Nothing Special   »   [go: up one dir, main page]

JP2005147570A - Double pipe type heat exchanger - Google Patents

Double pipe type heat exchanger Download PDF

Info

Publication number
JP2005147570A
JP2005147570A JP2003387852A JP2003387852A JP2005147570A JP 2005147570 A JP2005147570 A JP 2005147570A JP 2003387852 A JP2003387852 A JP 2003387852A JP 2003387852 A JP2003387852 A JP 2003387852A JP 2005147570 A JP2005147570 A JP 2005147570A
Authority
JP
Japan
Prior art keywords
pipe
double
heat exchange
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003387852A
Other languages
Japanese (ja)
Other versions
JP4414199B2 (en
Inventor
Tatsuya Kikuyama
辰也 菊山
Masataka Fukuzawa
正隆 福澤
Katsutoshi Ono
勝利 小野
Masakazu Nomura
正和 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
T Rad Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP2003387852A priority Critical patent/JP4414199B2/en
Publication of JP2005147570A publication Critical patent/JP2005147570A/en
Application granted granted Critical
Publication of JP4414199B2 publication Critical patent/JP4414199B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat exchange performance by improving stability. <P>SOLUTION: In a double pipe type heat exchanger 1 having a double pipe 5 consisting of an inner pipe 6 with a first fluid flow passage 8 in it and an outer pipe 7 provided outside of the inner pipe 6 with a second fluid flow passage 9 formed between the inner pipe 6 and the outer pipe 7, a plurality of sets of heat exchange units 2, 3, 4 having a spiral double pipe 5 are stacked and supporting members 19 are provided at required positions between the heat exchange units 2, 3, 4 of each set and a necessary clearance is secured between the heat exchange units of each set. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内管内を流通する流体と、内管の外側に設けられた外管内を流通する流体との間で熱交換を行う2重管式熱交換器に関する。   The present invention relates to a double-pipe heat exchanger that performs heat exchange between a fluid that flows through an inner pipe and a fluid that flows through an outer pipe provided outside the inner pipe.

従来、ヒートポンプ式給湯機、空調機、床暖房等において、二酸化炭素やフロン等の冷媒と水との間で熱交換を行わせるために2重管式熱交換器が使用されている。   Conventionally, in a heat pump type hot water heater, an air conditioner, a floor heater, and the like, a double pipe type heat exchanger is used in order to exchange heat between a refrigerant such as carbon dioxide and chlorofluorocarbon and water.

この種の2重管式熱交換器は、内部に冷媒用流路が形成された内管と、該内管の外側に設けられ、内管との間に水用流路が形成された外管とを有する2重管を備えており、その2重管は、通常、渦巻状に形成されている。そして、前記内管の端部をヒートポンプ式給湯機等の機器に接続し、前記冷媒用流路に冷媒を流通させると共に前記水用流路に水を流通させることにより、冷媒と水との間で熱交換を行わせるようになっている(例えば、特許文献1及び2参照)。   This type of double-pipe heat exchanger has an inner pipe in which a refrigerant flow path is formed inside and an outer pipe that is provided outside the inner pipe and in which a water flow path is formed between the inner pipe and the inner pipe. A double pipe having a pipe is provided, and the double pipe is usually formed in a spiral shape. Then, the end of the inner pipe is connected to a device such as a heat pump type hot water heater, and the refrigerant is circulated through the refrigerant flow path and the water is circulated through the water flow path. The heat exchange is carried out in (see, for example, Patent Documents 1 and 2).

特開昭60−164183号公報JP 60-164183 A 実開昭60−248996号公報Japanese Utility Model Publication No. 60-248996

ところが、上記した従来の2重管式熱交換器では、2重管は1本もので渦巻状に形成されているため、無駄なスペースが多くなり、限られたスペース内では、熱交換流路長を十分確保することが困難であった。そこで、複数の2重管を積層することも行われているが、安定性が悪く、また、各2重管間での熱移動のため熱交換性能の向上が図り難いといった問題があった。   However, in the above-described conventional double pipe heat exchanger, one double pipe is formed in a spiral shape, so that there is a lot of wasted space. It was difficult to secure a sufficient length. Therefore, although a plurality of double pipes are laminated, there is a problem that stability is poor and it is difficult to improve heat exchange performance due to heat transfer between the double pipes.

本発明は、上記課題を解決すべくなされたものであり、安定性が良く、熱交換性能の向上を図ることのできる2重管式熱交換器を提供するものである。   The present invention has been made to solve the above-described problems, and provides a double-pipe heat exchanger that has good stability and can improve heat exchange performance.

本発明は、渦巻状に形成された前記2重管を有する熱交換ユニットが複数段積層され、該各段の熱交換ユニットの間の所要箇所に支持部材が介装され、前記各段の熱交換ユニットの間に所要の隙間が確保されるように構成されていることを特徴とする。   In the present invention, a plurality of stages of heat exchange units having the double pipes formed in a spiral shape are stacked, and a support member is interposed at a required location between the heat exchange units of each stage, so that the heat of each stage is obtained. It is characterized in that a required gap is secured between the exchange units.

好ましくは、前記支持部材は金属パイプであり、該金属パイプは前記熱交換ユニットにロウ付けされている。   Preferably, the support member is a metal pipe, and the metal pipe is brazed to the heat exchange unit.

さらに、前記支持部材は断熱手段であってもよい。   Furthermore, the support member may be a heat insulating means.

さらにまた、該断熱手段は断熱両面テープであり、該断熱両面テープは前記熱交換器に貼着され、前記各段の熱交換ユニット同士が固定されるように構成されていてもよい。   Furthermore, the heat insulating means may be a heat insulating double-sided tape, and the heat insulating double-sided tape may be attached to the heat exchanger so that the heat exchange units at each stage are fixed.

また、前記支持部材は、樹脂製板状部材であってもよく、さらに、前記支持部材は、空洞部を介して一対の前記樹脂製板状部材を対向させ、該各板状部材からそれぞれ上下に位置決め用支持片を形成させ、該位置決め用支持片により前記2重管を整列可能に構成させてもよい。   Further, the support member may be a resin plate-like member, and the support member further opposes the pair of resin plate-like members through the hollow portion, and vertically A positioning support piece may be formed on the double pipe, and the double pipe may be configured to be aligned by the positioning support piece.

さらに、前記内管は、冷媒管と、該冷媒管の外周に設けられた漏洩検知管とから成り、該漏洩検知管の内面に配管方向に沿って漏洩検知溝が形成されていてもよい。   Further, the inner pipe may be composed of a refrigerant pipe and a leak detection pipe provided on the outer periphery of the refrigerant pipe, and a leak detection groove may be formed along the piping direction on the inner surface of the leak detection pipe.

本発明によれば、各段の熱交換ユニットが支持部材により支持されているため、安定性の向上が図れ、また、支持部材により各段の熱交換ユニットの間に所要の隙間が確保されるため、2重管間での熱移動を遮断でき、熱交換性能を向上させることができる等種々の優れた効果を得ることができる。   According to the present invention, since the heat exchange unit at each stage is supported by the support member, stability can be improved, and a necessary gap is secured between the heat exchange units at each stage by the support member. Therefore, various excellent effects can be obtained such as heat transfer between the double pipes can be cut off and heat exchange performance can be improved.

以下、図面を参照しつつ、本発明の実施の形態について説明する。本実施の形態では、ヒートポンプ給湯機等の機器に使用される二酸化炭素やフロン等の冷媒と水との間で熱交換を行う2重管式熱交換器を例に挙げて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a double-pipe heat exchanger that performs heat exchange between a coolant such as carbon dioxide and chlorofluorocarbon used in a device such as a heat pump water heater and water will be described as an example.

この2重管式熱交換器1は、図1に示されているように、3個の熱交換ユニット2,3,4を段状に積層した構成を有しており、それぞれの熱交換ユニット2,3,4には、2重管5(5a,5b)が備えられている。   As shown in FIG. 1, the double-pipe heat exchanger 1 has a configuration in which three heat exchange units 2, 3, and 4 are stacked in a step shape. 2, 3 and 4 are provided with double tubes 5 (5a, 5b).

図2に示されているように、2重管5には、銅製の内管6と、内管6の外側に設けられた銅製の外管7とが設けられ、内管6内には冷媒用流路8が形成され、内管6と外管7の間には水用流路9が形成されている。そして、冷媒用流路8を流通する冷媒と水用流路9を流通する水はお互いに対向して流れるようになっており、この結果、冷媒と水との間の熱交換効率を高めることができる。また、内管6は、銅製の冷媒管10と、冷媒管10の外周に設けられた銅製の漏洩検知管11とから構成され、2本の内管6が縦方向に並設されている。漏洩検知管11の内面には、配管方向に沿って多数の漏洩検知溝12が形成されており、漏洩検知溝12内には空気層が形成されている。漏洩検知溝12は外部に設けられた漏洩検知センサー(図示せず)に接続されており、内管6又は外管7から漏洩した冷媒又は水は混入することなく漏洩検知溝12を介して外部に漏出し、前記漏洩検知センサーにより検知されるようになっている。   As shown in FIG. 2, the double pipe 5 is provided with a copper inner pipe 6 and a copper outer pipe 7 provided outside the inner pipe 6. A water flow path 8 is formed, and a water flow path 9 is formed between the inner tube 6 and the outer tube 7. And the refrigerant | coolant which distribute | circulates the flow path 8 for refrigerant | coolants, and the water which distribute | circulates the flow path 9 for water oppose each other, As a result, the heat exchange efficiency between a refrigerant | coolant and water is improved. Can do. The inner pipe 6 includes a copper refrigerant pipe 10 and a copper leakage detection pipe 11 provided on the outer periphery of the refrigerant pipe 10, and the two inner pipes 6 are arranged in parallel in the vertical direction. A large number of leak detection grooves 12 are formed along the pipe direction on the inner surface of the leak detection pipe 11, and an air layer is formed in the leak detection groove 12. The leakage detection groove 12 is connected to a leakage detection sensor (not shown) provided outside, and the refrigerant or water leaking from the inner tube 6 or the outer tube 7 is not mixed with the outside through the leakage detection groove 12. The leak detection sensor detects the leak.

図1に示されているように、最下段及び中間の段の熱交換ユニット2,3には2重管5(5a,5b)が上下2段に並設され、冷媒及び水が分割並行して流れるようになっている。また、最下段及び最上段の熱交換ユニット2,4には、それぞれ、図3及び図4に示されているように、水用流路9を水が外側に向かって渦巻状に流通するように形成された外巻き2重管5aが設けられており、一方、中間の段の熱交換ユニット3には、水用流路9を水が内側に向かって渦巻状に流通するように形成された内巻き2重管5bが設けられている。この結果、2重管式熱交換器1への水の入口13は出口14より下方に位置し、水用流路9にエア溜り部分ができることがなく、水は水用流路9を上方に向かって円滑に流れるようになるため、水用流路9内の空気抜き性能及び水抜け性能を向上させることができ、熱交換性能の向上が図れ、冷凍パンクを防止することができる。また、最上段の熱交換ユニット4に外巻き2重管5aを設けることにより、水の出口側に長い直線部を形成させることができるため、水用流路9にスケールが詰まるのを防止することができる。   As shown in FIG. 1, double pipes 5 (5a, 5b) are arranged in two upper and lower stages in the heat exchange units 2 and 3 in the lowermost stage and the middle stage, and the refrigerant and water are divided in parallel. Is flowing. Further, in the lowermost and uppermost heat exchange units 2 and 4, as shown in FIGS. 3 and 4, respectively, the water flows in a spiral shape through the water channel 9. On the other hand, the heat exchange unit 3 in the middle stage is formed so that the water flows in a spiral shape in the water flow path 9 in the middle heat exchange unit 3. An internally wound double pipe 5b is provided. As a result, the water inlet 13 to the double-pipe heat exchanger 1 is located below the outlet 14, so that there is no air reservoir in the water flow path 9, and the water moves up the water flow path 9. Therefore, the air venting performance and the water draining performance in the water channel 9 can be improved, the heat exchange performance can be improved, and the freezing puncture can be prevented. In addition, by providing the outer winding double pipe 5a in the uppermost heat exchange unit 4, a long straight portion can be formed on the outlet side of the water, so that the scale for the water flow path 9 is prevented from being clogged. be able to.

水用流路9を流通する水の中にはスケールが含有されており、水用流路9を流通する水の温度の上昇に伴って水用流路9内でのスケール析出量は増加する傾向がある(図5から分かるように、スケール析出量は、特に、水温が60℃を超えると、急激に増加し始める)。そのため、外管7の内径に対する外管7の曲がり部17の曲げ半径Rの割合(以下「曲げ半径比」と呼ぶ)を水温又はスケール析出量に応じて設定し、外管7の曲げ半径比がその設定以上となるように形成されている。具体的には、図5に示すように、外管の曲げ半径比が、水温が60℃までは2.7以上、水温が70℃の場合には3.15以上、水温が80℃の場合には4.1以上、水温が90℃の場合には5.3以上となるように形成されている。この結果、外管7の水用流路9がスケールにより閉塞されるのを防止することができ、熱交換性能を高く維持することができ、熱交換器の耐久性を向上させることができる。   The water flowing through the water channel 9 contains scale, and the amount of scale deposition in the water channel 9 increases as the temperature of the water flowing through the water channel 9 increases. There is a tendency (as can be seen from FIG. 5, the amount of scale deposition starts to increase rapidly especially when the water temperature exceeds 60 ° C.). Therefore, the ratio of the bending radius R of the bent portion 17 of the outer tube 7 to the inner diameter of the outer tube 7 (hereinafter referred to as “bending radius ratio”) is set according to the water temperature or the amount of scale deposition, and the bending radius ratio of the outer tube 7 Is formed so as to exceed the setting. Specifically, as shown in FIG. 5, when the bend radius ratio of the outer tube is 2.7 or more when the water temperature is 60 ° C., 3.15 or more when the water temperature is 70 ° C., and the water temperature is 80 ° C. Is 4.1 or more, and when the water temperature is 90 ° C., it is 5.3 or more. As a result, the water flow path 9 of the outer tube 7 can be prevented from being blocked by the scale, the heat exchange performance can be maintained high, and the durability of the heat exchanger can be improved.

図1に良く示されているように、2重管5の上端部はレジューサー26等により拡幅され、水管18と内管6に分離されている。そして、水管18と内管6に分離後、水管18は内管6より上方に位置するようになっており、内管6は縦方向に並設されている。このように、内管6が縦方向に並設されることにより、水の流れの抵抗を抑えることができ、水用流路9がスケールにより閉塞されるのを防止することができる。また、水管18を内管6より上方に配置することにより空気抜き性能及び水抜け性能を向上させることができる。   As shown well in FIG. 1, the upper end portion of the double pipe 5 is widened by a reducer 26 and the like, and is separated into a water pipe 18 and an inner pipe 6. And after separating into the water pipe 18 and the inner pipe 6, the water pipe 18 is located above the inner pipe 6, and the inner pipe 6 is arranged in parallel in the vertical direction. Thus, by arranging the inner pipes 6 in the vertical direction, it is possible to suppress the resistance of the flow of water and to prevent the water flow path 9 from being blocked by the scale. Moreover, the air venting performance and the water draining performance can be improved by disposing the water pipe 18 above the inner pipe 6.

好ましくは、水用流路9の断面積は上流側より下流側のほうが大きくなるように形成され、また、上流側の段の熱交換ユニットより下流側の段の熱交換ユニットの方が大きくなるように形成され、さらに、図1及び図4に示されているように、水管18の出口15の近傍部分が拡径されているのがよい。そして、これらの場合には、外管7の水用流路9の水の流れの抵抗を低く抑えることができるため、水用流路9がスケールにより閉塞されるのを防止することができる。   Preferably, the cross-sectional area of the water flow path 9 is formed so that the downstream side is larger than the upstream side, and the heat exchange unit in the downstream stage is larger than the heat exchange unit in the upstream stage. Further, as shown in FIG. 1 and FIG. 4, the diameter of the vicinity of the outlet 15 of the water pipe 18 is preferably increased. In these cases, the resistance of the water flow in the water flow path 9 of the outer tube 7 can be kept low, so that the water flow path 9 can be prevented from being blocked by the scale.

図1及び図3,4に示されているように、各段の熱交換ユニット2,3,4の間には所要数の金属製パイプ19がロウ付けされている。このように、金属パイプ19が設けられることにより、各段の熱交換ユニット2,3,4の安定性が向上し、また、金属パイプ19により各段の熱交換ユニット2,3,4間に隙間が形成されるため、各段の熱交換ユニット2,3,4間の熱移動が遮断され、熱交換効率の向上が図れる。なお、各段の熱交換ユニット2,3,4の間に介装するのは上記した金属パイプ19に限らず、他の支持部材であってもよく、例えば、各段の熱交換ユニット2,3,4の間の所要箇所に、断熱両面テープを貼着し、該断熱両面テープにより各段の熱交換ユニット2,3,4同士を固定する等、断熱手段を介装させてもよい。この場合には、各段の熱交換ユニット2,3,4同士が隙間を確保した状態で確実に固定されるため、安定性が向上し、熱交換ユニット2,3,4の積層作業が容易となり、積層後の熱交換器1の形状精度を高めることができる。また、各段の熱交換ユニット2,3,4間の熱移動の遮断性能をさらに向上させることができ、熱交換効率を高めることができる。さらに、各段の熱交換ユニット2,3,4の間に介装する支持部材としては、樹脂製板状部材を使用してもよく、例えば、図8に示すように、この支持部材29は、空洞部30を介して一対の樹脂製板状部材31を対向させ、各樹脂製板状部材31からそれぞれ上下に位置決め用支持片32を形成させ、位置決め用支持片32により2重管5を整列可能に構成させたものであってもよい。この結果、空洞部30により、各段の熱交換ユニット2,3,4間の熱移動の遮断性能の向上を図ることができ、また、位置決め用支持片32により、2重管5a,5bの設置作業の簡素化が可能となると共に、積層後の安定性を高めることができる。   As shown in FIGS. 1, 3, and 4, a required number of metal pipes 19 are brazed between the heat exchange units 2, 3, and 4 of each stage. Thus, by providing the metal pipe 19, the stability of the heat exchange units 2, 3, 4 of each stage is improved, and between the heat exchange units 2, 3, 4 of each stage is improved by the metal pipe 19. Since the gap is formed, the heat transfer between the heat exchange units 2, 3 and 4 at each stage is blocked, and the heat exchange efficiency can be improved. In addition, it is not limited to the above-described metal pipe 19 that is interposed between the heat exchange units 2, 3, 4 of each stage, and may be another support member. A heat insulating means may be interposed, for example, by sticking a heat insulating double-sided tape to a required portion between 3 and 4 and fixing the heat exchange units 2, 3, 4 of each stage with the heat insulating double-sided tape. In this case, since the heat exchange units 2, 3, and 4 of each stage are securely fixed with a gap therebetween, the stability is improved and the stacking operation of the heat exchange units 2, 3, and 4 is easy. Thus, the shape accuracy of the heat exchanger 1 after lamination can be increased. Moreover, the interruption | blocking performance of the heat transfer between the heat exchange units 2, 3, and 4 of each stage can further be improved, and heat exchange efficiency can be improved. Further, a resin plate-like member may be used as a support member interposed between the heat exchange units 2, 3, 4 of each stage. For example, as shown in FIG. The pair of resin plate-like members 31 are opposed to each other through the hollow portion 30, and the positioning support pieces 32 are formed vertically from the respective resin plate-like members 31, and the double pipe 5 is formed by the positioning support pieces 32. It may be configured to be aligned. As a result, the hollow portion 30 can improve the heat transfer blocking performance between the heat exchange units 2, 3, and 4 at each stage, and the positioning support piece 32 allows the double pipes 5 a and 5 b to be improved. Installation work can be simplified, and stability after lamination can be increased.

また、図1、及び図3、図4に示されているように、最下段の熱交換ユニット2と中間の段の熱交換ユニット3との間、及び中間の段の熱交換ユニット3と最上段の熱交換ユニット4との間において、外管9同士はヘッダ15を介して接続されている。この場合、中間の段の熱交換ユニット3の出口近傍の水温は、水用流路9内でのスケール析出量が急激に増加し始める温度域の60〜70℃となるため、最上段の熱交換ユニット4は中間の段の熱交換ユニット2の外管7より太径の外管7を有する1本の2重管5により構成されており、水用流路9内にスケールが溜まり難いようになっている。   Further, as shown in FIGS. 1, 3, and 4, the heat exchange unit 2 at the lowermost stage and the heat exchange unit 3 at the intermediate stage, and the Between the upper heat exchange unit 4, the outer tubes 9 are connected to each other via a header 15. In this case, the water temperature in the vicinity of the outlet of the heat exchange unit 3 in the middle stage is 60 to 70 ° C. in the temperature range where the amount of scale deposition in the water flow path 9 starts to increase rapidly. The exchange unit 4 is composed of a single double pipe 5 having an outer pipe 7 having a diameter larger than that of the outer pipe 7 of the intermediate stage heat exchange unit 2, so that scale does not easily accumulate in the water flow path 9. It has become.

図6に詳細に示されているように、中間の段の熱交換ユニット13と最上段の熱交換ユニット4の間のヘッダ15は、筒状のパイプ20と、パイプ20の両端部を閉塞する蓋部材21とから成り、外管7はパイプに穿設された穴(図示せず)を介してヘッダ15にロウ付け等により溶接され、内管6はヘッダ15を貫通し、ヘッダ貫通部22はロウ付け等により溶接されるようになっている。また、各段間の冷媒管10同士の接続は、冷媒の圧力が高いためブロック状のヘッダ16を介して行われる。このヘッダ16には、縦孔23が形成され、縦孔23の開口端部はキャップ24により閉塞されており、各冷媒管10は縦孔23に連通するようにヘッダ16に接続され、ヘッダ接続部25はロウ付け等により溶接されるようになっている。そして、内管6のヘッダ貫通部22から漏洩検知管11の開口端面までの長さa、及び漏洩検知管11の開口端面から冷媒管10のヘッダ接続部25までの長さbはいずれも内管径に相当する長さ以上となっている。これにより、ヘッダ貫通部22及びヘッダ接続部25の溶接時にロウ材等が漏洩検知溝12に流れ込んで漏洩検知溝12が閉塞されることのないようになっている。このように、外管7と冷媒管10がそれぞれ別個のヘッダ15,16に接続され、さらに、漏洩検知管11の開口端面が溶接部から所定距離、離間されているため、水又は冷媒の漏洩検知を容易且つ確実に行うことができ、漏洩検知精度を高めることができる。また、熱交換ユニット2,3,4間の接続をヘッダ15,16を介して行うことにより、各段毎に外管7又は冷媒管10の口径が異なっていたとしても、それらの接続作業を容易に行うことができ、生産性が向上し、製造コストを抑制することができる。   As shown in detail in FIG. 6, the header 15 between the intermediate heat exchange unit 13 and the uppermost heat exchange unit 4 closes the cylindrical pipe 20 and both ends of the pipe 20. The outer tube 7 is welded to the header 15 by brazing or the like through a hole (not shown) drilled in the pipe, the inner tube 6 penetrates the header 15, and the header penetration 22 Is welded by brazing or the like. Further, the refrigerant pipes 10 are connected to each other through the block-shaped header 16 because the refrigerant pressure is high. A vertical hole 23 is formed in the header 16, and an opening end portion of the vertical hole 23 is closed by a cap 24, and each refrigerant pipe 10 is connected to the header 16 so as to communicate with the vertical hole 23. The part 25 is welded by brazing or the like. The length a from the header penetration part 22 of the inner pipe 6 to the opening end face of the leak detection pipe 11 and the length b from the opening end face of the leak detection pipe 11 to the header connection part 25 of the refrigerant pipe 10 are both internal. It is longer than the length corresponding to the tube diameter. Thereby, the brazing material or the like does not flow into the leakage detection groove 12 when the header penetration part 22 and the header connection part 25 are welded, and the leakage detection groove 12 is not blocked. Thus, since the outer pipe 7 and the refrigerant pipe 10 are connected to the separate headers 15 and 16, respectively, and the opening end face of the leak detection pipe 11 is separated from the welded portion by a predetermined distance, the leakage of water or refrigerant Detection can be performed easily and reliably, and leakage detection accuracy can be increased. Moreover, even if the diameters of the outer pipe 7 or the refrigerant pipe 10 are different for each stage by performing the connection between the heat exchange units 2, 3 and 4 via the headers 15 and 16, the connection work is performed. This can be easily performed, productivity can be improved, and manufacturing costs can be suppressed.

また、最下段の熱交換ユニット2の水管18の入口13部分における外管9同士の接続はヘッダ27を介して行われる。図7に詳細に示されているように、このヘッダ27は、上記したヘッダ15と同様の構造を有しており、外管7はヘッダ27にロウ付け等により固定されている。また、内管6はヘッダ27を貫通し、冷媒管10の接続は、上記したヘッダ16と同様の構造を有するヘッダ28を介して行われる。   In addition, the connection between the outer pipes 9 at the inlet 13 portion of the water pipe 18 of the lowermost heat exchange unit 2 is made through the header 27. As shown in detail in FIG. 7, the header 27 has the same structure as the header 15 described above, and the outer tube 7 is fixed to the header 27 by brazing or the like. The inner pipe 6 penetrates the header 27, and the refrigerant pipe 10 is connected via a header 28 having the same structure as the header 16 described above.

なお、上記実施の形態においては、最下段及び中間の段の熱交換ユニット2,3だけに2重管5a,5bが上下2段で並設されているが、最上段の熱交換ユニット4にも2重管5aが上下2段で並設されていてもよく、また、各熱交換ユニット2,3,4の2重管の設置段数は3段以上であってもよい。   In the above embodiment, the double pipes 5a and 5b are arranged in two upper and lower stages only in the heat exchange units 2 and 3 at the lowermost stage and the middle stage. Alternatively, the double pipes 5a may be arranged in two upper and lower stages, and the number of installation stages of the double pipes of the heat exchange units 2, 3, and 4 may be three or more.

さらに、熱交換ユニット2,3,4の積層段数は、上記した3段に限定されるものではなく、2段、或いは4段以上であってもよい。   Further, the number of stacked layers of the heat exchange units 2, 3, and 4 is not limited to the above-described three steps, and may be two or four or more.

さらにまた、内管6の設置数は2本に限定されるものではなく、3本以上であってもよい。また、内管6には外周部に漏洩検知管11が設けられているが、本発明は、漏洩検知管11のない2重管式熱交換器にも適用可能である。   Furthermore, the number of installed inner pipes 6 is not limited to two, and may be three or more. Moreover, although the leak detection pipe | tube 11 is provided in the outer peripheral part in the inner pipe 6, this invention is applicable also to the double pipe type heat exchanger without the leak detection pipe | tube 11. FIG.

さらに、上記実施の形態では、冷媒と水との間で熱交換する場合について説明したが、これは単なる例示であり、本発明は、例えば、水と水との間で熱交換する場合等、他の流体間で熱交換する場合にも、適用可能である。   Furthermore, in the above-described embodiment, the case where heat is exchanged between the refrigerant and water has been described, but this is merely an example, and the present invention includes, for example, the case where heat is exchanged between water and water. The present invention is also applicable when heat is exchanged between other fluids.

本発明の実施の形態に係る2重管式熱交換器を示す正面図である。It is a front view which shows the double tube | pipe type heat exchanger which concerns on embodiment of this invention. 本発明の実施の形態に係る2重管式熱交換器を示す断面図である。It is sectional drawing which shows the double tube | pipe type heat exchanger which concerns on embodiment of this invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 本発明の実施の形態に係る2重管式熱交換器を示す平面図である。It is a top view which shows the double tube | pipe type heat exchanger which concerns on embodiment of this invention. 本発明の実施の形態に係る2重管式熱交換器における、曲げ半径比と水温及びスケール析出量との関係を示す図である。It is a figure which shows the relationship between a bending radius ratio, water temperature, and the amount of scale deposits in the double-pipe heat exchanger which concerns on embodiment of this invention. 本発明の実施の形態におけるヘッダの詳細を示す断面図である。It is sectional drawing which shows the detail of the header in embodiment of this invention. 本発明の実施の形態におけるヘッダの詳細を示す断面図である。It is sectional drawing which shows the detail of the header in embodiment of this invention. 本発明の実施の形態における支持部材の別の例を示す側断面図である。It is a sectional side view which shows another example of the supporting member in embodiment of this invention.

符号の説明Explanation of symbols

1 2重管式熱交換器
2 熱交換ユニット
3 熱交換ユニット
4 熱交換ユニット
5 2重管
6 内管
7 外管
8 冷媒用流路
9 水用流路
11 漏洩検知管
DESCRIPTION OF SYMBOLS 1 Double pipe type heat exchanger 2 Heat exchange unit 3 Heat exchange unit 4 Heat exchange unit 5 Double pipe 6 Inner pipe 7 Outer pipe 8 Refrigerant flow path 9 Water flow path 11 Leak detection tube

Claims (7)

内部に第1流体用流路が形成された内管と、該内管の外側に設けられ、該内管との間に第2流体用流路が形成された外管とからなる2重管を備えた2重管式熱交換器において、
渦巻状に形成された前記2重管を有する熱交換ユニットが複数段積層され、該各段の熱交換ユニットの間の所要箇所に支持部材が介装され、前記各段の熱交換ユニットの間に所要の隙間が確保されるように構成されていることを特徴とする2重管式熱交換器。
A double pipe comprising an inner pipe having a first fluid passage formed therein and an outer pipe provided outside the inner pipe and having a second fluid passage formed between the inner pipe and the inner pipe. In a double-tube heat exchanger with
A plurality of stages of heat exchange units having the double pipes formed in a spiral shape are stacked, and a support member is interposed at a required position between the heat exchange units of each stage, and between the heat exchange units of each stage. A double-pipe heat exchanger characterized in that a required gap is secured in the pipe.
前記支持部材は金属パイプであり、該金属パイプは前記熱交換ユニットにロウ付けされている請求項1に記載の2重管式熱交換器。 The double pipe heat exchanger according to claim 1, wherein the support member is a metal pipe, and the metal pipe is brazed to the heat exchange unit. 前記支持部材は断熱手段である請求項1に記載の2重管式熱交換器。 The double-pipe heat exchanger according to claim 1, wherein the support member is a heat insulating means. 前記断熱手段は断熱両面テープであり、該断熱両面テープは前記熱交換器に貼着され、前記各段の熱交換ユニット同士が固定されるように構成されている請求項3に記載の2重管式熱交換器。 The said heat insulation means is a heat insulation double-sided tape, This heat insulation double-sided tape is affixed on the said heat exchanger, and it is comprised so that the heat exchange units of each said stage may be fixed. Tube heat exchanger. 前記支持部材は、樹脂製板状部材である請求項1に記載の2重管式熱交換器。 The double-tube heat exchanger according to claim 1, wherein the support member is a resin plate member. 前記支持部材は、空洞部を介して一対の前記樹脂製板状部材を対向させ、該各板状部材からそれぞれ上下に位置決め用支持片を形成させ、該位置決め用支持片により前記2重管を整列可能に構成させた請求項5に記載の2重管式熱交換器。 The support member has a pair of resin plate-like members opposed to each other through a hollow portion, and positioning support pieces are formed vertically from the plate-like members, respectively, and the double tube is formed by the positioning support pieces. The double-pipe heat exchanger according to claim 5, which is configured to be aligned. 前記内管は、冷媒管と、該冷媒管の外周に設けられた漏洩検知管とから成り、該漏洩検知管の内面に配管方向に沿って漏洩検知溝が形成されている請求項1〜6のいずれか1の請求項に記載の2重管式熱交換器。 The said inner pipe consists of a refrigerant | coolant pipe | tube and the leak detection pipe provided in the outer periphery of this refrigerant pipe, and the leak detection groove | channel is formed along the piping direction in the inner surface of this leak detection pipe | tube. A double-pipe heat exchanger according to any one of the preceding claims.
JP2003387852A 2003-11-18 2003-11-18 Double tube heat exchanger Expired - Fee Related JP4414199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003387852A JP4414199B2 (en) 2003-11-18 2003-11-18 Double tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003387852A JP4414199B2 (en) 2003-11-18 2003-11-18 Double tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2005147570A true JP2005147570A (en) 2005-06-09
JP4414199B2 JP4414199B2 (en) 2010-02-10

Family

ID=34695090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003387852A Expired - Fee Related JP4414199B2 (en) 2003-11-18 2003-11-18 Double tube heat exchanger

Country Status (1)

Country Link
JP (1) JP4414199B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107026A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Triple-pipe type heat exchanger
JP2008190780A (en) * 2007-02-05 2008-08-21 Corona Corp Water-refrigerant heat exchanger
JP2009068764A (en) * 2007-09-13 2009-04-02 T Rad Co Ltd Double pipe heat exchanger
JP2010139101A (en) * 2008-12-09 2010-06-24 Sanden Corp Heat exchanger and hot water supply device using the same
WO2010150878A1 (en) * 2009-06-26 2010-12-29 株式会社Cku Heat exchanger
JP2012021668A (en) * 2010-07-12 2012-02-02 Cku:Kk Heat exchanger
JP2012052772A (en) * 2010-09-03 2012-03-15 C I Kasei Co Ltd Heat exchanger
JP2012067997A (en) * 2010-09-27 2012-04-05 C I Kasei Co Ltd Heat exchanger
KR101392711B1 (en) * 2013-11-27 2014-05-12 (주)선우콘트롤 Geothermal heat pump system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107026A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Triple-pipe type heat exchanger
JP2008190780A (en) * 2007-02-05 2008-08-21 Corona Corp Water-refrigerant heat exchanger
JP2009068764A (en) * 2007-09-13 2009-04-02 T Rad Co Ltd Double pipe heat exchanger
JP2010139101A (en) * 2008-12-09 2010-06-24 Sanden Corp Heat exchanger and hot water supply device using the same
WO2010150878A1 (en) * 2009-06-26 2010-12-29 株式会社Cku Heat exchanger
JP4880094B2 (en) * 2009-06-26 2012-02-22 株式会社Cku Heat exchanger
CN102483308A (en) * 2009-06-26 2012-05-30 株式会社Cku Heat exchanger
JP2012021668A (en) * 2010-07-12 2012-02-02 Cku:Kk Heat exchanger
JP2012052772A (en) * 2010-09-03 2012-03-15 C I Kasei Co Ltd Heat exchanger
JP2012067997A (en) * 2010-09-27 2012-04-05 C I Kasei Co Ltd Heat exchanger
KR101392711B1 (en) * 2013-11-27 2014-05-12 (주)선우콘트롤 Geothermal heat pump system

Also Published As

Publication number Publication date
JP4414199B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP5490265B2 (en) Heat exchanger, method for manufacturing the heat exchanger, and refrigeration cycle apparatus including the heat exchanger
JP6615423B1 (en) Plate heat exchanger, heat pump device equipped with plate heat exchanger, and heat pump air-conditioning / hot water supply system equipped with heat pump device
WO2010150877A1 (en) Heat exchanger using multiple-conduit pipes
JP4414199B2 (en) Double tube heat exchanger
JP4414197B2 (en) Double tube heat exchanger
JP2009216309A (en) Heat exchanger
JP4414196B2 (en) Double tube heat exchanger
JP4414198B2 (en) Double tube heat exchanger
JP2016038115A (en) Heat exchanger
JP2005069620A (en) Heat exchanger
JP5046748B2 (en) Gas cooler for hot water system
JP2009264644A (en) Heat exchanger
JP2008175450A (en) Heat exchanger
WO2017179399A1 (en) Heat exchanger
JP2009068764A (en) Double pipe heat exchanger
JP3922088B2 (en) Heat exchanger
JP2003156291A (en) Heat exchanger
JPH07190650A (en) Heat exchanger
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP5540683B2 (en) Heat exchanger and water heater provided with the same
JP2007247917A (en) Triple tube-type heat exchanger
KR200426631Y1 (en) Aluminum condenser
JP4338591B2 (en) Heat exchanger distributor
CN221802595U (en) Heat exchanger
JP2003028583A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees