Nothing Special   »   [go: up one dir, main page]

JP2005145999A - Porous film made of polyolefin resin - Google Patents

Porous film made of polyolefin resin Download PDF

Info

Publication number
JP2005145999A
JP2005145999A JP2003380865A JP2003380865A JP2005145999A JP 2005145999 A JP2005145999 A JP 2005145999A JP 2003380865 A JP2003380865 A JP 2003380865A JP 2003380865 A JP2003380865 A JP 2003380865A JP 2005145999 A JP2005145999 A JP 2005145999A
Authority
JP
Japan
Prior art keywords
film
polyolefin resin
porous membrane
stretching
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003380865A
Other languages
Japanese (ja)
Inventor
Shuji Sakamoto
秀志 坂本
Takashi Niifuku
隆志 新福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
Chisso Petrochemical Corp
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Petrochemical Corp, Chisso Corp filed Critical Chisso Petrochemical Corp
Priority to JP2003380865A priority Critical patent/JP2005145999A/en
Publication of JP2005145999A publication Critical patent/JP2005145999A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous film which is made of a polyolefin resin and has a high porosity and high heat resistance in spite of the simple manufacturing process. <P>SOLUTION: The porous film made of the polyolefin resin is formed by melt-kneading a resin composition containing a polyolefin resin (C) comprising a specific poly(4-methyl-1-pentene) polymer (A) and a specific α-olefin copolymer (B) into a film-like melt, forming the film-like melt into a film-like molded product under a specific condition and subsequently stretching the film-like molded product at least in one direction, and has communicated pores in the α-olefin copolymer (B) region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ポリオレフィン樹脂製多孔膜に関する。詳しくは、分離膜、電池セパレータ等に好適なポリオレフィン樹脂製多孔膜に関する。   The present invention relates to a polyolefin resin porous membrane. Specifically, the present invention relates to a polyolefin resin porous membrane suitable for a separation membrane, a battery separator, and the like.

連通した細孔を有するプラスチック多孔膜は様々な用途に用いられており、医療用、工業用の濾過、分離等に用いられる分離膜、電池セパレータ、電解コンデンサー用セパレータ等のセパレータ、更に紙おむつ用バックシート等の衛生材料、ハウスラップや屋根下地材等の建材等に広く使用されている。特に、ポリオレフィン樹脂製多孔膜は有機溶剤やアルカリ性または酸性の溶液に対する耐性を有するため、これら用途に広く好適に使用されている。   Plastic porous membranes with continuous pores are used in a variety of applications. Separation membranes used for medical and industrial filtration and separation, separators for battery separators, separators for electrolytic capacitors, and bags for paper diapers. It is widely used for sanitary materials such as sheets, building materials such as house wraps and roof base materials. In particular, since the polyolefin resin porous membrane has resistance to an organic solvent or an alkaline or acidic solution, it is widely used for these applications.

ポリオレフィン樹脂製多孔膜の製造方法としては次のものが知られている。
(a)ポリオレフィン樹脂にシリカやタルク等の無機質充填剤やポリオレフィン樹脂と非相溶性のナイロンやポリエチレンテレフタレート等の有機質充填剤を混合して成形したシートを、少なくとも一方向に延伸し、ポリオレフィン樹脂と充填剤の界面に空隙(細孔)を生じさせる方法(以下「多成分延伸法」という)。
(b)高ドラフト比で製膜した高密度ポリエチレンのシートを、必要に応じて加熱処理し、少なくとも一方向に延伸し、結晶ラメラ間をフィブリル化させ多孔膜を得る方法(以下「単成分延伸法」という)。
(c)ポリオレフィン樹脂に有機液状体や無機質充填剤等を混合して成形したシートから、該有機液状体や無機質充填剤を抽出し、必要に応じ該抽出の前後に延伸を行う方法(以下「混合抽出法」という)。
The following is known as a method for producing a polyolefin resin porous membrane.
(a) A sheet formed by mixing a polyolefin resin with an inorganic filler such as silica or talc, or an organic filler such as nylon or polyethylene terephthalate that is incompatible with the polyolefin resin, is stretched at least in one direction, and the polyolefin resin A method of generating voids (pores) at the filler interface (hereinafter referred to as “multi-component stretching method”).
(b) A method of obtaining a porous film by heating a high-density polyethylene sheet formed at a high draft ratio as necessary and stretching it in at least one direction to fibrillate between crystal lamellae (hereinafter referred to as “single component stretching”). Law ").
(c) A method in which the organic liquid or inorganic filler is extracted from a sheet formed by mixing an organic liquid or inorganic filler in a polyolefin resin, and stretched before and after the extraction as necessary (hereinafter referred to as “ "Mixed extraction method").

上記(a)の多成分延伸法には、無機質充填剤混合系と有機質充填剤混合系が知られているが、前者の場合、無機質充填剤の添加量を多くする必要があり、マトリックスとなるポリオレフィン樹脂本来の物性や風合いが低下したり、酸やアルカリに弱い等の課題があった。また、後者の有機質充填剤混合系では、ポリオレフィン樹脂本来の物性や風合いが低下するだけでなく、ポリオレフィン樹脂への有機質充填剤の分散が難しく、細孔の孔径が小さい多孔膜や空隙率の大きい多孔膜が得られ難い等の課題がある。   In the multi-component stretching method (a) above, an inorganic filler mixed system and an organic filler mixed system are known, but in the former case, it is necessary to increase the amount of the inorganic filler added, resulting in a matrix. There were problems such as degradation of the original physical properties and texture of the polyolefin resin and weakness against acids and alkalis. Further, in the latter organic filler mixed system, not only the physical properties and texture of the polyolefin resin are deteriorated, but also the organic filler is difficult to disperse in the polyolefin resin, and the porous film having a small pore diameter and a large porosity are obtained. There are problems such as difficulty in obtaining a porous film.

上記(b)の単成分延伸法は、高ドラフト比で製膜した膜状成形物を別工程で長時間に渡り熱処理した後、特殊な条件下で多段延伸を行うものであり、方法が特殊なだけでなく、製造に長時間を要し、生産性が低いという課題があった。また、結晶ラメラ間をフィブリル化させるため、空隙率の大きい多孔膜が得られ難く、更に、高配向でかつ高結晶化されたシートを延伸するため、得られた多孔膜が裂け易いという課題を有している。   The single component stretching method (b) above is a method in which a film-shaped molded product formed at a high draft ratio is heat-treated in a separate process for a long time and then subjected to multistage stretching under special conditions. In addition to this, there is a problem that the production takes a long time and the productivity is low. In addition, it is difficult to obtain a porous film having a large porosity because of fibrillation between the crystal lamellae, and further, the stretched sheet is highly oriented and highly crystallized. Have.

上記(c)の混合抽出法は、シート中の有機液状体を有機溶媒にて、また、無機質充填剤をアルカリ性溶媒にて抽出する工程、抽出後のシートを洗浄及び乾燥する工程からなり、製造工程が複雑であった。また、有機液状体を用いる場合は、シート中の有機液状体の含有率が40〜60重量%にも達するため、高速製膜性や延伸性に課題がある他に、各工程でロール等への有機液状物の付着等が発生し、生産性に課題がある。   The mixed extraction method of (c) above comprises a step of extracting an organic liquid in a sheet with an organic solvent and an inorganic filler with an alkaline solvent, and a step of washing and drying the extracted sheet. The process was complicated. Moreover, when using an organic liquid, since the content rate of the organic liquid in the sheet reaches 40 to 60% by weight, in addition to the problems in high-speed film-forming properties and stretchability, rolls and the like in each step As a result, there is a problem in productivity.

ポリ4−メチル−1−ペンテン系重合体は、ポリオレフィン樹脂でありながら融点が220〜240℃であって優れた耐熱性を有するため、前記単成分延伸法、多成分延伸法や混合抽出法により古くから多孔膜分野への応用展開が検討されてきた。しかし、ポリ4−メチル−1−ペンテン系重合体自体は、ポリプロピレンやポリエチレンと比較して、延伸性が大きく劣るため、前記単成分延伸法や多成分延伸法では空隙率の大きい多孔膜を得ることは一層難しい。   The poly-4-methyl-1-pentene polymer is a polyolefin resin and has a melting point of 220 to 240 ° C. and excellent heat resistance. Therefore, the poly-methyl-1-pentene polymer is obtained by the single-component stretching method, the multi-component stretching method or the mixed extraction method. Application development to the porous membrane field has been studied for a long time. However, since the poly-4-methyl-1-pentene polymer itself is greatly inferior in stretchability compared with polypropylene and polyethylene, a porous film having a large porosity is obtained by the single component stretching method or the multicomponent stretching method. That is even more difficult.

また、電池セパレータの場合、電池の誤使用等により電池内部が異常に温度上昇し発火等の事故が生じるのを防止するために、ある程度の温度に達したらセパレータが膜破れすることなく細孔を閉塞して電流をシャットダウンする機能(以下「シャットダウン機能」という)が求められている。そのため、膜破れする温度T(以下「膜破れ温度」という)と細孔を閉塞する温度(以下「孔閉塞温度」という)Tの差ΔT=T−Tを大きくし、かつ、より早い段階で異常反応を停止し温度上昇を抑えるべく孔閉塞温度を低減することが望まれている。ポリ4−メチル−1−ペンテン系重合体単成分だけでは、膜破れ温度を高くすることはできるが、孔閉塞温度を低くすることができないため、ポリ4−メチル−1−ペンテン系重合体に、ポリエチレンワックス、低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレンや超高分子量ポリエチレン等のポリエチレン樹脂と流動パラフィン等の液状または固体状有機物を混合し、製膜・延伸後に該有機物を抽出、または製膜後に該有機物を抽出し延伸する混合抽出法の技術が開示されている(例えば、特許文献1)。 In addition, in the case of a battery separator, in order to prevent an abnormal temperature rise due to misuse of the battery and an accident such as ignition to occur, the separator does not break the membrane when the temperature reaches a certain level. A function to shut down and shut down current (hereinafter referred to as “shutdown function”) is required. Therefore, to increase the difference ΔT = T b -T s temperature T b (hereinafter, "film break temperature") and temperatures for closing the pores (hereinafter referred to as "pore closing temperature") T s to film breakage, and, It is desired to reduce the hole closing temperature in order to stop the abnormal reaction at an earlier stage and suppress the temperature rise. Although only the poly-4-methyl-1-pentene polymer single component can increase the film breaking temperature, the pore blocking temperature cannot be lowered. , Polyethylene wax, low density polyethylene, linear low density polyethylene, polyethylene resin such as high density polyethylene and ultra-high molecular weight polyethylene and liquid or solid organic matter such as liquid paraffin are mixed, and the organic matter is extracted after film formation / stretching, Or the technique of the mixed extraction method which extracts and extends | stretches this organic substance after film forming is disclosed (for example, patent document 1).

しかし、これらの方法では、生産工程が複雑な上に延伸性が十分ではなく、高い空隙率の多孔膜は得られ難い。また、液状または固体状有機物がポリ4−メチル−1−ペンテン系重合体とポリエチレンとの界面に残存し易いため、該有機物を抽出した後の多孔膜の細孔は、加熱により閉塞し難く、電池セパレータにおけるシャットダウン機能の改良が必要である。   However, in these methods, the production process is complicated and the stretchability is not sufficient, and it is difficult to obtain a porous film having a high porosity. Further, since the liquid or solid organic matter is likely to remain at the interface between the poly-4-methyl-1-pentene polymer and polyethylene, the pores of the porous film after extraction of the organic matter are difficult to close by heating, There is a need for an improved shutdown function in battery separators.

特開平7−60084号公報Japanese Patent Laid-Open No. 7-60084

本発明は、従来のポリオレフィン樹脂製多孔膜に関する前記課題を解決すべくなされたものであり、簡単な製造工程にも関わらず、優れた通気性と高い耐熱性を有するポリオレフィン樹脂製多孔膜を提供することを課題とする。   The present invention has been made to solve the above-mentioned problems associated with conventional polyolefin resin porous membranes, and provides a polyolefin resin porous membrane having excellent air permeability and high heat resistance in spite of a simple manufacturing process. The task is to do.

本発明者らは、鋭意検討した結果、ポリ4−メチル−1−ペンテン系重合体(A)と主成分のα−オレフィンの含有量が40〜80重量%であるα−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)を含有する樹脂組成物を溶融混練して膜状溶融物とし、該膜状溶融物を膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、ポリオレフィン樹脂(C)がポリ4−メチル−1−ペンテン系重合体(A)30〜80重量%とα−オレフィン共重合体(B)20〜70重量%とからなり、α−オレフィン共重合体(B)領域に連通した細孔を有するポリオレフィン樹脂製多孔膜によって本課題が解決されることを見出しこの知見に基づいて本発明を完成した。尚、本発明において連通した細孔とは、共重合体(B)領域に連続的に形成され、結果的に多孔膜の両面をつなぐ経路となる細孔をいう。   As a result of intensive studies, the present inventors have determined that an α-olefin copolymer (A) containing a poly-4-methyl-1-pentene polymer (A) and a main component α-olefin of 40 to 80% by weight ( A resin composition containing the polyolefin resin (C) comprising B) is melt-kneaded to form a film-like melt, and the film-like melt is formed into a film-like molded article. It is a porous film formed by extending in the direction, and the polyolefin resin (C) is 30 to 80% by weight of the poly-4-methyl-1-pentene polymer (A) and the α-olefin copolymer (B). The present invention was completed based on the finding that this problem is solved by a polyolefin resin porous membrane comprising 20 to 70% by weight and having pores communicating with the α-olefin copolymer (B) region. did. In the present invention, the continuous pores refer to pores that are continuously formed in the copolymer (B) region and consequently become a path connecting both surfaces of the porous membrane.

本発明は、以下によって構成される。
1.ポリ4−メチル−1−ペンテン系重合体(A)と主成分のα−オレフィンの含有量が40〜80重量%であるα−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)を含有する樹脂組成物を溶融混練して膜状溶融物とし、該膜状溶融物を膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、ポリオレフィン樹脂(C)がポリ4−メチル−1−ペンテン系重合体(A)30〜80重量%とα−オレフィン共重合体(B)20〜70重量%とからなり、α−オレフィン共重合体(B)領域に連通した細孔を有するポリオレフィン樹脂製多孔膜。
The present invention is constituted by the following.
1. A polyolefin resin (C) comprising a poly-4-methyl-1-pentene polymer (A) and an α-olefin copolymer (B) having a main component α-olefin content of 40 to 80% by weight. A porous film formed by melting and kneading a resin composition contained therein to form a film-like melt, forming the film-like melt into a film-like molding, and then stretching the film-like molding in at least one direction The polyolefin resin (C) comprises 30 to 80% by weight of the poly-4-methyl-1-pentene polymer (A) and 20 to 70% by weight of the α-olefin copolymer (B). A polyolefin resin porous membrane having pores communicating with the olefin copolymer (B) region.

2.23℃におけるポリ4−メチル−1−ペンテン系重合体(A)の引張強さSとα−オレフィン共重合体(B)の引張強さSの引張強さ比S/Sが2〜50であることを特徴とする前記1項記載のポリオレフィン樹脂製多孔膜。 Tensile strength ratio of the tensile strength S B of the poly-4-methyl-1-tensile strength S A and α- olefin copolymer pentene polymer (A) (B) at 2.23 ° C. S A / S 2. The polyolefin resin porous membrane as described in 1 above, wherein B is 2 to 50.

3.23℃における引張強さ比S/Sが2〜20であることを特徴とする前記2項記載のポリオレフィン樹脂製多孔膜。 3. The polyolefin resin porous membrane according to the item 2, wherein the tensile strength ratio S A / S B at 23 ° C. is 2 to 20.

4.膜状溶融物を膜状成形物に成形する際のドラフト比が1〜10の範囲であることを特徴とする前記1〜3項のいずれか1項記載のポリオレフィン樹脂製多孔膜。 4). 4. The polyolefin resin porous membrane according to any one of 1 to 3 above, wherein a draft ratio when the film-shaped melt is formed into a film-shaped molded product is in the range of 1 to 10.

5.膜状溶融物を膜状成形物に成形する際のドラフト比が1〜3の範囲であることを特徴とする前記4項記載のポリオレフィン樹脂製多孔膜。 5). 5. The polyolefin resin porous membrane as described in 4 above, wherein the draft ratio when the film-shaped melt is formed into a film-shaped molding is in the range of 1 to 3.

6.透気抵抗度(ガーレー)が1〜2,000秒/100ml、膜破れ温度Tが200℃以上であって、膜破れ温度Tと孔閉塞温度Tとの差ΔT(=T−T)が30℃以上であることを特徴とする前記1〜5項のいずれか1項記載のポリオレフィン樹脂製多孔膜。 6). The air resistance (Gurley) is 1 to 2,000 seconds / 100 ml, an in film breakage temperature T b is 200 ° C. or higher, the difference between the film tear temperature T b and pore closing temperature T s ΔT (= T b - T s) is a polyolefin resin porous membrane according to any one of the 1-5, wherein, characterized in that at 30 ° C. or higher.

本発明のポリオレフィン樹脂製多孔膜は、ポリ4−メチル−1−ペンテン系重合体(A)中にα−オレフィン共重合体(B)が分散した低温延伸性に優れたポリオレフィン樹脂(C)を用い、特定の加工方法によってα−オレフィン共重合体(B)領域に共重合体(B)の開裂による細孔を形成させて得られた、空隙率や通気度等の多孔膜特性に優れた多孔膜である。また、本発明のポリオレフィン樹脂製多孔膜は、従来のような複雑な製造工程を用いないで得られる経済的な多孔膜であり、連通した微細孔を必要とする分離膜、電池セパレータ、通気防水材等の用途に好適に使用することができる。   The polyolefin resin porous membrane of the present invention comprises a polyolefin resin (C) excellent in low-temperature stretchability in which an α-olefin copolymer (B) is dispersed in a poly-4-methyl-1-pentene polymer (A). Used to form pores by cleavage of the copolymer (B) in the α-olefin copolymer (B) region by a specific processing method, and was excellent in porous membrane characteristics such as porosity and air permeability It is a porous membrane. The polyolefin resin porous membrane of the present invention is an economical porous membrane obtained without using a complicated manufacturing process as in the prior art, and includes a separation membrane, a battery separator, and a ventilation waterproofing that require continuous micropores. It can be suitably used for applications such as materials.

以下に、本発明の実施形態を説明する。
(1)ポリオレフィン樹脂
本発明のポリオレフィン樹脂製多孔膜には、ポリ4−メチル−1−ペンテン系重合体(A)(以下単に「重合体(A)」という場合がある)とα−オレフィン共重合体(B)(以下単に「共重合体(B)」という場合がある)とからなるポリオレフィン樹脂(C)が使用される。
Hereinafter, embodiments of the present invention will be described.
(1) Polyolefin resin The polyolefin resin porous membrane of the present invention includes a poly-4-methyl-1-pentene polymer (A) (hereinafter sometimes simply referred to as “polymer (A)”) and an α-olefin copolymer. A polyolefin resin (C) comprising a polymer (B) (hereinafter sometimes simply referred to as “copolymer (B)”) is used.

(i)ポリ4−メチル−1−ペンテン系重合体(A)
重合体(A)は、4−メチル−1−ペンテンを主成分とする重合体であって、例えば、4−メチル−1−ペンテンの単独重合体、4−メチル−1−ペンテンと、4−メチル−1−ペンテン以外のα−オレフィンとの共重合体が挙げられる。4−メチル−1−ペンテン以外のα−オレフィンとしては、例えば、エチレン(本発明ではα−オレフィンに含める)、プロピレン、1−ブテン、1−ヘプテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等の炭素数2〜20のα−オレフィン等が挙げられ、4−メチル−1−ペンテンの共重合体に用いられるα−オレフィンは1種でも2種以上であってもよい。4−メチル−1−ペンテン系重合体が、α−オレフィンとの共重合体の場合、該α−オレフィン重合単位の含有量は、10重量%以下、好ましくは1〜10重量%である。
(I) Poly-4-methyl-1-pentene polymer (A)
The polymer (A) is a polymer mainly composed of 4-methyl-1-pentene. For example, a homopolymer of 4-methyl-1-pentene, 4-methyl-1-pentene, Examples include copolymers with α-olefins other than methyl-1-pentene. Examples of the α-olefin other than 4-methyl-1-pentene include ethylene (included in the α-olefin in the present invention), propylene, 1-butene, 1-heptene, 1-hexene, 1-octene and 1-decene. , 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene and the like, such as α-olefins having 2 to 20 carbon atoms, and the like, which are used as a copolymer of 4-methyl-1-pentene. The α-olefin may be one type or two or more types. When the 4-methyl-1-pentene polymer is a copolymer with an α-olefin, the content of the α-olefin polymerization unit is 10% by weight or less, preferably 1 to 10% by weight.

重合体(A)のメルトフローレートMFR(温度260℃、荷重21.18N)は、限定されるものではないが、製膜の安定性から1〜50g/10minの範囲のものが好ましい。 The melt flow rate MFR A (temperature 260 ° C., load 21.18 N) of the polymer (A) is not limited, but is preferably in the range of 1 to 50 g / 10 min from the stability of film formation.

(ii)α−オレフィン共重合体(B)
共重合体(B)は、2種以上のα−オレフィンのランダム共重合体であって、主成分となるα−オレフィン重合単位の共重合体(B)全体における含有量は、40〜80重量%、好ましくは40〜75重量%の範囲である。主成分となるα−オレフィンの含有量が80重量%を超える場合には、後述の引張強さが大きくなり過ぎて、共重合体(B)の開裂が発生し難くなり、所期の多孔膜が得られ難い。尚、ここで「主成分」とは、2種以上のα−オレフィンのうち、最も含有量の高いα−オレフィン成分をさす。
(ii) α-olefin copolymer (B)
The copolymer (B) is a random copolymer of two or more kinds of α-olefins, and the content of α-olefin polymerization units as a main component in the entire copolymer (B) is 40 to 80 weights. %, Preferably in the range of 40 to 75% by weight. When the content of the α-olefin as the main component exceeds 80% by weight, the tensile strength described later becomes too large, and the copolymer (B) is hardly cleaved, and the desired porous film Is difficult to obtain. Here, the “main component” refers to an α-olefin component having the highest content among two or more α-olefins.

α−オレフィン共重合体に使用されるα−オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン等が挙げられる。α−オレフィン共重合体(B)としては、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−プロピレン−ブテン共重合体等が挙げられる。このうちエチレン−プロピレン共重合体が、製造コストの点から好ましく用いられる。   Examples of the α-olefin used in the α-olefin copolymer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 4-methyl-1- Examples include pentene and 3-methyl-1-pentene. Examples of the α-olefin copolymer (B) include an ethylene-propylene copolymer, an ethylene-butene copolymer, and an ethylene-propylene-butene copolymer. Among these, an ethylene-propylene copolymer is preferably used from the viewpoint of production cost.

共重合体(B)の引張強さは、ポリ4−メチル−1−ペンテン系重合体(A)の引張強さより低いことが必要であり、1〜10MPaが好ましく、1〜6MPa程度がより好ましい。   The tensile strength of the copolymer (B) needs to be lower than the tensile strength of the poly-4-methyl-1-pentene polymer (A), preferably 1 to 10 MPa, more preferably about 1 to 6 MPa. .

共重合体(B)のメルトフローレートMFRは特に限定されないが、0.1〜20g/10minの範囲が成形加工性に優れるため好適である。 The melt flow rate MFR B of the copolymer (B) is not particularly limited, but a range of 0.1 to 20 g / 10 min is preferable because of excellent molding processability.

(iii)ポリオレフィン樹脂(C)
ポリオレフィン樹脂(C)は、重合体(A)と共重合体(B)からなる。
(iii) Polyolefin resin (C)
The polyolefin resin (C) consists of a polymer (A) and a copolymer (B).

23℃における重合体(A)の引張強さSと共重合体(B)の引張強さSの引張強さ比S/Sは、2〜50が好ましく、2〜20がより好ましい。引張強さ比S/Sが上記の範囲内であれば、重合体(A)に分散した共重合体(B)が開裂し易くなる。 Tensile strength S tensile strength ratio S A / S B of the B polymer tensile strength S A and a copolymer of (A) (B) is preferably from 2 to 50 at 23 ° C., 2 to 20 Gayori preferable. When the tensile strength ratio S A / S B is within the above range, the copolymer (B) dispersed in the polymer (A) is easily cleaved.

重合体(A)のメルトフローレートMFRと共重合体(B)のメルトフローレートMFRとのメルトフローレート比MFR/MFR(以下、「MFR比」という)は、特に限定されないが、成形加工性の観点から0.1〜1,000が好ましい。 Polymer (A) a melt flow rate MFR A and copolymer (B) has a melt flow rate MFR B and the melt flow rate ratio MFR A / MFR B of (hereinafter referred to as "MFR ratio") is not particularly limited From the viewpoint of moldability, 0.1 to 1,000 is preferable.

中でも、MFR比が、0.1〜10、特に0.2〜5の場合には、共重合体(B)が重合体(A)中に微分散するために微細で連通した細孔が得られ易く、微細な細孔同士の接触点が増加することから、JIS P8117に規定される透気抵抗度(ガーレー)が小さく、通気性の大きな多孔膜が得られ易い。また、延伸性に優れるために空隙率の高い多孔膜が得られ易く、通気性も一層大きくなる。   In particular, when the MFR ratio is 0.1 to 10, particularly 0.2 to 5, the copolymer (B) is finely dispersed in the polymer (A), so fine and continuous pores are obtained. Since the contact point between fine pores increases, the air resistance (Gurley) specified in JIS P8117 is small, and a porous film with high air permeability is easily obtained. Moreover, since it is excellent in stretchability, it is easy to obtain a porous film having a high porosity, and air permeability is further increased.

尚、電池セパレータの場合、前述のように膜破れ温度Tと孔閉塞温度Tの差ΔT=T−Tを大きくし、かつ、より早い段階で異常反応を停止し温度上昇を抑えるため孔閉塞温度を低減することが望まれているが、本発明において、膜破れ温度Tを200℃以上、膜破れ温度Tと孔閉塞温度Tの差ΔTを30℃〜100℃とすることができるため、特に電池セパレータとして好適に用いることができる。 In the case of the battery separator, increasing the difference [Delta] T = T b -T s of film breakage temperature T b and pore closing temperature T s as previously described, and to suppress the stopping temperature increase abnormality reaction at an earlier stage Although since it is desired to reduce the pore closing temperature, in the present invention, film breakage temperature T b of 200 ° C. or higher, and 30 ° C. to 100 ° C. the difference ΔT of film breakage temperature T b and pore closing temperature T s In particular, it can be suitably used as a battery separator.

ポリオレフィン樹脂(C)における、重合体(A)の含量は30〜80重量%、好ましくは40〜70重量%であり、共重合体(B)の含量は20〜70重量%、好ましくは30〜60重量%である。共重合体(B)の含量が20重量%未満の場合には、共重合体(B)領域に形成された細孔の連なりが少なくなることから本発明の連通した細孔が得られ難く、70重量%を超える場合には、重合体(A)中に存在する共重合体(B)の分散構造が得られ難くなる。   In the polyolefin resin (C), the content of the polymer (A) is 30 to 80% by weight, preferably 40 to 70% by weight, and the content of the copolymer (B) is 20 to 70% by weight, preferably 30 to 30% by weight. 60% by weight. When the content of the copolymer (B) is less than 20% by weight, it is difficult to obtain the continuous pores of the present invention because the continuous pores formed in the copolymer (B) region are reduced. When it exceeds 70% by weight, it is difficult to obtain a dispersion structure of the copolymer (B) present in the polymer (A).

本発明のポリオレフィン樹脂製多孔膜には、重合体(A)中に分散した共重合体(B)領域に微細な開裂が多数認められる。共重合体(B)が一定以上のエチレン成分を含有するために重合体(A)と相溶性を有しており、この重合体(A)と相溶性を有する共重合体(B)が、重合体(A)より低強度であるため、延伸応力により共重合体(B)領域で開裂が発生したと推察される。このメカニズムは従来の無機質フィラーや異種ポリマーを混合及び延伸した多成分延伸法と根本的に異なるところであり、その結果、得られた多孔膜は、細孔径が小さく、空隙率や通気度が大きくなる。   In the polyolefin resin porous membrane of the present invention, many fine cleavages are observed in the copolymer (B) region dispersed in the polymer (A). The copolymer (B) has compatibility with the polymer (A) because it contains a certain amount or more of the ethylene component, and the copolymer (B) having compatibility with the polymer (A), Since the strength is lower than that of the polymer (A), it is presumed that cleavage occurred in the copolymer (B) region due to the stretching stress. This mechanism is fundamentally different from the conventional multicomponent stretching method in which inorganic fillers or different types of polymers are mixed and stretched. As a result, the obtained porous membrane has a small pore diameter and a high porosity and air permeability. .

尚、本発明において共重合体(B)領域とは、共重合体(B)自体が占める領域、及び共重合体(B)とそれに隣接する物質との境界領域をいう。従って、共重合体(B)領域に生じる細孔には、共重合体(B)自体が占める領域の中で生じる開裂による細孔、及び重合体(A)等と共重合体(B)との境界領域で生じる界面剥離による細孔が含まれる。   In the present invention, the copolymer (B) region means a region occupied by the copolymer (B) itself and a boundary region between the copolymer (B) and a substance adjacent thereto. Accordingly, the pores generated in the copolymer (B) region include pores due to cleavage generated in the region occupied by the copolymer (B) itself, and the polymer (A) and the copolymer (B). Pores due to interfacial delamination that occur in the boundary region.

(2)ポリオレフィン樹脂製多孔膜形成用樹脂組成物
本発明のポリオレフィン樹脂製多孔膜を形成するための膜状成形物の成形材料である樹脂組成物は、ポリオレフィン樹脂(C)の他に、通常のポリオレフィンに使用される酸化防止剤、中和剤、α晶造核剤、β晶造核剤、ヒンダードアミン系耐候剤、紫外線吸収剤、防曇剤や帯電防止剤等の界面活性剤、無機充填剤、滑剤、アンチブロッキング剤、抗菌剤、防黴剤、顔料等を必要に応じて配合することができる。
(2) Polyolefin resin-made porous film-forming resin composition The resin composition, which is a molding material for the film-like molded product for forming the polyolefin resin-made porous film of the present invention, is usually in addition to the polyolefin resin (C). Antioxidants, neutralizers, α crystal nucleating agents, β crystal nucleating agents, hindered amine weathering agents, UV absorbers, antifogging agents, antistatic agents and other surfactants used in polyolefins, inorganic filling Agents, lubricants, antiblocking agents, antibacterial agents, antifungal agents, pigments and the like can be blended as necessary.

酸化防止剤としては、テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、2,6−ジ−t−ブチル−4−メチルフェノール、n−オクタデシル−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート、トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート等のフェノール系酸化防止剤、またはトリス(2,4−ジ−t−ブチルフェニル)フォスファイト、トリス(ノニルフェニル)フォスファイト、ジステアリルペンタエリスリトールジフォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレン−ジフォスフォナイト等のリン系酸化防止剤等が例示できる。   Antioxidants include tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-4-methylphenol, Phenolic compounds such as n-octadecyl-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate and tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate Antioxidant, or tris (2,4-di-t-butylphenyl) phosphite, tris (nonylphenyl) phosphite, distearyl pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) Examples thereof include phosphorus-based antioxidants such as -4,4'-biphenylene-diphosphonite.

中和剤としてはステアリン酸カルシウム等の高級脂肪酸塩類が例示でき、無機充填剤及びブロッキング防止剤としては炭酸カルシウム、シリカ、ハイドロタルサイト、ゼオライト、ケイ酸アルミニウム、ケイ酸マグネシウム等が例示でき、滑剤としてはステアリン酸アマイド等の高級脂肪酸アマイド類が例示でき、帯電防止剤としてはグリセリンモノステアレート等の脂肪酸エステル類が例示できる。   Examples of neutralizing agents include higher fatty acid salts such as calcium stearate. Examples of inorganic fillers and anti-blocking agents include calcium carbonate, silica, hydrotalcite, zeolite, aluminum silicate, magnesium silicate, and the like. Can be exemplified by higher fatty acid amides such as stearic acid amide, and the antistatic agent can be exemplified by fatty acid esters such as glycerol monostearate.

α晶造核剤としては、タルク、アルミニウムヒドロキシ−ビス(4−t−ブチルベンゾエート)、1・3,2・4−ジベンジリデンソルビトール、1・3,2・4−ビス(p−メチルベンジリデン)ソルビトール、1・3,2・4−ビス(p−エチルベンジリデン)ソルビトール、1・3,2・4−ビス(2’,4’−ジメチルベンジリデン)ソルビトール、1・3,2・4−ビス(3’,4’−ジメチルベンジリデン)ソルビトール、1・3−p−クロルベンジリデン−2・4−p−メチルベンジリデンソルビトール、1・3,2・4−ビス(p−クロルベンジリデン)ソルビトール、ナトリウム−ビス(4−t−ブチルフェニル)フォスフェート、ナトリウム−2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、カルシウム−2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート、アルミニウムジヒドロキシ−2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)フォスフェート等の公知のα晶造核剤が挙げられる。これらは単独使用でも、2種以上の併用でも良い。   Alpha crystal nucleating agents include talc, aluminum hydroxy-bis (4-t-butylbenzoate), 1,3,2,4-dibenzylidene sorbitol, 1,3,2,4-bis (p-methylbenzylidene) Sorbitol, 1,3,2,4-bis (p-ethylbenzylidene) sorbitol, 1,3,2,4-bis (2 ′, 4′-dimethylbenzylidene) sorbitol, 1,3,2,4-bis ( 3 ', 4'-dimethylbenzylidene) sorbitol, 1,3-p-chlorobenzylidene-2,4-p-methylbenzylidenesorbitol, 1,3,2,4-bis (p-chlorobenzylidene) sorbitol, sodium-bis (4-t-Butylphenyl) phosphate, sodium-2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate Calcium-2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate, aluminum dihydroxy-2,2′-methylene-bis (4,6-di-t-butylphenyl) Known α-crystal nucleating agents such as phosphate can be used. These may be used alone or in combination of two or more.

これらの添加剤の配合量は、ポリオレフィン樹脂製多孔膜の使用目的等により適宜選択することができるが、通常前記樹脂組成物全量に対し0.001〜5重量%程度とするのが好ましい。   The blending amount of these additives can be appropriately selected depending on the purpose of use of the polyolefin resin porous membrane, but is usually preferably about 0.001 to 5% by weight based on the total amount of the resin composition.

また、本発明のポリオレフィン樹脂製多孔膜を形成するための前記樹脂組成物には、本発明の効果を損なわない範囲で、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン等のポリエチレン樹脂、ポリプロピレン樹脂、ポリブテン樹脂等の他のオレフィン樹脂の1種以上を併用しても構わない。   The resin composition for forming the polyolefin resin porous membrane of the present invention includes polyethylene resins such as low density polyethylene, linear low density polyethylene, and high density polyethylene as long as the effects of the present invention are not impaired. One or more of other olefin resins such as polypropylene resin and polybutene resin may be used in combination.

更に、前記樹脂組成物には、本発明の効果を損なわない範囲で、共重合体(B)以外のオレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー等の各種熱可塑性エラストマーを併用して用いても構わない。   Furthermore, the resin composition includes olefin-based thermoplastic elastomers other than the copolymer (B), styrene-based thermoplastic elastomers, urethane-based thermoplastic elastomers, and polyester-based thermoplastic elastomers as long as the effects of the present invention are not impaired. Various thermoplastic elastomers such as polyamide thermoplastic elastomers and vinyl chloride thermoplastic elastomers may be used in combination.

前記ポリオレフィン樹脂(C)と上記添加剤を配合する方法は特に限定されず、例えばヘンシェルミキサー(商品名)等の高速撹拌機付混合機及びリボンブレンダー並びにタンブラーミキサー等の通常の配合装置により配合する方法(ドライブレンド)が挙げられ、更に通常の単軸押出機または二軸押出機等を用いてペレット化する方法が挙げられる。   The method for blending the polyolefin resin (C) and the above additives is not particularly limited, and is blended by a usual blending device such as a mixer with a high-speed stirrer such as a Henschel mixer (trade name), a ribbon blender, and a tumbler mixer. The method (dry blend) is mentioned, Furthermore, the method of pelletizing using a normal single screw extruder or a twin screw extruder etc. is mentioned.

(3)ポリオレフィン樹脂製多孔膜の形成
本発明のポリオレフィン樹脂製多孔膜は、ポリオレフィン樹脂(C)を主成分とした前記樹脂組成物を溶融混練し膜状溶融物とし、該膜状溶融物をドラフト比1〜10の範囲で膜状成形物に成形した後、その膜状成形物を100℃以下の温度で少なくとも一方向に延伸することにより形成することができる。その工程は、製膜工程と延伸工程からなる。尚、主成分とは一番多い成分である。
(3) Formation of polyolefin resin porous membrane The polyolefin resin porous membrane of the present invention is obtained by melting and kneading the resin composition containing the polyolefin resin (C) as a main component to form a film-like melt. After forming into a film-shaped molded product in the range of a draft ratio of 1 to 10, the film-shaped molded product can be formed by stretching in at least one direction at a temperature of 100 ° C. or lower. The process consists of a film forming process and a stretching process. The main component is the most abundant component.

(i)製膜工程
前記樹脂組成物から膜状成形物を得るための製膜工程には、公知のインフレーションフィルム成形法、Tダイフィルム成形法、カレンダー成形法等の方法が用いられるが、膜厚さの精度が高く多層化が容易なTダイフィルム成形法が好適に用いられる。
(i) Film-forming process In the film-forming process for obtaining a film-shaped molded product from the resin composition, methods such as a known inflation film molding method, T-die film molding method, and calendar molding method are used. A T-die film forming method with high thickness accuracy and easy multilayering is preferably used.

前記樹脂組成物は、重合体(A)の融点以上の押出成形温度で製膜することができるが、ダイス内圧力を低減させ後述のドラフト比を低減させる目的と、マトリックスとなる重合体(A)の剛性を向上させて重合体(A)中に分散した共重合体(B)領域に均一かつ微細な細孔が生じさせ易くするため、280〜300℃の押出成形温度が好適に用いられる。   The resin composition can be formed at an extrusion temperature equal to or higher than the melting point of the polymer (A), but the purpose is to reduce the pressure inside the die and the draft ratio described later, and the polymer (A ), The extrusion temperature of 280 to 300 ° C. is preferably used in order to facilitate formation of uniform and fine pores in the copolymer (B) region dispersed in the polymer (A). .

溶融混練された前記樹脂組成物は、ダイリップより押し出されるが、この際、ダイリップを通過する樹脂組成物の流れ方向(MD)の線速度VCLと膜状成形物の流れ方向(MD)の線速度Vの比で定義されるドラフト比(VCL/V)が本願発明を達成するための重要な要因である。一般に熱可塑性樹脂フィルムの成形時にはドラフト比は10〜50程度である。本発明においては、該樹脂組成物を製膜する際のドラフト比は1〜10、好ましくは1〜5、更に好ましくは1〜3であり、これによって得られる膜状成形物は延伸性に優れ、延伸によって微細な連通した細孔が形成され易くなる。 The melt-kneaded resin composition is extruded from the die lip. At this time, the linear velocity V CL in the flow direction (MD) of the resin composition passing through the die lip and the flow direction (MD) line of the film-shaped molded product The draft ratio (V CL / V f ) defined by the ratio of the speed V f is an important factor for achieving the present invention. Generally, the draft ratio is about 10 to 50 when a thermoplastic resin film is formed. In the present invention, the draft ratio at the time of forming the resin composition is 1 to 10, preferably 1 to 5, more preferably 1 to 3, and the film-shaped product obtained thereby has excellent stretchability. By stretching, fine communicating pores are easily formed.

また、インフレーションフィルム成形法の場合には、前記ドラフト比に加え、インフレーションフィルムの周長Lと円形リップの周長Lの比で表されるブロー比L/Lにより得られるオレフィン樹脂製多孔膜の特性も変化するが、ドラフト比が上記範囲内であれば、ブロー比は1〜10程度の範囲が好適に用いられる。ブロー比が上記範囲内であれば、膜状成形物の安定生産が可能で、得られる膜状成形物の多孔化がし易い。 In the case of an inflation film molding method, in addition to the draft ratio, an olefin resin obtained by a blow ratio L f / L m represented by a ratio of a circumferential length L f of the inflation film and a circumferential length L m of the circular lip. Although the characteristics of the porous membrane are also changed, a blow ratio in the range of about 1 to 10 is suitably used if the draft ratio is within the above range. If the blow ratio is within the above range, stable production of the film-shaped molded product is possible, and the resulting film-shaped molded product can be easily made porous.

また、マトリックスとなる重合体(A)の剛性を向上させて重合体(A)中に分散した共重合体(B)領域に均一かつ微細な細孔を生じさせ易くするため、ダイリップより押出される膜状成形物の冷却は、徐冷とすることが望ましく、冷却ロールの温度を40〜160℃、更に好ましくは80〜120℃の範囲で冷却することが望ましい。この温度範囲より低い場合は多孔化がし難い傾向があり、また、この温度範囲より高い場合は、共重合体(B)の影響でロールへのベタツキが発生し、加工性が低下する傾向がある。   In order to improve the rigidity of the polymer (A) as a matrix and make it easier to form uniform and fine pores in the copolymer (B) region dispersed in the polymer (A), it is extruded from a die lip. The film-shaped molded product is preferably cooled gradually, and the temperature of the cooling roll is preferably 40 to 160 ° C, more preferably 80 to 120 ° C. If it is lower than this temperature range, it tends to be difficult to make it porous. If it is higher than this temperature range, stickiness to the roll occurs due to the influence of the copolymer (B), and the workability tends to decrease. is there.

製膜工程で得られた膜状成形物の厚さは特に限定されるものではないが、次の延伸工程における延伸及び熱処理条件と多孔膜の用途の要求特性によって決定され、20μm〜2mm、好ましくは50〜500μm程度であって、製膜速度は1〜100m/分の範囲が好適に用いられる。これらの厚さの膜状成形物は、インフレーション成形装置をはじめとして、前記冷却ロールとエアー吹き出し口を有するエアーナイフ、前記冷却ロールと一対の金属ロール、前記冷却ロールとステンレスベルト等の組み合わせからなるTダイフィルム成形装置やカレンダー成形装置等の各種製膜装置により得られる。   The thickness of the film-like molded product obtained in the film forming process is not particularly limited, but is determined by the stretching and heat treatment conditions in the next stretching process and the required characteristics of the use of the porous film, and is preferably 20 μm to 2 mm. Is about 50 to 500 μm, and the film forming speed is preferably in the range of 1 to 100 m / min. The film-shaped moldings having these thicknesses include a combination of an inflation molding apparatus, an air knife having the cooling roll and an air outlet, the cooling roll and a pair of metal rolls, the cooling roll and a stainless steel belt, and the like. It can be obtained by various film forming apparatuses such as a T-die film forming apparatus and a calendar forming apparatus.

尚、得られた膜状成形物には、次の延伸工程に供する前に、結晶化度を更に向上させるために熱処理を施しても構わない。熱処理は、例えば、加熱空気循環オーブンまたは加熱ロールにより、100〜160℃程度の温度で1〜30分間程度加熱することにより実施される。   In addition, you may heat-process in order to further improve a crystallinity degree before using for the obtained film-form molding to the next extending process. The heat treatment is performed, for example, by heating at a temperature of about 100 to 160 ° C. for about 1 to 30 minutes with a heated air circulation oven or a heating roll.

(ii)延伸工程
前記製膜工程で製膜された膜状成形物は、次いで少なくとも縦(MD)方向または横(TD)方向のいずれか一方向に延伸され、重合体(A)中に分散した共重合体(B)領域に連通した細孔が形成される。この点が、本発明の製造方法と、従来技術である単成分延伸法、多成分延伸法及び混合抽出法等とが根本的に異なるところである。これにより本発明の製造方法は、混合抽出法のような複雑な抽出及び乾燥工程等の製造工程や、結晶性ポリオレフィンのラメラ結晶間のフィブリル化により細孔を発現させる単成分延伸法に見られる製膜後の熱処理による結晶化工程等を不要とするだけでなく、マトリックスとなる結晶性ポリオレフィンと充填剤の界面に空隙を生じさせる多成分延伸法の場合の延伸性不良や平均細孔径が大きくなり易く空隙率が低い等の課題を大幅に改善し、任意の平均細孔径や空隙率を有する多孔膜を優れた生産性を以って提供することを可能にする。
(ii) Stretching step The film-like molded product formed in the film-forming step is then stretched in at least one of the longitudinal (MD) direction and the transverse (TD) direction and dispersed in the polymer (A). Thus, pores communicating with the copolymer (B) region are formed. In this respect, the production method of the present invention is fundamentally different from the conventional single-component stretching method, multi-component stretching method, mixed extraction method and the like. As a result, the production method of the present invention can be found in complicated extraction and drying processes such as the mixed extraction method, and single component stretching methods in which pores are expressed by fibrillation between lamellar crystals of crystalline polyolefin. Not only the crystallization process by heat treatment after film formation is unnecessary, but also poor stretchability and large average pore diameter in the case of the multi-component stretching method that creates voids at the interface between the crystalline polyolefin and the filler. It is possible to provide a porous film having an arbitrary average pore diameter and porosity with excellent productivity by greatly improving problems such as easily becoming low and low porosity.

延伸の方法は、一方向に延伸する一軸延伸法の他に、一方向に延伸した後、もう一方の方向に延伸する逐次二軸延伸法、縦横方向に同時に延伸する同時二軸延伸法、更に、一軸方向に多段延伸を行う方法、逐次二軸延伸や同時二軸延伸の後に更に延伸を行う方法等が挙げられ、何れの方法を用いても良い。尚、膜状成形物は前記製膜工程においてドラフトされるため、例え低ドラフト比で製膜された膜状成形物であっても、重合体(A)中に分散する共重合体(B)は樹脂の流れ方向つまり縦(MD)方向に沿って配向しており、一段目の延伸は横方向への一軸延伸法または縦横方向への同時二軸延伸法により行うことが望ましいが、一段目に縦方向への延伸を行い二段目に横方向へ延伸を行う逐次二軸延伸法でも構わない。   In addition to the uniaxial stretching method of stretching in one direction, the stretching method includes a sequential biaxial stretching method of stretching in the other direction after stretching in one direction, a simultaneous biaxial stretching method of stretching simultaneously in the longitudinal and transverse directions, and There are a method of performing multistage stretching in a uniaxial direction, a method of further stretching after sequential biaxial stretching and simultaneous biaxial stretching, and any method may be used. Incidentally, since the film-shaped molded product is drafted in the film-forming step, even if it is a film-shaped molded product formed at a low draft ratio, the copolymer (B) dispersed in the polymer (A) Is oriented along the resin flow direction, that is, the longitudinal (MD) direction, and the first stage of stretching is preferably performed by a uniaxial stretching method in the transverse direction or a simultaneous biaxial stretching method in the longitudinal and transverse directions. Alternatively, a sequential biaxial stretching method in which stretching in the longitudinal direction and stretching in the lateral direction in the second stage may be performed.

この一段目の延伸温度は、共重合体(B)の融点または軟化点より低いことが好ましく、10〜100℃の温度範囲、更に好ましくは10〜60℃の温度範囲が好適に用いられるが、更に本発明では、ポリオレフィン樹脂(C)を特定の組成とすることによりこれらの温度領域における延伸性に優れることを見出した。また、延伸倍率は、特に限定はなく必要に応じ行われる二段目の延伸条件や多孔膜の用途の要求特性から決定されるが、重合体(A)単独では低温延伸性に劣り1.5倍前後であるが、共重合体(B)の存在により、延伸倍率は1.5〜4倍の低温延伸が可能となる。   The first stage stretching temperature is preferably lower than the melting point or softening point of the copolymer (B), and a temperature range of 10 to 100 ° C, more preferably a temperature range of 10 to 60 ° C is preferably used. Furthermore, in this invention, it discovered that it was excellent in the drawability in these temperature ranges by making polyolefin resin (C) into a specific composition. The draw ratio is not particularly limited and is determined from the required conditions for the second-stage drawing conditions and the intended use of the porous membrane as required, but the polymer (A) alone is inferior in low-temperature drawability. Although it is about double, the presence of the copolymer (B) enables low-temperature stretching at a stretching ratio of 1.5 to 4 times.

延伸倍率が上記の範囲であれば優れた特性を持つ多孔膜が得られ、延伸切れの多発による生産性低下の恐れもない。また、同時二軸延伸の場合には、面積倍率(=縦延伸倍率×横延伸倍率)は2〜20倍が好ましく、更に好ましくは4〜10倍である。面積倍率がこの範囲であれば優れた特性を持つ多孔膜が得られ、延伸切れの多発による生産性低下の恐れもない。 If the draw ratio is in the above range, a porous film having excellent characteristics can be obtained, and there is no fear of a decrease in productivity due to frequent draw breaks. In the case of simultaneous biaxial stretching, the area ratio (= longitudinal stretching ratio × lateral stretching ratio) is preferably 2 to 20 times, and more preferably 4 to 10 times. If the area magnification is within this range, a porous film having excellent characteristics can be obtained, and there is no risk of a decrease in productivity due to frequent stretching.

本発明の多孔膜は、必要に応じ二段目の延伸を行うが、二段目の延伸温度は、10〜120℃、更に好ましくは10〜80℃が好ましい。この範囲であれば、一段目に開裂した細孔が閉塞することなく、良好な生産性を維持しながら多孔化を図ることができる。   The porous film of the present invention is subjected to a second stage stretching as required, and the second stage stretching temperature is preferably 10 to 120 ° C, more preferably 10 to 80 ° C. Within this range, it is possible to achieve porosity while maintaining good productivity without blocking the pores cleaved in the first stage.

二段目の延伸倍率は、多孔膜の用途の要求特性により決定されるが、重合体(A)単独の場合に比べて、低温延伸性が優れるため、通常1.5〜4倍である。延伸倍率が上記の範囲内であれば、延伸効果が十分で、延伸切れにより生産性が低下する恐れがない。   Although the draw ratio of the second stage is determined by the required characteristics of the use of the porous membrane, it is usually 1.5 to 4 times because the low-temperature drawability is excellent as compared with the case of the polymer (A) alone. When the draw ratio is within the above range, the drawing effect is sufficient, and there is no fear that productivity is lowered due to the drawing being cut.

本発明のポリオレフィン樹脂多孔膜の空隙率は、特に限定されるものではないが、20〜90%が好ましく、30〜80%がより好ましい。空隙率が上記の範囲内であれば、多孔膜としての機能が得られ、強さが低下する恐れがない。   The porosity of the polyolefin resin porous membrane of the present invention is not particularly limited, but is preferably 20 to 90%, more preferably 30 to 80%. If the porosity is within the above range, a function as a porous film can be obtained, and there is no fear that the strength is lowered.

本発明のポリオレフィン樹脂製多孔膜の厚さは、特に限定されるものではないが、生産性の観点から10〜200μm程度が好ましい。   The thickness of the polyolefin resin porous membrane of the present invention is not particularly limited, but is preferably about 10 to 200 μm from the viewpoint of productivity.

本発明のオレフィン樹脂製多孔膜には、必要に応じ、界面活性剤処理、コロナ放電処理、低温プラズマ処理、スルホン化処理、紫外線処理、放射線グラフト処理等の親水化処理を施すことができ、また他種多孔膜と積層したり、各種塗膜を形成することができる。   The olefin resin porous membrane of the present invention can be subjected to hydrophilic treatment such as surfactant treatment, corona discharge treatment, low temperature plasma treatment, sulfonation treatment, ultraviolet treatment, radiation graft treatment, etc., if necessary. It can be laminated with other types of porous membranes or various coating films can be formed.

上記の方法で得られるポリオレフィン樹脂製多孔膜は、従来の多孔膜と同様に、空気清浄化や水処理用の濾過膜または分離膜、電池や電気分解用のセパレータ、建材や衣料等の透湿防水用途等、各種の分野に用いることができる。   The polyolefin resin porous membrane obtained by the above-mentioned method is similar to conventional porous membranes, such as filtration membranes or separation membranes for air purification and water treatment, separators for batteries and electrolysis, moisture permeability such as building materials and clothing. It can be used in various fields such as waterproofing applications.

以下、実施例及び比較例によって本発明を具体的に説明するが、本発明はこれらにより限定されるものではない。尚、用いられた測定方法及び評価方法は下記の通りである。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these. In addition, the measurement method and evaluation method used are as follows.

(1)23℃における引張強さ:JIS K 6758に準拠し、23℃の引張強さを測定した。 (1) Tensile strength at 23 ° C .: The tensile strength at 23 ° C. was measured according to JIS K 6758.

(2)メルトフローレート(MFR)::JIS K 7210に準拠し、ポリ4−メチル−1−ペンテン系重合体(A)は温度260℃、荷重21.18N、α−オレフィン共重合体(B)は温度230℃、荷重21.18Nの条件にて測定した。 (2) Melt flow rate (MFR) :: In accordance with JIS K 7210, poly-4-methyl-1-pentene polymer (A) has a temperature of 260 ° C., a load of 21.18 N, an α-olefin copolymer (B ) Was measured under conditions of a temperature of 230 ° C. and a load of 21.18N.

(3)空隙率:延伸後の多孔膜サンプル100×100mmから嵩比重を求め、また、延伸前の多孔化されていない膜状成形物サンプル100×100mmから(株)東洋精機製作所製の自動比重計DENSIMETER,D−Sにて真比重を求め、下記式より空隙率を求めた。
空隙率(%)=(1−嵩比重/真比重)×100
(3) Porosity: Bulk specific gravity is obtained from 100 × 100 mm of stretched porous membrane sample, and automatic specific gravity manufactured by Toyo Seiki Seisakusho Co., Ltd. from 100 × 100 mm of a non-porous membrane-like molded product before stretching. The true specific gravity was determined by the total DENSIMTER, DS, and the porosity was determined from the following formula.
Porosity (%) = (1-bulk specific gravity / true specific gravity) × 100

(4)最大細孔径:縦(MD)及び横(TD)の断面の走査型電子顕微鏡(SEM)観察により、細孔の長軸方向の長さの最大値をもって最大細孔径とした。 (4) Maximum pore size: The maximum value of the length in the major axis direction of the pore was determined as the maximum pore size by observation with a scanning electron microscope (SEM) of the longitudinal (MD) and lateral (TD) cross sections.

(5)透湿度:JIS L 1099に準じて測定した。 (5) Moisture permeability: Measured according to JIS L 1099.

(6)透気抵抗度(ガーレー):JIS P8117に準じて、B型ガーレーデンソメーター(テスター産業(株)製)により空気100mlが通過する時間を測定した。 (6) Air permeability resistance (Gurley): According to JIS P8117, a time required for 100 ml of air to pass through was measured with a B-type Gurley densometer (manufactured by Tester Sangyo Co., Ltd.).

(7)孔閉塞温度Tと膜破れ温度T:サンプルを3インチの円形ホルダーに固定したものを100℃から200℃の温度域で10℃ごとに恒温槽に1時間放置し熱処理し、透気抵抗度(ガーレー)を測定し、1万秒/100cc以上となる温度を孔閉塞温度Tとした。また、同等に熱処理し膜破れが発生する温度を膜破れ温度Tとした。 (7) Hole closing temperature T s and film breaking temperature T b : A sample fixed to a 3-inch circular holder is left in a constant temperature bath at a temperature range of 100 ° C. to 200 ° C. for 10 hours and heat-treated, the air resistance of the (Gurley) was measured to the temperature at which 10,000 sec / 100 cc or more and pore blocking temperature T s. Further, the temperature was equally heat treated film tearing occurs with the membrane broken temperature T b.

(8)延伸性:寸法が幅40mm、長さ100mmの、長さ方向を縦方向(MD)または横方向(TD)とする試験片を膜状成形物から調製した。試験片を、延伸温度23℃、変形速度200%/秒の条件で、長さ方向に0.5倍毎に一軸延伸を行い、延伸破断しない延伸倍率を可延伸倍率とし、延伸性を評価した。可延伸倍率が高いほど延伸性が優れ、多孔化し易い膜状成形物ほど、高空隙率化が容易である。 (8) Stretchability: A test piece having a width of 40 mm and a length of 100 mm and having a length direction of the longitudinal direction (MD) or a transverse direction (TD) was prepared from a film-shaped molded article. The test piece was stretched uniaxially every 0.5 times in the length direction under the conditions of a stretching temperature of 23 ° C. and a deformation rate of 200% / second, and the stretch ratio not to stretch and break was defined as the stretchable ratio, and the stretchability was evaluated. . The higher the stretchable ratio, the better the stretchability, and the easier it is to form a film-like molded product, the higher the porosity is.

尚、実施例及び比較例で使用したポリ4−メチル−1−ペンテン系重合体(A)、α−オレフィン共重合体(B)であるエチレン−プロピレン共重合体、及びポリプロピレン樹脂を以下に示す。
ポリ4−メチル−1−ペンテン系重合体(A);三井化学(株)製、商品名MX002(
MFR(260℃)25g/10min、引張強さ15MPa)
α−オレフィン共重合体(B);エチレン−プロピレン共重合体、JSR
(株)製、商品名EP07P(プロピレン含量27重量%、MFR(230℃)0.
7g/10min、引張強さ2MPa)
ポリプロピレン樹脂;プロピレン単独重合体(MFR1.8g/10min、引張強さ
35MPa)
The poly-4-methyl-1-pentene polymer (A), the α-olefin copolymer (B), an ethylene-propylene copolymer, and a polypropylene resin used in Examples and Comparative Examples are shown below. .
Poly-4-methyl-1-pentene polymer (A); manufactured by Mitsui Chemicals, trade name MX002 (
MFR (260 ° C.) 25 g / 10 min, tensile strength 15 MPa)
α-olefin copolymer (B); ethylene-propylene copolymer, JSR
Product name EP07P (propylene content 27% by weight, MFR (230 ° C.))
7g / 10min, tensile strength 2MPa)
Polypropylene resin; propylene homopolymer (MFR 1.8 g / 10 min, tensile strength 35 MPa)

1)多孔膜形成用樹脂組成物の作成
表1の実施例1に示す重合体(A)と共重合体(B)を混合後、2軸押出機(口径50mm)を用いて溶融混練してペレット化し、多孔膜形成用樹脂組成物を得た。
1) Preparation of porous film-forming resin composition After polymer (A) and copolymer (B) shown in Example 1 of Table 1 were mixed, they were melt-kneaded using a twin screw extruder (50 mm diameter). The resin composition for forming a porous film was obtained by pelletizing.

2)多孔膜の作成
[製膜工程/未延伸膜状成形物の作成]
リップ幅120mmのTダイを装備した20mm押出機を用い、前記のペレット状の熱可塑性樹脂組成物(C)を、押出温度300℃、吐出量4kg/hで溶融し、リップクリアランスを0.20mmに調整したTダイより膜状に押出し、90℃の冷却ロール上で冷却固化し、幅100mm、厚さ200μmの膜状成形物を作成した。尚、溶融状態にある膜状成形物を冷却固化する際に冷却ロールとの非接触面はエアーナイフにより空冷を実施した。
得られた膜状成形物の延伸性の評価結果を表1に示した。
2) Creation of porous film [Film forming step / Creation of unstretched film-like molded product]
Using a 20 mm extruder equipped with a T die with a lip width of 120 mm, the pellet-shaped thermoplastic resin composition (C) was melted at an extrusion temperature of 300 ° C. and a discharge rate of 4 kg / h, and a lip clearance of 0.20 mm. The film was extruded from a T-die adjusted to a film shape and cooled and solidified on a 90 ° C. cooling roll to prepare a film-shaped molded product having a width of 100 mm and a thickness of 200 μm. When the film-like molded product in a molten state was cooled and solidified, the non-contact surface with the cooling roll was air-cooled with an air knife.
Table 1 shows the evaluation results of the stretchability of the obtained film-like molded product.

3)[延伸工程/多孔膜の作成]
前記膜状成形物を、横方向(TD方向)を拘束しながら、延伸温度23℃、変形速度1,000%/秒、延伸倍率2.5倍の条件で縦方向(MD方向)に延伸した後、更に、縦方向(MD方向)を拘束しながら、延伸温度100℃、変形速度200%/秒、延伸倍率2.5倍の条件で横方向(TD方向)に延伸しポリオレフィン樹脂製多孔膜を得た。得られた多孔膜の特性を表1に示した。
3) [Stretching process / Creation of porous film]
The film-shaped molded product was stretched in the machine direction (MD direction) under the conditions of a stretching temperature of 23 ° C., a deformation rate of 1,000% / second, and a draw ratio of 2.5 times while restraining the transverse direction (TD direction). Thereafter, the polyolefin resin porous membrane is stretched in the transverse direction (TD direction) under the conditions of a stretching temperature of 100 ° C., a deformation rate of 200% / second, and a stretching ratio of 2.5 times while restraining the longitudinal direction (MD direction). Got. The properties of the obtained porous membrane are shown in Table 1.

表1の実施例2に示す重合体(A)と共重合体(B)を用いた以外は、実施例1に準じてポリオレフィン樹脂製多孔膜を得た。得られたポリオレフィン樹脂製多孔膜の特性と膜状成形物の延伸性の評価結果を表1に示した。   A polyolefin resin porous membrane was obtained according to Example 1 except that the polymer (A) and copolymer (B) shown in Example 2 of Table 1 were used. Table 1 shows the properties of the obtained polyolefin resin porous membrane and the evaluation results of the stretchability of the membrane-shaped molded product.

表1の実施例3に示す重合体(A)と共重合体(B)を用いた以外は、実施例1に準じてポリオレフィン樹脂製多孔膜を得た。得られたポリオレフィン樹脂製多孔膜の特性と膜状成形物の延伸性の評価結果を表1に示した。   A polyolefin resin porous membrane was obtained in the same manner as in Example 1 except that the polymer (A) and copolymer (B) shown in Example 3 of Table 1 were used. Table 1 shows the properties of the obtained polyolefin resin porous membrane and the evaluation results of the stretchability of the membrane-shaped molded product.

リップクリアランスを1.2mm、ドラフト比を3.6とし、膜状成形物の厚みを400μmとした以外は、実施例2に準じてポリオレフィン樹脂製多孔膜を得た。得られたポリオレフィン樹脂製多孔膜の特性と膜状成形物の延伸性の評価結果を表1に示した。   A polyolefin resin porous membrane was obtained in the same manner as in Example 2 except that the lip clearance was 1.2 mm, the draft ratio was 3.6, and the thickness of the membrane-like molded product was 400 μm. Table 1 shows the properties of the obtained polyolefin resin porous membrane and the evaluation results of the stretchability of the membrane-shaped molded product.

リップクリアランスを1.2mm、ドラフト比を7.2とし、膜状成形物の厚みを200μmとした以外は、実施例2に準じてポリオレフィン樹脂製多孔膜を得た。得られたポリオレフィン樹脂製多孔膜の特性と膜状成形物の延伸性の評価結果を表1に示した。   A polyolefin resin porous membrane was obtained in the same manner as in Example 2 except that the lip clearance was 1.2 mm, the draft ratio was 7.2, and the thickness of the membrane-shaped molded product was 200 μm. Table 1 shows the properties of the obtained polyolefin resin porous membrane and the evaluation results of the stretchability of the membrane-shaped molded product.

(比較例1)
表1の比較例1に示す重合体(A)だけを用いた以外は、実施例1と同様に実施した。比較例1では、縦方向への延伸時に、延伸倍率2倍未満で延伸切れが発生して延伸性に劣ったことから、縦延伸倍率を1.5倍とし、横延伸倍率を1.5倍としたが、透湿度及び透気抵抗度が測定範囲外であり、通気性を有する多孔膜としての特性は得られなかった。得られたポリオレフィン樹脂製多孔膜の特性と膜状成形物の延伸性の評価結果を表1に示した。
(Comparative Example 1)
The same operation as in Example 1 was carried out except that only the polymer (A) shown in Comparative Example 1 of Table 1 was used. In Comparative Example 1, when stretching in the longitudinal direction, the stretching breakage occurred at a stretching ratio of less than 2 times and the stretchability was inferior, so the longitudinal stretching ratio was 1.5 times and the transverse stretching ratio was 1.5 times. However, the moisture permeability and air permeability resistance were out of the measurement range, and the characteristics as a porous film having air permeability were not obtained. Table 1 shows the properties of the obtained polyolefin resin porous membrane and the evaluation results of the stretchability of the membrane-shaped molded product.

(比較例2)
表1の比較例2に重合体(A)及びポリプロピレン樹脂を用いる以外は実施例1と同様に実施した。比較例2では、縦方向への延伸時に、延伸倍率2倍未満で延伸切れが発生して延伸性に劣ったことから、縦延伸倍率を1.5倍とし、横延伸倍率を1.5倍としたが、透湿度及び透気抵抗度が測定範囲外であり、通気性を有する多孔膜としての特性は得られなかった。得られたポリオレフィン樹脂製多孔膜の特性と膜状成形物の延伸性の評価結果を表1に示した。
(Comparative Example 2)
It implemented like Example 1 except using a polymer (A) and a polypropylene resin for the comparative example 2 of Table 1. FIG. In Comparative Example 2, when stretching in the longitudinal direction, the stretching breakage occurred when the stretching ratio was less than 2 times, and the stretchability was poor. Therefore, the longitudinal stretching ratio was 1.5 times, and the transverse stretching ratio was 1.5 times. However, the moisture permeability and air permeability resistance were out of the measurement range, and the characteristics as a porous film having air permeability were not obtained. Table 1 shows the properties of the obtained polyolefin resin porous membrane and the evaluation results of the stretchability of the membrane-shaped molded product.

実施例2で得られたポリオレフィン樹脂製多孔膜について、膜破れ温度T及び孔閉塞温度Tを測定した結果、それぞれT200℃以上、T120℃であった。ΔTが80℃以上であり、また、孔閉塞温度T自体も低く、電池セパレータとして優れたシャットダウン機能及び安全性を有していた。 For the polyolefin resin porous membrane obtained in Example 2, the results of measuring the film tearing temperature T b and the pore closing temperature T s, respectively T b 200 ° C. or higher, was T s 120 ° C.. ΔT was 80 ° C. or higher, and the hole closing temperature T s itself was low, which had an excellent shutdown function and safety as a battery separator.

(比較例3)
市販の電池セパレータ(商品名セルガード2400、セルガード(株)製、厚さ27μm、空隙率38%、透気抵抗度600秒/100ml)について、膜破れ温度T及び孔閉塞温度Tを測定した結果、Tは165℃であったが、160℃でも透気抵抗度が710秒/100mlであり10,000秒/100ml以上とはならず、孔閉塞温度Tは測定不可能であり、電池セパレータとしてシャットダウン機能は認められなかった。
(Comparative Example 3)
With respect to a commercially available battery separator (trade name Celgard 2400, manufactured by Celgard Co., Ltd., thickness 27 μm, porosity 38%, air permeability 600 sec / 100 ml), the film breaking temperature T b and the pore closing temperature T s were measured. As a result, Tb was 165 ° C., but even at 160 ° C., the air permeability resistance was 710 seconds / 100 ml, which did not exceed 10,000 seconds / 100 ml, and the pore closing temperature T s could not be measured. No shutdown function was observed as a battery separator.

(表1)

Figure 2005145999
(Table 1)
Figure 2005145999

本発明のポリオレフィン樹脂製多孔膜は、電池セパレータや分離膜、通気防水材等に好適に使用される。   The polyolefin resin porous membrane of the present invention is suitably used for battery separators, separation membranes, breathable waterproof materials and the like.

Claims (6)

ポリ4−メチル−1−ペンテン系重合体(A)と主成分のα−オレフィンの含有量が40〜80重量%であるα−オレフィン共重合体(B)とからなるポリオレフィン樹脂(C)を含有する樹脂組成物を溶融混練して膜状溶融物とし、該膜状溶融物を膜状成形物に成形した後、その膜状成形物を少なくとも一方向に延伸することにより形成された多孔膜であって、ポリオレフィン樹脂(C)がポリ4−メチル−1−ペンテン系重合体(A)30〜80重量%とα−オレフィン共重合体(B)20〜70重量%とからなり、α−オレフィン共重合体(B)領域に連通した細孔を有するポリオレフィン樹脂製多孔膜。 A polyolefin resin (C) comprising a poly-4-methyl-1-pentene polymer (A) and an α-olefin copolymer (B) having a main component α-olefin content of 40 to 80% by weight. A porous film formed by melting and kneading a resin composition contained therein to form a film-like melt, forming the film-like melt into a film-like molding, and then stretching the film-like molding in at least one direction The polyolefin resin (C) comprises 30 to 80% by weight of the poly-4-methyl-1-pentene polymer (A) and 20 to 70% by weight of the α-olefin copolymer (B). A polyolefin resin porous membrane having pores communicating with the olefin copolymer (B) region. 23℃におけるポリ4−メチル−1−ペンテン系重合体(A)の引張強さSとα−オレフィン共重合体(B)の引張強さSの引張強さ比S/Sが2〜50であることを特徴とする請求項1記載のポリオレフィン樹脂製多孔膜。 Poly-4-methyl-1-pentene polymer at 23 ° C. tensile strength ratio S A / S B of the tensile strength S B of the tensile strength S A and α- olefin copolymer (A) (B) The polyolefin resin porous membrane according to claim 1, wherein the porous membrane is 2 to 50. 23℃における引張強さ比S/Sが2〜20であることを特徴とする請求項2記載のポリオレフィン樹脂製多孔膜。 3. The polyolefin resin porous membrane according to claim 2, wherein the tensile strength ratio S A / S B at 23 ° C. is 2 to 20. 膜状溶融物を膜状成形物に成形する際のドラフト比が1〜10の範囲であることを特徴とする請求項1〜3のいずれか1項記載のポリオレフィン樹脂製多孔膜。 The polyolefin resin porous membrane according to any one of claims 1 to 3, wherein a draft ratio when the film-like melt is formed into a film-like molding is in the range of 1 to 10. 膜状溶融物を膜状成形物に成形する際のドラフト比が1〜3の範囲であることを特徴とする請求項4記載のポリオレフィン樹脂製多孔膜。 5. The polyolefin resin porous membrane according to claim 4, wherein a draft ratio when the film-shaped melt is formed into a film-shaped molding is in the range of 1 to 3. 透気抵抗度(ガーレー)が1〜2,000秒/100ml、膜破れ温度Tが200℃以上であって、膜破れ温度Tと孔閉塞温度Tとの差ΔT(=T−T)が30℃以上であることを特徴とする請求項1〜5のいずれか1項記載のポリオレフィン樹脂製多孔膜。 The air resistance (Gurley) is 1 to 2,000 seconds / 100 ml, an in film breakage temperature T b is 200 ° C. or higher, the difference between the film tear temperature T b and pore closing temperature T s ΔT (= T b - T s) is a polyolefin resin porous membrane of any one of claims 1 to 5, wherein the at 30 ° C. or higher.
JP2003380865A 2003-11-11 2003-11-11 Porous film made of polyolefin resin Pending JP2005145999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380865A JP2005145999A (en) 2003-11-11 2003-11-11 Porous film made of polyolefin resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380865A JP2005145999A (en) 2003-11-11 2003-11-11 Porous film made of polyolefin resin

Publications (1)

Publication Number Publication Date
JP2005145999A true JP2005145999A (en) 2005-06-09

Family

ID=34690412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380865A Pending JP2005145999A (en) 2003-11-11 2003-11-11 Porous film made of polyolefin resin

Country Status (1)

Country Link
JP (1) JP2005145999A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100056A (en) * 2005-10-07 2007-04-19 Mitsui Chemicals Inc Method for producing porous film and porous film
JP2007321116A (en) * 2006-06-05 2007-12-13 Chisso Corp Polyolefin resin porous film
WO2010013467A1 (en) * 2008-08-01 2010-02-04 三井化学株式会社 Poly(4-methyl-1-pentene) resin composition, film containing same, microporous film, battery separator and lithium ion battery
WO2010147798A2 (en) 2009-06-19 2010-12-23 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US8846253B2 (en) 2009-06-19 2014-09-30 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
WO2018143411A1 (en) * 2017-02-02 2018-08-09 三井化学東セロ株式会社 Foam body, polyolefin-based foam sheet and complex
JP2019137843A (en) * 2018-02-13 2019-08-22 三井化学株式会社 Manufacturing method of microporous film, and microporous film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100056A (en) * 2005-10-07 2007-04-19 Mitsui Chemicals Inc Method for producing porous film and porous film
JP2007321116A (en) * 2006-06-05 2007-12-13 Chisso Corp Polyolefin resin porous film
WO2010013467A1 (en) * 2008-08-01 2010-02-04 三井化学株式会社 Poly(4-methyl-1-pentene) resin composition, film containing same, microporous film, battery separator and lithium ion battery
US8211981B2 (en) 2008-08-01 2012-07-03 Mitsui Chemicals, Inc. Poly(4-methyl-1-pentene) resin composition, film containing same, microporous film, battery separator and lithium ion battery
JP5501233B2 (en) * 2008-08-01 2014-05-21 三井化学株式会社 Poly-4-methyl-1-pentene resin composition, film containing the same, microporous film, battery separator, and lithium ion battery
WO2010147798A2 (en) 2009-06-19 2010-12-23 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
US8846253B2 (en) 2009-06-19 2014-09-30 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making these membranes, and the use of these membranes as battery separator films
US8951677B2 (en) 2009-06-19 2015-02-10 Toray Battery Separator Film Co., Ltd. Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
WO2018143411A1 (en) * 2017-02-02 2018-08-09 三井化学東セロ株式会社 Foam body, polyolefin-based foam sheet and complex
US11884804B2 (en) 2017-02-02 2024-01-30 Mitsui Chemicals, Inc. Foam body, polyolefin-based foam sheet, and complex
JP2019137843A (en) * 2018-02-13 2019-08-22 三井化学株式会社 Manufacturing method of microporous film, and microporous film
JP7224194B2 (en) 2018-02-13 2023-02-17 三井化学株式会社 Microporous film manufacturing method and microporous film

Similar Documents

Publication Publication Date Title
US7141168B2 (en) Porous polyolefin membrane
EP0765900B1 (en) Method of producing a microporous polyolefin membrane
JP4494637B2 (en) Polyolefin microporous membrane and method for producing the same
JP5861832B2 (en) Microporous membrane
JP2005145998A (en) Thermoplastic resin porous film
WO2013031795A1 (en) Polyolefin resin composition and applications thereof
JP2008540794A6 (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP2008540794A (en) High density polyethylene microporous membrane excellent in extrusion kneadability and physical properties and method for producing the same
JP5262556B2 (en) Polyolefin resin porous membrane and battery separator using the same
JP6079922B2 (en) Heat resistant sheet and manufacturing method thereof
JP4894794B2 (en) Polyolefin resin porous membrane
JP5064409B2 (en) Semi-crystalline polymer microporous membrane and method for producing the same
JP4797813B2 (en) Polyolefin resin porous membrane
JP7214978B2 (en) Stretched porous film
JP2005145999A (en) Porous film made of polyolefin resin
JP4466039B2 (en) Polyolefin resin porous membrane
JP5036245B2 (en) Method for producing polyolefin microporous membrane
JP2003327731A (en) Polyolefin resin porous membrane
JP2006114746A (en) Separator for electric double layer capacitor made of polyolefin resin
JP4186798B2 (en) Multilayer porous membrane made of polyolefin resin
JP2005129435A (en) Battery separator made of polyolefin resin
JP4742214B2 (en) Polyolefin resin porous membrane
JPH04335043A (en) Production of porous film
JP6922161B2 (en) Method for manufacturing stretched porous film
JP4305133B2 (en) Base sheet for adhesive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061019

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090417

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090421

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901