JP2005032740A - 膜形成装置および膜形成方法 - Google Patents
膜形成装置および膜形成方法 Download PDFInfo
- Publication number
- JP2005032740A JP2005032740A JP2003192620A JP2003192620A JP2005032740A JP 2005032740 A JP2005032740 A JP 2005032740A JP 2003192620 A JP2003192620 A JP 2003192620A JP 2003192620 A JP2003192620 A JP 2003192620A JP 2005032740 A JP2005032740 A JP 2005032740A
- Authority
- JP
- Japan
- Prior art keywords
- film
- light
- irradiation
- substrate
- film forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0641—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
【課題】簡単な構成で基板上の所定の領域に光を照射して局所的な膜形成を行うとともに、その膜厚を測定する技術を提供する。
【解決手段】膜形成装置1は、基板9を支持するステージ2、光エネルギーにより基板9上に酸化膜を形成する偏光光を基板9上の所定の照射領域へと導く照射部3、照射領域からの偏光光の反射光を受光する受光部4、受光部4からの出力に基づいて照射領域における膜の厚さを求める演算部61を備える。膜形成装置1では、照射部3および受光部4がエリプソメータの一部を構成しており、照射部3からの光ビームにより基板9上の照射領域に膜を形成するとともに、受光部4にて取得した基板9からの反射光の偏光状態を演算部61にて解析することにより、その膜厚を測定する。これにより、膜厚の精度を向上することができる。
【選択図】 図1
【解決手段】膜形成装置1は、基板9を支持するステージ2、光エネルギーにより基板9上に酸化膜を形成する偏光光を基板9上の所定の照射領域へと導く照射部3、照射領域からの偏光光の反射光を受光する受光部4、受光部4からの出力に基づいて照射領域における膜の厚さを求める演算部61を備える。膜形成装置1では、照射部3および受光部4がエリプソメータの一部を構成しており、照射部3からの光ビームにより基板9上の照射領域に膜を形成するとともに、受光部4にて取得した基板9からの反射光の偏光状態を演算部61にて解析することにより、その膜厚を測定する。これにより、膜厚の精度を向上することができる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、対象物上に光を照射して膜を形成する技術に関する。
【0002】
【従来の技術】
従来より、半導体基板やガラス基板等(以下、「基板」という。)の表面上に膜を形成する技術として、基板の加熱による膜形成やCVD法(化学気相成長法)等が利用されている。例えば、加熱により酸化膜を形成する際には、高温の熱酸化炉中で基板と酸素とを化学反応させて基板全面に酸化膜が形成される。
【0003】
一方、基板表面上の原料気体に化学反応に必要なエネルギーを与え、化学反応を促進して膜を形成するCVD法は、与えられるエネルギーの種類により、熱エネルギーによる熱CVD法、プラズマによるプラズマCVD法、および、光エネルギーによる光CVD法に大きく分類される。
【0004】
基板表面上の原料気体に光を照射することにより、気体原子の外殻電子を励起して化学反応を促進する光CVD法は、熱CVD法と比べて低温プロセスで膜を形成することができ、また、プラズマCVD法と異なりイオン等による基板の損傷の恐れがないため、近年、基板上への膜形成によく利用されている。
【0005】
例えば、特許文献1では、酸素を含む処理ガスに紫外線を照射して半導体基板全面に酸化膜を形成する技術が開示されている。また、非特許文献1では、レーザ光を用いて基板上に局所的に膜を形成する技術が示唆されている。
【0006】
【特許文献1】
特開2003−133301号公報
【非特許文献1】
応用物理学会・光学懇話会編、「オプトエレクトロニクス−材料と加工技術」、朝倉書店、1986年9月20日、p.250−251
【0007】
【発明が解決しようとする課題】
ところで、半導体基板表面上にゲート酸化膜を形成する場合、従来は熱酸化膜形成法により約1000℃の高温下で100オングストローム程度の厚さの酸化膜を基板全面に形成していたが、近年、ゲート酸化膜の薄膜化および膜厚均一化の要求が高まっており、膜厚の精度管理等の観点から熱酸化膜形成法での対応が困難になっている。
【0008】
光CVD法は、薄膜の形成に適しているが、基板全面に対する照度分布の均一化が困難であるため、膜厚を均一にすることが難しい。特許文献1に記載された半導体製造酸化膜生成装置では、基板を点状光源に対して回転させることによりこの問題の解決を図っている。
【0009】
しかしながら、一般的に光CVD法では膜の形成が比較的低速で行われるため、膜形成の効率が良いとは言い難い面がある。また、特許文献1の場合、熱酸化膜形成法と同様に基板全面に膜が形成されるため、基板上で部分的に膜を形成する際には、一旦基板全面に膜を形成した後、マスクを用いるエッチング処理等により不要部分を除去処理する必要があり、膜形成の効率がさらに低下してしまう。
【0010】
非特許文献1の場合、レーザ光によって局所的に膜を形成して膜形成の効率を向上することができるが、この場合、基板上のレーザ光の照射領域が順次間欠移動するため、移動途上の各照射領域に形成される膜の厚さを一定とするには、温度、照射光量、照射時間、ガスの流れ等を正確に制御する必要が生じ、装置が複雑化し、高価になってしまう。
【0011】
本発明は、上記課題に鑑みなされたものであり、基板上の所定の領域に光を照射することにより局所的な膜形成を行う装置において、簡単な構成で膜厚を測定し、これにより、膜厚の精度を向上することを目的としている。
【0012】
【課題を解決するための手段】
請求項1に記載の発明は、対象物上に光を照射して膜を形成する膜形成装置であって、対象物を支持する支持部と、前記対象物上に膜を形成する光を前記対象物上の所定の照射領域へと導く照射部と、前記照射領域からの前記光の反射光を受光する受光部と、前記受光部からの出力に基づいて前記照射領域における膜の厚さを求める演算部とを備える。
【0013】
請求項2に記載の発明は、請求項1に記載の膜形成装置であって、前記照射部および前記受光部がエリプソメータの一部であり、前記照射部から前記対象物へと偏光した光が傾斜して入射する。
【0014】
請求項3に記載の発明は、請求項1に記載の膜形成装置であって、前記照射部および前記受光部が干渉式膜厚計の一部であり、前記照射部から前記対象物へと光が垂直に入射する。
【0015】
請求項4に記載の発明は、請求項1ないし3のいずれかに記載の膜形成装置であって、前記演算部により求められた前記照射領域の膜の厚さに基づいて前記照射部からの光の出射を制御する制御部をさらに備える。
【0016】
請求項5に記載の発明は、請求項1ないし4のいずれかに記載の膜形成装置であって、前記照射部からの光の波長が、200ナノメートル以上450ナノメートル以下である。
【0017】
請求項6に記載の発明は、請求項5に記載の膜形成装置であって、前記照射部が、青紫色半導体レーザを有する。
【0018】
請求項7に記載の発明は、請求項1ないし6のいずれかに記載の膜形成装置であって、前記対象物が半導体基板であり、前記膜が酸化膜である。
【0019】
請求項8に記載の発明は、対象物上に光を照射して膜を形成する膜形成方法であって、対象物上に膜を形成する光を前記対象物上の所定の照射領域へと照射する照射工程と、前記照射領域からの前記光の反射光を受光部にて受光する受光工程と、前記受光部からの出力に基づいて前記照射領域における膜の厚さを求める演算工程と、前記照射領域における前記膜の厚さに基づいて前記照射領域への前記光の照射を制御する制御工程とを有する。
【0020】
請求項9に記載の発明は、請求項8に記載の膜形成方法であって、前記照射工程において偏光した光が前記対象物に対して傾斜して入射し、前記演算工程において偏光解析法により前記照射領域における前記膜の厚さが求められる。
【0021】
請求項10に記載の発明は、請求項8に記載の膜形成方法であって、前記照射工程において前記光が前記対象物に垂直に入射し、前記演算工程において光干渉法により前記照射領域における前記膜の厚さが求められる。
【0022】
【発明の実施の形態】
図1は、本発明の第1の実施の形態に係る膜形成装置1の構成を示す図であり、膜形成装置1は、半導体基板9(以下、「基板9」という。)上に光ビームを照射して照射領域の膜厚を測定しつつ、光ビームの照射領域に酸化膜を形成する装置である。
【0023】
膜形成装置1は、基板9を支持するステージ2、ステージ2を図1中のX方向およびY方向に移動するステージ移動機構21、ステージ2を図1中のZ方向に昇降するステージ昇降機構24、光エネルギーにより基板9上に酸化膜を形成する偏光した光(以下、「偏光光」という。)を基板9上の所定の照射領域へと導く照射部3、照射領域からの偏光光の反射光を受光する受光部4、偏光光が照射される照射領域を観察する観察光学系5、および、各種演算処理を行うCPUや各種情報を記憶するメモリ等により構成された制御部6を備える。
【0024】
ステージ移動機構21は、ステージ2をY方向に移動するY方向移動機構22、および、X方向に移動するX方向移動機構23を有する。Y方向移動機構22はモータ221にボールねじ(図示省略)が接続され、モータ221が回転することにより、X方向移動機構23がガイドレール222に沿って図1中のY方向に移動する。X方向移動機構23もY方向移動機構22と同様の構成となっており、モータ231が回転するとボールねじ(図示省略)によりステージ2がガイドレール232に沿ってX方向に移動する。
【0025】
照射部3は、基板9に向けて光ビームを出射する光源部31、光源部31から基板9への光の照射のON/OFFを制御する電磁シャッタ32、および、光源部31からの光ビームを円偏光の状態として基板9上へと導く照射光学系33を有する。光源部31は、出力5mWで波長375nm(ナノメートル)または405nmの光ビームを出射する青紫色半導体レーザ(以下、「LD」という。)311、および、LD311からの光ビームを電磁シャッタ32へと導くレンズ312を有し、LD311にはLD安定化電源313が接続される。照射部3では、光源をLD311とすることにより光源部31が小型化される。
【0026】
受光部4は、基板9からの反射光の偏光状態を取得するフォトダイオード41、基板9からの反射光をフォトダイオード41へと導く受光光学系42を有する。
【0027】
観察光学系5は、ハロゲンランプ51、レンズ52および55、対物レンズ54、ハーフミラー53、並びに、CCD56を有する。
【0028】
制御部6には、ステージ移動機構21、ステージ昇降機構24、照射部3、受光部4および観察光学系5が接続され、これらの構成が制御部6に制御されて基板9上の照射領域に酸化膜が形成される。また、制御部6は、各種演算を行う演算部61を有し、受光部4からの出力に基づいて照射領域における酸化膜の厚さを求める。
【0029】
図2は、基板9上の照射領域に酸化膜を形成する際の膜形成装置1の動作の流れを示す図である。以下、図1および図2を参照しながら、膜形成装置1による酸化膜の形成について説明する。
【0030】
基板9上に酸化膜が形成される際には、まず、観察光学系5による基板9のアライメント(位置合わせ)が行われる。具体的には、ハロゲンランプ51からの照明光がレンズ52を介してハーフミラー53へと導かれて反射され、対物レンズ54を介して基板9へと入射し、基板9により反射された照明光が対物レンズ54、ハーフミラー53およびレンズ55を順に介してCCD56により受光される。このようにして、ハロゲンランプ51により照明される基板9上のアライメントマークがCCD56にて撮像され、撮像により取得された画像データに基づいて制御部6がステージ移動機構21およびステージ昇降機構24を制御してステージ2が移動し、基板9が所定の位置に配置される(ステップS11)。
【0031】
次に、照射部3において、LD安定化電源313によりLD311の発光が安定化された後に電磁シャッタ32が開かれ、LD311からの光ビームがレンズ312および電磁シャッタ32を順に介して照射光学系33に入射する。照射光学系33は偏光子331、水晶波長板(以下、「λ/4板」という。)332およびコリメータレンズ333を電磁シャッタ32側から基板9に向かって順に有し、照射光学系33に入射した光ビームは偏光子331により直線偏光とされ、λ/4板332により円偏光とされる。λ/4板332からの光は、開口数(NA)0.1のコリメータレンズ333により収束されつつ基板9へと導かれる。以上のように、照射部3では電磁シャッタ32の開放により、偏光光の基板9上の照射領域への照射が開始される(ステップS12)。
【0032】
このとき、図1に示すように照射部3から基板9へと偏光光が入射角72°にて傾斜して入射し、直径約10μm(マイクロメートル)の円形の照射領域を輝度約5W/mm2にて照射し、そのエネルギーによって基板9上の照射領域に酸化膜が形成される。具体的には、基板9の表面上で酸素分子が光エネルギーを吸収して励起により光分解を起こし、生成された酸素ラジカルにより基板9が酸化されて酸化膜が形成される。なお、コリメータレンズ333の開口数をもう少し大きくして照射領域をさらに縮小することも可能である。
【0033】
基板9により反射された偏光光は、コリメータレンズ421および回転検光子422を有する受光光学系42に入射する。回転検光子422は中空のステッピングモータの回転軸内に取り付けられ、ステッピングモータにはモータドライバ423が接続される。制御部6によるステッピングモータの制御により回転検光子422が光軸に平行な軸を中心として回転しつつ、基板9からの反射光が回転検光子422を透過してフォトダイオード41へと導かれる。フォトダイオード41からは受光された光の強度を示す信号がADコンバータ411を介して制御部6へと送り出される。このとき、コリメータレンズ421により、基板9上の測定エリアが大きく設定され、さらに、フォトダイオード41へ入射する反射光の基板9上での反射角の範囲を制限するために、基板9に対する受光光学系42の開口数が0.05とされる。
【0034】
そして、制御部6の演算部61によりフォトダイオード41からの出力が回転検光子422の回転角に対応付けられることにより(いわゆる、回転検光子法)、反射光の偏光状態、すなわち、反射光のp偏光成分とs偏光成分との位相差および反射振幅比角が取得される(ステップS13)。さらに、演算部61では、取得された反射光の偏光状態に基づいて偏光解析が行われ、基板9上の照射領域に形成される酸化膜の厚さや光学定数等が求められる(ステップS14)。
【0035】
図3および図4は、常温大気圧の開放された雰囲気下において膜形成装置1により基板9上に酸化膜が形成される場合の、波長405nmの光ビームの照射時間と酸化膜の厚さとの関係を示す図であり、横軸は測定時刻を示し、縦軸は演算部61により求められた基板9上の1つの照射領域の酸化膜の厚さを示す。図3に示すように、基板9上に形成された膜の厚さが数nm程度の状態では、膜形成時の膜厚増加の速度は約0.18nm/時間となる。また、図4に示すように、基板9上に形成された膜の厚さが60nm程度の状態における膜形成時の膜厚増加の速度は約0.06nm/時間となり、基板9上に形成された膜が比較的薄い状態に比べて膜厚増加の速度は小さくなる。このように、膜形成装置1では、基板9上に形成される酸化膜の厚さを0.1nm(1オングストローム)以下の精度で測定することができる。
【0036】
測定された酸化膜の厚さ(以下、「測定膜厚」という。)は、予め制御部6に記憶される所定の膜厚(以下、「設定膜厚」という。)と比較されて、測定膜厚が設定膜厚以上であるか否かが判断される(ステップS15)。測定膜厚が設定膜厚よりも小さい場合にはステップS13に戻って酸化膜の形成が続行され、基板9からの反射光の偏光状態を取得して酸化膜の厚さを求める動作(ステップS13〜S14)が、測定膜厚が設定膜厚以上になるまで繰り返される(ステップS15)。測定膜厚が設定膜厚以上になると、制御部6により電磁シャッタ32が閉じられて、照射部3からの偏光光の基板9への照射が停止される(ステップS16)。
【0037】
以上のように、膜形成装置1では、照射部3から基板9へと光ビームを照射することにより局所的に高分解能にて酸化膜を形成できる。また、照射部3および受光部4がエリプソメータの一部を構成し、膜形成に用いられる光ビームが膜厚測定に共用されるため、酸化膜の形成位置と膜厚の測定位置とがずれることがなく、簡単な構成で基板9上の照射領域に酸化膜を形成するとともにその膜厚を精度良く測定できる。特に、膜厚を測定する構成を膜を形成する構成と別個に設ける場合に比べて装置の構造を大幅に簡素化することができる。さらに、基板9上の照射領域における測定膜厚に基づいて照射部3からの光の出射のON/OFFを制御して、照射領域への光の照射を制御することにより、高精度な膜厚制御を実現して所定の厚さの酸化膜を形成することができる。
【0038】
また、膜形成装置1では、偏光光が基板9に対して傾斜して入射し、その反射光を用いて偏光解析法により照射領域における酸化膜の厚さを求めることができるため、基板9上に比較的薄い膜を形成しつつその厚さを精度良く測定する場合に適している。特に、膜形成装置1では、高精度の膜厚制御を行いつつ薄膜を形成できるため、半導体基板上へのゲート等に利用される酸化膜の形成に適しているといえる。
【0039】
なお、膜形成装置1では、照射部3からの光ビームの波長は375nmまたは405nmに限定されるわけではなく、基板9上に形成される膜の種類に応じて適宜変更されてよい。気体分子を光分解して効率的良く膜を形成し、かつ、実用上膜厚測定に利用可能であるという観点からは、照射部3からの光ビームの波長は200nm以上450nm以下とされることが好ましい。
【0040】
図5は、本発明の第2の実施の形態に係る膜形成装置1aの構成を示す図である。膜形成装置1aは、第1の実施の形態に係る膜形成装置1と同様に、基板9上の照射領域に光ビームを照射し、その反射光を受光することにより照射領域の膜厚を測定しつつ、光ビームの照射領域に酸化膜を形成する装置である。
【0041】
膜形成装置1aは、光エネルギーにより基板9上に酸化膜を形成する光を基板9上の照射領域へと導く照射部3a、照射領域からの光の反射光を受光する受光部4a、照射領域を観察する観察光学系5a、各種演算処理を行うCPUや各種情報を記憶するメモリ等により構成された制御部6a、および、観察光学系5aと一部を共有する主光学系7を備える。
【0042】
また、膜形成装置1aは、図1に示す膜形成装置1と同様に、基板9を支持するステージ2、ステージ2を図5中のX方向およびY方向に移動するステージ移動機構21、および、ステージ2を図5中のZ方向に昇降するステージ昇降機構24を備える。以下の説明においては、膜形成装置1と同様のこれらの構成については同符号を付す。
【0043】
照射部3aは、青紫色半導体レーザ(LD)311aおよびレンズ312aを有する光源部31a、電磁シャッタ32a、ハーフミラー33a、並びに、対物レンズ34aを有し、LD311aにはLD安定化電源313aが接続される。また、受光部4aは、基板9からの反射光の強度を取得するフォトダイオード41aを有する。
【0044】
観察光学系5aは、ハロゲンランプ51a、レンズ52aおよび55a、並びに、CCD56aを有し、主光学系7は、ハーフミラー71、レンズ72およびピンホールミラー73を有する。なお、観察光学系5aと主光学系7との区別は説明の都合上のものであり、実際には、ハロゲンランプ51a、レンズ52a、ハーフミラー71および対物レンズ34aにより観察用の照明光を基板9へと導く光学系が構成され、対物レンズ34a、レンズ72、ピンホールミラー73、レンズ55aおよびCCD56aにより、基板9を観察するための光学系が構成される。
【0045】
制御部6aには、ステージ移動機構21、ステージ昇降機構24、照射部3a受光部4aおよび観察光学系5aが接続され、これらの構成が制御部6aに制御されて基板9上の照射領域に酸化膜が形成される。また、制御部6aは、各種演算を行う演算部61aを有し、演算部61aは受光部4aからの出力に基づいて所定の照射領域における酸化膜の厚さを実質的に求める。
【0046】
図6は、基板9上の照射領域に酸化膜を形成する際の膜形成装置1aの動作の流れを示す図である。以下、図5および図6を参照しながら、膜形成装置1aによる酸化膜の形成について説明する。
【0047】
基板9上に酸化膜が形成される際には、まず、観察光学系5a等による基板9のアライメントが行われる。具体的には、ハロゲンランプ51aからの照明光がレンズ52aを介してハーフミラー71へと導かれて反射され、ハーフミラー33aおよび対物レンズ34aを順に介して基板9へと入射する。そして、基板9により反射された照明光は対物レンズ34a、ハーフミラー33aおよび71、並びに、レンズ72を順に介してピンホールミラー73へと導かれて反射され、レンズ55aを介してCCD56aにより受光される。以上のようにして、ハロゲンランプ51aにより照明される基板9上のアライメントマークがCCD56aにて撮像され、撮像された画像データに基づいて制御部6aがステージ移動機構21およびステージ昇降機構24を制御することによりステージ2が移動され、基板9が所定の位置に配置される(ステップS21)。
【0048】
次に、照射部3aにおいて、LD安定化電源313aによりLD311aが安定化された後に電磁シャッタ32aが開かれ、LD311aからの光ビームがレンズ312aおよび電磁シャッタ32aを順に介してハーフミラー33aへと導かれる。ハーフミラー33aにより反射された光ビームは対物レンズ34aを介して基板9へと導かれ、これにより、基板9上の照射領域への光ビームの照射が開始される(ステップS22)。
【0049】
このとき、図5に示すように照射部3aから基板9へと光ビームが垂直に入射して照射領域を照射することにより基板9上に酸化膜が形成される。この場合、照射部3の光学系(例えば、レンズ312aや対物レンズ34a)の設定により、基板9上の照射領域の大きさ(幅や直径等)を1μm未満とすることも可能である。
【0050】
基板9により反射された光ビームは、対物レンズ34a、ハーフミラー33aおよび71、並びに、レンズ72を順に介してピンホールミラー73へと導かれ、基板9上の照射領域と光学的に共役に配置されるピンホールミラー73のピンホール731を透過してフォトダイオード41aにより受光される。フォトダイオード41aからの信号はADコンバータ411aを介して制御部6aへと送り出され、基板9からの反射光の強度が取得される(ステップS23)。なお、ピンホール731とフォトダイオード41aとの間に、LD311aから出射される光ビームの波長(以下、「LD波長」という。)の光のみを透過するバンドパスフィルタが設けられてもよい。
【0051】
制御部6aの演算部61aでは、取得された反射光の強度、および、予め準備されている参照される対象物(例えば、表面に膜が形成されていない半導体基板であり、以下、「参照基板」という。)の反射光の強度を示すデータから、LD波長の光に対する基板9の照射領域の相対反射率(すなわち、参照基板に対する相対的な反射率)が求められる(ステップS24)。
【0052】
図7は、表面上に酸化膜が形成された基板9について、基板9に照射される光の波長と、基板9の相対反射率(膜を有さない基板に対する相対反射率)との関係を、酸化膜の厚さ毎に示す図である。図7中の線11、12、13および14は、それぞれ、酸化膜の厚さが2nm、5nm、10nmおよび20nmの場合の相対反射率を示す。
【0053】
図7に示すように、基板9上に酸化膜が形成される場合、酸化膜の厚さの増加に伴って基板9の相対反射率は漸次低下する。従って、相対反射率を測定し、測定結果に基づいて光ビームの照射を制御することにより、基板9上の酸化膜の厚さを所定の値とすることができる。すなわち、相対反射率を求めるということは実質的に膜厚を求めることと等価であるといえる。
【0054】
具体的動作としては、基板9上に形成しようとする所定の膜厚におけるLD波長の光に対する相対反射率(以下、「設定反射率」という。)が予め制御部6aに記憶されており、演算部61aにより求められた相対反射率(以下、「測定反射率」という。)と比較されて、測定反射率が設定反射率以下であるか否かが判断される(ステップS25)。測定反射率が設定反射率よりも大きい場合にはステップS23に戻って酸化膜の形成が続行され、基板9からの反射光の強度を取得して相対反射率を求める動作(ステップS23〜S24)が、測定反射率が設定反射率以下になるまで繰り返される(ステップS25)。測定反射率が設定反射率以下になると、制御部6aにより電磁シャッタ32aが閉じられて、照射部3aからの光ビームの基板9への照射が停止される(ステップS26)。
【0055】
以上のように、膜形成装置1aでは、照射部3aおよび受光部4aが干渉式膜厚計の一部を構成し、簡単な構成で基板9上の照射領域に高分解能にて酸化膜を形成するとともにその膜厚を精度良く測定できる。特に、膜厚を測定する構成を膜を形成する構成と別個に設ける場合に比べて装置の構造を大幅に簡素化することができる。さらに、測定結果に基づいて高精度な膜厚制御を実現して所定の厚さの酸化膜を形成することができる。
【0056】
また、膜形成装置1aでは、光ビームが基板9に垂直に入射し、その反射光を用いて光干渉法により照射領域における酸化膜の厚さを容易に求めることができるため、基板9上に比較的厚い膜を形成したり、既に形成されている膜上に他の膜(いわゆる、多層膜)を形成しつつ、その厚さを精度良く測定する場合に適している。
【0057】
なお、第1の実施の形態と同様に、膜形成装置1aにおいても他の波長の光が膜形成に利用されてもよく、膜形成用の光の波長は200nm以上450nm以下とされることが好ましい。
【0058】
以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。
【0059】
例えば、照射部には複数の青紫色半導体レーザが設けられてもよい。この場合、複数の光ビームにより1つの照射領域を照射して、照射領域の面積や照度を増加させてもよい。また、青紫色半導体レーザに代えて他のレーザや発光ダイオード等の他の光源が用いられてもよい。
【0060】
また、光源を直接制御して基板9への光の照射のON/OFFを制御することにより電磁シャッタを省略することも可能である。さらには、膜厚測定の結果を制御部にフィードバックして、光の照射のON/OFFのみでなく、光源から出射される光の強度が制御されてもよい。
【0061】
膜厚を測定する構成に関しても様々な変更が可能である。例えば、第1の実施の形態に係る膜形成装置1では、偏光の向きが回転する(すなわち、偏光の向きが時間とともに変更される)直線偏光の光が、照射部3により基板9上の照射領域へと導かれてもよい。この場合、照射光学系33には偏光子331およびλ/4板332の代わりに回転偏光子が、受光光学系42には回転検光子422の代わりに固定の検光子が設けられ、フォトダイオード41により反射光の強度が測定される。そして、反射光の強度が回転偏光子の回転角に対応付けられることにより反射光の偏光状態が取得され、照射領域に形成される膜の厚さが求められる。
【0062】
第2の実施の形態に係る膜形成装置1aでは、フォトダイオード41aの代わりに分光器が設けられてもよい。この場合、光源部にはLD311の代わりに白色光を出射する光源(例えば、キセノン(Xe)ランプ等)が設けられ、分光器により取得された反射光の分光強度を用いて一般的な光干渉法による膜厚測定が可能となる。
【0063】
上記実施の形態に係る膜形成装置による酸化膜の形成は、閉塞された空間内において酸素(O2)ガスを含む所定のプロセスガス雰囲気下にて行われてもよい。例えば、照射部からの光や基板9からの反射光等を透過する窓が設けられたチャンバ内に基板9、ステージ2、ステージ移動機構21およびステージ昇降機構24が配置されてもよく、この場合、演算部において膜厚または相対反射率を求める際にはチャンバの窓の影響が補正される。また、酸化膜の形成効率を向上するためにチャンバ内の圧力が適宜変更されてもよい。さらには、プロセスガスを変更することにより酸化膜以外の膜(例えば、窒化膜等)が形成されてもよい。
【0064】
膜形成装置では、基板9上の酸素分子が光分解されることにより高分解能にて酸化膜が形成されるが、要求される分解能が比較的低い場合には、基板9上の照射領域が照射される光により加熱されることにより酸化膜が形成されてもよい。すなわち、光のエネルギーは膜形成に間接的に利用されてもよい。
【0065】
膜形成装置における基板9上の照射領域の形状や大きさ、あるいは照度等は、基板9上に形成される膜の特性や、要求される分解能等に合わせて好適な形状や値とされてよい。
【0066】
なお、上記実施の形態では膜形成用の光の照射制御による膜厚制御が、膜厚や相対反射率の測定結果に基づいて自動的に行われるが、測定結果を確認しつつ光照射が手動で制御されてもよい。すなわち、膜形成用の光を利用して膜厚が実質的に測定されることにより、形成される膜の厚さの精度を向上することが実現される。
【0067】
膜形成装置により膜が形成される基板9は、半導体基板に限定されず、例えば、液晶表示装置やその他のフラットパネル表示装置等に使用されるガラス基板であってもよい。
【0068】
【発明の効果】
本発明では、簡単な構成で基板上の照射領域に膜を形成するとともにその膜厚を測定することができ、これにより、膜厚の精度を向上することができる。
【0069】
請求項2および9の発明では、比較的薄い膜の厚さを精度良く測定できる。
【0070】
請求項3および10の発明では、比較的厚い膜の厚さを精度良く測定できる。
【0071】
請求項4の発明では、高精度な自動膜厚制御が実現される。
【0072】
請求項5の発明では、効率良く膜を形成することができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る膜形成装置の構成を示す図である。
【図2】膜形成装置による酸化膜形成の動作の流れを示す図である。
【図3】光ビームの照射時間と形成される酸化膜の厚さとの関係を示す図である。
【図4】光ビームの照射時間と形成される酸化膜の厚さとの関係を示す他の図である。
【図5】第2の実施の形態に係る膜形成装置の構成を示す図である。
【図6】膜形成装置による酸化膜形成の動作の流れを示す図である。
【図7】基板に照射される光の波長と基板の相対反射率との関係を示す図である。
【符号の説明】
1,1a 膜形成装置
2 ステージ
3,3a 照射部
4,4a 受光部
6,6a 制御部
9 基板
61,61a 演算部
311,311a LD
S11〜S16,S21〜S26 ステップ
【発明の属する技術分野】
本発明は、対象物上に光を照射して膜を形成する技術に関する。
【0002】
【従来の技術】
従来より、半導体基板やガラス基板等(以下、「基板」という。)の表面上に膜を形成する技術として、基板の加熱による膜形成やCVD法(化学気相成長法)等が利用されている。例えば、加熱により酸化膜を形成する際には、高温の熱酸化炉中で基板と酸素とを化学反応させて基板全面に酸化膜が形成される。
【0003】
一方、基板表面上の原料気体に化学反応に必要なエネルギーを与え、化学反応を促進して膜を形成するCVD法は、与えられるエネルギーの種類により、熱エネルギーによる熱CVD法、プラズマによるプラズマCVD法、および、光エネルギーによる光CVD法に大きく分類される。
【0004】
基板表面上の原料気体に光を照射することにより、気体原子の外殻電子を励起して化学反応を促進する光CVD法は、熱CVD法と比べて低温プロセスで膜を形成することができ、また、プラズマCVD法と異なりイオン等による基板の損傷の恐れがないため、近年、基板上への膜形成によく利用されている。
【0005】
例えば、特許文献1では、酸素を含む処理ガスに紫外線を照射して半導体基板全面に酸化膜を形成する技術が開示されている。また、非特許文献1では、レーザ光を用いて基板上に局所的に膜を形成する技術が示唆されている。
【0006】
【特許文献1】
特開2003−133301号公報
【非特許文献1】
応用物理学会・光学懇話会編、「オプトエレクトロニクス−材料と加工技術」、朝倉書店、1986年9月20日、p.250−251
【0007】
【発明が解決しようとする課題】
ところで、半導体基板表面上にゲート酸化膜を形成する場合、従来は熱酸化膜形成法により約1000℃の高温下で100オングストローム程度の厚さの酸化膜を基板全面に形成していたが、近年、ゲート酸化膜の薄膜化および膜厚均一化の要求が高まっており、膜厚の精度管理等の観点から熱酸化膜形成法での対応が困難になっている。
【0008】
光CVD法は、薄膜の形成に適しているが、基板全面に対する照度分布の均一化が困難であるため、膜厚を均一にすることが難しい。特許文献1に記載された半導体製造酸化膜生成装置では、基板を点状光源に対して回転させることによりこの問題の解決を図っている。
【0009】
しかしながら、一般的に光CVD法では膜の形成が比較的低速で行われるため、膜形成の効率が良いとは言い難い面がある。また、特許文献1の場合、熱酸化膜形成法と同様に基板全面に膜が形成されるため、基板上で部分的に膜を形成する際には、一旦基板全面に膜を形成した後、マスクを用いるエッチング処理等により不要部分を除去処理する必要があり、膜形成の効率がさらに低下してしまう。
【0010】
非特許文献1の場合、レーザ光によって局所的に膜を形成して膜形成の効率を向上することができるが、この場合、基板上のレーザ光の照射領域が順次間欠移動するため、移動途上の各照射領域に形成される膜の厚さを一定とするには、温度、照射光量、照射時間、ガスの流れ等を正確に制御する必要が生じ、装置が複雑化し、高価になってしまう。
【0011】
本発明は、上記課題に鑑みなされたものであり、基板上の所定の領域に光を照射することにより局所的な膜形成を行う装置において、簡単な構成で膜厚を測定し、これにより、膜厚の精度を向上することを目的としている。
【0012】
【課題を解決するための手段】
請求項1に記載の発明は、対象物上に光を照射して膜を形成する膜形成装置であって、対象物を支持する支持部と、前記対象物上に膜を形成する光を前記対象物上の所定の照射領域へと導く照射部と、前記照射領域からの前記光の反射光を受光する受光部と、前記受光部からの出力に基づいて前記照射領域における膜の厚さを求める演算部とを備える。
【0013】
請求項2に記載の発明は、請求項1に記載の膜形成装置であって、前記照射部および前記受光部がエリプソメータの一部であり、前記照射部から前記対象物へと偏光した光が傾斜して入射する。
【0014】
請求項3に記載の発明は、請求項1に記載の膜形成装置であって、前記照射部および前記受光部が干渉式膜厚計の一部であり、前記照射部から前記対象物へと光が垂直に入射する。
【0015】
請求項4に記載の発明は、請求項1ないし3のいずれかに記載の膜形成装置であって、前記演算部により求められた前記照射領域の膜の厚さに基づいて前記照射部からの光の出射を制御する制御部をさらに備える。
【0016】
請求項5に記載の発明は、請求項1ないし4のいずれかに記載の膜形成装置であって、前記照射部からの光の波長が、200ナノメートル以上450ナノメートル以下である。
【0017】
請求項6に記載の発明は、請求項5に記載の膜形成装置であって、前記照射部が、青紫色半導体レーザを有する。
【0018】
請求項7に記載の発明は、請求項1ないし6のいずれかに記載の膜形成装置であって、前記対象物が半導体基板であり、前記膜が酸化膜である。
【0019】
請求項8に記載の発明は、対象物上に光を照射して膜を形成する膜形成方法であって、対象物上に膜を形成する光を前記対象物上の所定の照射領域へと照射する照射工程と、前記照射領域からの前記光の反射光を受光部にて受光する受光工程と、前記受光部からの出力に基づいて前記照射領域における膜の厚さを求める演算工程と、前記照射領域における前記膜の厚さに基づいて前記照射領域への前記光の照射を制御する制御工程とを有する。
【0020】
請求項9に記載の発明は、請求項8に記載の膜形成方法であって、前記照射工程において偏光した光が前記対象物に対して傾斜して入射し、前記演算工程において偏光解析法により前記照射領域における前記膜の厚さが求められる。
【0021】
請求項10に記載の発明は、請求項8に記載の膜形成方法であって、前記照射工程において前記光が前記対象物に垂直に入射し、前記演算工程において光干渉法により前記照射領域における前記膜の厚さが求められる。
【0022】
【発明の実施の形態】
図1は、本発明の第1の実施の形態に係る膜形成装置1の構成を示す図であり、膜形成装置1は、半導体基板9(以下、「基板9」という。)上に光ビームを照射して照射領域の膜厚を測定しつつ、光ビームの照射領域に酸化膜を形成する装置である。
【0023】
膜形成装置1は、基板9を支持するステージ2、ステージ2を図1中のX方向およびY方向に移動するステージ移動機構21、ステージ2を図1中のZ方向に昇降するステージ昇降機構24、光エネルギーにより基板9上に酸化膜を形成する偏光した光(以下、「偏光光」という。)を基板9上の所定の照射領域へと導く照射部3、照射領域からの偏光光の反射光を受光する受光部4、偏光光が照射される照射領域を観察する観察光学系5、および、各種演算処理を行うCPUや各種情報を記憶するメモリ等により構成された制御部6を備える。
【0024】
ステージ移動機構21は、ステージ2をY方向に移動するY方向移動機構22、および、X方向に移動するX方向移動機構23を有する。Y方向移動機構22はモータ221にボールねじ(図示省略)が接続され、モータ221が回転することにより、X方向移動機構23がガイドレール222に沿って図1中のY方向に移動する。X方向移動機構23もY方向移動機構22と同様の構成となっており、モータ231が回転するとボールねじ(図示省略)によりステージ2がガイドレール232に沿ってX方向に移動する。
【0025】
照射部3は、基板9に向けて光ビームを出射する光源部31、光源部31から基板9への光の照射のON/OFFを制御する電磁シャッタ32、および、光源部31からの光ビームを円偏光の状態として基板9上へと導く照射光学系33を有する。光源部31は、出力5mWで波長375nm(ナノメートル)または405nmの光ビームを出射する青紫色半導体レーザ(以下、「LD」という。)311、および、LD311からの光ビームを電磁シャッタ32へと導くレンズ312を有し、LD311にはLD安定化電源313が接続される。照射部3では、光源をLD311とすることにより光源部31が小型化される。
【0026】
受光部4は、基板9からの反射光の偏光状態を取得するフォトダイオード41、基板9からの反射光をフォトダイオード41へと導く受光光学系42を有する。
【0027】
観察光学系5は、ハロゲンランプ51、レンズ52および55、対物レンズ54、ハーフミラー53、並びに、CCD56を有する。
【0028】
制御部6には、ステージ移動機構21、ステージ昇降機構24、照射部3、受光部4および観察光学系5が接続され、これらの構成が制御部6に制御されて基板9上の照射領域に酸化膜が形成される。また、制御部6は、各種演算を行う演算部61を有し、受光部4からの出力に基づいて照射領域における酸化膜の厚さを求める。
【0029】
図2は、基板9上の照射領域に酸化膜を形成する際の膜形成装置1の動作の流れを示す図である。以下、図1および図2を参照しながら、膜形成装置1による酸化膜の形成について説明する。
【0030】
基板9上に酸化膜が形成される際には、まず、観察光学系5による基板9のアライメント(位置合わせ)が行われる。具体的には、ハロゲンランプ51からの照明光がレンズ52を介してハーフミラー53へと導かれて反射され、対物レンズ54を介して基板9へと入射し、基板9により反射された照明光が対物レンズ54、ハーフミラー53およびレンズ55を順に介してCCD56により受光される。このようにして、ハロゲンランプ51により照明される基板9上のアライメントマークがCCD56にて撮像され、撮像により取得された画像データに基づいて制御部6がステージ移動機構21およびステージ昇降機構24を制御してステージ2が移動し、基板9が所定の位置に配置される(ステップS11)。
【0031】
次に、照射部3において、LD安定化電源313によりLD311の発光が安定化された後に電磁シャッタ32が開かれ、LD311からの光ビームがレンズ312および電磁シャッタ32を順に介して照射光学系33に入射する。照射光学系33は偏光子331、水晶波長板(以下、「λ/4板」という。)332およびコリメータレンズ333を電磁シャッタ32側から基板9に向かって順に有し、照射光学系33に入射した光ビームは偏光子331により直線偏光とされ、λ/4板332により円偏光とされる。λ/4板332からの光は、開口数(NA)0.1のコリメータレンズ333により収束されつつ基板9へと導かれる。以上のように、照射部3では電磁シャッタ32の開放により、偏光光の基板9上の照射領域への照射が開始される(ステップS12)。
【0032】
このとき、図1に示すように照射部3から基板9へと偏光光が入射角72°にて傾斜して入射し、直径約10μm(マイクロメートル)の円形の照射領域を輝度約5W/mm2にて照射し、そのエネルギーによって基板9上の照射領域に酸化膜が形成される。具体的には、基板9の表面上で酸素分子が光エネルギーを吸収して励起により光分解を起こし、生成された酸素ラジカルにより基板9が酸化されて酸化膜が形成される。なお、コリメータレンズ333の開口数をもう少し大きくして照射領域をさらに縮小することも可能である。
【0033】
基板9により反射された偏光光は、コリメータレンズ421および回転検光子422を有する受光光学系42に入射する。回転検光子422は中空のステッピングモータの回転軸内に取り付けられ、ステッピングモータにはモータドライバ423が接続される。制御部6によるステッピングモータの制御により回転検光子422が光軸に平行な軸を中心として回転しつつ、基板9からの反射光が回転検光子422を透過してフォトダイオード41へと導かれる。フォトダイオード41からは受光された光の強度を示す信号がADコンバータ411を介して制御部6へと送り出される。このとき、コリメータレンズ421により、基板9上の測定エリアが大きく設定され、さらに、フォトダイオード41へ入射する反射光の基板9上での反射角の範囲を制限するために、基板9に対する受光光学系42の開口数が0.05とされる。
【0034】
そして、制御部6の演算部61によりフォトダイオード41からの出力が回転検光子422の回転角に対応付けられることにより(いわゆる、回転検光子法)、反射光の偏光状態、すなわち、反射光のp偏光成分とs偏光成分との位相差および反射振幅比角が取得される(ステップS13)。さらに、演算部61では、取得された反射光の偏光状態に基づいて偏光解析が行われ、基板9上の照射領域に形成される酸化膜の厚さや光学定数等が求められる(ステップS14)。
【0035】
図3および図4は、常温大気圧の開放された雰囲気下において膜形成装置1により基板9上に酸化膜が形成される場合の、波長405nmの光ビームの照射時間と酸化膜の厚さとの関係を示す図であり、横軸は測定時刻を示し、縦軸は演算部61により求められた基板9上の1つの照射領域の酸化膜の厚さを示す。図3に示すように、基板9上に形成された膜の厚さが数nm程度の状態では、膜形成時の膜厚増加の速度は約0.18nm/時間となる。また、図4に示すように、基板9上に形成された膜の厚さが60nm程度の状態における膜形成時の膜厚増加の速度は約0.06nm/時間となり、基板9上に形成された膜が比較的薄い状態に比べて膜厚増加の速度は小さくなる。このように、膜形成装置1では、基板9上に形成される酸化膜の厚さを0.1nm(1オングストローム)以下の精度で測定することができる。
【0036】
測定された酸化膜の厚さ(以下、「測定膜厚」という。)は、予め制御部6に記憶される所定の膜厚(以下、「設定膜厚」という。)と比較されて、測定膜厚が設定膜厚以上であるか否かが判断される(ステップS15)。測定膜厚が設定膜厚よりも小さい場合にはステップS13に戻って酸化膜の形成が続行され、基板9からの反射光の偏光状態を取得して酸化膜の厚さを求める動作(ステップS13〜S14)が、測定膜厚が設定膜厚以上になるまで繰り返される(ステップS15)。測定膜厚が設定膜厚以上になると、制御部6により電磁シャッタ32が閉じられて、照射部3からの偏光光の基板9への照射が停止される(ステップS16)。
【0037】
以上のように、膜形成装置1では、照射部3から基板9へと光ビームを照射することにより局所的に高分解能にて酸化膜を形成できる。また、照射部3および受光部4がエリプソメータの一部を構成し、膜形成に用いられる光ビームが膜厚測定に共用されるため、酸化膜の形成位置と膜厚の測定位置とがずれることがなく、簡単な構成で基板9上の照射領域に酸化膜を形成するとともにその膜厚を精度良く測定できる。特に、膜厚を測定する構成を膜を形成する構成と別個に設ける場合に比べて装置の構造を大幅に簡素化することができる。さらに、基板9上の照射領域における測定膜厚に基づいて照射部3からの光の出射のON/OFFを制御して、照射領域への光の照射を制御することにより、高精度な膜厚制御を実現して所定の厚さの酸化膜を形成することができる。
【0038】
また、膜形成装置1では、偏光光が基板9に対して傾斜して入射し、その反射光を用いて偏光解析法により照射領域における酸化膜の厚さを求めることができるため、基板9上に比較的薄い膜を形成しつつその厚さを精度良く測定する場合に適している。特に、膜形成装置1では、高精度の膜厚制御を行いつつ薄膜を形成できるため、半導体基板上へのゲート等に利用される酸化膜の形成に適しているといえる。
【0039】
なお、膜形成装置1では、照射部3からの光ビームの波長は375nmまたは405nmに限定されるわけではなく、基板9上に形成される膜の種類に応じて適宜変更されてよい。気体分子を光分解して効率的良く膜を形成し、かつ、実用上膜厚測定に利用可能であるという観点からは、照射部3からの光ビームの波長は200nm以上450nm以下とされることが好ましい。
【0040】
図5は、本発明の第2の実施の形態に係る膜形成装置1aの構成を示す図である。膜形成装置1aは、第1の実施の形態に係る膜形成装置1と同様に、基板9上の照射領域に光ビームを照射し、その反射光を受光することにより照射領域の膜厚を測定しつつ、光ビームの照射領域に酸化膜を形成する装置である。
【0041】
膜形成装置1aは、光エネルギーにより基板9上に酸化膜を形成する光を基板9上の照射領域へと導く照射部3a、照射領域からの光の反射光を受光する受光部4a、照射領域を観察する観察光学系5a、各種演算処理を行うCPUや各種情報を記憶するメモリ等により構成された制御部6a、および、観察光学系5aと一部を共有する主光学系7を備える。
【0042】
また、膜形成装置1aは、図1に示す膜形成装置1と同様に、基板9を支持するステージ2、ステージ2を図5中のX方向およびY方向に移動するステージ移動機構21、および、ステージ2を図5中のZ方向に昇降するステージ昇降機構24を備える。以下の説明においては、膜形成装置1と同様のこれらの構成については同符号を付す。
【0043】
照射部3aは、青紫色半導体レーザ(LD)311aおよびレンズ312aを有する光源部31a、電磁シャッタ32a、ハーフミラー33a、並びに、対物レンズ34aを有し、LD311aにはLD安定化電源313aが接続される。また、受光部4aは、基板9からの反射光の強度を取得するフォトダイオード41aを有する。
【0044】
観察光学系5aは、ハロゲンランプ51a、レンズ52aおよび55a、並びに、CCD56aを有し、主光学系7は、ハーフミラー71、レンズ72およびピンホールミラー73を有する。なお、観察光学系5aと主光学系7との区別は説明の都合上のものであり、実際には、ハロゲンランプ51a、レンズ52a、ハーフミラー71および対物レンズ34aにより観察用の照明光を基板9へと導く光学系が構成され、対物レンズ34a、レンズ72、ピンホールミラー73、レンズ55aおよびCCD56aにより、基板9を観察するための光学系が構成される。
【0045】
制御部6aには、ステージ移動機構21、ステージ昇降機構24、照射部3a受光部4aおよび観察光学系5aが接続され、これらの構成が制御部6aに制御されて基板9上の照射領域に酸化膜が形成される。また、制御部6aは、各種演算を行う演算部61aを有し、演算部61aは受光部4aからの出力に基づいて所定の照射領域における酸化膜の厚さを実質的に求める。
【0046】
図6は、基板9上の照射領域に酸化膜を形成する際の膜形成装置1aの動作の流れを示す図である。以下、図5および図6を参照しながら、膜形成装置1aによる酸化膜の形成について説明する。
【0047】
基板9上に酸化膜が形成される際には、まず、観察光学系5a等による基板9のアライメントが行われる。具体的には、ハロゲンランプ51aからの照明光がレンズ52aを介してハーフミラー71へと導かれて反射され、ハーフミラー33aおよび対物レンズ34aを順に介して基板9へと入射する。そして、基板9により反射された照明光は対物レンズ34a、ハーフミラー33aおよび71、並びに、レンズ72を順に介してピンホールミラー73へと導かれて反射され、レンズ55aを介してCCD56aにより受光される。以上のようにして、ハロゲンランプ51aにより照明される基板9上のアライメントマークがCCD56aにて撮像され、撮像された画像データに基づいて制御部6aがステージ移動機構21およびステージ昇降機構24を制御することによりステージ2が移動され、基板9が所定の位置に配置される(ステップS21)。
【0048】
次に、照射部3aにおいて、LD安定化電源313aによりLD311aが安定化された後に電磁シャッタ32aが開かれ、LD311aからの光ビームがレンズ312aおよび電磁シャッタ32aを順に介してハーフミラー33aへと導かれる。ハーフミラー33aにより反射された光ビームは対物レンズ34aを介して基板9へと導かれ、これにより、基板9上の照射領域への光ビームの照射が開始される(ステップS22)。
【0049】
このとき、図5に示すように照射部3aから基板9へと光ビームが垂直に入射して照射領域を照射することにより基板9上に酸化膜が形成される。この場合、照射部3の光学系(例えば、レンズ312aや対物レンズ34a)の設定により、基板9上の照射領域の大きさ(幅や直径等)を1μm未満とすることも可能である。
【0050】
基板9により反射された光ビームは、対物レンズ34a、ハーフミラー33aおよび71、並びに、レンズ72を順に介してピンホールミラー73へと導かれ、基板9上の照射領域と光学的に共役に配置されるピンホールミラー73のピンホール731を透過してフォトダイオード41aにより受光される。フォトダイオード41aからの信号はADコンバータ411aを介して制御部6aへと送り出され、基板9からの反射光の強度が取得される(ステップS23)。なお、ピンホール731とフォトダイオード41aとの間に、LD311aから出射される光ビームの波長(以下、「LD波長」という。)の光のみを透過するバンドパスフィルタが設けられてもよい。
【0051】
制御部6aの演算部61aでは、取得された反射光の強度、および、予め準備されている参照される対象物(例えば、表面に膜が形成されていない半導体基板であり、以下、「参照基板」という。)の反射光の強度を示すデータから、LD波長の光に対する基板9の照射領域の相対反射率(すなわち、参照基板に対する相対的な反射率)が求められる(ステップS24)。
【0052】
図7は、表面上に酸化膜が形成された基板9について、基板9に照射される光の波長と、基板9の相対反射率(膜を有さない基板に対する相対反射率)との関係を、酸化膜の厚さ毎に示す図である。図7中の線11、12、13および14は、それぞれ、酸化膜の厚さが2nm、5nm、10nmおよび20nmの場合の相対反射率を示す。
【0053】
図7に示すように、基板9上に酸化膜が形成される場合、酸化膜の厚さの増加に伴って基板9の相対反射率は漸次低下する。従って、相対反射率を測定し、測定結果に基づいて光ビームの照射を制御することにより、基板9上の酸化膜の厚さを所定の値とすることができる。すなわち、相対反射率を求めるということは実質的に膜厚を求めることと等価であるといえる。
【0054】
具体的動作としては、基板9上に形成しようとする所定の膜厚におけるLD波長の光に対する相対反射率(以下、「設定反射率」という。)が予め制御部6aに記憶されており、演算部61aにより求められた相対反射率(以下、「測定反射率」という。)と比較されて、測定反射率が設定反射率以下であるか否かが判断される(ステップS25)。測定反射率が設定反射率よりも大きい場合にはステップS23に戻って酸化膜の形成が続行され、基板9からの反射光の強度を取得して相対反射率を求める動作(ステップS23〜S24)が、測定反射率が設定反射率以下になるまで繰り返される(ステップS25)。測定反射率が設定反射率以下になると、制御部6aにより電磁シャッタ32aが閉じられて、照射部3aからの光ビームの基板9への照射が停止される(ステップS26)。
【0055】
以上のように、膜形成装置1aでは、照射部3aおよび受光部4aが干渉式膜厚計の一部を構成し、簡単な構成で基板9上の照射領域に高分解能にて酸化膜を形成するとともにその膜厚を精度良く測定できる。特に、膜厚を測定する構成を膜を形成する構成と別個に設ける場合に比べて装置の構造を大幅に簡素化することができる。さらに、測定結果に基づいて高精度な膜厚制御を実現して所定の厚さの酸化膜を形成することができる。
【0056】
また、膜形成装置1aでは、光ビームが基板9に垂直に入射し、その反射光を用いて光干渉法により照射領域における酸化膜の厚さを容易に求めることができるため、基板9上に比較的厚い膜を形成したり、既に形成されている膜上に他の膜(いわゆる、多層膜)を形成しつつ、その厚さを精度良く測定する場合に適している。
【0057】
なお、第1の実施の形態と同様に、膜形成装置1aにおいても他の波長の光が膜形成に利用されてもよく、膜形成用の光の波長は200nm以上450nm以下とされることが好ましい。
【0058】
以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。
【0059】
例えば、照射部には複数の青紫色半導体レーザが設けられてもよい。この場合、複数の光ビームにより1つの照射領域を照射して、照射領域の面積や照度を増加させてもよい。また、青紫色半導体レーザに代えて他のレーザや発光ダイオード等の他の光源が用いられてもよい。
【0060】
また、光源を直接制御して基板9への光の照射のON/OFFを制御することにより電磁シャッタを省略することも可能である。さらには、膜厚測定の結果を制御部にフィードバックして、光の照射のON/OFFのみでなく、光源から出射される光の強度が制御されてもよい。
【0061】
膜厚を測定する構成に関しても様々な変更が可能である。例えば、第1の実施の形態に係る膜形成装置1では、偏光の向きが回転する(すなわち、偏光の向きが時間とともに変更される)直線偏光の光が、照射部3により基板9上の照射領域へと導かれてもよい。この場合、照射光学系33には偏光子331およびλ/4板332の代わりに回転偏光子が、受光光学系42には回転検光子422の代わりに固定の検光子が設けられ、フォトダイオード41により反射光の強度が測定される。そして、反射光の強度が回転偏光子の回転角に対応付けられることにより反射光の偏光状態が取得され、照射領域に形成される膜の厚さが求められる。
【0062】
第2の実施の形態に係る膜形成装置1aでは、フォトダイオード41aの代わりに分光器が設けられてもよい。この場合、光源部にはLD311の代わりに白色光を出射する光源(例えば、キセノン(Xe)ランプ等)が設けられ、分光器により取得された反射光の分光強度を用いて一般的な光干渉法による膜厚測定が可能となる。
【0063】
上記実施の形態に係る膜形成装置による酸化膜の形成は、閉塞された空間内において酸素(O2)ガスを含む所定のプロセスガス雰囲気下にて行われてもよい。例えば、照射部からの光や基板9からの反射光等を透過する窓が設けられたチャンバ内に基板9、ステージ2、ステージ移動機構21およびステージ昇降機構24が配置されてもよく、この場合、演算部において膜厚または相対反射率を求める際にはチャンバの窓の影響が補正される。また、酸化膜の形成効率を向上するためにチャンバ内の圧力が適宜変更されてもよい。さらには、プロセスガスを変更することにより酸化膜以外の膜(例えば、窒化膜等)が形成されてもよい。
【0064】
膜形成装置では、基板9上の酸素分子が光分解されることにより高分解能にて酸化膜が形成されるが、要求される分解能が比較的低い場合には、基板9上の照射領域が照射される光により加熱されることにより酸化膜が形成されてもよい。すなわち、光のエネルギーは膜形成に間接的に利用されてもよい。
【0065】
膜形成装置における基板9上の照射領域の形状や大きさ、あるいは照度等は、基板9上に形成される膜の特性や、要求される分解能等に合わせて好適な形状や値とされてよい。
【0066】
なお、上記実施の形態では膜形成用の光の照射制御による膜厚制御が、膜厚や相対反射率の測定結果に基づいて自動的に行われるが、測定結果を確認しつつ光照射が手動で制御されてもよい。すなわち、膜形成用の光を利用して膜厚が実質的に測定されることにより、形成される膜の厚さの精度を向上することが実現される。
【0067】
膜形成装置により膜が形成される基板9は、半導体基板に限定されず、例えば、液晶表示装置やその他のフラットパネル表示装置等に使用されるガラス基板であってもよい。
【0068】
【発明の効果】
本発明では、簡単な構成で基板上の照射領域に膜を形成するとともにその膜厚を測定することができ、これにより、膜厚の精度を向上することができる。
【0069】
請求項2および9の発明では、比較的薄い膜の厚さを精度良く測定できる。
【0070】
請求項3および10の発明では、比較的厚い膜の厚さを精度良く測定できる。
【0071】
請求項4の発明では、高精度な自動膜厚制御が実現される。
【0072】
請求項5の発明では、効率良く膜を形成することができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る膜形成装置の構成を示す図である。
【図2】膜形成装置による酸化膜形成の動作の流れを示す図である。
【図3】光ビームの照射時間と形成される酸化膜の厚さとの関係を示す図である。
【図4】光ビームの照射時間と形成される酸化膜の厚さとの関係を示す他の図である。
【図5】第2の実施の形態に係る膜形成装置の構成を示す図である。
【図6】膜形成装置による酸化膜形成の動作の流れを示す図である。
【図7】基板に照射される光の波長と基板の相対反射率との関係を示す図である。
【符号の説明】
1,1a 膜形成装置
2 ステージ
3,3a 照射部
4,4a 受光部
6,6a 制御部
9 基板
61,61a 演算部
311,311a LD
S11〜S16,S21〜S26 ステップ
Claims (10)
- 対象物上に光を照射して膜を形成する膜形成装置であって、
対象物を支持する支持部と、
前記対象物上に膜を形成する光を前記対象物上の所定の照射領域へと導く照射部と、
前記照射領域からの前記光の反射光を受光する受光部と、
前記受光部からの出力に基づいて前記照射領域における膜の厚さを求める演算部と、
を備えることを特徴とする膜形成装置。 - 請求項1に記載の膜形成装置であって、
前記照射部および前記受光部がエリプソメータの一部であり、前記照射部から前記対象物へと偏光した光が傾斜して入射することを特徴とする膜形成装置。 - 請求項1に記載の膜形成装置であって、
前記照射部および前記受光部が干渉式膜厚計の一部であり、前記照射部から前記対象物へと光が垂直に入射することを特徴とする膜形成装置。 - 請求項1ないし3のいずれかに記載の膜形成装置であって、
前記演算部により求められた前記照射領域の膜の厚さに基づいて前記照射部からの光の出射を制御する制御部をさらに備えることを特徴とする膜形成装置。 - 請求項1ないし4のいずれかに記載の膜形成装置であって、
前記照射部からの光の波長が、200ナノメートル以上450ナノメートル以下であることを特徴とする膜形成装置。 - 請求項5に記載の膜形成装置であって、
前記照射部が、青紫色半導体レーザを有することを特徴とする膜形成装置。 - 請求項1ないし6のいずれかに記載の膜形成装置であって、
前記対象物が半導体基板であり、前記膜が酸化膜であることを特徴とする膜形成装置。 - 対象物上に光を照射して膜を形成する膜形成方法であって、
対象物上に膜を形成する光を前記対象物上の所定の照射領域へと照射する照射工程と、
前記照射領域からの前記光の反射光を受光部にて受光する受光工程と、
前記受光部からの出力に基づいて前記照射領域における膜の厚さを求める演算工程と、
前記照射領域における前記膜の厚さに基づいて前記照射領域への前記光の照射を制御する制御工程と、
を有することを特徴とする膜形成方法。 - 請求項8に記載の膜形成方法であって、
前記照射工程において偏光した光が前記対象物に対して傾斜して入射し、
前記演算工程において偏光解析法により前記照射領域における前記膜の厚さが求められることを特徴とする膜形成方法。 - 請求項8に記載の膜形成方法であって、
前記照射工程において前記光が前記対象物に垂直に入射し、
前記演算工程において光干渉法により前記照射領域における前記膜の厚さが求められることを特徴とする膜形成方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003192620A JP2005032740A (ja) | 2003-07-07 | 2003-07-07 | 膜形成装置および膜形成方法 |
US10/884,973 US20050006560A1 (en) | 2003-07-07 | 2004-07-07 | Film forming apparatus and film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003192620A JP2005032740A (ja) | 2003-07-07 | 2003-07-07 | 膜形成装置および膜形成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005032740A true JP2005032740A (ja) | 2005-02-03 |
Family
ID=33562412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003192620A Pending JP2005032740A (ja) | 2003-07-07 | 2003-07-07 | 膜形成装置および膜形成方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050006560A1 (ja) |
JP (1) | JP2005032740A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010157629A (ja) * | 2008-12-27 | 2010-07-15 | Nuflare Technology Inc | 成膜装置 |
KR20110081981A (ko) * | 2008-09-16 | 2011-07-15 | 도쿄엘렉트론가부시키가이샤 | 유전체 재료 처리 시스템 및 작동 방법 |
JP2013543651A (ja) * | 2010-09-14 | 2013-12-05 | アプライド マテリアルズ インコーポレイテッド | デバイス歩留まり向上のための移送チャンバ計量 |
US8895942B2 (en) | 2008-09-16 | 2014-11-25 | Tokyo Electron Limited | Dielectric treatment module using scanning IR radiation source |
WO2020004142A1 (ja) * | 2018-06-27 | 2020-01-02 | 東京エレクトロン株式会社 | 膜厚測定装置及び補正方法 |
CN113463058A (zh) * | 2020-03-31 | 2021-10-01 | 佳能特机株式会社 | 电子器件的制造方法、测定方法以及成膜装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112018006546T5 (de) * | 2017-12-20 | 2020-08-27 | Sony Corporation | Laservorrichtung und laserverarbeitungsverfahren |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048588A (en) * | 1988-07-08 | 2000-04-11 | Cauldron Limited Partnership | Method for enhancing chemisorption of material |
US6919957B2 (en) * | 2000-09-20 | 2005-07-19 | Kla-Tencor Technologies Corp. | Methods and systems for determining a critical dimension, a presence of defects, and a thin film characteristic of a specimen |
JP2003203390A (ja) * | 2001-12-28 | 2003-07-18 | Fuji Photo Film Co Ltd | 光情報記録媒体 |
-
2003
- 2003-07-07 JP JP2003192620A patent/JP2005032740A/ja active Pending
-
2004
- 2004-07-07 US US10/884,973 patent/US20050006560A1/en not_active Abandoned
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110081981A (ko) * | 2008-09-16 | 2011-07-15 | 도쿄엘렉트론가부시키가이샤 | 유전체 재료 처리 시스템 및 작동 방법 |
JP2012503313A (ja) * | 2008-09-16 | 2012-02-02 | 東京エレクトロン株式会社 | 誘電材料処理システム及び当該システムの操作方法 |
US8895942B2 (en) | 2008-09-16 | 2014-11-25 | Tokyo Electron Limited | Dielectric treatment module using scanning IR radiation source |
KR101690804B1 (ko) * | 2008-09-16 | 2016-12-28 | 도쿄엘렉트론가부시키가이샤 | 유전체 재료 처리 시스템 및 작동 방법 |
JP2010157629A (ja) * | 2008-12-27 | 2010-07-15 | Nuflare Technology Inc | 成膜装置 |
JP2013543651A (ja) * | 2010-09-14 | 2013-12-05 | アプライド マテリアルズ インコーポレイテッド | デバイス歩留まり向上のための移送チャンバ計量 |
US10103288B2 (en) | 2010-09-14 | 2018-10-16 | Applied Materials, Inc. | Transfer chamber metrology for improved device yield |
CN112334731A (zh) * | 2018-06-27 | 2021-02-05 | 东京毅力科创株式会社 | 膜厚测定装置及校正方法 |
WO2020004142A1 (ja) * | 2018-06-27 | 2020-01-02 | 東京エレクトロン株式会社 | 膜厚測定装置及び補正方法 |
KR20210024468A (ko) * | 2018-06-27 | 2021-03-05 | 도쿄엘렉트론가부시키가이샤 | 막두께 측정 장치 및 보정 방법 |
JPWO2020004142A1 (ja) * | 2018-06-27 | 2021-06-24 | 東京エレクトロン株式会社 | 膜厚測定装置及び補正方法 |
US11226191B2 (en) | 2018-06-27 | 2022-01-18 | Tokyo Electron Limited | Film thickness measurement device and correction method |
JP7118148B2 (ja) | 2018-06-27 | 2022-08-15 | 東京エレクトロン株式会社 | 膜厚測定装置及び補正方法 |
CN112334731B (zh) * | 2018-06-27 | 2022-09-02 | 东京毅力科创株式会社 | 膜厚测定装置及校正方法 |
KR102690757B1 (ko) | 2018-06-27 | 2024-07-31 | 도쿄엘렉트론가부시키가이샤 | 막두께 측정 장치 및 보정 방법 |
CN113463058A (zh) * | 2020-03-31 | 2021-10-01 | 佳能特机株式会社 | 电子器件的制造方法、测定方法以及成膜装置 |
Also Published As
Publication number | Publication date |
---|---|
US20050006560A1 (en) | 2005-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6937333B2 (en) | Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object | |
US9170156B2 (en) | Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system | |
US9240356B2 (en) | Surface inspection apparatus, method for inspecting surface, exposure system, and method for producing semiconductor device | |
TWI783980B (zh) | 用於蝕刻處理監視的先進光學感測器、系統及方法 | |
US10921261B2 (en) | Strontium tetraborate as optical coating material | |
JP2020508568A (ja) | 厚膜及び高アスペクト比構造の計測方法及びシステム | |
US8274645B2 (en) | Method and apparatus for in-situ metrology of a workpiece disposed in a vacuum processing chamber | |
JP2017191324A (ja) | 193nmレーザーを使用する固体レーザーおよび検査システム | |
US20070258092A1 (en) | Optical measurement device and method | |
US7684039B2 (en) | Overlay metrology using the near infra-red spectral range | |
JP2005032740A (ja) | 膜形成装置および膜形成方法 | |
JP2009103598A (ja) | 分光エリプソメータおよび偏光解析方法 | |
JP2010223822A (ja) | 分光エリプソメータおよび偏光解析方法 | |
TW200947144A (en) | Lithographic apparatus and contamination detection method | |
JP3910032B2 (ja) | 基板現像装置 | |
KR101388424B1 (ko) | 디지털 광학 기술을 이용한 두께 측정 장치 및 방법 | |
JPH1022205A (ja) | パターン形成状態検出装置、及びこれを用いた投影露光装置 | |
JP2000356554A (ja) | 複合型光学的温度測定システムを用いたシリコンワークピースを処理するための方法 | |
JP2005094018A (ja) | リソグラフィック装置及びデバイス製造方法 | |
Zhu et al. | Laser-Driven Light Sources for Nanometrology Applications | |
JP3402321B2 (ja) | 測定装置、研磨状況モニタ装置、研磨装置、半導体デバイス製造方法、並びに半導体デバイス | |
US10495287B1 (en) | Nanocrystal-based light source for sample characterization | |
Bayer et al. | Imaging properties of different optics for EUV radiation | |
JP2012160590A (ja) | 有機el表示装置用シリコン膜検査方法及び有機el表示装置用シリコン膜検査装置 | |
JP2000009636A (ja) | エリプソメトリ装置 |