Nothing Special   »   [go: up one dir, main page]

JP2005024169A - Hot-water supply device with water reduction function - Google Patents

Hot-water supply device with water reduction function Download PDF

Info

Publication number
JP2005024169A
JP2005024169A JP2003190117A JP2003190117A JP2005024169A JP 2005024169 A JP2005024169 A JP 2005024169A JP 2003190117 A JP2003190117 A JP 2003190117A JP 2003190117 A JP2003190117 A JP 2003190117A JP 2005024169 A JP2005024169 A JP 2005024169A
Authority
JP
Japan
Prior art keywords
water
hydrogen gas
hydrogen
reduction function
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190117A
Other languages
Japanese (ja)
Inventor
Keiko Yasui
圭子 安井
Hideki Ono
英樹 大野
Masamitsu Kondo
正満 近藤
Shigeru Iwanaga
茂 岩永
Ryuta Kondo
龍太 近藤
Takemi Oketa
岳見 桶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003190117A priority Critical patent/JP2005024169A/en
Publication of JP2005024169A publication Critical patent/JP2005024169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Details Of Fluid Heaters (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply a hot water reduced in oxidation-reduction potential which gives less damage to the skin and hair in a large quantity in a short time, in a home hot-water supply device. <P>SOLUTION: This hot-water supply device with water reduction function is provided with a hydrogen gas generating means and a hydrogen storing alloy storing hydrogen gas generated by the hydrogen gas generating means. When the device is used, hydrogen stored in the hydrogen storing alloy is released to supply hot water with reduced oxidation-reduction potential which gives less damage to the skin and hair in a large quantity in a short time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生体酸化還元電位に近く酸化による皮膚へのダメージを低減する還元水を供給する家庭用の水還元機能付き給湯装置に関するものである。
【0002】
【従来の技術】
通常の水道水には、殺菌のために塩素が添加されており、次亜塩素酸イオンの酸化力により酸化還元電位は高くなっている。この酸化力により、皮膚は酸化のダメージをうけ劣化していく。また、健康な皮膚は弱酸性に保たれており、酸化還元電位が低く還元性であっても、pHがアルカリ性であれば皮脂の溶解などで水分が失われ皮膚は劣化してゆく。皮膚の劣化は、老化現象と同じであり、入浴時の皮膚や頭髪へのダメージをなくすことは、皮膚や頭髪を健やかに保つために重要なことである。入浴水に還元性を付与する方法としては、還元性ガスである水素ガスを水素ガスボンベから供給し添加する方法(例えば特許文献1参照)や、炭素電極を用いて水を電気分解し、二酸化炭素と水素ガスを発生させる方法(例えば特許文献2参照)や、第1第2第3の電極を有し、第1および第2の電極間に交流を印加し第3の電極を接地させ水素ガスを発生させる方法(例えば特許文献3参照)があった。
【0003】
【特許文献1】
特開2003−19426号公報
【特許文献2】
特開2000−308891号公報
【特許文献3】
特許第2615308号公報
【0004】
【発明が解決しようとする課題】
しかしながら、水素ガスボンベから水素ガスを供給する方法は、水素ガスボンベの貯蔵場所やボンベの交換が必要であり、家庭用給湯器の水素ガス発生手段としては不向きであるという課題があった。また、炭素電極を用いて水を電気分解する方法においても、水電気分解の電極として用いるには、炭素電極は消耗が激しく、短期間での交換が必要になるという課題があった。また、第1および第2の電極間に交流を印加し第3の電極を接地させ水素ガスを発生させる方法においては、酸化還元電位を低下させるまでに時間がかかり、入浴のように大量の水を短時間で必要とする場合には実用的ではないという課題があった。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の水還元機能付き給湯装置は、熱交換器と、前記熱交換器に給水する給水パイプと、前記熱交換器をへて出湯する出湯パイプとを供え、前記給水パイプまたは出湯パイプのいずれかの流路に水素ガス発生手段を供え、前記水素ガス発生手段で生成した水素ガスを貯蔵する水素吸蔵合金を備え、給湯時には参加還元電位を低下させた水を生成しながら、前記水素吸蔵合金に貯蔵した水素を放出し、多量の酸化還元電位を低下させた湯を風呂や台所や洗面所などの端末にも給湯することができる。
【0006】
【発明の実施の形態】
請求項1記載の発明は、熱交換器と、前記熱交換器に給水する給水パイプと、前記熱交換器をへて出湯する出湯パイプとを供え、前記給水パイプまたは出湯パイプのいずれかの流路に水素ガス発生手段を供え、前記水素ガス発生手段で生成した水素ガスを貯蔵する水素吸蔵合金を備え、給湯時には参加還元電位を低下させた水を生成しながら、同時に前記水素吸蔵合金に貯蔵した水素を放出し、短時間に大量の水の酸化還元電位を低下させ、給湯することができる。
【0007】
請求項2記載の発明は、水素ガス発生手段は、電極と前記電極間に高周波交流電圧を印加する交流電源を有した構成とし、水を電気分解することで発生する水素ガスにより水の酸化還元電位を低下させることができる。
【0008】
この構成は汎用部品で安価に作ることが可能であり,また漏電しても危険でない。
【0009】
請求項3載の発明は、水素ガス発生手段は水素吸蔵合金で形成した接地電極を有する構成とすることで、接地電極は常にマイナス側の電位に固定されるため、水素ガスの発生量を増やすことができるとともに水素を吸蔵することができる。
【0010】
請求項4載の発明は、高周波交流電圧に直流電圧を印加し、基準電位をマイナス電位側にシフトさせたことを特徴とし、交流の基準電位がマイナス側にシフトしているため、プラス側の酸素ガスの発生を抑制することができ、酸化還元電位を低下させることができる。
【0011】
請求項5記載の発明は、水素ガス発生手段は、電極と前記電極間に直流電圧を印加する直流電源と、電気分解で発生した塩素ガスおよび次亜塩素酸イオンを吸着除去する活性炭を有した構成とし、水を電気分解することで発生する水素ガスにより水の酸化還元電位を低下させることができ、電気分解で発生した塩素ガスおよび次亜塩素酸イオンは活性炭に吸着除去することができる。
【0012】
請求項6記載の発明は、水素ガス発生手段は、電極と前記電極間に直流電圧を印加する直流電源と、電極間を分離する隔膜と、電気分解で発生した塩素ガスおよび次亜塩素酸イオンを吸着除去する活性炭を有した構成とし、水を電気分解することで発生する水素ガスにより水の酸化還元電位を低下させることができ、電気分解で発生した塩素ガスおよび次亜塩素酸イオンは活性炭に吸着除去することができる。
【0013】
請求項7記載の発明は、水素ガス発生手段は金属マグネシウムもしくはマグネシウム合金を備えた構成とし、マグネシウムの水との反応で発生した水素ガスにより水の酸化還元電位を低下させることができる。
【0014】
よって、化学反応による反応で、電気分解するための電源は不要となり、装置の構成を簡易にまた、小型化できる。
【0015】
【実施例】
(実施例1)
以下、本発明の実施例1について図面を用いて説明する。
【0016】
実施例1の水還元機能付き給湯器の構成図を図1に示す。図1において、1は水還元機能付き給湯器本体、2は水還元機能付き給湯器1に水を供給する給水パイプ、3は熱交換器、4は水素ガス発生手段、5は水素ガス発生手段4内部に設け水素ガス発生手段4で生成した水素ガスを吸蔵する水素吸蔵合金、6は酸化還元電位の低下したお湯を浴槽7に供給する出湯パイプである。水素ガス発生手段4は、チタンに白金もしくは白金イリジウム合金をメッキないしは焼成して形成した貴金属電極8および貴金属電極9の間に高周波交流電圧を印加する交流電源10を有した構成となっており、11は水素ガス吸蔵合金で形成した接地電極である。この実施例における給湯器1は、図示はしていないが、風呂、台所、洗面所など家庭内の種種の端末に給湯できるような構成としてある。
【0017】
交流電源10により印加する高周波交流電圧は、高周波交流電圧に直流電圧を印加し、基準電圧をマイナス電位側にシフトさせた電圧となっている。
【0018】
上記構成において、給水パイプ2から供給された水は熱交換器3を通って、水素ガス発生手段4に供給される。水素ガス発生手段4では、貴金属電極8および9の間に高周波交流電圧を印加すると、水の電気分解が起こり、プラス側の電位をもつ電極からは酸素ガスが、マイナス側の電位の電極からは水素ガスが発生する。また、接地電極11は常に低い電位に設定されるため、水素ガスが発生する。このようにして発生した水素ガスは、マグネシウム合金もしくはチタン合金などの水素吸蔵合金5および水素吸蔵合金で形成された接地電極11に貯蔵される。水素ガス発生手段4は給水パイプ2からの水の供給が停止した状態(給湯器未使用時)でも、動作を行い水素ガスの発生を継続し、水素吸蔵合金5および水素吸蔵合金で形成された接地電極11に水素を貯蔵しておく。そして給湯器の温水使用時には熱交換器3を通った湯に水素ガス発生手段4で発生した水素ガスと水素吸蔵合金5および水素吸蔵合金で形成された接地電極11から放出された水素ガスが溶解することで、湯の酸化還元電位が低下し、出湯パイプ6を介して酸化還元電位の低下した、皮膚や頭髪へのダメージをなくした湯が浴槽に供給される。
【0019】
このように、水素ガス発生手段4で発生させた水素ガスのみでなく、給湯器の温水の未使用時に水素吸蔵合金5に貯蔵しておいた水素ガスを使用することで短時間に大量の水の酸化還元電位を低下させることができる。
【0020】
また、高周波交流電圧を印加する構成で、汎用部品を用いて安価につくれて、、漏電しても危険でない。
【0021】
また、接地電極を設けたので、マイナス電極に相当する電極が増えることで、水素ガス発生効率があがる。
【0022】
また、基準電圧をマイナス側にシフトさせたことで、プラス電極側の酸素ガスの発生を抑制してマイナス電極側の水素ガスの発生割合を増やすことができる。
【0023】
また、水素ガス発生手段4に熱交換器2を通った湯を供給する構成としたことで、低温の水を供給するよりも電気的な抵抗が下がるため、水の電気分解を効率よく行うことができる。
【0024】
なお、本実施例では接地電極11を用いた構成であるが、接地電極を用いずに、貴金属電極8および9のみを用い高周波交流電圧を印加した場合でも、水素ガスが発生し、酸化還元電位の低下した水を得ることができる。接地電極11を用いることで、貴金属電極8および9のみを用いた場合より、水素ガスの発生量を増やすことができる。
【0025】
また、水素ガス吸蔵合金5は、水素ガス発生手段4内部であれば、設置場所を限定することはなく、貴金属電極8および9に一体化して設けても同様の効果を得ることができる。
【0026】
また、交流電源10により印加する高周波交流電圧を、高周波交流電圧に直流電圧を印加し、基準電圧をマイナス電位側にシフトさせた電圧とすることで、交流の基準電位がマイナス側にシフトしているため、プラス側の酸素ガスの発生を抑制することができ、酸化還元電位を低下させることができる。
【0027】
また、水素ガス発生手段を給湯器に組み込んだことで風呂のみでなく、洗面所や台所等へも還元水を供給することができ、日常の家事作業においても皮膚へのダメージを低減できる。
【0028】
(実施例2)
以下、本発明の実施例2について図面を用いて説明する。
【0029】
実施例2の水素ガス発生手段の構成図を図2に示す。図2において、水素ガス発生手段4はチタンに白金もしくは白金イリジウム合金をメッキないしは焼成して形成した貴金属電極8および貴金属電極9の間に直流電圧を印加する直流電源12、水素ガス発生手段4内部に設け水素ガス発生手段4で生成した水素ガスを吸蔵する水素吸蔵合金13を有し、水の電気分解で発生した塩素ガスおよび次亜塩素酸イオンを吸着除去する活性炭14を備えた構成となっている。
【0030】
上記構成において、貴金属電極8および9の間に直流電圧を印加すると、水の電気分解が起こり、プラス側の電位をもつ電極からは酸素ガスおよび塩素ガスが、マイナス側の電位をもつ電極からは水素ガスが発生する。発生した水素ガスは、マグネシウム合金もしくはチタン合金などの水素吸蔵合金13に貯蔵される。また発生した塩素ガスは水に溶解し次亜塩素酸イオンを形成する。次亜塩素酸イオンは酸化力が強く、酸化還元電位を高めるため、活性炭14により塩素ガスおよび次亜塩素イオンを吸着除去する。
【0031】
実施例1と同様に、給湯器未使用時にも、水素ガス発生手段4は動作を行い、水素ガスを水素吸蔵合金13に貯蔵する。使用時には、水素ガス発生手段4で発生した水素ガスと水素吸蔵合金13から放出された水素ガスを用いることができる。
【0032】
電気分解で発生した、塩素ガスおよび次亜塩素酸イオンを吸着除去するとともに、電気分解で発生した水素ガスおよび水素吸蔵合金から放出された水素ガスを水に溶解することで、短時間に大量の水の酸化還元電位を低下させることができる。直流による電気分解は、使用中の極性切り替えがないため気泡発生を連続して行うことができ、効率よく水素ガス発生を行うことができる。
【0033】
また、水素ガス吸蔵合金13は、水素ガス発生手段4内部であれば、設置場所を限定することはなく、貴金属電極8および9に一体化して設けても同様の効果を得ることができる。
【0034】
なお、本実施例では電極間に隔膜を設けずに電気分解を行ったが、電極間に隔膜を設け、水の電気分解後に両極室の水を混合しても同様の効果を得ることができる。
【0035】
(実施例3)
以下、本発明の実施例3について説明する。
【0036】
実施例3の水素ガス発生手段は、着脱可能な容器に設けた金属マグネシウムもしくはマグネシウム合金、水素吸蔵合金を備えた構成となっている。マグネシウム合金としては、マグネシウム含量の高いものが適している。
【0037】
上記構成において、金属マグネシウムもしくはマグネシウム合金は水中に浸漬すると、水と反応して水素ガスを発生する。発生した水素ガスは水素ガス吸蔵合金に貯蔵され、使用時に放出される。水素ガスが溶解することで水の酸化還元電位を低下することができる。
【0038】
マグネシウム合金は水中に放置すると、表面に酸化マグネシウムの皮膜が形成し、水素ガスを発生しなくなるため、定期的に容器を取り外し酢酸(調理用の酢)等を用いて、表面の酸化皮膜を除去し使用する。マグネシウム、またはマグネシウム合金を用いることで電源等が不要となり、装置を小型化することができる。
【0039】
【発明の効果】
本発明の水還元機能付き給湯装置は、水素ガス発生手段と水素ガス発生手段で生成した水素ガスを貯蔵する水素吸蔵合金を備えた構成とし、未使用時に発生させた水素ガスを水素ガス吸蔵合金に貯蔵し、使用時には水素吸蔵合金に貯蔵した水素を放出し、短時間に大量の水の酸化還元電位を低下させることが可能なので、給湯装置で風呂用に給湯する際にも充分な皮膚へのダメージを与えない湯がつくれる。
【図面の簡単な説明】
【図1】本発明の実施例1における水還元機能付き給湯器の構成図
【図2】本発明の実施例2における水素ガス発生手段の構成図
【符号の説明】
1 水還元機能付き給湯器本体
2 給水パイプ
3 熱交換器
4 水素ガス発生手段
5 水素吸蔵合金
6 出湯パイプ
7 浴槽
8、9 貴金属電極
10 交流電源
11 接地電極
12 直流電源
13 水素吸蔵合金
14 活性炭
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a domestic hot water supply device with a water reduction function that supplies reduced water that is close to a biological oxidation-reduction potential and reduces damage to the skin due to oxidation.
[0002]
[Prior art]
Chlorine is added to normal tap water for sterilization, and the oxidation-reduction potential is high due to the oxidizing power of hypochlorite ions. This oxidizing power causes the skin to deteriorate due to oxidative damage. In addition, healthy skin is kept weakly acidic, and even if the redox potential is low and reducible, if the pH is alkaline, water is lost due to dissolution of sebum and the skin deteriorates. The deterioration of the skin is the same as the aging phenomenon, and it is important to eliminate damage to the skin and hair during bathing in order to keep the skin and hair healthy. As a method for imparting reducibility to bathing water, hydrogen gas, which is a reducing gas, is supplied from a hydrogen gas cylinder and added (for example, see Patent Document 1), water is electrolyzed using a carbon electrode, and carbon dioxide is added. And a method of generating hydrogen gas (see, for example, Patent Document 2), a first gas, a second electrode, a third electrode, an alternating current is applied between the first electrode and the second electrode, and the third electrode is grounded to generate hydrogen gas. There has been a method of generating (see, for example, Patent Document 3).
[0003]
[Patent Document 1]
JP 2003-19426 A [Patent Document 2]
JP 2000-308991 A [Patent Document 3]
Japanese Patent No. 2615308 [0004]
[Problems to be solved by the invention]
However, the method of supplying hydrogen gas from a hydrogen gas cylinder requires replacement of the storage location of the hydrogen gas cylinder and the cylinder, and there is a problem that it is not suitable as a means for generating hydrogen gas in a domestic water heater. In addition, in the method of electrolyzing water using a carbon electrode, there is a problem that the carbon electrode is very consumed and needs to be replaced in a short period of time when used as an electrode for water electrolysis. Further, in the method in which alternating current is applied between the first and second electrodes, the third electrode is grounded and hydrogen gas is generated, it takes time to reduce the oxidation-reduction potential, and a large amount of water such as bathing is required. There is a problem that it is not practical when it is required in a short time.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a hot water supply device with a water reduction function of the present invention is provided with a heat exchanger, a water supply pipe for supplying water to the heat exchanger, and a hot water discharge pipe for discharging hot water through the heat exchanger, Hydrogen gas generating means is provided in the flow path of either the water supply pipe or the hot water pipe, provided with a hydrogen storage alloy for storing hydrogen gas generated by the hydrogen gas generating means, and water with reduced participation reduction potential is supplied during hot water supply. While being produced, the hydrogen stored in the hydrogen storage alloy is released, and a large amount of hot water having a reduced redox potential can be supplied to terminals such as baths, kitchens and washrooms.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is provided with a heat exchanger, a water supply pipe for supplying water to the heat exchanger, and a tapping pipe for discharging hot water through the heat exchanger, and the flow of either the water supply pipe or the tapping pipe Provided with hydrogen gas generating means in the passage, and provided with a hydrogen storage alloy for storing the hydrogen gas generated by the hydrogen gas generation means, while generating water with a reduced participation reduction potential during hot water supply, and simultaneously storing in the hydrogen storage alloy The released hydrogen can be released, and the redox potential of a large amount of water can be lowered in a short time to supply hot water.
[0007]
According to a second aspect of the present invention, the hydrogen gas generating means includes an electrode and an AC power source for applying a high-frequency AC voltage between the electrodes, and the oxidation / reduction of water by hydrogen gas generated by electrolyzing water. The potential can be lowered.
[0008]
This configuration can be made at low cost with general-purpose parts, and there is no danger even if there is a leakage.
[0009]
According to the third aspect of the invention, the hydrogen gas generating means has a ground electrode formed of a hydrogen storage alloy, and since the ground electrode is always fixed at a negative potential, the amount of hydrogen gas generated is increased. And can occlude hydrogen.
[0010]
The invention according to claim 4 is characterized in that a DC voltage is applied to the high-frequency AC voltage and the reference potential is shifted to the minus potential side, and the AC reference potential is shifted to the minus side. Generation of oxygen gas can be suppressed, and the oxidation-reduction potential can be lowered.
[0011]
According to a fifth aspect of the present invention, the hydrogen gas generating means has a DC power source for applying a DC voltage between the electrode and an activated carbon for adsorbing and removing chlorine gas and hypochlorite ions generated by electrolysis. In this configuration, the redox potential of water can be lowered by hydrogen gas generated by electrolyzing water, and chlorine gas and hypochlorite ions generated by electrolysis can be adsorbed and removed by activated carbon.
[0012]
According to a sixth aspect of the present invention, the hydrogen gas generating means includes an electrode and a DC power source for applying a DC voltage between the electrodes, a diaphragm separating the electrodes, chlorine gas generated by electrolysis and hypochlorite ions It has a structure with activated carbon that adsorbs and removes water, and the redox potential of water can be lowered by hydrogen gas generated by electrolyzing water. Chlorine gas and hypochlorite ions generated by electrolysis are activated carbon. Can be removed by adsorption.
[0013]
According to the seventh aspect of the present invention, the hydrogen gas generating means includes metal magnesium or a magnesium alloy, and the redox potential of water can be lowered by hydrogen gas generated by the reaction of magnesium with water.
[0014]
Therefore, a power source for electrolysis is not necessary due to a reaction by a chemical reaction, and the configuration of the apparatus can be simplified and downsized.
[0015]
【Example】
(Example 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.
[0016]
The block diagram of the water heater with a water reduction function of Example 1 is shown in FIG. In FIG. 1, 1 is a water heater body with a water reduction function, 2 is a water supply pipe for supplying water to the water heater 1 with a water reduction function, 3 is a heat exchanger, 4 is hydrogen gas generation means, and 5 is hydrogen gas generation means. 4 is a hydrogen storage alloy for storing the hydrogen gas generated in the hydrogen gas generating means 4 and 6 is a hot water pipe for supplying hot water having a reduced redox potential to the bathtub 7. The hydrogen gas generation means 4 has a configuration having an AC power source 10 for applying a high-frequency AC voltage between a noble metal electrode 8 and a noble metal electrode 9 formed by plating or firing platinum or a platinum iridium alloy on titanium. Reference numeral 11 denotes a ground electrode formed of a hydrogen gas storage alloy. Although not shown, the water heater 1 in this embodiment is configured to supply hot water to various terminals in the home such as a bath, a kitchen, and a washroom.
[0017]
The high-frequency AC voltage applied by the AC power supply 10 is a voltage obtained by applying a DC voltage to the high-frequency AC voltage and shifting the reference voltage to the negative potential side.
[0018]
In the above configuration, the water supplied from the water supply pipe 2 is supplied to the hydrogen gas generation means 4 through the heat exchanger 3. In the hydrogen gas generating means 4, when a high frequency AC voltage is applied between the noble metal electrodes 8 and 9, water electrolysis occurs, oxygen gas from an electrode having a positive potential, and oxygen electrode from an electrode having a negative potential. Hydrogen gas is generated. Further, since the ground electrode 11 is always set at a low potential, hydrogen gas is generated. The hydrogen gas thus generated is stored in the hydrogen storage alloy 5 such as a magnesium alloy or a titanium alloy and the ground electrode 11 formed of the hydrogen storage alloy. The hydrogen gas generation means 4 was operated and continued to generate hydrogen gas even when the supply of water from the water supply pipe 2 was stopped (when the water heater was not used), and was formed of the hydrogen storage alloy 5 and the hydrogen storage alloy. Hydrogen is stored in the ground electrode 11. When hot water is used in the water heater, the hydrogen gas generated by the hydrogen gas generating means 4, the hydrogen storage alloy 5 and the hydrogen gas released from the ground electrode 11 formed of the hydrogen storage alloy are dissolved in the hot water that has passed through the heat exchanger 3. As a result, the redox potential of the hot water is lowered, and hot water with reduced redox potential and no damage to the skin and hair is supplied to the bathtub through the hot water pipe 6.
[0019]
In this way, not only the hydrogen gas generated by the hydrogen gas generating means 4 but also the hydrogen gas stored in the hydrogen storage alloy 5 when the hot water of the hot water heater is not used can be used to produce a large amount of water in a short time. The redox potential of can be reduced.
[0020]
In addition, with a configuration in which a high-frequency AC voltage is applied, it can be produced at low cost using general-purpose parts, and there is no danger even if there is a leakage.
[0021]
In addition, since the ground electrode is provided, the number of electrodes corresponding to the negative electrode increases, so that the hydrogen gas generation efficiency increases.
[0022]
Further, by shifting the reference voltage to the minus side, it is possible to suppress the generation of oxygen gas on the plus electrode side and increase the generation ratio of hydrogen gas on the minus electrode side.
[0023]
In addition, since the hot water that has passed through the heat exchanger 2 is supplied to the hydrogen gas generating means 4, the electrical resistance is lower than that when low-temperature water is supplied, so that the water is efficiently electrolyzed. Can do.
[0024]
In the present embodiment, the ground electrode 11 is used. However, even when a high-frequency AC voltage is applied using only the noble metal electrodes 8 and 9 without using the ground electrode, hydrogen gas is generated and the redox potential is generated. Can be obtained. By using the ground electrode 11, the amount of hydrogen gas generated can be increased as compared with the case where only the noble metal electrodes 8 and 9 are used.
[0025]
Further, the hydrogen gas storage alloy 5 is not limited in the installation location as long as it is inside the hydrogen gas generation means 4, and the same effect can be obtained even if it is provided integrally with the noble metal electrodes 8 and 9.
[0026]
Further, the high frequency AC voltage applied by the AC power supply 10 is a voltage obtained by applying a DC voltage to the high frequency AC voltage and shifting the reference voltage to the negative potential side, so that the AC reference potential is shifted to the negative side. Therefore, generation of positive oxygen gas can be suppressed, and the redox potential can be lowered.
[0027]
Further, by incorporating the hydrogen gas generating means into the water heater, the reduced water can be supplied not only to the bath, but also to the washroom, kitchen, etc., and the damage to the skin can be reduced even in daily housework.
[0028]
(Example 2)
Embodiment 2 of the present invention will be described below with reference to the drawings.
[0029]
FIG. 2 shows a configuration diagram of the hydrogen gas generation means of the second embodiment. In FIG. 2, the hydrogen gas generating means 4 includes a noble metal electrode 8 formed by plating or firing platinum or a platinum iridium alloy on titanium, and a DC power source 12 for applying a DC voltage between the noble metal electrode 9 and the hydrogen gas generating means 4 inside. And a hydrogen storage alloy 13 for storing the hydrogen gas generated by the hydrogen gas generation means 4 and an activated carbon 14 for adsorbing and removing chlorine gas and hypochlorite ions generated by electrolysis of water. ing.
[0030]
In the above configuration, when a DC voltage is applied between the noble metal electrodes 8 and 9, electrolysis of water occurs, and oxygen gas and chlorine gas are emitted from the electrode having a positive potential and from the electrode having a negative potential. Hydrogen gas is generated. The generated hydrogen gas is stored in a hydrogen storage alloy 13 such as a magnesium alloy or a titanium alloy. The generated chlorine gas dissolves in water and forms hypochlorite ions. Hypochlorite ions have strong oxidizing power and increase the oxidation-reduction potential, so that the activated carbon 14 adsorbs and removes chlorine gas and hypochlorite ions.
[0031]
Similarly to the first embodiment, the hydrogen gas generating means 4 operates even when the hot water heater is not used, and stores the hydrogen gas in the hydrogen storage alloy 13. In use, the hydrogen gas generated by the hydrogen gas generating means 4 and the hydrogen gas released from the hydrogen storage alloy 13 can be used.
[0032]
Adsorbs and removes chlorine gas and hypochlorite ions generated by electrolysis, and dissolves hydrogen gas generated by electrolysis and hydrogen gas released from hydrogen storage alloy in water. The redox potential of water can be lowered. Electrolysis by direct current can generate bubbles continuously because there is no polarity switching during use, and hydrogen gas can be generated efficiently.
[0033]
Further, the hydrogen gas storage alloy 13 is not limited in the installation location as long as it is inside the hydrogen gas generation means 4, and the same effect can be obtained even if it is provided integrally with the noble metal electrodes 8 and 9.
[0034]
In this embodiment, electrolysis was performed without providing a diaphragm between the electrodes. However, the same effect can be obtained by providing a diaphragm between the electrodes and mixing the water in the bipolar chamber after electrolysis of the water. .
[0035]
Example 3
Embodiment 3 of the present invention will be described below.
[0036]
The hydrogen gas generation means of Example 3 has a configuration including metal magnesium, a magnesium alloy, or a hydrogen storage alloy provided in a detachable container. A magnesium alloy having a high magnesium content is suitable.
[0037]
In the above configuration, when metallic magnesium or a magnesium alloy is immersed in water, it reacts with water to generate hydrogen gas. The generated hydrogen gas is stored in a hydrogen gas storage alloy and released during use. The redox potential of water can be lowered by dissolving hydrogen gas.
[0038]
If the magnesium alloy is left in water, a magnesium oxide film will form on the surface and hydrogen gas will not be generated. Remove the container periodically and remove the oxide film on the surface using acetic acid (vinegar for cooking). And use. By using magnesium or a magnesium alloy, a power source or the like is unnecessary, and the apparatus can be miniaturized.
[0039]
【The invention's effect】
The hot water supply device with a water reduction function of the present invention comprises a hydrogen gas generating means and a hydrogen storage alloy for storing the hydrogen gas generated by the hydrogen gas generation means, and the hydrogen gas generated when not in use is a hydrogen gas storage alloy. It is possible to release the hydrogen stored in the hydrogen storage alloy during use and reduce the redox potential of a large amount of water in a short time. You can make hot water that will not cause any damage.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a water heater with a water reduction function in Embodiment 1 of the present invention. FIG. 2 is a configuration diagram of hydrogen gas generation means in Embodiment 2 of the present invention.
DESCRIPTION OF SYMBOLS 1 Water heater main body with water reduction function 2 Water supply pipe 3 Heat exchanger 4 Hydrogen gas generation means 5 Hydrogen storage alloy 6 Outlet pipe 7 Bathtub 8, 9 Precious metal electrode 10 AC power source 11 Ground electrode 12 DC power source 13 Hydrogen storage alloy 14 Activated carbon

Claims (7)

熱交換器と、前記熱交換器に給水する給水パイプと、前記熱交換器をへて出湯する出湯パイプとを供え、前記給水パイプまたは出湯パイプのいずれかの流路に水素ガス発生手段を供え、前記水素ガス発生手段で生成した水素ガスを貯蔵する水素吸蔵合金を備え、給湯時には前記水素吸蔵合金に貯蔵した水素を放出し、水の酸化還元電位を低下させて出湯することを特徴とした水還元機能付き給湯装置。Provided with a heat exchanger, a water supply pipe for supplying water to the heat exchanger, and a hot water pipe for discharging hot water through the heat exchanger, and provided with hydrogen gas generating means in either flow path of the water supply pipe or hot water pipe A hydrogen storage alloy for storing the hydrogen gas generated by the hydrogen gas generation means, wherein the hydrogen stored in the hydrogen storage alloy is released during hot water supply, and the hot water is discharged with a reduced redox potential of water. Water heater with water reduction function. 水素ガス発生手段は、電極と前記電極間に高周波交流電圧を印加する交流電源を有し、水を電気分解することで発生する水素ガスにより水の酸化還元電位を低下させることを特徴とした請求項1記載の水還元機能付き給湯器。The hydrogen gas generation means has an AC power source for applying a high-frequency AC voltage between the electrode and the electrode, and reduces the redox potential of water by hydrogen gas generated by electrolyzing water. Item 1. A water heater with a water reduction function according to Item 1. 水素ガス発生手段は、接地電極を有する構成とし、接地電極を水素吸蔵合金で形成した請求項2記載の水還元機能付き給湯器。The water heater with a water reduction function according to claim 2, wherein the hydrogen gas generating means has a ground electrode, and the ground electrode is formed of a hydrogen storage alloy. 高周波交流電圧に直流を印加し、基準電圧をマイナス電位側にシフトさせたことを特徴とする請求項2ないし3記載の水還元機能付き給湯装置。4. A hot water supply apparatus with a water reduction function according to claim 2, wherein a direct current is applied to the high-frequency alternating voltage, and the reference voltage is shifted to the negative potential side. 水素ガス発生手段は、電極と前記電極間に直流電圧を印加する直流電源と、電気分解で発生した塩素ガスおよび次亜塩素酸イオンを吸着除去する吸着材を有し、水を電気分解することで発生する水素ガスにより水の酸化還元電位を低下させることを特徴とした請求項1記載の水還元機能付き給湯器。The hydrogen gas generating means has an electrode and a DC power source that applies a DC voltage between the electrodes, and an adsorbent that adsorbs and removes chlorine gas and hypochlorite ions generated by electrolysis, and electrolyzes water. The water heater with a water reduction function according to claim 1, wherein the redox potential of water is lowered by hydrogen gas generated in the water. 水素ガス発生手段は、電極と前記電極間に直流電圧を印加する直流電源と、前記電極間を分離する隔膜と、電気分解で発生した塩素ガスおよび次亜塩素酸イオンを吸着除去する吸着材を有し、前記隔膜で分離した水を混合し、pHを中性に保つとともに、水を電気分解することで発生する水素ガスにより水の酸化還元電位を低下させることを特徴とした請求項1記載の水還元機能付き給湯装置。The hydrogen gas generating means includes an electrode and a DC power source that applies a DC voltage between the electrodes, a diaphragm that separates the electrodes, and an adsorbent that adsorbs and removes chlorine gas and hypochlorite ions generated by electrolysis. The water separated by the diaphragm is mixed to maintain a neutral pH, and the redox potential of the water is lowered by hydrogen gas generated by electrolyzing the water. Water heater with water reduction function. 水素ガス発生手段は金属マグネシウム合金もしくはマグネシウム合金を備え、マグネシウムの水との反応で発生した水素ガスにより水の酸化還元電位を低下させることを特徴とした請求項1記載の水還元機能付き給湯装置。2. The hot water supply apparatus with a water reduction function according to claim 1, wherein the hydrogen gas generation means includes a metal magnesium alloy or a magnesium alloy, and reduces the oxidation-reduction potential of water by hydrogen gas generated by the reaction of magnesium with water. .
JP2003190117A 2003-07-02 2003-07-02 Hot-water supply device with water reduction function Pending JP2005024169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190117A JP2005024169A (en) 2003-07-02 2003-07-02 Hot-water supply device with water reduction function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190117A JP2005024169A (en) 2003-07-02 2003-07-02 Hot-water supply device with water reduction function

Publications (1)

Publication Number Publication Date
JP2005024169A true JP2005024169A (en) 2005-01-27

Family

ID=34188097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190117A Pending JP2005024169A (en) 2003-07-02 2003-07-02 Hot-water supply device with water reduction function

Country Status (1)

Country Link
JP (1) JP2005024169A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253131A (en) * 2006-03-27 2007-10-04 Takaoka Kasei Kogyo Kk Functional water containing anti-oxidant
JP2008150421A (en) * 2006-12-14 2008-07-03 Kenji Suzuki Emulsion fuel, and manufacturing method and manufacturing apparatus thereof
JP2009022927A (en) * 2007-07-23 2009-02-05 Silver Seiko Ltd Reduced hydrogen water generator
JP2012052196A (en) * 2010-09-02 2012-03-15 Shimura Ryoji Electrolytic apparatus for generating hydrogen-oxygen mixture gas, and method for generating hydrogen-oxygen mixture gas
JP2014526968A (en) * 2011-08-08 2014-10-09 ハンドン ハイドロ カンパニー,リミテッド Functional hydrogen water production system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253131A (en) * 2006-03-27 2007-10-04 Takaoka Kasei Kogyo Kk Functional water containing anti-oxidant
JP2008150421A (en) * 2006-12-14 2008-07-03 Kenji Suzuki Emulsion fuel, and manufacturing method and manufacturing apparatus thereof
JP2009022927A (en) * 2007-07-23 2009-02-05 Silver Seiko Ltd Reduced hydrogen water generator
JP2012052196A (en) * 2010-09-02 2012-03-15 Shimura Ryoji Electrolytic apparatus for generating hydrogen-oxygen mixture gas, and method for generating hydrogen-oxygen mixture gas
JP2014526968A (en) * 2011-08-08 2014-10-09 ハンドン ハイドロ カンパニー,リミテッド Functional hydrogen water production system

Similar Documents

Publication Publication Date Title
JP3619828B2 (en) Electrolysis electrode, production method thereof, electrolysis method using electrolysis electrode, and electrolyzed water generator
US20070017801A1 (en) High electric field electrolysis cell
JP5595213B2 (en) Disinfecting water manufacturing apparatus and disinfecting water manufacturing method
CN204873953U (en) Electrolytic water producing device
TW201029933A (en) Electrolyzed water producing apparatus
JP2016083650A (en) Electrolytic water generator and electrolytic water generating method
JP3753987B2 (en) Reduced water generator
JP2005024169A (en) Hot-water supply device with water reduction function
JP2001169952A (en) Shower device
JP2005226896A (en) Hot water supplier with water reducing function
JP3131357U (en) Circulating bath equipment that can supply carbon dioxide
JP2001246378A (en) Water treatment device
JP4511204B2 (en) Reduced water generator
JP2006266554A (en) Water heater with gas mixing function
JP2007289838A (en) Electrolytic water generator
JP2001276830A (en) Bathtub water circulating and cleaning device
JP3126163U (en) Negative potential hydrogen generation electrode
JP2002263650A (en) Method for generating ozone by electrolysis and ozone generating device
JP6962709B2 (en) Electrolyzed water generator
JP2004122108A (en) Electrolyzed reduced water generator
JP2004313977A (en) Water reformer
JP2003088867A (en) Apparatus for producing functional water
JP4114189B2 (en) Water activation equipment
JP2003225671A (en) Method of forming sterilized cleaning water and apparatus for the same
JP2019138494A (en) Water heater