工はフォトリソグラフィ技術とエッチング技術を組み合わせて行われる場合が多い。これに対してガラス基板等に貫通孔等を形成するプロセスはガラス基板等の板厚方向への加工となり、当該加工はドリル等の切削工具を用いた機械的加工により行われることが多い。また、最近では、ガラス基板に対する微細加工を行う技術の1つとして、ガラス基板の所望位置に光を照射することにより光照射領域と非照射領域とにエッチング速度の差を生じさせ、光照射領域をエッチング処理により除去する加工技術が知られている。このような技術は、例えば特開平9−309744号公報(特許文献1)に記載されている。
ところで、従来の加工技術では、ガラス基板に対して深い孔または貫通孔と比較的に浅めの溝とを形成する場合、換言すれば互いに深さの異なる凹部を形成する場合に、以下のような不都合があった。例えば、貫通孔等の深い凹部を機械的加工によって行う場合には、加工時間が長くなり、全体の製造時間の短縮や製造コストの削減の妨げとなる。特に、貫通孔等を多数形成したい場合にはこの不都合が顕著となる。また、上述したように浅い凹部と深い凹部とはそれぞれ異なる加工技術を用いることから、これらの凹部を一括形成することは困難であり、この点からも製造時間の短縮や製造コストの削減が難しかった。
また、ガラス基板等の表面側に対する加工をフォトリソグラフィ技術とエッチング技術を組み合わせて行う場合についても、エッチングマスクにピンホールが生じることによるガラス基板の表面荒れやサイドエッチングによるパターンの乱れが発生するため、溝幅が狭く、かつ比較的に深い溝を形成することは難しかった。
上述した特許文献1では、このような具体的な課題に対して対応可能な程度に詳細な技術内容は開示されておらず、従ってかかる課題を解決する技術が望まれている。
そこで、本発明は、ガラス基板に対して互いに深さの異なる凹部を形成する際の製造時間を短縮し、製造コストの低減を図ることを可能とする技術を提供することを目的とする。
第1の態様の本発明は、ガラス基板に深さの異なる複数の凹部を形成してなる構造体の製造方法であって、ガラス基板の第1の凹部を形成すべき領域の表面近傍にレーザ光を照射して当該レーザ光の焦点をガラス基板の面方向に走査することにより、ガラス基板の表面近傍に第1の変質領域を形成する第1工程と、ガラス基板の一方面及び/又は他方面に、第1の凹部よりも深い第2の凹部を形成すべき領域にレーザ光を照射して当該レーザ光の焦点をガラス基板の厚さ方向に走査することにより、ガラス基板の厚さ方向に延在する第2の変質領域を形成する第2工程と、ガラス基板に対してエッチングを行い、第1の変質領域に沿った部位を除去して第1の凹部を形成するとともに、第2の変質領域に沿った部位を除去して第2の凹部を形成する第3工程と、を含む。
かかる製造方法によれば、比較的に浅い第1の凹部に対応してガラス基板の表面近傍に第1の変質領域が形成され、深い第2の凹部に対応してガラス基板の厚さ方向に第2の変質領域が形成される。すなわち、凹部として望む深さに応じてガラス基板の表面からの深さを変えて変質領域を形成することにより、各部位のエッチング速度に差を生じさせている。これにより、エッチング処理を一括して行い、深さの異なる第1の凹部と第2の凹部とを一挙に形成することが可能となる。この利点は、第1の凹部及び/又は第2の凹部を多数形成する場合にも同様に得られる。したがって、ガラス基板に対して互いに深さの異なる凹部を形成する際の製造時間を短縮し、製造コストの低減を図ることが可能となる。また、変質領域の有無によってガラスに対するエッチング速度に大きな差を生じさせ、エッチングを優先的に進めたい方向とそれ以外の方向とに異方性を持たせることができるので、溝幅が狭く、かつ深い溝、或いは孔径が狭く、かつ深い孔を容易に形成することが可能となる。
ここで本明細書において、「ガラス基板」とは、ソーダガラス、石英ガラス、ホウケイ酸ガラス等種々のガラスからなる基板を含む。また「凹部」とは、周囲よりも窪んだ形状を有するものであればよく、溝、孔及び貫通孔を含む。また「変質領域」とは、密度、屈折率、機械的強度その他の物理的特性が周囲とは異なっており、変質領域以外の領域に比べてエッチングがされやすい状態(エッチング速度が速い状態)となった領域をいい、微小なクラックが生じるものも含まれる。
好ましくは、上述した第2の凹部は貫通孔或いはこれに類する深い孔である。ここで「深い孔」とは、例えば第1の凹部よりもその深さが数倍に形成された孔をいう。
従来技術では、ガラス基板に対して浅い溝と貫通孔等のように基板表面からの深さの比が大きい凹部を一括に形成するのは難しかったが、本発明によりこれが容易となる。
上述した第1工程において照射するレーザ光は、パルスレーザ光であることが好ましい。
パルスレーザ光を用いることにより、ガラス基板の変質領域を形成すべき領域以外の部位への不要なエネルギー付与を最小限に抑えることが可能となる。
更に好ましくは、上述したパルスレーザ光として、そのパルス幅がフェムト秒オーダ(例えば、数十〜数百フェムト秒)であるフェムト秒レーザ光を用いる。
フェムト秒レーザ光を用いることにより、変質領域を局所的に形成可能となり、第1の凹部のより一層の微細化が可能となる。
上述した第1の態様の本発明において、ガラス基板に第1の変質領域を形成する工程(第1工程)と、ガラス基板に第2の変質領域を形成する工程(第2工程)とは順番を入れ替えることが可能である。この場合においても、第1の態様の本発明と同様の技術的効果が得られる。第1の変質領域を形成する工程と第2の変質領域を形成する工程とを、他の製造上の都合等に応じて所望の順番に入れ替えることが可能となり、製造プロセスのバリエーションを広げることができる。
第2の態様の本発明は、上記した製造方法によって製造される構造体を用いたデバイスである。ここで「デバイス」には、液滴吐出ヘッド(インクジェットヘッド)、マイクロ流体チップ(電気泳動チップ、マイクロリアクター等)、バイオセンサ、電気浸透流ポンプなどが含まれる。
第3の態様の本発明は、上述した第3の態様の本発明にかかるデバイスとしての液滴吐出ヘッドを含んで構成される液滴吐出装置(インクジェット装置)である。
本発明の実施の形態について図面を参照しながら詳細に説明する。以下では、液滴吐出ヘッドの構成要素として用いられる構造体を例としてその製造方法について説明する。
図1は、一実施形態の構造体の製造方法について説明する図(工程図)である。図1では、ガラス基板に対して、第1の凹部としての溝とこの第1の凹部よりも深い第2の凹部としての貫通孔を形成する場合の工程が説明されている。
まず、図1(A)に示すように、ガラス基板10の一方面側から表面近傍にレーザ光12を照射して当該レーザ光12の焦点をガラス基板10の面方向に走査することにより、ガラス基板10の表面近傍に第1の変質領域14(図中、点線で表示)を形成する。このレーザ光12の照射は、ガラス基板10において溝(第1の凹部)を形成したい位置に対応して行われる。本工程では、形成したい溝が複数ある場合には複数の第1の変質領域14が形成される。これにより、複数の溝を一挙に形成可能となる。また、ガラス基板10の両面に溝を形成したい場合には、ガラス基板10の両面に第1の変質領域14を形成すればよい。
また、図1(B)に示すように、ガラス基板10の一方面側(または他方面側)からレーザ光12を照射して当該レーザ光12の焦点をガラス基板10の厚さ方向に走査することにより、ガラス基板10の厚さ方向に延在する第2の変質領域16(図中、点線で表示)を形成する。このレーザ光12の照射は、ガラス基板10において貫通孔(第2の凹部)を形成したい位置に対応して行われる。本例では、ガラス基板10の一方面から他方面に渡って第2の変質領域16を形成している。なお、図示の例ではレーザ光の照射を一箇所だけ示しているが、本工程においては複数箇所をレーザ光により照射可能である。これにより、複数の貫通孔を一挙に形成可能となる。
ここで、ガラス基板10としては、ソーダガラス、石英ガラス、ホウケイ酸ガラス等種々のガラスからなる基板を採用可能である。ガラス基板10としてナトリウム、リチウムなどのアルカリイオンを含有するもの、例えばケイ酸ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、リン酸ガラスなどからなるガラス基板を用いた場合には、後にこのガラス基板10を半導体基板や金属基板等と接合したい場合に陽極接合法を用いることが可能となり都合がよい。
また「変質領域」とは、例えば密度、屈折率、機械的強度その他の物理的特性が周囲とは異なる状態となった領域をいい、微小なクラックが生じるものも含まれる。このような変質領域14又は16をガラス基板10に形成し得る限り、レーザ光12としては種々のものを採用し得る。更には、レーザ光以外にも電子ビーム照射やその他、ガラス基板10の所望位置に局所的にエネルギーを与えることが可能であれば如何なる手段も採用し得る。本実施形態では、上記レーザ光12の好適な一例として、パルスレーザ光であってそのパルス幅がフェムト秒オーダ(例えば、数十〜数百フェムト秒)であるフェムト秒レーザ光を用いる。例えば、波長800nm、パルス幅100fs(フェムト秒)、繰り返し周波数1kHzのフェムト秒レーザ光が用いられる。
フェムト秒レーザ光を照射した場合に、その集光点近傍ではエネルギー密度が極めて高くなり、瞬時に大きなエネルギーを局所的に注入することができる。フェムト秒レーザ光の照射された部分では、当該レーザ光とガラス基板10を構成する物質との様々な非線形相互作用(例えば、多光子吸収や多光子イオン化等)により種々の微視的構造変化が誘起される。誘起される構造変化はレーザ光の強度によって異なり、(a)活性イオン(希土類、遷移金属等)の酸化還元による着色、(b)欠陥の生成と高密度化による屈折率変化、(c)溶融とレーザ衝撃波によるボイド形成、(d)オプティカルブレークダウンによる微小なクラック(マイクロクラック)の形成、などが含まれる。多くの場合、誘起される構造変化は複合的なものであり一定の空間分布をもつ。これらの構造変化のうち、本実施形態では特に上記(d)に述べたマイクロクラックを主として利用する。このマイクロクラックは、集光点近傍に応力歪みが生じる現象(ブレークダウン)によって誘起される。フェムト秒レーザ光を用いた場合には、パルス幅が電子とフォノンのカップリング時間(10-12秒オーダ)よりも短いため、レーザ光のエネルギーが材料の熱拡散速度に比べて十分に早く照射部分に集中して注入され、プラズマが発生する。このプラズマが拡散するときに生じる衝撃波によりクラックが誘起される。したがって、レーザ光12の照射条件(強度、パルス幅、モード、波長等)はガラス基板10に主としてマイクロクラックが生じるように、ガラス基板10の素材やその他の条件に合わせて適宜設定される。これにより、極めて微細な領域にのみ変質領域14又は16を形成可能となり、微細加工を達成することが可能となる。
ガラス基板10に対して第1の変質領域14及び第2の変質領域16が形成されると、次に、図1(C)に示すようにガラス基板10に対してエッチングを行い、第1の変質領域14に沿った部位を除去して溝18を形成するとともに、第2の変質領域16に沿った部位を除去して貫通孔20を形成する。これにより、図1(D)に示すように本実施形態にかかる構造体が完成する。本例の実施形態では、貫通孔20の形成にかかるエッチングがガラス基板10の両面から進行するので、より短いエッチング時間で貫通孔20を形成することが可能となる。また貫通孔20にかかるエッチング時間が短くて済む分、溝18についてもより溝幅の狭いものを形成することが可能になる。また、貫通孔20の形状については略X字状のものが得られる。
ここで、本工程におけるエッチングとしては、フッ酸溶液を用いたウェットエッチングや、フッ素化合物ガスを用いたドライエッチングを採用することが可能である。ガラス基板10の第1及び第2の変質領域の部分ではそれ以外の部分に比べてエッチング速度が速くなり、当該変質領域に沿った領域が優先的に除去されるようになる。また、上述したように第1及び第2の変質領域を主としてマイクロクラックにより構成することで、本工程において、エッチング溶液又はエッチングガスがガラス基板10の板厚方向に沿って浸透しやすくなる。これにより、高いエッチング選択比を実現し、溝幅のより狭い溝18や、孔径のより狭い貫通孔20を得ることが可能となる。
図2は、本実施形態の製造方法を用いて製造される構造体を含む液滴吐出ヘッドの一例の構造を説明する図である。図2(A)は液滴吐出ヘッド100の平面図、図2(B)及び図2(C)は部分断面図をそれぞれ示している。図2に示す液滴吐出ヘッド100は、静電アクチュエータを用いて所望の液体を微少量に制御して吐出するためのデバイスであり、上述した製造方法を適用して、吐出対象液体を供給するための流路が形成されている。図2(B)に示すように、ガラス基板10の表面側に当該面と略平行な方向へ液体を通すための流路としての複数の溝18が形成されている。これらの溝18の寸法は、レーザ光の照射条件やエッチング時間等の条件にもよるが、例えば溝幅100μm、溝の相互間が40μm、深さが300μm程度が得られる。また、図2(C)に示すように、溝18に対してガラス基板10の他方面側から液体を通すための流路としての貫通孔20が形成されている。この貫通孔20の寸法についても、レーザ光の照射条件やエッチング時間等の条件にもよるが、例えば孔径100μm、深さ(ガラス基板10の厚み)が1mm程度が得られる。
図3は、上述した液滴吐出ヘッドを用いて構成される液滴吐出装置の一例を説明する図(斜視図)である。図3に示す液滴吐出装置200は、テーブル201、Y方向駆動軸202、液滴吐出ユニット203、X方向駆動軸204、駆動部205、制御用コンピュータ206を含んで構成されている。この液滴吐出装置は、例えば、バイオテクノロジー関連の検査、実験等に用いられるマイクロアレイ(バイオチップ)を製造するために用いられるものである。
テーブル201は、マイクロアレイを構成する基板を載置するためのものである。このテーブル201は、複数の基板を載置可能となっており、例えば真空吸着によって各基板を固定可能に構成されている。
Y方向駆動軸202は、テーブル201を図示のY方向に沿って自在に移動させるためのものである。このY方向駆動軸202は、駆動部205に含まれる駆動モータ(図示せず)と接続されており、当該駆動モータによる駆動力を得てテーブル201を移動させる。X方向駆動軸204は、液滴吐出ユニット203を図示のX方向に沿って自在に移動させるためのものである。このX方向駆動軸204は、駆動部205に含まれる駆動モータ(図示せず)と接続されており、当該駆動モータによる駆動力を得て液滴吐出ユニット203を移動させる。
液滴吐出ユニット203は、制御用コンピュータ206から供給される駆動信号に基づいて、生体分子溶液を基板に向けて吐出するものであり、溶液を吐出するノズル面がテーブル201に向かうように、X方向駆動軸204に組み付けられている。この液滴吐出ユニット203は、溶液を吐出するヘッドとして上述した静電駆動方式により駆動される液滴吐出ヘッド100を用いている。静電駆動方式のインクジェットヘッドは、比較的に構造が簡単で、溶液の吐出量が安定しており、熱を用いないので溶液中の生体分子の変質を回避し、活性を維持することが可能となる。また、装置の小型化、低消費電力化を実現することができる。
駆動部205は、Y方向駆動軸202、X方向駆動軸204をそれぞれを駆動するモータやその他の駆動機構を含んで構成される。これらのモータ等が制御用コンピュータ206から供給される駆動信号に基づいて動作することにより、基板が載置されたテーブル201と液滴吐出ユニット203との相対位置が制御される。制御用コンピュータ206は、駆動部205の筐体内に設置されており、液滴吐出ユニット203の動作(溶液の吐出タイミング、吐出回数等)を制御する。
このように、本実施形態の製造方法によれば、比較的に浅い第1の凹部としての溝18に対応してガラス基板の表面近傍に第1の変質領域が形成され、深い第2の凹部としての貫通孔20に対応してガラス基板の厚さ方向に第2の変質領域16が形成される。すなわち、凹部として望む深さに応じてガラス基板10の表面からの深さを変えて各変質領域を形成することにより、各部位のエッチング速度に差を生じさせている。これにより、エッチング処理を一括して行い、深さの異なる溝18と貫通孔20とを一挙に形成することが可能となる。この利点は、溝(第1の凹部)及び/又は貫通孔(第2の凹部)を多数形成する場合に特に顕著となる。したがって、ガラス基板に対して互いに深さの異なる凹部を形成する際の製造時間を短縮し、製造コストの低減を図ることが可能となる。また、変質領域の有無によってガラスに対するエッチング速度に大きな差を生じさせ、エッチングを優先的に進めたい方向とそれ以外の方向とに異方性を持たせることができるので、溝幅が狭く、かつ深い溝、或いは孔径が狭く、かつ深い孔を容易に形成することが可能となる。
次に、他の実施形態について説明する。なお、以下では上述した実施形態と共通する内容については適宜省略して説明を行う。
図4は、他の実施形態の製造方法について説明する図(工程図)である。図4では、第2の凹部としての貫通孔の形状をテーパ状にする場合の例が示されている。
まず、上述した実施形態と同様にして(図1(A)、図1(B)参照)、ガラス基板10に第1の変質領域14及び第2の変質領域16をそれぞれ形成する。
次に、図4(A)に示すように、ガラス基板10の他方面上に当該面からのエッチングの進行を抑制するエッチングマスクとして機能する保護膜22を形成する。当該保護膜は、例えばポリイミド等の感光性樹脂膜によって構成される。
次に、図4(B)に示すようにガラス基板10に対してエッチングを行い、各変質領域に沿った部位を除去する。このとき、第2の変質領域16に沿った部位に対するエッチングは、図4(B)に示すようにガラス基板10の一方面側からのみ進行するので当該部位は略V字状に除去される。エッチングを更に進めることにより、図4(C)に示すようにテーパ状(略V字状)の貫通孔20aが得られる。また、第1の変質領域に対応する部位には溝18が形成される。
このように本例の実施形態では、貫通孔20aの形成にかかるエッチングをガラス基板10の片面から進行させることにより、上述した実施形態における略X字状とは異なるテーパ状の貫通孔が得られる。したがって、貫通孔の形状の選択肢を増やし、各種の用途等に応じて貫通孔の形状を使い分けることが可能となる。
図5は、他の実施形態の製造方法について説明する図(工程図)である。図5では、ガラス基板に対して、第2の凹部として周囲よりも窪んでいるが貫通していない孔を形成する場合の製造工程が示されている。
まず、上述した実施形態と同様にして(図1(A)、図1(B)参照)、ガラス基板10に第1及び第2の変質領域をそれぞれ形成する。このとき、上述した実施形態のようにガラス基板10の一方面から他方面に渡って第2の変質領域16を形成せずに、図5(A)に示すように、ガラス基板10の他方面側からある程度の深さの範囲に変質領域16aが形成されるようにレーザ光12の集光位置の走査を行う。
次に、ガラス基板10に対してエッチングを行い各変質領域に沿った部位を除去する。このとき、第2の変質領域16aに沿った部位は図5(B)に示すように略V字状に除去されていく。適当なタイミングでエッチングをやめることにより、図5(B)に示すような略V字状の孔20bが得られる。また、エッチングを継続したときには、第2の変質領域16aに沿った部位の除去が終わった後にエッチングが等方的に進行するため、底側の形状が半球状となった孔20cが得らえる。
このように本例の実施形態では、エッチング時間の長短や変質領域の深さ(範囲)を加減することにより、貫通孔以外の孔や溝も形成可能であり、更にこれらの孔等の底形状にも変化をつけることが可能となる。
なお、本発明は上述した実施形態の内容に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。例えば、上述した実施形態において、ガラス基板に変質領域を形成する工程(図1(A)等参照)と、ガラス基板上にエッチングマスクを形成する工程(図1(B)等参照)とは順番を入れ替えることも可能である。このように、製造上の都合等に応じて各工程を所望の順番に入れ替えることが可能である。いずれの場合にも本発明にかかる効果を得ることが可能であり、製造プロセスのバリエーションを広げることができる。また、複数のレーザ照射手段を用いる等によりレーザ光12のガラス基板10の面方向への走査と厚さ方向への走査とを同時に行えるようにし、上記した各工程を並行して(同時に)行ってもよい。
また、上述した実施形態では、本発明にかかる構造体を用いたデバイスの一例として液滴吐出ヘッド(インクジェットヘッド)を採り上げて説明していたが、これ以外にもマイクロ流体チップ(電気泳動チップ、マイクロリアクター等)、バイオセンサ、電気浸透流ポンプなど種々のデバイスの製造に本発明を適用可能である。
10…ガラス基板、 12…レーザ光、 14…第1の変質領域、 16…第2の変質領域、 18…溝(第1の凹部)、 20…貫通孔(第2の凹部)、 100…液滴吐出ヘッド
Claims (6)
- ガラス基板に深さの異なる複数の凹部を形成してなる構造体の製造方法であって、
ガラス基板の第1の凹部を形成すべき領域の表面近傍にレーザ光を照射して当該レーザ光の焦点を前記ガラス基板の面方向に走査することにより、前記ガラス基板の表面近傍に第1の変質領域を形成する第1工程と、
前記ガラス基板の一方面及び/又は他方面に、前記第1の凹部よりも深い第2の凹部を形成すべき領域にレーザ光を照射して当該レーザ光の焦点を前記ガラス基板の厚さ方向に走査することにより、前記ガラス基板の厚さ方向に延在する第2の変質領域を形成する第2工程と、
前記ガラス基板に対してエッチングを行い、前記第1の変質領域に沿った部位を除去して前記第1の凹部を形成するとともに、前記第2の変質領域に沿った部位を除去して前記第2の凹部を形成する第3工程と、
を含む、構造体の製造方法。 - 前記第2の凹部が貫通孔である、請求項1に記載の構造体の製造方法。
- 前記第1工程及び前記第2工程において照射する前記レーザ光をパルスレーザ光とする、請求項1に記載の構造体の製造方法。
- 前記パルスレーザ光がフェムト秒レーザ光である、請求項3に記載の構造体の製造方法。
- 請求項1乃至4のいずれかに記載の製造方法によって製造される構造体を用いた液滴吐出ヘッド。
- 請求項5に記載の液滴吐出ヘッドを備える液滴吐出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390924A JP2005152693A (ja) | 2003-11-20 | 2003-11-20 | 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390924A JP2005152693A (ja) | 2003-11-20 | 2003-11-20 | 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005152693A true JP2005152693A (ja) | 2005-06-16 |
Family
ID=34718151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003390924A Pending JP2005152693A (ja) | 2003-11-20 | 2003-11-20 | 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005152693A (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007330995A (ja) * | 2006-06-15 | 2007-12-27 | Ricoh Co Ltd | レーザ加工装置とレーザ加工方法とそれにより加工された液滴吐出ヘッド及び画像形成装置 |
JPWO2011096353A1 (ja) * | 2010-02-05 | 2013-06-10 | 株式会社フジクラ | 微細構造の形成方法および微細構造を有する基体 |
US8541319B2 (en) | 2010-07-26 | 2013-09-24 | Hamamatsu Photonics K.K. | Laser processing method |
US8591753B2 (en) | 2010-07-26 | 2013-11-26 | Hamamatsu Photonics K.K. | Laser processing method |
US8673167B2 (en) | 2010-07-26 | 2014-03-18 | Hamamatsu Photonics K.K. | Laser processing method |
US8685269B2 (en) | 2010-07-26 | 2014-04-01 | Hamamatsu Photonics K.K. | Laser processing method |
US8741777B2 (en) | 2010-07-26 | 2014-06-03 | Hamamatsu Photonics K.K. | Substrate processing method |
US8802544B2 (en) | 2010-07-26 | 2014-08-12 | Hamamatsu Photonics K.K. | Method for manufacturing chip including a functional device formed on a substrate |
US8828260B2 (en) | 2010-07-26 | 2014-09-09 | Hamamatsu Photonics K.K. | Substrate processing method |
US8828873B2 (en) | 2010-07-26 | 2014-09-09 | Hamamatsu Photonics K.K. | Method for manufacturing semiconductor device |
US8841213B2 (en) | 2010-07-26 | 2014-09-23 | Hamamatsu Photonics K.K. | Method for manufacturing interposer |
US8945416B2 (en) | 2010-07-26 | 2015-02-03 | Hamamatsu Photonics K.K. | Laser processing method |
US8961806B2 (en) | 2010-07-26 | 2015-02-24 | Hamamatsu Photonics K.K. | Laser processing method |
US9108269B2 (en) | 2010-07-26 | 2015-08-18 | Hamamatsu Photonics K. K. | Method for manufacturing light-absorbing substrate and method for manufacturing mold for making same |
JP6012006B2 (ja) * | 2010-02-05 | 2016-10-25 | 株式会社フジクラ | 表面微細構造の形成方法 |
JP2019116395A (ja) * | 2017-12-26 | 2019-07-18 | 株式会社ディスコ | 凹部又は貫通孔の形成方法、電極の形成方法 |
JP2019214507A (ja) * | 2018-04-27 | 2019-12-19 | ショット アクチエンゲゼルシャフトSchott AG | 脆性材料から成る基板の容積に微細な構造を形成する方法 |
WO2020129553A1 (ja) * | 2018-12-19 | 2020-06-25 | 日本板硝子株式会社 | 微細構造付ガラス基板及び微細構造付ガラス基板の製造方法 |
EP4296244A1 (de) * | 2022-06-21 | 2023-12-27 | LPKF Laser & Electronics SE | Substratträger aus glas zur bearbeitung eines substrats und ein verfahren zu dessen herstellung |
WO2024070835A1 (ja) * | 2022-09-29 | 2024-04-04 | 日東電工株式会社 | ガラス基板及びガラス基板の製造方法 |
-
2003
- 2003-11-20 JP JP2003390924A patent/JP2005152693A/ja active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007330995A (ja) * | 2006-06-15 | 2007-12-27 | Ricoh Co Ltd | レーザ加工装置とレーザ加工方法とそれにより加工された液滴吐出ヘッド及び画像形成装置 |
JPWO2011096353A1 (ja) * | 2010-02-05 | 2013-06-10 | 株式会社フジクラ | 微細構造の形成方法および微細構造を有する基体 |
JP6012006B2 (ja) * | 2010-02-05 | 2016-10-25 | 株式会社フジクラ | 表面微細構造の形成方法 |
US8841213B2 (en) | 2010-07-26 | 2014-09-23 | Hamamatsu Photonics K.K. | Method for manufacturing interposer |
US8961806B2 (en) | 2010-07-26 | 2015-02-24 | Hamamatsu Photonics K.K. | Laser processing method |
US8685269B2 (en) | 2010-07-26 | 2014-04-01 | Hamamatsu Photonics K.K. | Laser processing method |
US8741777B2 (en) | 2010-07-26 | 2014-06-03 | Hamamatsu Photonics K.K. | Substrate processing method |
US8802544B2 (en) | 2010-07-26 | 2014-08-12 | Hamamatsu Photonics K.K. | Method for manufacturing chip including a functional device formed on a substrate |
US8828260B2 (en) | 2010-07-26 | 2014-09-09 | Hamamatsu Photonics K.K. | Substrate processing method |
US8828873B2 (en) | 2010-07-26 | 2014-09-09 | Hamamatsu Photonics K.K. | Method for manufacturing semiconductor device |
US8591753B2 (en) | 2010-07-26 | 2013-11-26 | Hamamatsu Photonics K.K. | Laser processing method |
US8945416B2 (en) | 2010-07-26 | 2015-02-03 | Hamamatsu Photonics K.K. | Laser processing method |
US8673167B2 (en) | 2010-07-26 | 2014-03-18 | Hamamatsu Photonics K.K. | Laser processing method |
US9108269B2 (en) | 2010-07-26 | 2015-08-18 | Hamamatsu Photonics K. K. | Method for manufacturing light-absorbing substrate and method for manufacturing mold for making same |
US8541319B2 (en) | 2010-07-26 | 2013-09-24 | Hamamatsu Photonics K.K. | Laser processing method |
JP2019116395A (ja) * | 2017-12-26 | 2019-07-18 | 株式会社ディスコ | 凹部又は貫通孔の形成方法、電極の形成方法 |
JP7407499B2 (ja) | 2017-12-26 | 2024-01-04 | 株式会社ディスコ | 凹部又は貫通孔の形成方法、電極の形成方法 |
JP2019214507A (ja) * | 2018-04-27 | 2019-12-19 | ショット アクチエンゲゼルシャフトSchott AG | 脆性材料から成る基板の容積に微細な構造を形成する方法 |
JP7562242B2 (ja) | 2018-04-27 | 2024-10-07 | ショット アクチエンゲゼルシャフト | 脆性材料から成る基板の容積に微細な構造を形成する方法 |
WO2020129553A1 (ja) * | 2018-12-19 | 2020-06-25 | 日本板硝子株式会社 | 微細構造付ガラス基板及び微細構造付ガラス基板の製造方法 |
EP4296244A1 (de) * | 2022-06-21 | 2023-12-27 | LPKF Laser & Electronics SE | Substratträger aus glas zur bearbeitung eines substrats und ein verfahren zu dessen herstellung |
WO2024070835A1 (ja) * | 2022-09-29 | 2024-04-04 | 日東電工株式会社 | ガラス基板及びガラス基板の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005152693A (ja) | 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 | |
JP2005144622A (ja) | 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 | |
JP7562242B2 (ja) | 脆性材料から成る基板の容積に微細な構造を形成する方法 | |
JP6734202B2 (ja) | 脆性材料をスクライブして化学エッチングする方法およびシステム | |
JP6276682B2 (ja) | 電気機械チップを作成する方法 | |
JP2005144586A (ja) | 構造体の製造方法、液滴吐出ヘッド、液滴吐出装置 | |
US7468310B2 (en) | Method of machining substrate and method of manufacturing element | |
CN103025471B (zh) | 激光加工方法 | |
US9481173B2 (en) | Nozzle plate, method of manufacturing nozzle plate, inkjet head, and inkjet printing apparatus | |
JP2010024064A (ja) | 構造体の製造方法、液滴吐出ヘッド | |
WO2010044217A1 (ja) | ディスプレイ用マザーガラス基板および脆性材料基板の切断方法、ディスプレイの製造方法 | |
JP2005206401A (ja) | 構造体の製造方法、液滴吐出ヘッド及び液滴吐出装置 | |
JP5280825B2 (ja) | 基板テーブルおよびそれを用いたレーザ加工装置 | |
Dogan et al. | Optimization of ultrafast laser parameters for 3D micromachining of fused silica | |
Cheng et al. | Crack-free micromachining on glass using an economic Q-switched 532 nm laser | |
JP2007069216A (ja) | 無機材料の加工方法 | |
Qin et al. | Process characterization of fabricating 3D micro channel systems by laser-micromachining | |
KR102655562B1 (ko) | 기판 엘리먼트의 분리를 준비 및/또는 수행하기 위한 방법 및 기판 서브엘리먼트 | |
JP5678816B2 (ja) | ガラス基板の割断方法および割断装置 | |
Chen et al. | Excimer laser ablation of glass-based arrayed microstructures for biomedical, mechanical, and optical applications | |
Söderbäck | Micromachining of microfluidicsystems using a nanosecond laser: Process optimization and application | |
Simoni et al. | Optofluidic Microlasers based on Femtosecond Micromachining Technology | |
JPH11104869A (ja) | 炭酸ガスレーザ光を用いた基板の割断方法及びその方法を用いた非金属材料基板部品の製造方法 | |
Antão | Glass Welding Using Femtosecond Lasers and Applications in Optofluidics | |
Ferreira | Glass welding using femtosecond lasers and applications in optofluidics |