【0001】
【発明の属する技術分野】
本発明は、透明導電層の形成に用いる貴金属微粒子分散液、特にハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子の分散液から、貴金属微粒子を簡単且つ迅速に凝集沈澱させて回収する方法に関する。
【0002】
【従来の技術】
近年のオフィスオートメーション(OA)化により、オフィスに多くのOA機器が導入され、OA機器のディスプレイと向き合って終日作業を行うという環境が珍しくない。最近では、OA機器のディスプレイ、例えばCRT(陰極線管又はブラウン管とも称する)から発生する低周波電磁波の人体に対する悪影響が懸念され、このような電磁波が外部に漏洩しないことが望まれている。
【0003】
そこで、電磁波の漏洩防止のため、CRTの前面ガラス表面に透明導電層を形成することが行われている。その一つの方法として、貴金属微粒子を溶媒に分散させた溶液(以下、貴金属微粒子分散液とも言う)を、スピンコート法などの塗布法によりCRTの前面ガラス表面に塗布した後、加熱処理することによって透明導電層を形成する方法がある。
【0004】
このような塗布法による透明導電層の形成に用いる貴金属微粒子分散液には、成膜作業工程中や貴金属微粒子分散液の貯蔵中に、液中の貴金属微粒子が凝集しないような安定性が求められる。しかしながら、従来の貴金属微粒子を用いた分散液は、室温保存で僅かに数日、冷凍庫保存でも1〜2ヶ月で微粒子が凝集してしまい、その安定性に大きな問題があった。
【0005】
本発明者等は、この貴金属微粒子の安定性を向上させるため、貴金属微粒子の表面をハロゲンイオン、特に塩素イオンで修飾することを提案している(特願2003−018253参照)。即ち、表面が貴金属微粒子100重量部に対して0.2〜15重量部のハロゲンで修飾されている貴金属微粒子を用いることにより、室温保存で1ヶ月以上、冷凍庫保存では数月にわたって凝集しない、極めて安定な貴金属微粒子分散液が得られる。
【0006】
このハロゲンイオンで表面を修飾した貴金属微粒子を含む貴金属微粒子分散液を用い、CRT表面に電磁波漏洩防止用の透明導電層を形成することが行われているが、貴金属微粒子分散液をCRTの前面ガラス表面に塗布する工程で廃液の発生が避けられない。この貴金属微粒子分散液の廃液には貴金属微粒子が含まれているので、廃液から有用な貴金属を回収することが望まれている。
【0007】
一方、一般的な重金属類を含む溶液から重金属塩を回収する方法としては、溶液を中和して重金属類を水酸化物とした後、硫酸アルミニウム、ポリ塩化アルミニウム等の無機凝集剤や、ポリアクリル酸アミド等の高分子凝集剤を添加し、重金属粒子の凝集体を形成させる方法が知られている。
【0008】
例えば、特開2000−136944号公報には、硫酸アルミニウムのアルミナ換算1重量部と、アルミン酸ナトリウムのアルミナ換算1.7〜6.0重量部とからなる重金属固定剤、更に凝集沈殿剤として水酸化アルミニウム、ポリ塩化アルミニウム、Fe(OH)3、FeCl3、Fe2(SO4)3等を単独で又は2以上の組合せで加え、被処理灰を撹拌又は混練しながら添加して、灰と重金属固定剤を含む水溶液がpH8.5〜11.5を示すようにして、重金属溶出の少ない範囲内に収めてこれを固定する方法が記載されている。
【0009】
また、特開2001−276845号公報には、有機化合物及び重金属類を含有する廃液に過酸化水素水を接触させた後、該廃液に任意の廃水を供給して希釈し、該希釈廃液に凝集剤としてアニオン系高分子凝集剤(例えば、ポリアクリル酸ナトリウム、ポリアクリル酸アンモニウム、ポリスチレンスルホン酸ナトリウムなど)を用いることにより、該希釈廃液中に存在する重金属類を凝集沈殿せしめる方法が記載されている。
【0010】
【特許文献1】
特開2000−136944号公報
【特許文献2】
特開2001−276845号公報
【0011】
【発明が解決しようとする課題】
一般に、溶液から重金属類を凝集沈殿させる場合、上記したような高分子凝集剤や無機凝集剤が使用されている。高分子凝集剤は、重金属粒子に吸着し、粒子同士を架橋することで巨大な凝集体を形成する。また、無機凝集剤は、重金属粒子を分散安定化している電気二重層を破壊し、粒子同士を凝集させる。いずれの場合も、重金属粒子は凝集することにより沈降性及び濾過性が高められるので、濾過によって溶液から簡単に分離することができる。
【0012】
しかしながら、分散している金属微粒子が貴金属の場合には、高分子凝集剤や無機凝集剤を用いて凝集体を形成することが困難であった。特に、上記のごとくハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子の場合には、高分子凝集剤を用いても吸着架橋が十分に形成されず、また無機凝集剤を用いても電気二重層の破壊が不十分であるため、貴金属微粒子の凝集がほとんど起らないか、貴金属微粒子の凝集体を生成させるために極めて長時間の静置が必要になるという問題があった。
【0013】
尚、凝集体を形成して濾過する以外の回収方法として、貴金属微粒子の分散液から溶媒を乾燥除去する方法も考えられるが、大掛かりな装置や設備が必要となるうえ、多大なエネルギーコストを必要とするため、工業的な実施には不適当な方法である。
【0014】
本発明は、このような従来の事情に鑑み、ハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子が溶媒に分散した貴金属微粒子分散液から、貴金属微粒子を短時間で凝集させ、沈降性及び濾過性の優れた貴金属微粒子の凝集体を生成させ、貴金属と溶媒とを容易に分離することのできる、工業的に有用性の高い貴金属微粒子の回収方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明者らは、銀イオンがハロゲンイオンと速やかに反応して難溶性の塩を作ることに着目して検討を重ねた結果、ハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子に対しては、硝酸銀が効果的な凝集作用を発揮することを見出し、本発明に至ったものである。
【0016】
即ち、本発明の請求項1に係わる貴金属微粒子回収方法は、ハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子を含む貴金属微粒子分散液から貴金属微粒子を回収する方法であって、該貴金属微粒子分散液に凝集剤として硝酸銀を添加し、ハロゲンイオンの修飾を除去して貴金属微粒子を凝集させた後、凝集した貴金属微粒子を溶媒と分離することを特徴とする。
【0017】
本発明の請求項2に係わる貴金属微粒子回収方法は、上記請求項1の方法において、前記硝酸銀の添加量を、貴金属微粒子分散液中の貴金属微粒子に対する硝酸銀の重量比で1/60以上とすることを特徴とする。
【0018】
また、本発明の請求項3に係わる貴金属微粒子回収方法は、上記請求項1又は2の方法において、前記ハロゲンイオンが塩素イオンであることを特徴とする。更に、本発明の請求項4に係わる貴金属微粒子回収方法は、上記請求項1〜3のいずれか方法において、前記貴金属微粒子分散液中の貴金属微粒子含有量を0.01重量%以上とすることを特徴とする。
【0019】
【発明の実施の形態】
本発明が対象とする貴金属微粒子は、表面をハロゲンイオンで修飾して分散安定化した貴金属微粒子であれば良く、その形態には何ら制限はない。貴金属微粒子の具体例としては、金、白金、パラジウム、銀、ルテニウム、イリジウム、ロジウムの単体微粒子、それらの合金からなる微粒子、及び上記貴金属や金属若しくはそれらの金属酸化物などの表面を貴金属で被覆した微粒子を挙げることができる。また、貴金属微粒子の表面を修飾しているハロゲンイオンとしては、安定性の点で塩素イオンが最も好適であるが、臭素イオン、ヨウ素イオンなどであってもよい。
【0020】
貴金属微粒子分散液の溶媒としては、水、アルコール、エーテル、エステル、ケトン、芳香族化合物などの一般的な有機溶媒、及び水と有機溶媒との混合物が挙げられるが、これらに限定されるものではない。また、本発明方法で処理する貴金属微粒子分散液中の貴金属微粒子含有量は、0.01重量%以上であることが望ましい。貴金属含有量が0.01重量%未満である場合には、貴金属微粒子を十分に凝集させるために比較的長時間の静置が必要となるからであり、そのような場合には予め貴金属含有量が0.01重量%以上に調整することが好ましい。
【0021】
本発明においては、凝集剤として硝酸銀を用いる。硝酸銀は固体のまま貴金属微粒子分散液に添加することもできるが、取り扱い易さを考えると、硝酸銀の水溶液として添加するのが好ましい。硝酸銀の水に対する溶解度は68.4g/100g飽和溶液(20℃)と大きいため、硝酸銀水溶液を用いることで貴金属微粒子分散液に硝酸銀を効率よく添加することができる。
【0022】
硝酸銀は、公知の一般的な凝集剤ではなく、通常の金属粒子に対し凝集作用を有しないことは周知である。しかし、本発明者らの研究によれば、溶液中における硝酸銀の銀イオンは、貴金属微粒子表面を修飾しているハロゲンイオンと速やかに反応して難溶性のハロゲン化銀を形成し、表面からハロゲンイオンを奪うことによって電気二重層を完全に破壊し得ることが判明した。その結果、電気的反発を失った貴金属微粒子は、凝集を起こして沈殿する。硝酸銀を添加した貴金属微粒子分散液を撹拌することは、微粒子の衝突確率が上がり、凝集が進み易くなるので有効である。
【0023】
銀イオンを効率良く供給できる物質として、硝酸銀の他に、過塩素酸銀(AgClO4)、フッ化銀(AgF)、メタホウ酸銀(AgBO2)、塩素酸銀(AgClO3)、過マンガン酸銀(AgMnO4)、スルファミン酸銀(Ag(SO3NH2))などがある。これらの銀を含有する化合物も、貴金属微粒子分散液に添加することによって、貴金属微粒子表面からハロゲンイオンを奪い、貴金属微粒子を凝集・沈殿させることができる。
【0024】
凝集剤として用いる硝酸銀の添加量は、貴金属微粒子分散液中の貴金属微粒子の量や表面を修飾しているハロゲンイオンの量によるが、一般的には分散液中の貴金属微粒子に対する硝酸銀の重量比(硝酸銀重量/貴金属微粒子重量)で1/60以上とすることが望ましい。硝酸銀の添加量がこれよりも少ないと、添加による貴金属微粒子の凝集効果が十分に得られないだめである。一方、硝酸銀の添加量が多くても特に問題とはならない。高分子凝集剤では、過剰添加によってかえって凝集性が悪化することがあるが、硝酸銀ではこのような現象は見られないからである。
【0025】
このように、本発明方法によれば、ハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子は極めて安定であるにもかかわらず、その貴金属微粒子分散液に硝酸銀を添加することによって、分散安定化されている貴金属微粒子を極めて短時間で凝集させ、沈降性及び濾過性の優れた貴金属の凝集体を生成させることができる。得られた貴金属の凝集体は1〜3分程度の極めて短い時間で完全に沈澱し、濾過により溶媒から容易に分離して回収することができる。
【0026】
【実施例】
(実施例1)
貴金属微粒子分散液の擬似廃液として、表面が塩素イオンで修飾されたAu:Agの重量比が4:1である貴金属微粒子(貴金属微粒子100重量部に対する塩素イオン量は1重量部以上)0.1重量%と、残部の水:エタノールの重量比が1:9である溶媒とからなる分散液を用意した。
【0027】
この貴金属微粒子分散液20gに、凝集剤として1%硝酸銀水溶液を硝酸銀換算で100ppm(硝酸銀重量/貴金属微粒子重量=1/10)添加し、マグネティックスターラーで1分間撹拌した。その後、室温で静置して、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈澱が形成されはじめ、静置後1分で上澄み液が完全に透明になった。得られた沈澱は、濾過により溶媒と簡単に分離することができた。
【0028】
(実施例2)
1%硝酸銀水溶液の添加量を硝酸銀換算で20ppm(硝酸銀重量/貴金属微粒子重量=1/50)とした以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後3分で上澄み液が完全に透明になった。
【0029】
(実施例3)
1%硝酸銀水溶液の添加量を硝酸銀換算で17ppm(硝酸銀重量/貴金属微粒子重量=1/59)とした以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後1時間で上澄み液が完全に透明になった。
【0030】
(実施例4)
凝集剤として10%硝酸銀水溶液を硝酸銀換算で1000ppm(硝酸銀重量/貴金属微粒子重量=1/1)添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後1分で上澄み液が完全に透明になった。
【0031】
(実施例5)
貴金属微粒子分散液中の貴金属微粒子として、表面が塩素イオンで修飾されたAu:Agの重量比が2:1である貴金属微粒子(貴金属微粒子100重量部に対する塩素イオン量は1重量部以上)を用いた以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後1分で上澄み液が完全に透明になった。
【0032】
(実施例6)
貴金属微粒子分散液中の貴金属微粒子として、表面が塩素イオンで修飾されたAu:Agの重量比が1:1である貴金属微粒子(貴金属微粒子100重量部に対する塩素イオン量は1重量部以上)を用いた以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後1分で上澄み液が完全に透明になった。
【0033】
(実施例7)
貴金属微粒子分散液の溶媒として、水:メチルセロソルブの混合割合が重量比で1:9である溶媒を用いたこと以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後1分後で上澄み液が完全に透明になった。
【0034】
(実施例8)
貴金属微粒子分散液の溶媒として、水:アセトンの混合割合が重量比で1:9である溶媒を用いたこと以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後1分で上澄み液が完全に透明になった。
【0035】
(実施例9)
貴金属微粒子分散液に含有される溶媒として、水:エタノール:メチルセロソルブの混合割合が重量比で1:5:4である溶媒を用いたこと以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈殿が形成されはじめ、静置後1分で上澄み液が完全に透明になった。
【0036】
(実施例10)
貴金属微粒子分散液の擬似廃液として、表面が臭素イオンで修飾されたAu:Agの重量比が4:1である貴金属微粒子(貴金属微粒子100重量部に対する臭素イオン量は2重量部以上)0.1重量%と、残部の水:エタノールの重量比が1:9である溶媒とからなる分散液を用意した。
【0037】
この貴金属微粒子分散液20gに、凝集剤として1%硝酸銀水溶液を硝酸銀換算で100ppm(硝酸銀重量/貴金属微粒子重量=1/10)添加し、マグネティックスターラーで1分間撹拌した。その後、室温で静置して、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後5秒以内に容器底部に沈澱が形成されはじめ、静置後1分で上澄み液が完全に透明になった。
【0038】
(比較例1)
凝集剤として、スミフロックFN13(住友化学工業(株)製、ポリアクリル酸アミド系高分子凝集剤)を100ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、容器底部に沈殿が形成されはじめたのは3時間後であり、静置後24時間経過しても上澄み液は透明にならなかった。
【0039】
(比較例2)
凝集剤として、スミフロックFN13を1000ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、容器底部に沈殿が形成されはじめたのは3時間後であり、静置後24時間経過しても上澄み液は透明にならなかった。
【0040】
(比較例3)
凝集剤として、硫酸マグネシウムを100ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後24時間経過しても容器底部に沈殿が形成されなかった。
【0041】
(比較例4)
凝集剤として、硫酸マグネシウムを1000ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、容器底部に沈殿が形成されはじめたのは静置後12時間経過してからであり、静置後24時間経過しても上澄み液は透明にならなかった。
【0042】
(比較例5)
凝集剤として、塩化ナトリウムを100ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後24時間経過しても容器底部に沈殿が形成されなかった。
【0043】
(比較例6)
凝集剤として、水酸化ナトリウムを100ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後24時間経過しても容器底部に沈殿が形成されなかった。
【0044】
(比較例7)
凝集剤として、塩酸を100ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後24時間経過しても容器底部に沈殿が形成されなかった。
【0045】
(比較例8)
凝集剤として、塩酸を1000ppm添加した以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、容器底部に沈殿が形成されはじめたのは静置後12時間経過かしてからであり、静置後24時間経過しても上澄み液は透明にならなかった。
【0046】
(比較例9)
凝集剤として0.1%硝酸銀水溶液の添加量を硝酸銀換算で15ppm(硝酸銀重量/貴金属微粒子重量=1/67)とした以外は実施例1と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後1時間で容器底部に少量の沈殿が見られたが、静置後24時間経過しても上澄み液は透明にならなかった。
【0047】
(比較例10)
凝集剤として0.1%硝酸銀水溶液の添加量を硝酸銀換算で8.5ppm(硝酸銀重量/貴金属微粒子重量=1/125)とした以外は実施例4と同様にして、沈澱の形成が開始されるまでの時間、及び上澄み液が完全に透明になるまでの時間を測定したところ、静置後24時間経過しても沈殿は認められず、上澄み液は透明にならなかった。
【0048】
以上の実施例及び比較例から分かるように、ハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子は、従来から金属微粒子の凝集に使用されている公知の高分子凝集剤や無機凝集剤では殆ど沈澱しないか、沈澱しても極めて長時間かかるのに対して、硝酸銀を凝集剤として用いる本発明方法によれば簡単に且つ極めて短時間に沈澱させることができた。
【0049】
【発明の効果】
本発明によれば、ハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子であっても、その貴金属微粒子分散液に凝集剤として少量の硝酸銀を添加するだけで、従来一般的な凝集剤では凝集困難であった貴金属微粒子を極めて短時間で凝集させて、沈降性及び濾過性に優れた凝集体を生成させ、貴金属微粒子を溶媒から容易に分離することができる。
【0050】
従って、本発明方法を用いることにより、ハロゲンイオンで表面を修飾して分散安定化した貴金属微粒子を含む貴金属微粒子分散液の廃液、例えば塗布法により透明導電層を形成する際に発生する廃液から、高価な貴金属を低コストで簡単に回収することことができる。また、本発明方法は、大掛かりな装置や設備を必要としないうえ、溶媒の乾燥除去などの工程を含まないためエネルギーコストが低く、且つ環境面からみても有用性が高いものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering precious metal fine particles by simple and rapid aggregation and recovery from a precious metal fine particle dispersion used for forming a transparent conductive layer, particularly a dispersion of precious metal fine particles whose surface is modified and stabilized by halogen ions. About.
[0002]
[Prior art]
With the recent shift to office automation (OA), many OA devices have been introduced into the office, and it is not uncommon for the environment to work all day while facing the display of OA devices. Recently, there are concerns about the adverse effects on human bodies of low frequency electromagnetic waves generated from displays of OA devices, such as CRTs (also referred to as cathode ray tubes or cathode ray tubes), and it is desired that such electromagnetic waves do not leak to the outside.
[0003]
In order to prevent leakage of electromagnetic waves, a transparent conductive layer is formed on the front glass surface of the CRT. As one of the methods, a solution in which noble metal fine particles are dispersed in a solvent (hereinafter, also referred to as a noble metal fine particle dispersion) is applied to the front glass surface of the CRT by a coating method such as a spin coating method, followed by heat treatment. There is a method of forming a transparent conductive layer.
[0004]
The noble metal fine particle dispersion used for forming the transparent conductive layer by such a coating method is required to have stability so that the noble metal fine particles in the liquid do not aggregate during the film forming process or during storage of the noble metal fine particle dispersion. . However, the dispersion using the conventional noble metal fine particles aggregates in just a few days when stored at room temperature and in one to two months even when stored in a freezer, and there is a big problem in its stability.
[0005]
In order to improve the stability of the noble metal fine particles, the present inventors have proposed modifying the surface of the noble metal fine particles with halogen ions, particularly chlorine ions (see Japanese Patent Application No. 2003-018253). That is, by using noble metal fine particles whose surface is modified with 0.2 to 15 parts by weight of halogen with respect to 100 parts by weight of the noble metal fine particles, it does not aggregate for more than one month at room temperature storage and for several months in freezer storage. A stable noble metal fine particle dispersion can be obtained.
[0006]
A transparent conductive layer for preventing leakage of electromagnetic waves is formed on the CRT surface using a noble metal fine particle dispersion containing noble metal fine particles whose surface is modified with halogen ions. The noble metal fine particle dispersion is used as a CRT front glass. Generation of waste liquid is inevitable in the process of applying to the surface. Since the waste liquid of this noble metal fine particle dispersion contains noble metal fine particles, it is desired to recover useful noble metals from the waste liquid.
[0007]
On the other hand, as a method for recovering a heavy metal salt from a solution containing a general heavy metal, after neutralizing the solution to make the heavy metal hydroxide, an inorganic flocculant such as aluminum sulfate or polyaluminum chloride, A method is known in which a polymer flocculant such as acrylic amide is added to form an aggregate of heavy metal particles.
[0008]
For example, Japanese Patent Application Laid-Open No. 2000-136944 discloses a heavy metal fixing agent composed of 1 part by weight of aluminum sulfate converted to alumina and 1.7 to 6.0 parts by weight of sodium aluminate converted to alumina, and water as a coagulating precipitant. Aluminum oxide, polyaluminum chloride, Fe (OH) 3 , FeCl 3 , Fe 2 (SO 4 ) 3, etc. are added alone or in combination of two or more, and the ash to be treated is added while stirring or kneading to add ash and A method is described in which an aqueous solution containing a heavy metal fixing agent has a pH of 8.5 to 11.5 and is contained within a range where there is little heavy metal elution and is fixed.
[0009]
Japanese Patent Laid-Open No. 2001-276845 discloses that hydrogen peroxide water is brought into contact with a waste liquid containing an organic compound and heavy metals, and then, any waste water is supplied to the waste liquid to be diluted, and then aggregated in the diluted waste liquid. It describes a method of aggregating and precipitating heavy metals present in the diluted waste liquid by using an anionic polymer flocculant (eg, sodium polyacrylate, ammonium polyacrylate, sodium polystyrene sulfonate, etc.) as an agent. Yes.
[0010]
[Patent Document 1]
JP 2000-136944 A [Patent Document 2]
Japanese Patent Laid-Open No. 2001-276845
[Problems to be solved by the invention]
In general, when aggregating and precipitating heavy metals from a solution, a polymer flocculant and an inorganic flocculant as described above are used. The polymer flocculant adsorbs to heavy metal particles and forms huge aggregates by crosslinking the particles. The inorganic flocculant breaks the electric double layer in which the heavy metal particles are dispersed and stabilized, and aggregates the particles. In any case, since the heavy metal particles are aggregated to improve the sedimentation property and filterability, they can be easily separated from the solution by filtration.
[0012]
However, when the dispersed metal fine particles are noble metals, it has been difficult to form aggregates using a polymer flocculant or an inorganic flocculant. In particular, in the case of fine noble metal particles whose surface is modified and stabilized by halogen ions as described above, adsorption crosslinking is not sufficiently formed even when a polymer flocculant is used, and even when an inorganic flocculant is used Since the double layer is not sufficiently broken, there has been a problem that aggregation of the noble metal fine particles hardly occurs or it is necessary to stand for a very long time in order to form an aggregate of the noble metal fine particles.
[0013]
As a recovery method other than forming aggregates and filtering, a method of drying and removing the solvent from the dispersion of precious metal fine particles is also conceivable. However, a large apparatus and equipment are required, and a large energy cost is required. Therefore, it is an unsuitable method for industrial implementation.
[0014]
In view of such conventional circumstances, the present invention agglomerates precious metal fine particles in a short time from a precious metal fine particle dispersion in which precious metal fine particles whose surface is modified and stabilized by halogen ions are dispersed in a solvent. It is an object of the present invention to provide an industrially useful method for recovering noble metal fine particles that can form an aggregate of noble metal fine particles having excellent filterability and can easily separate a noble metal and a solvent.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the inventors of the present invention have made studies focusing on the fact that silver ions react quickly with halogen ions to form a hardly soluble salt. It has been found that silver nitrate exerts an effective aggregating action on stabilized noble metal fine particles and has led to the present invention.
[0016]
In other words, the noble metal fine particle recovery method according to claim 1 of the present invention is a method for recovering noble metal fine particles from a noble metal fine particle dispersion containing noble metal fine particles whose surface is modified and stabilized by halogen ions, the noble metal fine particles. Silver nitrate is added as an aggregating agent to the dispersion, the halogen ion modification is removed to aggregate the noble metal fine particles, and then the aggregated noble metal fine particles are separated from the solvent.
[0017]
The noble metal fine particle recovery method according to claim 2 of the present invention is the method of claim 1 wherein the addition amount of the silver nitrate is 1/60 or more in terms of the weight ratio of silver nitrate to the noble metal fine particles in the noble metal fine particle dispersion. It is characterized by.
[0018]
The precious metal fine particle recovery method according to claim 3 of the present invention is characterized in that, in the method of claim 1 or 2, the halogen ion is a chlorine ion. Furthermore, the noble metal fine particle recovery method according to claim 4 of the present invention is the method according to any one of claims 1 to 3, wherein the noble metal fine particle content in the noble metal fine particle dispersion is 0.01% by weight or more. Features.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The noble metal fine particles targeted by the present invention may be noble metal fine particles whose surface is modified and stabilized by halogen ions, and there is no limitation on the form thereof. Specific examples of the noble metal fine particles include simple particles of gold, platinum, palladium, silver, ruthenium, iridium, rhodium, fine particles made of an alloy thereof, and the surface of the noble metal, metal, or metal oxide thereof covered with the noble metal. Fine particles. In addition, as the halogen ion that modifies the surface of the noble metal fine particle, chlorine ion is most preferable in terms of stability, but may be bromine ion, iodine ion, or the like.
[0020]
Examples of the solvent for the noble metal fine particle dispersion include common organic solvents such as water, alcohols, ethers, esters, ketones, and aromatic compounds, and mixtures of water and organic solvents, but are not limited thereto. Absent. The noble metal fine particle content in the noble metal fine particle dispersion treated by the method of the present invention is preferably 0.01% by weight or more. When the noble metal content is less than 0.01% by weight, it is necessary to stand for a relatively long time in order to sufficiently aggregate the noble metal fine particles. Is preferably adjusted to 0.01% by weight or more.
[0021]
In the present invention, silver nitrate is used as the flocculant. Although silver nitrate can be added to the noble metal fine particle dispersion as a solid, it is preferably added as an aqueous solution of silver nitrate in view of ease of handling. Since the solubility of silver nitrate in water is as high as 68.4 g / 100 g saturated solution (20 ° C.), silver nitrate can be efficiently added to the noble metal fine particle dispersion by using an aqueous silver nitrate solution.
[0022]
It is well known that silver nitrate is not a known general aggregating agent and has no aggregating action on ordinary metal particles. However, according to the study by the present inventors, the silver ions of silver nitrate in the solution rapidly react with the halogen ions that modify the surface of the noble metal fine particles to form a hardly soluble silver halide, and the halogen ions from the surface. It has been found that the electric double layer can be completely destroyed by depriving the ions. As a result, the noble metal fine particles that have lost the electric repulsion are aggregated and precipitated. Agitation of the noble metal fine particle dispersion to which silver nitrate has been added is effective because the collision probability of the fine particles is increased and aggregation is facilitated.
[0023]
Substances that can supply silver ions efficiently include silver nitrate, silver perchlorate (AgClO 4 ), silver fluoride (AgF), silver metaborate (AgBO 2 ), silver chlorate (AgClO 3 ), permanganate Examples include silver (AgMnO 4 ) and silver sulfamate (Ag (SO 3 NH 2 )). When these silver-containing compounds are also added to the noble metal fine particle dispersion, halogen ions can be taken from the surface of the noble metal fine particles and the noble metal fine particles can be aggregated and precipitated.
[0024]
The amount of silver nitrate used as an aggregating agent depends on the amount of noble metal fine particles in the noble metal fine particle dispersion and the amount of halogen ions modifying the surface, but generally the weight ratio of silver nitrate to noble metal fine particles in the dispersion ( (Silver nitrate weight / noble metal fine particle weight) is preferably 1/60 or more. If the addition amount of silver nitrate is less than this, the aggregation effect of the noble metal fine particles due to the addition cannot be obtained sufficiently. On the other hand, there is no particular problem even if the amount of silver nitrate added is large. This is because, in the case of a polymer flocculant, the aggregability may be deteriorated by excessive addition, but such a phenomenon is not observed in silver nitrate.
[0025]
As described above, according to the method of the present invention, although noble metal fine particles whose surface is modified and stabilized by halogen ions are extremely stable, the dispersion stability is improved by adding silver nitrate to the noble metal fine particle dispersion. The noble metal fine particles thus formed can be aggregated in a very short time to produce an aggregate of noble metals having excellent sedimentation and filterability. The obtained noble metal agglomerates precipitate completely in a very short time of about 1 to 3 minutes, and can be easily separated from the solvent by filtration and recovered.
[0026]
【Example】
(Example 1)
As a pseudo waste liquid of a noble metal fine particle dispersion, noble metal fine particles whose surface is modified with chlorine ions and the weight ratio of Au: Ag is 4: 1 (the amount of chlorine ions with respect to 100 parts by weight of noble metal fine particles is 1 part by weight or more) 0.1 A dispersion was prepared consisting of% by weight and the remaining solvent with a water: ethanol weight ratio of 1: 9.
[0027]
To 20 g of this noble metal fine particle dispersion, 100 ppm (silver nitrate weight / noble metal fine particle weight = 1/10) in terms of silver nitrate was added as a 1% silver nitrate aqueous solution as a flocculant, and the mixture was stirred with a magnetic stirrer for 1 minute. Then, when it was allowed to stand at room temperature and the time until the formation of the precipitate was started and the time until the supernatant became completely transparent were measured, the precipitate was formed at the bottom of the container within 5 seconds after standing. The supernatant liquid became completely transparent 1 minute after standing. The resulting precipitate could be easily separated from the solvent by filtration.
[0028]
(Example 2)
Similar to Example 1, except that the amount of the 1% aqueous silver nitrate solution added was 20 ppm in terms of silver nitrate (silver nitrate weight / noble metal fine particle weight = 1/50), and the supernatant liquid. When the time until it became completely transparent was measured, a precipitate started to form at the bottom of the container within 5 seconds after standing, and the supernatant became completely transparent 3 minutes after standing.
[0029]
(Example 3)
Similar to Example 1, except that the amount of the 1% silver nitrate aqueous solution added was 17 ppm in terms of silver nitrate (silver nitrate weight / noble metal fine particle weight = 1/59). When the time until it became completely transparent was measured, a precipitate began to form at the bottom of the container within 5 seconds after standing, and the supernatant became completely transparent within 1 hour after standing.
[0030]
(Example 4)
The time until the formation of a precipitate and the supernatant liquid were the same as in Example 1 except that 1000 ppm (silver nitrate weight / noble metal fine particle weight = 1/1) in terms of silver nitrate was added as a flocculant. When the time until it became completely transparent was measured, a precipitate started to form at the bottom of the container within 5 seconds after standing, and the supernatant became completely transparent within 1 minute after standing.
[0031]
(Example 5)
As the noble metal fine particles in the noble metal fine particle dispersion, the noble metal fine particles whose surface is modified with chlorine ions and the weight ratio of Au: Ag is 2: 1 (the amount of chlorine ions with respect to 100 parts by weight of the noble metal fine particles is 1 part by weight or more) are used. In the same manner as in Example 1 except that the time until the formation of the precipitate was started and the time until the supernatant became completely transparent were measured, the precipitate settled on the bottom of the container within 5 seconds after standing. The supernatant liquid became completely transparent 1 minute after standing.
[0032]
(Example 6)
As the noble metal fine particles in the noble metal fine particle dispersion, use is made of noble metal fine particles whose surface is modified with chlorine ions and the Au: Ag weight ratio is 1: 1 (the amount of chlorine ions relative to 100 parts by weight of the noble metal fine particles is 1 part by weight or more). In the same manner as in Example 1 except that the time until the formation of the precipitate was started and the time until the supernatant became completely transparent were measured, the precipitate settled on the bottom of the container within 5 seconds after standing. The supernatant liquid became completely transparent 1 minute after standing.
[0033]
(Example 7)
In the same manner as in Example 1 except that a solvent having a water: methyl cellosolve mixing ratio of 1: 9 by weight was used as the solvent for the noble metal fine particle dispersion, the time until the formation of the precipitate was started, When the time until the supernatant liquid became completely transparent was measured, precipitation started to form at the bottom of the container within 5 seconds after standing, and the supernatant liquid became completely transparent 1 minute after standing.
[0034]
(Example 8)
In the same manner as in Example 1 except that a solvent having a water / acetone mixing ratio of 1: 9 by weight was used as the solvent for the noble metal fine particle dispersion, the time until the formation of the precipitate was started, and When the time until the supernatant became completely transparent was measured, a precipitate started to form at the bottom of the container within 5 seconds after standing, and the supernatant became completely transparent 1 minute after standing.
[0035]
Example 9
Formation of precipitates was carried out in the same manner as in Example 1 except that a solvent in which the mixing ratio of water: ethanol: methyl cellosolve was 1: 5: 4 was used as the solvent contained in the noble metal fine particle dispersion. When the time until the start and the time until the supernatant became completely transparent was measured, a precipitate started to form at the bottom of the container within 5 seconds after standing, and the supernatant was completely completed within 1 minute after standing. Became transparent.
[0036]
(Example 10)
As a simulated waste liquid of a noble metal fine particle dispersion, noble metal fine particles having a Au: Ag weight ratio of 4: 1 whose surface is modified with bromine ions (the amount of bromine ions is 2 parts by weight or more with respect to 100 parts by weight of noble metal fine particles) 0.1 A dispersion was prepared consisting of% by weight and the remaining solvent with a water: ethanol weight ratio of 1: 9.
[0037]
To 20 g of this noble metal fine particle dispersion, 100 ppm (silver nitrate weight / noble metal fine particle weight = 1/10) in terms of silver nitrate was added as a 1% silver nitrate aqueous solution as a flocculant, and the mixture was stirred with a magnetic stirrer for 1 minute. Then, when it was allowed to stand at room temperature and the time until the formation of the precipitate was started and the time until the supernatant became completely transparent were measured, the precipitate was formed at the bottom of the container within 5 seconds after standing. The supernatant liquid became completely transparent 1 minute after standing.
[0038]
(Comparative Example 1)
As the flocculant, Sumifloc FN13 (manufactured by Sumitomo Chemical Co., Ltd., polyacrylic acid amide polymer flocculant) was added in the same manner as in Example 1 except that 100 ppm was added. When the time until the supernatant liquid became completely transparent was measured, the precipitate started to form at the bottom of the container after 3 hours, and the supernatant liquid did not become transparent even after 24 hours from standing. It was.
[0039]
(Comparative Example 2)
As a flocculant, except that 1000 ppm of Sumifloc FN13 was added, the time until the formation of a precipitate and the time until the supernatant became completely transparent were measured in the same manner as in Example 1. The precipitate started to form after 3 hours, and even after 24 hours from standing, the supernatant liquid did not become transparent.
[0040]
(Comparative Example 3)
As the flocculant, except that 100 ppm of magnesium sulfate was added, the time until the formation of the precipitate and the time until the supernatant became completely transparent were measured in the same manner as in Example 1. After 24 hours, no precipitate was formed at the bottom of the container.
[0041]
(Comparative Example 4)
As the coagulant, except that 1000 ppm of magnesium sulfate was added, the time until the formation of a precipitate and the time until the supernatant became completely transparent were measured in the same manner as in Example 1. The precipitate started to form after 12 hours had passed after standing, and the supernatant liquid did not become transparent even after 24 hours had passed after standing.
[0042]
(Comparative Example 5)
As in Example 1, except that 100 ppm of sodium chloride was added as a flocculant, the time until the formation of precipitates and the time until the supernatant became completely transparent were measured. After 24 hours, no precipitate was formed at the bottom of the container.
[0043]
(Comparative Example 6)
As in Example 1, except that 100 ppm of sodium hydroxide was added as a flocculant, the time until the formation of precipitates and the time until the supernatant became completely transparent were measured. No precipitate was formed at the bottom of the container even after 24 hours.
[0044]
(Comparative Example 7)
As the flocculant, except that 100 ppm of hydrochloric acid was added, the time until the formation of a precipitate and the time until the supernatant became completely transparent were measured in the same manner as in Example 1. No precipitate was formed at the bottom of the container even after 24 hours.
[0045]
(Comparative Example 8)
As in Example 1, except that 1000 ppm of hydrochloric acid was added as a flocculant, the time until the formation of precipitates and the time until the supernatant became completely transparent were measured. Precipitation started to form after 12 hours had passed after standing, and the supernatant liquid did not become transparent even after 24 hours had passed after standing.
[0046]
(Comparative Example 9)
In the same manner as in Example 1 except that the addition amount of the 0.1% silver nitrate aqueous solution as a flocculant was 15 ppm in terms of silver nitrate (silver nitrate weight / noble metal fine particle weight = 1/67). When the time until the supernatant liquid became completely transparent was measured, a small amount of precipitate was observed at the bottom of the container in 1 hour after standing, but the supernatant liquid was clear even after 24 hours after standing. Did not become.
[0047]
(Comparative Example 10)
Precipitation formation is started in the same manner as in Example 4 except that the amount of 0.1% silver nitrate aqueous solution added as a flocculant is 8.5 ppm in terms of silver nitrate (silver nitrate weight / noble metal fine particle weight = 1/125). And the time until the supernatant became completely transparent was measured, and precipitation was not observed even after 24 hours from standing, and the supernatant was not transparent.
[0048]
As can be seen from the above examples and comparative examples, noble metal fine particles whose surface is modified and stabilized by halogen ions are known polymer flocculants and inorganic flocculants conventionally used for agglomeration of metal fine particles. While it hardly precipitates or takes a very long time even when precipitated, the method of the present invention using silver nitrate as a flocculant was able to precipitate easily and in a very short time.
[0049]
【The invention's effect】
According to the present invention, even a noble metal fine particle whose surface is modified and stabilized by halogen ions can be obtained by adding a small amount of silver nitrate as a flocculant to the noble metal fine particle dispersion. The noble metal fine particles that have been difficult to aggregate can be aggregated in a very short time to produce aggregates excellent in sedimentation and filterability, and the noble metal fine particles can be easily separated from the solvent.
[0050]
Therefore, by using the method of the present invention, from a waste liquid of a noble metal fine particle dispersion containing noble metal fine particles whose surface is modified and stabilized by halogen ions, for example, a waste liquid generated when forming a transparent conductive layer by a coating method, Expensive noble metals can be easily recovered at low cost. In addition, the method of the present invention does not require a large-scale apparatus or equipment, and does not include steps such as drying and removal of the solvent, so that the energy cost is low and the utility is high from the environmental viewpoint.