JP2005021984A - Controlled cooling method and equipment for thick steel plate - Google Patents
Controlled cooling method and equipment for thick steel plate Download PDFInfo
- Publication number
- JP2005021984A JP2005021984A JP2004174133A JP2004174133A JP2005021984A JP 2005021984 A JP2005021984 A JP 2005021984A JP 2004174133 A JP2004174133 A JP 2004174133A JP 2004174133 A JP2004174133 A JP 2004174133A JP 2005021984 A JP2005021984 A JP 2005021984A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- steel plate
- thick steel
- cooling device
- width direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Metal Rolling (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Control Of Heat Treatment Processes (AREA)
Abstract
Description
本発明は圧延を完了した厚鋼板の冷却方法及び冷却装置、特に大きな速度で冷却しながら厚鋼板幅方向の材質の均一性を確保するとともに冷却時の歪み及び残留応力を低減し得る厚鋼板の制御冷却方法及び制御冷却装置、さらには上記制御冷却方法を適用して得られた厚鋼板に関する。ここにおいて、「制御冷却」とは、鋼板の圧延後の冷却条件、特にオーステナイト−フェライト変態領域の冷却速度を厳密に制御して所望の特性を有する厚鋼板を製造するための冷却手段をいう。 The present invention relates to a cooling method and a cooling device for a thick steel plate that has been rolled, in particular, a thick steel plate that can ensure the uniformity of the material in the width direction of the thick steel plate while cooling at a high speed and can reduce strain and residual stress during cooling. The present invention relates to a controlled cooling method and a controlled cooling apparatus, and further to a thick steel plate obtained by applying the controlled cooling method. Here, “controlled cooling” refers to a cooling means for producing a thick steel plate having desired characteristics by strictly controlling the cooling conditions after rolling the steel plate, particularly the cooling rate in the austenite-ferrite transformation region.
厚鋼板(以下単に「鋼板」という場合もある)の製造に当っては、厚鋼板に要求される機械的性質、特に強度と靭性を確保するため、圧延後の鋼板に対して制御冷却が行われることがある。この制御冷却では、鋼板に要求されるの材質上の特性を確保するために、一般に冷却速度を大きくすることが必要とされるが、同時に材質の均一性を確保し、冷却時の歪みの発生を抑制するために冷却が鋼板面全体にわたって均一に行われることが必要である。しかしながら、現状の制御冷却技術では、冷却が、必ずしも、鋼板面全体にわたって均一に行われず、冷却中あるいは冷却後において鋼板の四周部が中央部と比較して温度が低くなる四周部過冷却現象が現れることがしばしば経験されている。 In the manufacture of thick steel plates (hereinafter sometimes referred to simply as “steel plates”), controlled cooling is performed on the rolled steel plates in order to ensure the mechanical properties required for thick steel plates, particularly strength and toughness. May be. In this controlled cooling, it is generally necessary to increase the cooling rate in order to ensure the material properties required for the steel sheet, but at the same time, the uniformity of the material is ensured and the generation of distortion during cooling. In order to suppress this, it is necessary that cooling be performed uniformly over the entire surface of the steel sheet. However, with the current controlled cooling technology, cooling is not necessarily performed uniformly over the entire surface of the steel sheet, and there is a four-part supercooling phenomenon in which the temperature of the four peripheral parts of the steel sheet is lower than that of the central part during or after cooling. It is often experienced to appear.
このような、四周部過冷却現象は、主として以下に示す3つのメカニズム、すなわち(1)圧延中の鋼板側面からの放冷に起因するもの、(2)水冷中の沸騰現象に起因するものおよび(3)上面における排水に起因するもの、により発生すると考えられる。 Such four-round supercooling phenomenon is mainly caused by the following three mechanisms: (1) caused by cooling from the side of the steel plate during rolling, (2) caused by boiling phenomenon during water cooling, and (3) It is thought to be caused by the drainage from the upper surface.
(1)圧延中の鋼板側面からの放冷に起因するもの
鋼板の圧延過程において、鋼板の四周部は上下面からの放冷冷却に加え、側面からも放冷冷却されるため、板中央部と比較して温度が低くなる温度偏差が生ずる。このような鋼板を鋼板全面に亘って均一な冷却能力で冷却すると、四周部と中央部の温度偏差がそのまま持ち来たされ、四周部過冷却現象が現れる。
(1) What is caused by cooling from the side of the steel plate during rolling In the rolling process of the steel plate, the four peripheral parts of the steel plate are cooled from the side by cooling in addition to the cooling from the top and bottom. As a result, a temperature deviation that lowers the temperature occurs. When such a steel plate is cooled over the entire surface of the steel plate with a uniform cooling capacity, the temperature deviation between the four-circumferential part and the central part is brought as it is, and the four-circular part supercooling phenomenon appears.
(2)水冷中の沸騰現象に起因するもの
圧延終了時点において温度偏差が存在する鋼板を強制水冷したとき、冷却水の沸騰現象の違いに基づき、上記温度偏差がさらに拡大することがある。図25は高温の鋼板を冷却する際の鋼板表面温度と熱流束(単位面積、単位時間当りの抜熱量)との関係を模式的に示すグラフである。ここに示すように、鋼板表面温度が高いときには膜沸騰、鋼板表面温度が低いときには核沸騰が起こり、これらの中間温度領域では遷移沸騰となっている。鋼板表面温度が高い状態で起こる膜沸騰では、鋼板表面と冷却水の間に蒸気膜が発生し、この蒸気膜内の熱伝導により伝熱がなされる状態となり、冷却能力は低い。一方、鋼板表面温度が低い状態で起こる核沸騰では、鋼板表面と冷却水は直接接触し且つ鋼板表面から冷却水の一部が蒸発して生じた蒸気泡が直ぐ周りの冷却水により凝縮され消滅するなどの複雑な現象が起こり、蒸気泡の生成・消滅に伴って冷却水が撹拌されるため冷却能力が極めて高い。図25に示すように、上記核沸騰及び膜沸騰領域では、鋼板温度が高いほど熱流束が大きい。そのため、鋼板内に温度偏差があっても、高温部ほど冷却速度が大きくなるために冷却の結果、鋼板内の温度偏差が縮小することになる。
(2) Caused by boiling phenomenon during water cooling When a steel sheet with a temperature deviation at the end of rolling is forced water cooled, the temperature deviation may be further expanded based on the difference in the boiling phenomenon of cooling water. FIG. 25 is a graph schematically showing the relationship between the steel sheet surface temperature and the heat flux (unit area, amount of heat removed per unit time) when cooling a high-temperature steel sheet. As shown here, film boiling occurs when the steel plate surface temperature is high, and nucleate boiling occurs when the steel plate surface temperature is low, and transition boiling occurs in these intermediate temperature regions. In film boiling that occurs when the surface temperature of the steel sheet is high, a vapor film is generated between the surface of the steel sheet and the cooling water, and heat is transferred by heat conduction in the vapor film, so that the cooling capacity is low. On the other hand, in nucleate boiling that occurs when the surface temperature of the steel sheet is low, the surface of the steel sheet and the cooling water are in direct contact with each other, and vapor bubbles generated by evaporation of a part of the cooling water from the steel sheet surface are condensed and disappeared by the cooling water immediately around it. As the cooling water is agitated with the generation and disappearance of vapor bubbles, the cooling capacity is extremely high. As shown in FIG. 25, in the nucleate boiling and film boiling regions, the heat flux increases as the steel plate temperature increases. Therefore, even if there is a temperature deviation in the steel sheet, the cooling rate increases as the temperature increases, and as a result of cooling, the temperature deviation in the steel sheet is reduced.
これら核沸騰及び膜沸騰領域の中間温度領域では、膜沸騰と核沸騰が混在した状態である遷移沸騰状態が得られる。この遷移沸騰領域では、核沸騰、膜沸騰領域と異なり、鋼板温度が低くなるにつれ熱流束が大きい(図25参照)。そのため、鋼板内に温度偏差があるときには、低温度側ほど冷却速度が大きくなり、温度偏差は冷却後において拡大することになる。 In the intermediate temperature region between these nucleate boiling and film boiling regions, a transition boiling state in which film boiling and nucleate boiling are mixed is obtained. In this transition boiling region, unlike the nucleate boiling and film boiling regions, the heat flux increases as the steel plate temperature decreases (see FIG. 25). For this reason, when there is a temperature deviation in the steel sheet, the cooling rate increases as the temperature decreases, and the temperature deviation increases after cooling.
このような沸騰領域の変動は、鋼板温度のみならず冷却水量によっても影響を受ける。すなわち、図25の破線によって示すように、冷却水量を大きくすると、膜沸騰から遷移沸騰に移行する表面温度が高くなり、さらに冷却水量を大きくすると全冷却期間中核沸騰のみによって冷却することが可能になる。一方、冷却水量を小さくすると、膜沸騰から遷移沸騰に移行する表面温度が低くなり、冷却水量をさらに小さくすると、全冷却期間中膜沸騰のみによって冷却することが可能になる。 Such fluctuations in the boiling region are affected not only by the steel plate temperature but also by the amount of cooling water. That is, as shown by the broken line in FIG. 25, when the amount of cooling water is increased, the surface temperature at which film boiling shifts to transition boiling increases, and when the amount of cooling water is further increased, cooling can be performed only by nucleate boiling during the entire cooling period. Become. On the other hand, when the amount of cooling water is reduced, the surface temperature at which film boiling shifts to transition boiling is lowered, and when the amount of cooling water is further reduced, cooling can be performed only by film boiling during the entire cooling period.
冷却過程における沸騰現象の生じ方はこのように複雑であって制御しがたい。そのため、一般的には、遷移沸騰が発生する冷却水量で冷却することが多く、冷却前に鋼板中に存在する温度偏差が拡大する傾向にある。 The boiling phenomenon in the cooling process is complicated and difficult to control. Therefore, in general, cooling is often performed with the amount of cooling water that causes transition boiling, and the temperature deviation existing in the steel sheet before cooling tends to increase.
(3)上面における排水に起因するもの
水平に維持された厚鋼板の上面に冷却水を適用すると、鋼板の上面では図26に示すように、冷却水が鋼板長手方向中央部からその鋼板端部に向けて流れ、最終的に鋼板端部から落下する。その結果、鋼板上面の端部近傍では、厚鋼板の上面からノズルを通して噴射される冷却水に加えて、鋼板長手方向中央部から流れてくる冷却水による冷却がなされる。それにより、鋼板の端部近傍では、必然的に被水量が多くなり冷却速度が大きくなる。なお、このような現象は鋼板の下面側では鋼板に衝突した冷却水は速やかに落下するため発生しない。
(3) What is caused by drainage on the upper surface When cooling water is applied to the upper surface of a thick steel plate that is maintained horizontally, the cooling water flows from the central portion in the longitudinal direction of the steel plate to the end of the steel plate as shown in FIG. And finally falls from the edge of the steel plate. As a result, in the vicinity of the end of the upper surface of the steel plate, cooling is performed by the cooling water flowing from the central portion in the longitudinal direction of the steel plate in addition to the cooling water sprayed from the upper surface of the thick steel plate through the nozzle. Thereby, in the vicinity of the end of the steel plate, the amount of water inevitably increases and the cooling rate increases. Such a phenomenon does not occur on the lower surface side of the steel sheet because the cooling water colliding with the steel sheet quickly falls.
制御冷却時における四周部過冷却現象のメカニズムは、ほぼ以上のとおりであり、そのため制御冷却された時点において鋼板面内に大きな温度偏差が生ずることがある。このような場合、制御冷却直後は良好な形状、たとえば平坦度が極めて良好であったとしても、制御冷却後の空冷過程において鋼板が常温まで冷却されたとき、制御冷却直後の温度偏差に起因して鋼板内に熱歪が発生して形状不良の原因となるほか、残留応力により鋼板のユーザーなどにおいて条切り加工等を行う際にいわゆる条切りキャンバーと呼ばれる反りが発生する原因になる。さらに、これらの形状不良が発生しなかったとしても、鋼板四周部では、制御冷却時において鋼板中央部に比べて低温まで冷却がなされた結果、材質が鋼板中央部と異なったもの、たとえば、強度が異常に高いものとなるなどの問題も生ずる。 The mechanism of the four-part supercooling phenomenon at the time of controlled cooling is almost as described above. Therefore, a large temperature deviation may occur in the steel sheet surface at the time of controlled cooling. In such a case, even if the shape, for example, the flatness is very good immediately after the controlled cooling, when the steel sheet is cooled to room temperature in the air cooling process after the controlled cooling, it is caused by the temperature deviation immediately after the controlled cooling. In addition to causing thermal distortion in the steel sheet, it causes a shape defect, and also causes a so-called warping camber when the steel sheet user performs a cutting process or the like due to residual stress. Furthermore, even if these shape defects do not occur, the steel plate four-round portion is cooled to a lower temperature than the steel plate center during control cooling, and as a result, the material is different from the steel plate center, for example, strength There are also problems such as an abnormally high value.
このような制御冷却時の不均一冷却に伴う諸問題を解決するため、特許文献1には、鋼板の搬送方向に対して所定の角度を有し、鋼板の幅方向に対して所定の間隔をもった平行な複数個の高速の水膜状の冷却水を高温の鋼板表面に衝突させ、衝突後の冷却水は各々の水膜毎に、衝突域を境にしてほぼ均等な量で左右に分かれて鋼板表面に沿って流れる流水域を形成し、主としてこの衝突域と流水域とで鋼板を冷却する方法であって、衝突域の端部に対して鋼板の搬送方向から見て互いに重ならずに連続するように冷却水を供給する高温鋼板の冷却方法が提案されている。
In order to solve the various problems associated with such non-uniform cooling during controlled cooling,
また、特許文献2には、仕上圧延により所定の寸法に圧延し、矯正機により圧延波を矯正した後、制御冷却装置により冷却を行う厚鋼板に対し、制御冷却装置の入側に設けた高冷却能力を有するスリットジェットノズルから高圧水流を厚鋼板に対して斜めに噴射し、厚鋼板の幅両端部への水流を遮蔽するという手段が提案されている。
特許文献3には、圧延熱鋼板の冷却前の幅方向温度分布を測定し、この測定結果から該熱鋼板への幅方向水量分布を演算し、次いで該熱鋼板の直前に冷却した先行熱鋼板の冷却後の温度データを用いて前記演算水量分布を補正し、該補正演算冷却水量分布に基づいて熱鋼板の幅方向注水量分布を調整することを特徴とする熱鋼板の均一冷却方法が提案されている。
In
特許文献4には、熱間圧延後の厚鋼板の上面及び下面に冷却水を衝突させ、しかも前記厚鋼板の端部を遮蔽樋により遮蔽して前記厚鋼板の端部に上面冷却水流が直接衝突することを防ぎながら、前記厚鋼板を冷却するに当り、前記厚鋼板の板巾、上下面冷却水量、及び冷却開始時の前記厚鋼板の板巾方向温度分布に基づいて、冷却終了時に前記厚鋼板の巾方向に均一温度分布が得られるような、前記遮蔽樋による前記厚鋼板の端部の遮蔽幅を演算し、かくして得られた演算結果に基づいて前記遮蔽幅が得られるように前記遮蔽樋の位置を制御することを特徴とする厚鋼板の冷却方法が提案されている。 In Patent Document 4, cooling water collides with the upper and lower surfaces of a thick steel plate after hot rolling, and the end of the thick steel plate is shielded by a shielding rod, and the upper cooling water flow is directly applied to the end of the thick steel plate. In cooling the thick steel plate while preventing collision, based on the plate width of the thick steel plate, the upper and lower surface cooling water amount, and the temperature distribution in the plate width direction of the thick steel plate at the start of cooling, The shielding width of the edge of the thick steel plate by the shielding rod is calculated so that a uniform temperature distribution is obtained in the width direction of the thick steel plate, and the shielding width is obtained based on the calculation result thus obtained. A method of cooling a thick steel plate, characterized by controlling the position of the shielding rod, has been proposed.
特許文献5には、熱鋼板を複数のロールで上下面から押圧しながら注液冷却する方法において、ロール間毎の上方および/または下方に配置したヘッダーに、任意開閉所要時間を制御できる遮断弁を設け、さらに該熱鋼板の通過位置検知手段と冷却開始前長手方向温度プロフィール検出手段ならびに冷却演算制御手段を設け、移動中の該熱鋼板の先端部および/または後端部が通過しようとする位置に相当するヘッダーの遮断弁を開閉制御することを特徴とする熱鋼板の冷却方法が提案されている。
特許文献6には、熱間圧延された高温鋼板を加速冷却して鋼板を製造する鋼板の製造方法において、粗圧延機と仕上圧延機の間に設けられた冷却装置により、加熱炉から粗圧延終了までに生じた板端部付近の温度降下量、及び仕上圧延時に生じると推定される板端部付近の温度降下量を補償するように、板幅方向に温度分布を持った冷却を行い、仕上圧延後は、幅方向に均一な冷却条件で制御冷却を行うことを特徴とする厚鋼板の製造方法が提案されている。 In Patent Document 6, in a method for producing a steel sheet that accelerates and cools a hot-rolled high-temperature steel sheet to produce a steel sheet, a cooling device provided between the rough rolling mill and the finish rolling mill performs rough rolling from a heating furnace. In order to compensate for the temperature drop near the plate edge that occurred until the end and the temperature drop near the plate edge that is estimated to occur during finish rolling, cooling is performed with a temperature distribution in the plate width direction, There has been proposed a method of manufacturing a thick steel plate, characterized in that after finish rolling, controlled cooling is performed under uniform cooling conditions in the width direction.
特許文献7には、熱間圧延が完了した後、金属板の幅エッジ部を加熱し、その後、水冷却及び/又は熱間矯正を行なうことを特徴とする金属板の平坦度制御方法が提案されている。 Patent Document 7 proposes a method for controlling the flatness of a metal plate, characterized in that after hot rolling is completed, the width edge portion of the metal plate is heated, and then water cooling and / or hot correction is performed. Has been.
上記の特許文献1から4に開示された手段は、いずれも鋼板の制御冷却の際、鋼板の板幅方向端部が過冷却される現象を防止しようとするものであり、その効果をある程度期待することができるが、なお鋼板全体を均一に冷却する点において問題が残されている(図27参照)。さらに、これらの発明は、冷却前及び/又は冷却中に鋼板の板幅方向端部に発生する過冷却を、冷却中において幅方向端部の冷却速度を遅くすることによって冷却後の幅方向温度分布を均一化するという技術的思想に立脚しているため、鋼板の板面内の温度分布を均一にするためには、鋼板全体の平均冷却速度をある程度犠牲にせざるを得ないという側面もあり、より急速冷却をすることによりより性能の優れた鋼板を製造することの障害になっている。
The means disclosed in the above-mentioned
加えて、これらの提案では、鋼板の板幅方向に亘る温度均一性の確保のみが課題とされ、鋼板の先尾端部に至る温度均一性を確保することが考慮されていないため、それに起因する鋼板長手方向の冷却歪みが発生するおそれもある。また、先に述べた冷却時の沸騰現象の差異に基づく冷却時の伝熱形態の変動について考慮していないため、特に冷却条件が変化した場合に鋼板端部の冷却速度を制御することが困難である。たとえば、鋼板の厚み、冷却開始温度、冷却終了温度、冷却水量等の冷却条件が特定されれば、ある程度鋼板端部の過冷却を防止し得ても、冷却条件が変化した場合には対応仕切れないという問題もある。 In addition, in these proposals, only ensuring temperature uniformity in the sheet width direction of the steel sheet is an issue, and it is not considered to ensure temperature uniformity reaching the leading end of the steel sheet. There is also a possibility that a cooling strain in the longitudinal direction of the steel sheet is generated. In addition, it is difficult to control the cooling rate at the edge of the steel sheet, especially when the cooling conditions change, because it does not take into account fluctuations in the heat transfer mode during cooling based on the difference in boiling phenomenon during cooling described above. It is. For example, if the cooling conditions such as the thickness of the steel sheet, the cooling start temperature, the cooling end temperature, and the amount of cooling water are specified, even if it is possible to prevent overcooling of the steel sheet edge to some extent, There is also a problem of not.
これに対し、特許文献5に記載の手段は、鋼板の先尾端部に至る温度均一性を確保するために有用であると考えられるものの、鋼板の幅方向の温度均一性、特に鋼板端部の過冷却を防止することについて触れていない。そのため、かかる手段のみでは、鋼板端部の過冷却現象に起因する冷却歪みや残留応力の問題を解決することができない。
On the other hand, although the means described in
特許文献6に記載の手段は、要するに、仕上圧延時までに生じる板端部付近の温度降下量を補償するように、粗圧延機と仕上圧延機の間に設けられた冷却装置により板幅方向に温度分布をもった冷却を行い、仕上圧延後は、幅方向に均一な冷却条件で制御冷却を行うとものである。しかしながら、このような冷却を粗圧延機と仕上圧延機の間で行うことは極めて困難である。すなわち、この手段では、仕上圧延時に生じる板端部付近の温度降下量の推定を伴うが、かかる推定は困難を伴い、たとえば、圧延中に施されるデスケーリングのためのウォータージェット量などが鋼板の表面状態によってかつ、オペレーターの判断によって行われるなど、圧延中において生ずる鋼板端部の過冷却量の外乱要素が大きく、上記の推定を実質的に不可能にしている。 In short, the means described in Patent Document 6 is a sheet width direction by a cooling device provided between the roughing mill and the finishing mill so as to compensate for the temperature drop near the edge of the sheet that occurs until the finish rolling. Then, cooling with a temperature distribution is performed, and after finish rolling, controlled cooling is performed under uniform cooling conditions in the width direction. However, it is extremely difficult to perform such cooling between the roughing mill and the finishing mill. That is, this means involves estimation of the amount of temperature drop near the edge of the plate that occurs during finish rolling, but such estimation is difficult. For example, the amount of water jet for descaling applied during rolling is not enough. The disturbance factor of the supercooling amount at the end of the steel plate that occurs during rolling, for example, depending on the surface condition and at the operator's discretion, makes the above estimation substantially impossible.
これに対し、特許文献7に開示の手段は、圧延完了後に鋼板端部を加熱して鋼板全面の温度分布を均一化してから水冷却を行うものであるが、加熱手段として、たとえば、バーナーを使用する場合には、加熱効率を考慮して大容量バーナーを使用せざるを得ず、そのため操業コストの上昇を招くほか、さらに加熱部が酸化され表面性状が損なわれるという問題がある。一方、加熱手段として誘導加熱を用いれば、設備コスト及び操業コストが高くなるという問題がある。 On the other hand, the means disclosed in Patent Document 7 performs water cooling after heating the steel plate end portion after the completion of rolling to equalize the temperature distribution on the entire surface of the steel plate. As the heating means, for example, a burner is used. When used, a large-capacity burner must be used in consideration of the heating efficiency, so that there is a problem that the operating cost is increased and the heated portion is oxidized and the surface properties are impaired. On the other hand, if induction heating is used as the heating means, there is a problem that the equipment cost and the operation cost increase.
本発明は、上記従来技術の問題点を解決することを課題とし、圧延を完了した鋼板を制御冷却するに際して、鋼板の板面内の温度分布を幅方向、長手方向全域にわたって均一にすることができ、かつ、全体として冷却速度が大きい鋼板の制御冷却方法及び装置を提案するものである。また、上記制御冷却方法を適用することにより、板幅方向の残留応力分布が実質的に均一であり、条切りキャンバー等の加工形状不良を生じない鋼板を提供するものである。 An object of the present invention is to solve the above-mentioned problems of the prior art, and when controlling and cooling a steel plate that has been rolled, the temperature distribution in the plate surface of the steel plate may be made uniform over the entire width and longitudinal direction. The present invention proposes a method and an apparatus for controlling and cooling a steel sheet that can be performed and that has a large cooling rate as a whole. Further, by applying the above-described control cooling method, a steel sheet that has a substantially uniform residual stress distribution in the sheet width direction and that does not cause a processing shape defect such as a cut camber is provided.
本発明者は、上記従来技術の有する問題点について詳細に検討した。その結果、従来技術して実施されてきたものは、基本的には図27にみられるように、制御冷却(「加速冷却」と称されることもある)の開始前において鋼板の面内中央部と端部の間に温度差が存在することを前提としており、この温度差を制御冷却の終了時において実質的に消失させるために、制御冷却過程において鋼板端部に適用される冷却水量を制限する遮蔽部材を置き、あるいは冷却水量を調整する等の手段によって鋼板端部に被水する冷却水量を減らすものであることを確認した。そして、そのような手法に頼る限り、鋼板の四周部過冷却現象を避けられず、形状不良、残留応力による条切りキャンバー、さらには製品鋼板の面内材質変動などを避け得ないことを確認した。そして新たな手段として、
(1)制御冷却直前若しくは制御冷却初期に鋼板の幅方向温度を均一化させること
(2)制御冷却においては、鋼板端部から中央部に亘って同一冷却速度で冷却すること
が極めて有効であるとの知見を得て本発明を完成するに至った。本発明は具体的には以下の手段からなる。
The inventor has studied in detail the problems of the prior art. As a result, what has been implemented in the prior art is basically the in-plane center of the steel plate before the start of controlled cooling (sometimes referred to as “accelerated cooling”), as seen in FIG. It is assumed that there is a temperature difference between the part and the end part, and in order to substantially eliminate this temperature difference at the end of the control cooling, the amount of cooling water applied to the steel sheet end part in the control cooling process is It was confirmed that the amount of cooling water applied to the end of the steel sheet was reduced by means such as placing a shielding member to be restricted or adjusting the amount of cooling water. And as long as relying on such a method, it was confirmed that the four-part supercooling phenomenon of the steel sheet is unavoidable, the shape defect, the slitting camber due to the residual stress, and the in-plane material fluctuation of the product steel sheet is unavoidable. . And as a new means,
(1) Uniform temperature in the width direction of the steel plate immediately before control cooling or immediately before control cooling
(2) In the controlled cooling, the inventors have obtained the knowledge that cooling at the same cooling rate from the steel plate end portion to the central portion is extremely effective, and the present invention has been completed. Specifically, the present invention comprises the following means.
本発明の厚鋼板の制御冷却方法においては、熱間圧延を完了した厚鋼板を制御冷却するに当り、該制御冷却の直前及び制御冷却の初期の一方又は双方の段階において前記厚鋼板の幅方向に亘る温度分布を均一化させる幅方向温度分布均一化冷却処理を行い、しかる後厚鋼板の幅方向に亘って実質的に同一の冷却水量によって冷却する同一速度冷却処理を順次行うこととする。 In the controlled cooling method of the thick steel plate according to the present invention, in the controlled cooling of the thick steel plate that has been hot-rolled, the width direction of the thick steel plate immediately before the controlled cooling and at one or both of the initial stages of the controlled cooling. The temperature direction uniformization cooling process is performed to equalize the temperature distribution over the width of the steel sheet, and then the same speed cooling process of cooling with the substantially same amount of cooling water is sequentially performed over the width direction of the thick steel plate.
上記発明において、独立して制御可能な複数の冷却ゾーンを具備する通過型制御冷却装置を用い、該通過型制御冷却装置を構成する1以上の入側冷却ゾーンにおいて幅方向温度分布均一化冷却処理を、前記入側冷却ゾーンに続く冷却ゾーンにおいて同一速度冷却処理を行うことができる。この際、幅方向温度分布均一化冷却処理を、通過型制御冷却装置を構成する1以上の入側冷却ゾーンの幅方向端部に設けた遮蔽部材を用い、厚鋼板の幅方向側端部への冷却水量を制限することによって行うことによって行うのが好適である。この幅方向温度分布均一化冷却処理は、該幅方向温度分布均一化冷却処理が実施される各冷却ゾーンの幅方向端部に厚鋼板通過ラインを挟んで上下に設置された遮蔽部材をそれぞれ独立に制御することにより行うのが好適である。 In the above-described invention, a passage-type control cooling device including a plurality of independently controllable cooling zones is used, and the width direction temperature distribution uniformization cooling processing is performed in one or more inlet-side cooling zones constituting the passage-type control cooling device. Can be subjected to the same speed cooling process in a cooling zone following the inlet side cooling zone. At this time, the width direction temperature distribution uniform cooling process is performed on the width direction side end portion of the thick steel plate using a shielding member provided at the width direction end portion of one or more inlet cooling zones constituting the pass type control cooling device. It is preferable to carry out by limiting the amount of cooling water. In this width direction temperature distribution uniform cooling process, the shielding members installed on the upper and lower sides of the cooling plate where the width direction temperature distribution uniform cooling process is carried out are sandwiched between the thick steel plate passage lines at the end in the width direction. It is preferable to perform the control.
さらに、上記発明において、通過型制御冷却装置の冷却水量を厚鋼板の先尾端部通過時において制限して厚鋼板長手方向に亘る温度分布を均一化させる長手方向温度分布均一化冷却処理を行うことができ、この厚鋼板の先尾端部通過時における冷却水量の制限を、該厚鋼板の先尾端部の通過信号により所定時間行われることとすることができる。 Furthermore, in the above-described invention, a longitudinal temperature distribution uniform cooling process is performed in which the amount of cooling water of the passing type control cooling device is limited when the leading end of the thick steel plate passes and the temperature distribution in the longitudinal direction of the thick steel plate is made uniform. It is possible to limit the amount of cooling water when the thick steel plate passes through the leading end of the thick steel plate by a passage signal of the leading end of the thick steel plate for a predetermined time.
上記厚鋼板の制御冷却方法は、熱間圧延を完了した厚鋼板を制御冷却するに当り、該制御冷却の直前において厚鋼板板幅方向の温度分布を測定し、該測定結果に基づき鋼板端部温度降下量及び鋼板端部温度降下距離を演算し、該演算結果に基づき幅方向温度分布均一化冷却処理において冷却水を遮蔽する遮蔽ゾーン数及び該遮蔽により厚鋼板端部からの遮蔽幅を演算し、該演算結果に基づいて通過型制御冷却装置において幅方向温度分布均一化冷却処理を実施するのが好適である。 The controlled cooling method of the thick steel plate is a method of measuring the temperature distribution in the width direction of the thick steel plate immediately before the controlled cooling when the thick steel plate that has been hot-rolled is controlled, and based on the measurement result, Calculate the amount of temperature drop and the temperature drop distance at the end of the steel sheet, and calculate the number of shielding zones that shield the cooling water and the shielding width from the thick steel sheet end by the shielding in the width direction temperature distribution uniform cooling process based on the calculation result Then, it is preferable that the cooling process for uniformizing the temperature distribution in the width direction is performed in the passing type control cooling device based on the calculation result.
上記記載の各発明に代えて、幅方向温度分布均一化冷却処理を、圧延機の後面に緩冷却装置を、該緩冷却装置に続いて独立して制御可能な複数の冷却ゾーンを具備する通過型制御冷却装置を配列してなる厚鋼板の冷却装置を用い、前記緩冷却装置によって幅方向温度分布均一化冷却処理を、前記通過型制御冷却装置によって同一速度冷却処理を行うことができる。 Instead of each of the above-described inventions, the cooling process for uniforming the temperature distribution in the width direction is performed by passing a slow cooling device on the rear surface of the rolling mill and a plurality of cooling zones that can be controlled independently following the slow cooling device. Using a thick steel plate cooling device in which mold control cooling devices are arranged, the width direction temperature distribution uniform cooling processing can be performed by the slow cooling device, and the same speed cooling processing can be performed by the passing control cooling device.
この場合において、幅方向温度分布均一化冷却処理は、圧延機の後面に設置した緩冷却装置の幅方向端部に設けた遮蔽部材を用い、厚鋼板の幅方向側端部への冷却水量を制限することによって行うのが好適である。この発明においても、緩冷却装置の冷却水量を厚鋼板の先尾端部通過時において制限して厚鋼板長手方向に亘る温度分布を均一化させる長手方向温度分布均一化冷却処理を行うことができ、これを該厚鋼板の先尾端部の通過信号により所定時間行われるものとすることができる。 In this case, the cooling process for uniformizing the temperature distribution in the width direction uses a shielding member provided at the end in the width direction of the slow cooling device installed on the rear surface of the rolling mill, and the amount of cooling water to the end in the width direction of the thick steel plate. This is preferably done by limiting. Also in this invention, it is possible to perform the longitudinal temperature distribution uniform cooling process that limits the amount of cooling water in the slow cooling device when passing through the leading end of the thick steel plate and uniformizes the temperature distribution in the longitudinal direction of the thick steel plate. This can be performed for a predetermined time by a passing signal at the leading end of the thick steel plate.
上記圧延機の後面に配置した緩冷却装置によって幅方向温度分布均一化冷却処理を行うに当っては、熱間圧延を完了した厚鋼板を制御冷却するに当り、該緩冷却の直前において厚鋼板板幅方向の温度分布を測定し、該測定結果に基づき鋼板端部温度降下量及び鋼板端部温度降下距離を演算し、該演算結果に基づき緩冷却装置において冷却水を遮蔽する厚鋼板端部からの遮蔽幅及び厚鋼板の通板速度を演算し、該演算結果に基づいて緩冷却装置において幅方向温度分布均一化冷却処理を実施することにより行うのが好適である。 In performing the cooling process for uniforming the temperature distribution in the width direction by the slow cooling device disposed on the rear surface of the rolling mill, the thick steel plate immediately before the slow cooling is used to control and cool the hot rolled steel plate. Thick steel plate end that measures the temperature distribution in the plate width direction, calculates the steel plate end temperature drop and the steel plate end temperature drop based on the measurement result, and shields the cooling water in the slow cooling device based on the calculation result It is preferable to calculate the shielding width from the steel plate and the plate passing speed of the thick steel plate, and perform the width direction temperature distribution uniform cooling process in the slow cooling device based on the calculation result.
本発明を実施するための厚鋼板の制御冷却装置は、複数の独立に制御可能な冷却ゾーンを有する通過型制御冷却装置として構成され、該各冷却ゾーンは1200l/min・m2以上の冷却水の通水が可能であり、かつ前記通過型制御冷却装置の1以上の入側冷却ゾーンは、厚鋼板の幅方向側端部の冷却水量を制限する遮蔽部材が設置されたものとするのが好ましい。この装置において、前記通過型制御冷却装置は、厚鋼板の先尾端部通過信号により所定時間作動する水量制御手段を具備するものとすることが好適であり、また高圧水を噴出するスリットノズル冷却帯を有するものとすることが好適である。また、上記通過型制御冷却装置の入側冷却ゾーンに設置された遮蔽部材は、該入側ゾーン毎にかつ、厚鋼板通過ラインの厚鋼板幅方向端部相当位置を挟んで上下に設置され、該遮蔽部材がそれぞれ独立して制御可能に構成されているものとするのが好ましい。 A control cooling device for a thick steel plate for carrying out the present invention is configured as a passing control cooling device having a plurality of independently controllable cooling zones, and each cooling zone has a cooling water of 1200 l / min · m 2 or more. The one or more inlet-side cooling zones of the passage-type control cooling device are provided with a shielding member that limits the amount of cooling water at the end in the width direction of the thick steel plate. preferable. In this apparatus, it is preferable that the passing type control cooling device includes a water amount control means that operates for a predetermined time by a leading end passage signal of a thick steel plate, and further cooling a slit nozzle that ejects high-pressure water. It is preferable to have a band. Moreover, the shielding member installed in the inlet side cooling zone of the above-mentioned passing type control cooling device is installed up and down for each inlet side zone and sandwiching the position corresponding to the end portion in the thickness direction of the thick steel plate, It is preferable that the shielding members are configured to be independently controllable.
上記厚鋼板の制御冷却装置は、通過型制御冷却装置の前面に配備された厚鋼板幅方向温度分布測定手段と、該厚鋼板幅方向温度分布測定手段の測定結果に基づき厚鋼板端部温度降下量及び厚鋼板端部温度降下距離を演算する厚鋼板端部温度降下状態演算手段と、該厚鋼板端部温度降下状態演算手段の演算結果に基づき前記緩冷却装置に設置された遮蔽部材による冷却水の遮蔽量及び厚鋼板の通板速度を演算する緩冷却装置操業条件演算手段と、該緩冷却装置操業条件演算手段の演算結果に基づき前記緩冷却装置を制御する緩冷却装置制御機構とを有するものとするのが望ましい。 The thick steel plate control cooling device comprises a thick steel plate width direction temperature distribution measuring means disposed in front of the passing type control cooling device, and a thick steel plate end temperature drop based on the measurement result of the thick steel plate width direction temperature distribution measuring means. Thick steel plate end temperature drop state calculating means for calculating the amount and the steel plate end temperature drop distance, and cooling by a shielding member installed in the slow cooling device based on the calculation result of the thick steel plate end temperature drop state calculating means A slow cooling device operating condition calculating means for calculating the amount of water shielding and the plate passing speed of the thick steel plate, and a slow cooling device control mechanism for controlling the slow cooling device based on the calculation result of the slow cooling device operating condition calculating means It is desirable to have.
上記厚鋼板の制御冷却装置に代えて、圧延機の後面に設置された緩冷却装置と該緩冷却装置に続いて設置された通過型制御冷却装置とから構成され、前記緩冷却装置は投入水量を500l/min/m2以下に制限可能でありかつ、厚鋼板の幅方向両側端部の冷却水量を制限する遮蔽部材が設置されており、前記通過型制御冷却装置は複数の独立に制御可能な冷却ゾーンを有するとともに該各冷却ゾーンは1200l/min・m2以上の冷却水の通水が可能であるものとすることができる。この装置において、緩冷却装置はラミナーフロー冷却帯を有することとするのが好適である。 Instead of the control cooling device for the steel plate, it is composed of a slow cooling device installed on the rear surface of the rolling mill and a passing type control cooling device installed following the slow cooling device, and the slow cooling device has an input water amount Can be limited to 500 l / min / m 2 or less, and a shielding member is installed to limit the amount of cooling water at both ends in the width direction of the thick steel plate, and a plurality of the above-described controlled cooling devices can be controlled independently. Each cooling zone can pass cooling water of 1200 l / min · m 2 or more. In this apparatus, the slow cooling device preferably has a laminar flow cooling zone.
上記厚鋼板の制御冷却装置は、緩冷却装置の前面に配備された厚鋼板幅方向温度分布測定手段と、該厚鋼板幅方向温度分布測定手段の測定結果に基づき厚鋼板端部温度降下量及び厚鋼板端部温度降下距離を演算する厚鋼板端部温度降下状態演算手段と、該厚鋼板端部温度降下状態演算手段の演算結果に基づき前記緩冷却装置に設置された遮蔽部材によって冷却水の遮蔽を実施する遮蔽冷却ゾーン数及び該遮蔽のための遮蔽量を演算する遮蔽部材制御量演算手段及び、該遮蔽部材制御量演算手段の演算結果に基づき前記緩冷却装置に設置された遮蔽部材を制御する遮蔽部材制御機構を有するものとして構成することができる。 The steel plate controlled cooling device comprises a thick steel plate width direction temperature distribution measuring means disposed on the front surface of the slow cooling device, and a thick steel plate end temperature drop amount based on the measurement results of the thick steel plate width direction temperature distribution measuring means, and Thick steel plate end temperature drop state calculating means for calculating the thick steel plate end temperature drop distance, and cooling water by a shielding member installed in the slow cooling device based on the calculation result of the thick steel plate end temperature drop state calculating means. A shielding member control amount calculation means for calculating the number of shielding cooling zones for performing shielding and a shielding amount for the shielding, and a shielding member installed in the slow cooling device based on the calculation result of the shielding member control amount calculation means It can comprise as what has a shielding member control mechanism to control.
また、緩冷却装置と通過型制御冷却装置の間に矯正機が設置されていることとするのが望ましい。 Further, it is desirable that a straightening machine is installed between the slow cooling device and the passing control cooling device.
上記記載の厚鋼板の制御冷却方法を用いて製造された厚鋼板は、形状が良好であり、残留応力による条切りキャンバーを生ぜず、さらには製品厚鋼板面内材質変動が少ない。 The thick steel plate manufactured using the above-described thick steel plate controlled cooling method has a good shape, does not produce a chopping camber due to residual stress, and further has little in-plane material variation in the product thick steel plate.
本発明により、圧延を完了した鋼板を制御冷却するに際して、鋼板の板面内の温度分布を幅方向、長手方向全域にわたって均一にすることができる。これにより、板幅方向の残留応力分布が実質的に均一であり、条切りキャンバー等の加工形状不良を生じない鋼板を確実に製造することが可能になる。また、全体として大きな冷却速度で制御冷却を行うことができるので従来に比べて生産性よく鋼板の制御冷却を行うことができる。さらに、本発明を利用して製造された鋼板は、板幅方向の残留応力分布が実質的に均一であり、条切りキャンバー等の加工形状不良を生じないなどの優れた特性を有する。 According to the present invention, when the steel plate that has been rolled is controlled and cooled, the temperature distribution in the plate surface of the steel plate can be made uniform across the entire width and longitudinal directions. As a result, the residual stress distribution in the plate width direction is substantially uniform, and it is possible to reliably manufacture a steel plate that does not cause a processing shape defect such as a cut camber. In addition, since the controlled cooling can be performed at a large cooling rate as a whole, the steel sheet can be controlled and cooled with higher productivity than in the past. Furthermore, the steel sheet manufactured using the present invention has excellent characteristics such that the residual stress distribution in the sheet width direction is substantially uniform, and there is no processing shape defect such as a cut camber.
図1は、本発明の第1実施形態にしたがって制御冷却したときの鋼板端部と中央部の温度履歴の模式的説明図である。この例では、熱間圧延を完了した鋼板を制御冷却するに当り、その初期にまず幅方向温度分布均一化冷却処理として、鋼板端部に対して冷却水を遮蔽物により制限する水量制御が行われ、中央部では通常の制御冷却が実施されている。次いで鋼板中央部と鋼板端部の温度が同一になったときから、同一速度冷却処理として、鋼板端部を含む板全体が実質的に同一の冷却水量によって冷却される制御冷却が行われる。このようにすることにより、図1に示すとおり、制御冷却の同一速度冷却処理段階では、当初から鋼板端部と中央部との間での冷却速度及び冷却停止温度の不一致が解消され、板幅方向の残留応力分布が実質的に均一であり、条切りキャンバー等の加工形状不良を生じない鋼板を確実に製造することが可能になる。 FIG. 1 is a schematic explanatory diagram of the temperature history of the steel plate end and center when controlled cooling is performed according to the first embodiment of the present invention. In this example, when the steel sheet that has been hot-rolled is controlled and cooled, initially, as a cooling process for uniformizing the temperature distribution in the width direction, the water amount control is performed to limit the cooling water to the edge of the steel sheet by a shield. In the center, normal control cooling is performed. Subsequently, when the temperature of the steel plate center portion and the steel plate end portion becomes the same, controlled cooling is performed in which the entire plate including the steel plate end portion is cooled by the substantially same amount of cooling water as the same speed cooling process. By doing so, as shown in FIG. 1, in the same rate cooling process stage of the controlled cooling, the mismatch between the cooling rate and the cooling stop temperature between the steel plate end portion and the center portion from the beginning is eliminated, and the plate width The residual stress distribution in the direction is substantially uniform, and it is possible to reliably manufacture a steel plate that does not cause a processing shape defect such as a cut camber.
ここで「幅方向温度分布均一化冷却処理」とは、鋼板の圧延終了時さらには、本発明にしたがう冷却開始時において鋼板幅方向に存在する温度偏差を解消するための処理をいい、「同一速度冷却処理」とは、上記「幅方向温度分布均一化冷却処理」完了後、鋼板面内に有害な温度偏差を発生させることなく冷却する処理をいう。そのレベルは後に実施例等により明らかにされる。また、「同一の冷却水量」とは、上記「幅方向温度分布均一化冷却処理」された鋼板を「同一速度冷却処理」に付するために必要な程度の同一水量をいい、鋼板各部位に適用される水量が極めて厳密に同一であることを意味しない。 Here, the “width direction temperature distribution uniformizing cooling process” means a process for eliminating temperature deviation existing in the width direction of the steel sheet at the end of rolling of the steel sheet and further at the start of cooling according to the present invention. “Speed cooling process” refers to a process of cooling without causing harmful temperature deviations in the steel sheet surface after completion of the “width direction temperature distribution uniformizing cooling process”. The level will be clarified later by examples and the like. The “same amount of cooling water” refers to the same amount of water necessary for subjecting the steel plate subjected to the “width direction temperature distribution uniform cooling process” to the “same speed cooling process”. It does not mean that the amount of water applied is very exactly the same.
図2は、本発明の第2実施形態により制御冷却をしたときの鋼板端部と中央部の温度履歴の模式的説明図である。この例では、まず幅方向温度分布均一化冷却処理として、鋼板端部を自然放冷しながら制御冷却開始前に鋼板中央部を緩冷却する処理(以下「緩冷却幅方向温度分布均一化冷却処理」という)を施し、次いで鋼板面内の温度が均一化された後、同一速度冷却処理として、鋼板端部を含む板全体を実質的に同一の冷却水量によって冷却している。この場合にも、制御冷却の同一速度冷却処理段階では、鋼板端部と中央部との間での冷却速度及び冷却停止温度の不一致が解消されている。なお、ここにいう「鋼板中央部を緩冷却」とは自然放冷に比べれば急冷却であるが、本発明にいう制御冷却に比べれば冷却速度の小さい冷却をいう。 FIG. 2 is a schematic explanatory view of the temperature history of the steel plate end portion and the center portion when controlled cooling is performed according to the second embodiment of the present invention. In this example, first, as the width direction temperature distribution uniform cooling treatment, the steel plate end is naturally cooled, and the central portion of the steel plate is gently cooled before the start of control cooling (hereinafter referred to as “gradual cooling width direction temperature distribution uniform cooling treatment). Then, after the temperature in the steel plate surface is made uniform, the entire plate including the end portion of the steel plate is cooled with substantially the same amount of cooling water as the same speed cooling treatment. Also in this case, in the same speed cooling process stage of the control cooling, the mismatch between the cooling rate and the cooling stop temperature between the steel plate end and the center is eliminated. Here, “slow cooling of the central part of the steel sheet” means rapid cooling compared to natural cooling, but refers to cooling with a cooling rate lower than that of the controlled cooling referred to in the present invention.
ところで、上記図1に示す例では、幅方向温度分布均一化冷却処理として、鋼板の幅方向中央部に対しては通常の制御冷却程度の加速冷却を行いながら、鋼板端部に対しては冷却を遅らせている。この場合において、上記鋼板中央部の冷却は核沸騰領域において行わせ、鋼板端部の冷却は膜沸騰領域で行われるようにするのがよい。核沸騰領域の冷却は、冷却水の噴射圧力を高くし又は冷却水量を多くして冷却水の運動量を高くする方法若しくはスリットノズル、スリットジェットノズル等の冷却水に高い運動量を与え得る冷却ノズルを採用することによって達成できる。 By the way, in the example shown in FIG. 1, as the width direction temperature distribution uniform cooling process, the center part of the steel sheet in the width direction is subjected to accelerated cooling to the extent of normal control cooling, while the steel sheet end part is cooled. Is delayed. In this case, it is preferable that the cooling of the central portion of the steel plate is performed in the nucleate boiling region and the cooling of the end portion of the steel plate is performed in the film boiling region. Cooling of the nucleate boiling region can be achieved by increasing the injection pressure of the cooling water or increasing the amount of cooling water to increase the momentum of the cooling water, or by using a cooling nozzle that can give a high momentum to the cooling water such as a slit nozzle or slit jet nozzle. Can be achieved by adopting.
一方、膜沸騰領域の冷却は、その詳細については後述するが、上記スリットノズル、スリットジェットノズル等から噴射される運動量の高い冷却水を遮蔽部材により遮断することによって鋼板端部で鋼板中央部からの冷却水が排水されて冷却が進行するようにすることによって達成できる。すなわち、鋼板端部から排水される冷却水は、鋼板の垂直方向への運動量を持っていないので、鋼板表面に発生する蒸気膜を打ち破ることができず膜沸騰となるのである。 On the other hand, the cooling of the film boiling region will be described in detail later. From the center of the steel plate at the end of the steel plate by blocking the cooling water with high momentum sprayed from the slit nozzle, slit jet nozzle, etc. by the shielding member. This can be achieved by allowing the cooling water to be drained and cooling to proceed. That is, the cooling water drained from the end of the steel sheet does not have a momentum in the vertical direction of the steel sheet, and therefore the steam film generated on the surface of the steel sheet cannot be broken and film boiling occurs.
したがって、このようにすることにより、鋼板端部では膜沸騰領域、鋼板中央部では核沸騰領域の冷却が行われることとなり、鋼板端部と中央部との間で冷却能力差を持たせることができる。これにより、鋼板中央部と端部との間の冷却速度を大きく変化させることが可能となり、極めて短い時間で鋼板端部と中央部の温度差を縮小することが可能となる。またこれにより、温度偏差を拡大させる遷移沸騰領域での冷却もなくなり、鋼板面内での温度均一化を早期に達成できるようになる。 Therefore, by doing in this way, cooling of the film boiling region is performed at the steel plate end, and the nucleate boiling region is performed at the central portion of the steel plate, and it is possible to have a cooling capacity difference between the steel plate end and the central portion. it can. As a result, the cooling rate between the central portion and the end portion of the steel plate can be greatly changed, and the temperature difference between the end portion and the central portion of the steel plate can be reduced in a very short time. This also eliminates the cooling in the transition boiling region that increases the temperature deviation, and makes it possible to achieve temperature uniformity in the steel sheet surface at an early stage.
本発明においては、幅方向温度分布均一化冷却処理に続いて、同一速度冷却処理が行われる。このように本発明では、幅方向温度分布均一化冷却処理及び同一速度冷却処理が組み合わせて行われる点に特徴がある。この同一速度冷却処理として行う制御冷却には核沸騰領域の冷却を行うのがよい。図25からも分るように、冷却中の鋼板表面温度が遷移沸騰領域になると冷却後の温度偏差は拡大するが、核沸騰領域では高温ほど冷却能力が高いため、冷却前に温度偏差が存在しても、冷却過程においてその差が縮小する。本発明では、前述のように制御冷却のうち同一速度冷却処理の段階において幅方向温度分布均一化冷却処理を行って厚鋼板端部と中央部との間の温度偏差を解消させているが、その際、上記処理過程において核沸騰領域の冷却を行うことにより、同一速度冷却処理においてより一層確実に冷却速度のばらつきを減少することが可能になる。また、核沸騰領域の冷却では冷却水の運動量の高いので、ノズルから噴射された冷却水が鋼板表面まで届き、鋼板端面から排水される水による冷却の影響を少なくすることができる。 In the present invention, the same speed cooling process is performed following the width direction temperature distribution uniforming cooling process. Thus, the present invention is characterized in that the width direction temperature distribution uniform cooling process and the same speed cooling process are performed in combination. It is preferable to cool the nucleate boiling region for the control cooling performed as the same speed cooling process. As can be seen from FIG. 25, the temperature deviation after cooling increases when the surface temperature of the steel sheet being cooled becomes a transition boiling region, but since the cooling capability is higher at higher temperatures in the nucleate boiling region, there is a temperature deviation before cooling. Even so, the difference is reduced in the cooling process. In the present invention, as described above, the temperature deviation between the end portion and the central portion of the thick steel plate is eliminated by performing the cooling process in the width direction temperature distribution in the same speed cooling process stage in the controlled cooling as described above. At this time, by cooling the nucleate boiling region in the above process, it becomes possible to more reliably reduce the variation in the cooling rate in the same speed cooling process. Further, since the momentum of the cooling water is high in the cooling of the nucleate boiling region, the cooling water sprayed from the nozzle reaches the steel plate surface, and the influence of the cooling by the water drained from the steel plate end face can be reduced.
上記のように、本発明においては、核沸騰領域の冷却が確実に行える条件を整えることが重要になる。このような核沸騰状態を達成するためには、先に述べたように冷却水の運動量を大きくすることによって達成できる。冷却ノズルとしては、スプレーノズル、ミストノズル、円管若しくはスリットラミナーノズル、円管若しくはスリットジェットノズル等を利用することができるが、水量や噴射圧力を少なくするために、運動量の高い円管又はスリットジェットノズルを採用するのが好ましい。例えばスリットジェット冷却を採用した場合、水量密度を1200l/min/m2以上、さらに好適には1500l/min/m2以上噴射すれようにすれば核沸騰領域の沸騰状態を確実に得ることができる。なお、設備コストやランニングコストの観点から上記水量密度は3000l/min/m2以下とするのが望ましい。なお、スリットジェット冷却とは、スリット状の冷却水噴射口を有するノズルから高速の水流を噴射するものをいう。 As described above, in the present invention, it is important to prepare conditions for reliably cooling the nucleate boiling region. In order to achieve such a nucleate boiling state, it can be achieved by increasing the momentum of the cooling water as described above. As the cooling nozzle, a spray nozzle, a mist nozzle, a circular tube or slit laminar nozzle, a circular tube or a slit jet nozzle, etc. can be used, but a circular tube or slit with a high momentum is used in order to reduce the amount of water and the injection pressure. It is preferable to employ a jet nozzle. For example, when slit jet cooling is employed, the boiling state of the nucleate boiling region can be reliably obtained if the water density is jetted to 1200 l / min / m 2 or more, more preferably 1500 l / min / m 2 or more. . In addition, it is desirable that the water density is 3000 l / min / m 2 or less from the viewpoint of equipment cost and running cost. In addition, slit jet cooling means what injects a high-speed water flow from the nozzle which has a slit-shaped cooling water injection port.
図3は、本発明を実施するための制御冷却装置の1例を含む鋼板の製造ライン構成を示す概念図である。鋼板製造用の素材スラブは、厚板圧延機1により所定厚の厚鋼板2に圧延され、ローラーテーブル3上を移送され、通過型制御冷却装置20により所定の冷却速度で冷却停止温度まで冷却されるようになっている。通過型制御冷却装置20は、鋼板2のパスラインを挟んで上ヘッダー21及び下ヘッダー22を備えており、これらに高圧水を噴出する上スリットノズル23、下スリットノズル24が取り付けられており、鋼板2の表面に極めて高圧の噴出水を衝突させて厚鋼板2を急速冷却する機能を有する。本例では、上記のほか通過型制御冷却装置20の前後に入側温度計31、出側温度計32が設置されており制御冷却の前後で鋼板の温度測定が可能となっている。
FIG. 3 is a conceptual diagram showing a production line configuration of a steel plate including an example of a control cooling device for carrying out the present invention. The material slab for steel plate production is rolled to a
図4は、本発明に用いる通過型制御冷却装置20の1例に係る概念図である。この例では、通過型制御冷却装置20は複数の冷却ゾーン構成されており、それぞれの冷却ゾーンは水切りロール27によって仕切られている。また、これら冷却ゾーンは個別に冷却水量が調整可能となっている。これらの冷却ゾーンは厚板圧延機1に近い方から順に第1冷却ゾーン、第2冷却ゾーン・・・と呼称する。なお、本例の通過型制御冷却装置20は、1200l/min・m2以上通水できる能力を有し、核沸騰による伝熱状態を確実にして本発明の目的が確実に達成できるようになっている。
FIG. 4 is a conceptual diagram according to an example of the passing
図4に示すように本例の通過型制御冷却装置20は、前段部25と後段部26に分かれている。前段部25には、これを構成する各冷却ゾーンに遮蔽部材28が設置されており、鋼板端部にかかる冷却水量を制限できるようになっている。図5に示すように、上スリットノズル23の下部であって厚鋼板幅方向両側端部通過位置に相当する箇所には左右一対の上部遮蔽部材28を、下スリットノズル24の上部であって鋼板幅方向両側端部通過位置に相当する箇所には左右一対の下部遮蔽部材29が設けられている。これら上部遮蔽部材28及び下部遮蔽部材29は前後進機構16によって鋼板2の進行方向に対して直角方法に出し入れ可能に構成されている。また、これら上部遮蔽部材28及び下部遮蔽部材29は、駆動機構16によりそれぞれ単独にあるいは協働して鋼板パスラインに対して直角方向に出入可能に構成されている。なお、これら上部遮蔽部材28及び下部遮蔽部材29は、前記前段部25を構成する各水冷ゾーン毎に設けられており、それら鋼板2のパスライン直角方法への出し入れは、各個別に行うことが可能である。例えば、特定の冷却ゾーン、たとえば第1冷却ゾーンのみに遮蔽部材を入れることも可能であり、前段のすべての冷却ゾーンに入れることも可能である。
As shown in FIG. 4, the passing
本発明の第1実施形態では、上記通過型制御冷却装置20を用い、それを構成する1以上の入側冷却ゾーンにおいて幅方向温度分布均一化冷却処理を、前記入側冷却機構に続く少なくとも1以上の冷却ゾーンにおいて同一速度冷却処理を行う。この幅方向温度分布均一化冷却処理は、具体的には前記通過型制御冷却装置20の前段部25に設けられた上部遮蔽部材28及び下部遮蔽部材29の出し入れ操作によって行われる。
In the first embodiment of the present invention, at least one of the above-mentioned through-type
この操作を行うためには、冷却水の遮蔽を実施する遮蔽ゾーン数(以下単に「遮蔽ゾーン数」という)及び該遮蔽による鋼板端部からの遮蔽幅(以下単に「遮蔽幅」という)を決定しなければならない。そのため、本発明においては、制御冷却の直前における鋼板端部の状態量を、図6を参照して、次のように定義する。
(1)鋼板端部温度降下距離:板幅方向における鋼板温度の勾配が0(ゼロ)になる位置から鋼板端部までの距離
(2)鋼板端部温度降下量:板幅方向における鋼板温度の勾配が0(ゼロ)になる位置における温度と鋼板端部の温度との差
In order to perform this operation, the number of shielding zones for shielding the cooling water (hereinafter simply referred to as “shielding zone number”) and the shielding width from the edge of the steel plate by the shielding (hereinafter simply referred to as “shielding width”) are determined. Must. Therefore, in this invention, the state quantity of the steel plate edge part just before control cooling is defined as follows with reference to FIG.
(1) Steel plate edge temperature drop distance: Distance from the position where the steel sheet temperature gradient in the sheet width direction becomes 0 (zero) to the steel sheet edge
(2) Steel plate end temperature drop: Difference between the temperature at the position where the steel plate temperature gradient becomes 0 (zero) in the plate width direction and the steel plate end temperature
これら鋼板端部温度降下距離及び鋼板端部温度降下量は、圧延素材の厚みやその加熱条件、圧延製品の板幅や厚み、圧延完了温度等により変動するが、一般的には鋼板端部温度降下量は40〜50℃、鋼板端部温度降下距離は100〜300mm程度と見積もられる。これらの値は、圧延素材の厚み等をパラメーターとして実測値を解析し、予めテーブル化して求めることも可能であり、あるいは通過型制御冷却装置の前面に鋼板の全面に亘る温度分布が測定可能な走査型温度計31等を設置し、その測定結果を電子計算機で演算して求めることもできる。
These steel plate end temperature drop distances and steel plate end temperature drop amounts vary depending on the thickness of the rolled material, its heating conditions, the width and thickness of the rolled product, the rolling completion temperature, etc. The drop amount is estimated to be 40 to 50 ° C., and the steel plate end temperature drop distance is estimated to be about 100 to 300 mm. These values can be obtained by analyzing the measured values using parameters such as the thickness of the rolled material and making a table in advance, or the temperature distribution over the entire surface of the steel plate can be measured in front of the passing type control cooling device. A
このようにして求められた鋼板端部温度降下距離及び鋼板端部温度降下量を基礎にして、通過型制御冷却装置20の前段における冷却水の遮蔽を実施する遮蔽ゾーン数及び遮蔽幅が決定される。本発明の第1実施形態では、鋼板幅方向中央部では通常の制御冷却により冷却し、鋼板端部では遮蔽部材により冷却水量を制限して極力空冷に近い状態となるようして、鋼板幅方向中央部と厚鋼板端部の温度を一致させる。この幅方向温度分布均一化冷却処理では、幅方向の温度均一化の目標値を20℃以下、好ましくは10℃以下とする。
Based on the steel plate end temperature drop distance and the steel plate end temperature drop obtained in this way, the number of shielding zones and the shielding width for performing cooling water shielding in the previous stage of the passing type
遮蔽幅、すなわち上部遮蔽部材28及び下部遮蔽部材29によって覆われる鋼板端部の幅は、前記鋼板端部温度降下距離とする(図6参照)。
The shielding width, that is, the width of the steel plate end covered by the upper shielding
一方、遮蔽ゾーン数は、図7を参照して以下のように決定する。
(1)通過型制御冷却装置20を構成する冷却ゾーン数をN、目標冷却開始温度と冷却終了温度との温度差をDT(目標冷却量)として、通過型制御冷却装置20の1ゾーンあたりの冷却量ΔTを
ΔT=DT/N
と算出する。
(2)幅方向温度分布均一化冷却処理開始時から同一速度冷却処理開始時に至る間に鋼板中央部に必要とされる温度降下量をEDとし、前記1ゾーンあたりの冷却量ΔTから厚鋼板中央部を幅方向温度分布均一化冷却処理のために冷却するに必要な冷却ゾーン数nを
n=ED/ΔT
として求める。
(3)通過型制御冷却装置の最初のゾーンである第1冷却ゾーンから前記(2)で求めた冷却ゾーン数nに至るゾーンを遮蔽ゾーンとする。
On the other hand, the number of shielding zones is determined as follows with reference to FIG.
(1) The number of cooling zones constituting the pass type
And calculate.
(2) Uniform temperature distribution in the width direction The temperature drop required at the center of the steel sheet from the start of the cooling process to the start of the same speed cooling process is ED, and the center of the thick steel sheet is calculated from the cooling amount ΔT per zone. N = ED / ΔT is the number of cooling zones n required for cooling the temperature section for cooling the temperature distribution in the width direction.
Asking.
(3) A zone from the first cooling zone, which is the first zone of the pass-type control cooling device, to the number of cooling zones n determined in (2) is defined as a shielding zone.
なお、上記において算出される遮蔽ゾーン数は、必ずしも整数とならないが、本例の設備例では、上面単独あるいは下面単独での遮蔽部材使用が可能であるため、その一方のみの使用を0.5ゾーンの使用とみなして、使用ゾーン数を調整する。例えば遮蔽ゾーン数が1.4と算出された場合は、これに近似する1.5ゾーン分を使用することとする。具体的には、第1冷却ゾーンでは上下部の遮蔽部材を使用し、第2冷却ゾーンでは上部遮蔽部材のみを使用する。 The number of shielding zones calculated in the above is not necessarily an integer. However, in the equipment example of this example, the shielding member can be used on the upper surface alone or on the lower surface alone. Regard the use of zones and adjust the number of zones used. For example, when the number of shielding zones is calculated to be 1.4, 1.5 zones approximate to this are used. Specifically, the upper and lower shielding members are used in the first cooling zone, and only the upper shielding member is used in the second cooling zone.
なお、設備構成上、各冷却ゾーンの長さを短くし、冷却ゾーン数を多くするほど、鋼板端部の温度制御性が向上する。また、遮蔽部材により冷却水をほぼ遮断して、鋼板端部では空冷に近い条件にした方がよい。これは、鋼板端部の冷却が板中央部の冷却に近づくにつれ、鋼板中央部と端部とを均一化するために要する時間が長くなり、遮蔽部材の使用ゾーン数も多くなり、その結果、制御冷却の後段側における冷却量が少なくなるため、本発明の効果である板端部と中央部の冷却速度が一致するメリットが得られにくくなるからである。 In addition, the temperature controllability of the steel plate end portion is improved as the length of each cooling zone is shortened and the number of cooling zones is increased in view of the equipment configuration. Moreover, it is better to close the cooling water by the shielding member and make the condition close to air cooling at the end of the steel plate. As the cooling of the steel plate end approaches the cooling of the plate center, the time required to make the steel plate center and end uniform becomes longer, and the number of use zones of the shielding member increases. This is because the amount of cooling on the rear stage side of the controlled cooling is reduced, and it is difficult to obtain the merit that the cooling rate of the plate end portion and the center portion, which is the effect of the present invention, coincides.
図8は、上記本発明の第1の実施形態にしたがい、板厚30mm、板幅3200mm、板長25mmの鋼板を制御冷却したときの鋼板幅方向の温度分布を示すグラフである。幅方向温度分布均一化冷却処理開始前の鋼板幅中央部の温度(冷却開始温度)は750℃であり、制御冷却の冷却停止温度は550℃である。この例では、幅方向温度分布均一化冷却処理開始前における鋼板端部温度降下量は30℃、鋼板端部温度降下距離は200mmであると算出された。 FIG. 8 is a graph showing the temperature distribution in the steel plate width direction when a steel plate having a plate thickness of 30 mm, a plate width of 3200 mm, and a plate length of 25 mm is controlled and cooled according to the first embodiment of the present invention. The temperature (cooling start temperature) at the center of the steel plate width before the start of the width direction temperature distribution uniform cooling process is 750 ° C., and the cooling stop temperature of the controlled cooling is 550 ° C. In this example, the steel plate end temperature drop before the start of the width direction temperature distribution uniforming cooling process was calculated to be 30 ° C., and the steel plate end temperature drop distance was 200 mm.
制御冷却装置は図4、5に示した構造を有するものであり、冷却ゾーン数10、冷却水は、水量1800l/min・m2(上下とも)のスリットジェットノズルからの噴射水とした。上述の手法により遮蔽ゾーン数を求めた結果、1.5と算出されたので、第1冷却ゾーンでは上下面において遮蔽部材を使用し、第2冷却ゾーン下面のみ遮蔽部材を使用することとした。一方、遮蔽幅は、鋼板端部温度降下距離は200mmであることに基づき200mmとし、鋼板端部から200mm入った位置まで遮蔽部材により噴射水を遮断した。 The control cooling device has the structure shown in FIGS. 4 and 5, and the cooling water is jet water from the slit jet nozzle with the number of cooling zones of 10 and the water amount of 1800 l / min · m 2 (upper and lower). As a result of obtaining the number of shielding zones by the above-described method, it was calculated to be 1.5. Therefore, in the first cooling zone, the shielding member was used on the upper and lower surfaces, and the shielding member was used only on the lower surface of the second cooling zone. On the other hand, the shielding width was set to 200 mm based on the steel plate end temperature drop distance being 200 mm, and the spray water was blocked by the shielding member up to a position 200 mm from the steel plate end.
結果は、制御冷却前の温度分布(a)、制御冷却後の温度分布(b)として示すとおりである。本発明にしたがい制御冷却を行った場合には、制御冷却前の鋼板端部温度降下量30℃を制御冷却後においてほぼ0℃とすることができた。これに対し、遮蔽部材を使用しなかった場合は、制御冷却後の鋼板端部温度降下量が60℃となり、かえって温度偏差が拡大することが明らかになった。 The results are as shown as temperature distribution (a) before controlled cooling and temperature distribution (b) after controlled cooling. When controlled cooling was performed according to the present invention, the temperature drop 30 ° C. before the controlled cooling could be reduced to approximately 0 ° C. after the controlled cooling. On the other hand, when the shielding member was not used, it was revealed that the temperature drop at the end of the steel plate after controlled cooling was 60 ° C., and the temperature deviation was increased.
本発明は上記のとおり幅方向温度分布均一化冷却処理及び同一速度冷却処理を順次行うことによって、所期の目的を達成するものであるが、本発明は、さらに厚鋼板の長手方向についても上記の技術的思想を拡大援用して長手方向温度分布均一化冷却処理ができるようにしている。その手法として、たとえば、通過型制御冷却装置の冷却水量を厚鋼板の先尾端部通過時において制限することによって行うことができる。 The present invention achieves the intended object by sequentially performing the width direction temperature distribution uniform cooling process and the same speed cooling process as described above, but the present invention further includes the above in the longitudinal direction of the thick steel plate. The technical idea of the above is expanded and used so that the longitudinal temperature distribution uniform cooling process can be performed. As the technique, for example, the amount of cooling water of the passing type control cooling device can be limited by passing the leading end of the thick steel plate.
この長手方向温度分布均一化冷却処理のための鋼板の先尾端部通過時における冷却水量の制限は、図4、5に示した制御冷却装置に図9に示すように、制御冷却帯の厚鋼板2の先端通過を検知するフォトセル17を設置し、該フォトセル17による鋼板の先端通過の検知時間を基準として、図4に示す分割された冷却ゾーンに侵入してくる鋼板の先尾端部の水冷状態を調整することによって行う。
As shown in FIG. 9 in the control cooling device shown in FIGS. 4 and 5, the limit of the cooling water amount at the time of passing through the leading end portion of the steel sheet for this longitudinal temperature distribution uniform cooling treatment is the thickness of the control cooling zone. A
図9に示す例では、冷却ゾーン(たとえば第1冷却ゾーン)に流量計及び流量調整弁から構成される流量制御装置41及びタイマーTを設置し、前記フォトセル17による先端通過信号を基準として上ヘッダー20、下ヘッダー22への冷却水の供給を制御して、これらにつながる上スリットノズル23、下スリットノズル24から鋼板先後端部に対し所定時間、所定の制限された水量を供給できるようにしている。図10に示す例は図9に示したものの変形例であり、流量制御装置41に代えて三方弁42を設置し、タイマーにより設定された所定時間に亘り冷却水を外部放出し、これにより所定時間、所定の制限された水量を上スリットノズル23、下スリットノズル24から供給できるようにしている。
するようになっている。
In the example shown in FIG. 9, a flow
It is supposed to be.
上記図9あるいは図10に示した先尾端水量制御機構を利用して、本発明にしたがい制御冷却を行うためには、水量が制限された状態で適用される制御冷却装置のゾーン数(以下単に「水量制限ゾーン数」という)及び水量制限先尾端長を決定しなければならない。そのため、鋼板幅方向の幅方向温度分布均一化処理に当って採用したと同様の考え方に基づいて、先端部温度降下距離及び先端部温度降下量(尾端部においても同様の概念を利用するので以下「先尾端部温度降下距離」及び「先尾端部温度降下量」という)を図11のように定義する。この場合においても、この先尾端部温度降下量および先尾端部温度降下距離は、圧延素材の厚み、その加熱条件、圧延完了後の板幅、製品厚み、圧延完了温度等により変動するが、一般的には先尾端部温度降下量は30〜50℃程度、先尾端部度降下距離は300〜500mm程度である。これらの値は、圧延素材の厚み等をパラメーターとして実測値を解析し、予めテーブル化して求めることも可能であり、あるいは通過型制御冷却装置の前面に鋼板の長手方向の温度分布が測定可能な走査型温度計、スポット温度計等を設置し、その測定結果に基づき、電子計算機によって演算して求めることもできる。 In order to perform control cooling according to the present invention using the leading edge water amount control mechanism shown in FIG. 9 or FIG. 10, the number of zones of the control cooling device applied in a state where the amount of water is limited (hereinafter referred to as the number of zones) Simply referred to as “the number of water restriction zones”) and the length of the water restriction limit. Therefore, based on the same idea as adopted in the width direction temperature distribution uniformization process in the width direction of the steel sheet, the tip part temperature drop distance and tip part temperature drop amount (the same concept is also used in the tail part) Hereinafter, “the leading edge temperature drop distance” and “the leading edge temperature drop amount”) are defined as shown in FIG. Even in this case, the leading edge temperature drop amount and the leading edge temperature drop distance vary depending on the thickness of the rolled material, its heating conditions, the sheet width after completion of rolling, the product thickness, the rolling completion temperature, etc. In general, the tip end temperature drop is about 30 to 50 ° C., and the tip end degree drop is about 300 to 500 mm. These values can be obtained by analyzing the measured values using the thickness of the rolled material, etc. as a parameter and pre-tabulating them, or the temperature distribution in the longitudinal direction of the steel plate can be measured on the front surface of the passing type control cooling device. A scanning thermometer, a spot thermometer, or the like may be installed, and calculation may be performed by an electronic computer based on the measurement result.
このようにして求められた先尾端部温度降下距離及び先尾端部温度降下量を基礎にして、通過型制御冷却装置20の前段における水量制限ゾーン数及び水量制限先尾端長が決定される。この場合においても厚鋼板長手方向中央部では通常の制御冷却により冷却し、厚鋼板先尾端部では冷却水量を制限して極力空冷に近い状態となるようして、厚鋼板長手方向中央部と厚鋼板先尾端部の温度を極力一致させることが重要である。この長手方向温度分布均一化冷却処理では、長手方向の温度均一化の目標値を20℃以下、好ましくは10℃以下とする。
Based on the leading edge temperature drop distance and the leading edge temperature drop amount obtained in this way, the number of water restriction zones and the water restriction restriction leading edge length in the previous stage of the passing type
水量制限先尾端長は前記先尾端部温度降下距離とする(図11参照)。一方、水量制限ゾーン数は、厚鋼板端部の幅方向温度分布均一化冷却処理に当って採用した遮蔽ゾーン数と同様の手順により決定する。すなわち、
(1)通過型制御冷却装置の全冷却ゾーン数と目標冷却開始温度、冷却終了温度から、1ゾーンあたりの冷却量を算出する。
(2)冷却開始前の先尾端部温度降下量相当分だけ鋼板長手方向中央部を冷却するに要するゾーン数を前記1ゾーン当たりの冷却量から求める。
(3)制御冷却装置の最初のゾーンである第1冷却ゾーンから前記(2)で求めた冷却ゾーン数に至る冷却ゾーンまでを遮蔽ゾーン数とする。
The water amount restriction front end length is the front end temperature drop distance (see FIG. 11). On the other hand, the number of water limit zones is determined by the same procedure as the number of shielding zones adopted in the cooling process for uniformizing the temperature distribution in the width direction at the end of the thick steel plate. That is,
(1) The cooling amount per zone is calculated from the total number of cooling zones, the target cooling start temperature, and the cooling end temperature of the pass-type control cooling device.
(2) The number of zones required to cool the central portion in the longitudinal direction of the steel plate by the amount corresponding to the temperature drop at the leading end before the start of cooling is obtained from the cooling amount per zone.
(3) The number of shielding zones is from the first cooling zone, which is the first zone of the control cooling device, to the cooling zone that reaches the number of cooling zones determined in (2).
上記において算出される遮蔽ゾーン数は、必ずしも整数とはならない。例えば冷却ゾーン数が1.4と算出された場合は、最も近い整数である1に丸めて、冷却ゾーン数とする。この場合、遮蔽を上下一方のみについて行うことはしない。幅方向温度分布均一化冷却の場合と異なり、例えば上面だけを冷却すると鋼板上下面の温度差により反りが発生する危険性があるためである。 The number of shielding zones calculated in the above is not necessarily an integer. For example, when the number of cooling zones is calculated to be 1.4, the number of cooling zones is rounded to 1 which is the nearest integer. In this case, the shielding is not performed only on one of the upper and lower sides. This is because, unlike the case of cooling in the width direction uniform temperature distribution, for example, if only the upper surface is cooled, there is a risk of warping due to a temperature difference between the upper and lower surfaces of the steel sheet.
なお、長手方向温度分布均一化冷却処理においても、先尾端部の温度制御性を向上させるためには、各冷却ゾーンの設備長をなるべく短くし、冷却ゾーン数を多くする方がよい。また、板先尾端部において冷却水はほぼ遮断して、空冷に近い条件にした方がよい。これは、板幅方向温度分布均一化冷却処理の場合と同様に、厚鋼板先尾端部の温度が板中央部の温度に近づくにつれ、鋼板中央部と先尾端部との温度を均一化するために要する時間が長くなり、流量調整を実施する水冷ゾーン数も多くなり、その結果、制御冷却の後段側における冷却量が少なくなるため、本発明の効果である板先尾端部と中央部の冷却速度が一致するメリットが得られにくくなるからである。 Even in the longitudinal temperature distribution uniform cooling process, in order to improve the temperature controllability of the leading end, it is better to shorten the equipment length of each cooling zone as much as possible and increase the number of cooling zones. In addition, it is better to close the cooling water at the leading end of the plate to a condition close to air cooling. As in the case of the plate width direction temperature distribution uniform cooling process, as the temperature of the thick steel plate leading edge approaches the temperature of the plate central portion, the temperature of the steel plate central portion and the leading edge is made uniform. The time required to adjust the flow rate is increased, and the number of water cooling zones for adjusting the flow rate is increased. As a result, the amount of cooling on the rear stage side of the control cooling is reduced. This is because it is difficult to obtain the advantage of matching the cooling rates of the parts.
図12は、本発明により長手方向温度分布均一化冷却処理を先端部通板時に行うための設備構成の概念図である。この例では、図12(a)に示すように、通過型制御冷却装置20の各冷却ヘッダー21に至る冷却水の供給を停止した状態としておき、厚鋼板の先端が先端部温度降下距離だけ上スリットノズル23を超えて進んだとき、図12(b)に示すように、流量制御装置41を動作させ通常の制御冷却に必要な量の冷却水を噴射するようになっている。かかる動作制御は、先に述べたように、制御冷却帯の厚鋼板2の先端通過を検知するフォトセル17および流量制御装置41に作動時間を与えるタイマーTを設置し、該フォトセル17による厚鋼板の先端通過の検知時間を基準として流量制御装置41により冷却水の噴射状態を制御することによって可能である。
FIG. 12 is a conceptual diagram of an equipment configuration for performing the longitudinal temperature distribution uniform cooling process at the time of passing the tip portion according to the present invention. In this example, as shown in FIG. 12 (a), the cooling water supply to each cooling
図13は、本発明により長手方向温度分布均一化冷却処理を尾端部通板時の行うための設備構成の概念図である。この例では、図13(a)に示すように、通過型制御冷却装置20の各冷却ヘッダー21に至る冷却水が通常の制御冷却を行うために通水状態とされており、厚鋼板がその尾端から尾端部温度降下距離を残して上スリットノズル23に至ったとき、図13(b)に示すように、流量制御装置41を動作させ冷却水の噴射を停止するようになっている。かかる動作制御もフォトセル17および流量制御装置41に作動時間を与えるタイマーTを設置し、該フォトセル17による厚鋼板の先端通過の検知時間を基準として流量制御装置41により冷却水の噴射状態を制御することによって可能である。
FIG. 13 is a conceptual diagram of the equipment configuration for performing the longitudinal temperature distribution uniform cooling process at the time of tail-end passage according to the present invention. In this example, as shown in FIG. 13 (a), the cooling water reaching each cooling
上記長手方向温度分布均一化冷却処理は、先述の幅方向温度分布均一化冷却処理と併用して行われる。これにより同一速度冷却処理に先立って鋼板の面内温度分布が鋼板の幅方向および長手方向に亘って均一化されるので、それに続く制御冷却過程(同一速度冷却処理)を核沸騰領域の冷却とすることにより、確実に同一冷却速度での冷却が可能になる。また、本発明では、上記のように幅方向温度分布均一化冷却処理と長手方向温度分布均一化冷却処理を併用するものであるが、これらの処理は互いに干渉することなく実施可能であるから、例えば幅方向端部温度降下量が30℃、先尾端部の温度降下量が70℃となっていたときでも同一速度冷却処理に先立って鋼板の面内温度分布を十分均一化できるという利点がある。 The longitudinal direction temperature distribution uniform cooling process is performed in combination with the above-described width direction temperature distribution uniform cooling process. As a result, the in-plane temperature distribution of the steel sheet is made uniform in the width direction and the longitudinal direction of the steel sheet prior to the same speed cooling process, so that the subsequent controlled cooling process (same speed cooling process) is performed with the cooling of the nucleate boiling region. This makes it possible to reliably cool at the same cooling rate. Further, in the present invention, as described above, the width direction temperature distribution uniform cooling process and the longitudinal direction temperature distribution uniform cooling process are used together, but these processes can be performed without interfering with each other. For example, even when the temperature drop at the end in the width direction is 30 ° C. and the temperature drop at the leading end is 70 ° C., there is an advantage that the in-plane temperature distribution of the steel sheet can be sufficiently uniformed prior to the same speed cooling treatment. is there.
図14は、本発明を第2の実施形態にしたがって実施するために用いる鋼板の制御冷却装置の1例を示す概念図である。この例では、熱間圧延された厚鋼板2は、ローラーテーブル3上を移送されて順次、緩冷却装置10、通過型制御冷却装置20へ搬送され、所定の冷却速度で冷却停止温度まで冷却される。
FIG. 14 is a conceptual diagram showing an example of a steel sheet control cooling apparatus used for carrying out the present invention according to the second embodiment. In this example, the hot-rolled
緩冷却装置10には、厚鋼板2のパスラインを挟んで上ヘッダー11及び下ヘッダー12が配置されており、これらヘッダーに設けられたノズル(図示せず)から水流13、14が厚鋼板2の表裏面に当りラミナーフロー冷却ができるようになっている。なお、ラミナーフロー冷却とは、水流が遅いときに生ずる層流(ラミナーフロー)を利用して鋼板の表面に水膜を生じさせて冷却する方法であり、その冷却速度は比較的小さい。
In the
通過型制御冷却装置20は、本発明の第1実施形態の場合と同じく、厚鋼板2のパスラインを挟んで上ヘッダー21及び下ヘッダー22が配置されており、これに高圧水を噴出するスリットノズル23、24が取り付けられており、厚鋼板の表面に衝突する極めて高圧の噴出水により厚鋼板を急速冷却する機能を有する。またこの通過型制御冷却装置20は、本発明の第1実施形態の場合と同じく、複数の冷却ゾーンから構成されており、それぞれの冷却ゾーンでは水切りロール27で仕切られ、且つ個別に冷却水量が調整可能となっている。この場合についても、これら各冷却ゾーンは圧延機に近いほうから順に第1冷却ゾーン、第2冷却ゾーン・・・と呼称する。
As in the case of the first embodiment of the present invention, the pass-type
本例の通過型制御冷却装置20においても、1200l/min・m2以上通水できる能力を有し、核沸騰による伝熱状態を確実にして板幅方向に亘って均一冷却が可能となるようになっている。さらに、本例では、緩冷却装置10の前面側及び通過型制御冷却装置20の前後には温度計30、31、32が設置されており、これら冷却装置の通過前後で鋼板の温度測定が可能となっている。
The passing type
この例から分るように、本発明の第2実施形態では、ラミナーフロー冷却帯による緩冷却装置10とスリットノズル冷却帯による制御冷却装置20を併用する。その際、ラミナーフロー冷却帯による緩冷却装置において、厚鋼板2の幅方向両側端部及び先尾端部の冷却水量制御を行う。厚鋼板幅方向の冷却水量の調整は、図15に示すように、緩冷却装置10において、上ヘッダー11の下部、及び下ヘッダー12の上部に鋼板幅方向両側端部に相当する箇所に左右一対の遮蔽部材15を設け、これを前後進機構16によって鋼板2の進行方法に対して直角方法に出し入れすることにより行う。
As can be seen from this example, in the second embodiment of the present invention, the
このように、本発明の第2実施形態は、第1実施形態における通過型制御冷却装置20の前段の幅方向温度分布均一化冷却処理機能を緩冷却装置10によって置き換えるものであり、緩冷却装置の鋼板端部通過相当位置に遮蔽部材15を設けて幅方向温度分布均一化冷却処理を行い、ついで通過型制御冷却装置20によって同一冷却水量冷却処理を行うことに特徴がある。遮蔽部材は緩冷却装置を前段部と後段部に分けて、これらを別個の制御できるようにしてもよく、たとえば、前段部のみに遮蔽部材を設けてもよい。しかしながら、緩冷却装置10の前段部のみに遮蔽部材を設ける場合には、鋼板端部が緩冷却装置の後段で過冷却されるおそれがある。したがって、遮蔽部材は緩冷却装置10の全長に亘って設けるのがよい。
In this way, the second embodiment of the present invention replaces the widthwise temperature distribution uniformization cooling processing function of the previous stage of the pass type
この場合においては、緩冷却装置は、通過型制御冷却装置20と異なり、水切りロールによって分割された冷却ゾーンを備えていないので、幅方向温度分布均一化冷却処理のための操業条件は、鋼板端部を遮蔽部材が覆う遮蔽幅および厚鋼板通板速度により決定される。これらの操業条件は、すでに説明した手順にしたがって鋼板端部温度降下距離及び鋼板端部温度降下量を求め、これらの量を基準に定められる。
In this case, unlike the through-type
このうち、遮蔽幅は鋼板端部温度降下距離として定められる。一方、通板速度は、鋼板中央部の温度を鋼板端部温度降下量相当分だけ低下させるのに必要な冷却時間を求め、緩冷却装置の設備長を冷却時間で除して定めればよい。このように本実施形態においては、冷却時間、いいかえれば、通板速度を連続的に制御することによって幅方向温度分布均一化冷却処理を行うことができるので、通過型制御冷却装置による同一速度冷却処理に付する前に非常に高い精度で鋼板の表面温度を均一化できる。 Of these, the shielding width is determined as the temperature drop distance at the end of the steel plate. On the other hand, the sheet passing speed may be determined by obtaining the cooling time required to lower the temperature at the center of the steel sheet by the amount corresponding to the temperature drop at the end of the steel sheet and dividing the equipment length of the slow cooling device by the cooling time. . As described above, in the present embodiment, the cooling time, in other words, the width direction temperature distribution uniformization cooling process can be performed by continuously controlling the plate passing speed, so that the same speed cooling by the passing type control cooling device is possible. The surface temperature of the steel sheet can be made uniform with very high accuracy before being processed.
なお、上記幅方向温度分布均一化冷却処理に当っては、緩冷却装置を通板する際、幅方向中央部では、通常の操業条件によって冷却し、鋼板端部のみに遮蔽部材を適用して鋼板端部が空冷に近い状態で冷却されるようにして、緩冷却装置の出側で鋼板幅方向中央部と端部の温度差を解消するようにするのがよい。すでに述べた理由から推察できるとおり、この場合において通板速度を最大にすることができ、生産性の向上に寄与するからである。 In the cooling process for uniformizing the temperature distribution in the width direction, when passing the slow cooling device, the central part in the width direction is cooled according to normal operating conditions, and a shielding member is applied only to the end of the steel sheet. It is preferable that the steel plate end is cooled in a state close to air cooling so that the temperature difference between the central portion and the end of the steel plate width direction is eliminated on the outlet side of the slow cooling device. This is because, as can be inferred from the reasons already described, the sheet passing speed can be maximized in this case, which contributes to the improvement of productivity.
また、緩冷却装置では、冷却水量を500l/min・m2以下とすることが好ましい。これにより、膜沸騰領域における伝熱特性を利用することができ、温度偏差を拡大させることなく、幅方向温度分布均一化冷却処理が可能になるからである。本発明では、前述のように緩冷却装置に遮蔽部材を設置して鋼板端部と中央部との間の温度偏差を解消させているが、緩冷却装置における伝熱形式を膜沸騰によるものとすることにより、より一層確実に同一冷却速度での冷却が可能になる。 Further, in the slow cooling device, the amount of cooling water is preferably 500 l / min · m 2 or less. This is because the heat transfer characteristics in the film boiling region can be used, and the width direction temperature distribution uniform cooling process can be performed without increasing the temperature deviation. In the present invention, as described above, the shielding member is installed in the slow cooling device to eliminate the temperature deviation between the end portion and the central portion of the steel plate, but the heat transfer type in the slow cooling device is due to film boiling. By doing so, cooling at the same cooling rate can be performed more reliably.
すでに述べたように、鋼板端部温度降下量は40〜50℃程度であり、本発明の第2実施形態の高温域での幅方向温度分布均一化冷却処理は製品の材質を決定付けないものであるので、そのための冷却は、低水量で且つ表面温度が高い状態で存在する膜沸騰領域における伝熱特性を利用することが好ましく、それにより速やかに幅方向に均一な温度分布を達成できる。このような膜沸騰状態を実現するためには、鋼板と冷却水の間に安定した蒸気膜を存在させる必要があり、スプレー冷却やミスト、ラミナー冷却など運動量の低いものを採用することが好ましい。 As described above, the temperature drop at the end of the steel sheet is about 40 to 50 ° C., and the width direction temperature distribution uniform cooling process in the high temperature range of the second embodiment of the present invention does not determine the material of the product. Therefore, it is preferable to use the heat transfer characteristics in the film boiling region where the amount of water is low and the surface temperature is high, for cooling for that purpose, so that a uniform temperature distribution in the width direction can be achieved quickly. In order to realize such a film boiling state, it is necessary to have a stable vapor film between the steel plate and the cooling water, and it is preferable to employ a low momentum such as spray cooling, mist, or laminar cooling.
上記第2実施形態においても、長手方向温度分布均一化冷却処理を行うことができる。この長手方向温度分布均一化冷却処理は、第1実施形態と同様に、鋼板先後端部が緩冷却装置を通過する際、水流を遮断することによって行う。具体的には図16に示すように、ラミナーフロー冷却帯10の上ヘッダー11を分割し(図の例では11a〜11dの4分割)、ラミナーフロー冷却帯10への厚鋼板2の先端通過を、たとえばフォトセル14によって検知するようにする。そして、フォトセル14による厚鋼板の先端通過の検知時間を基準として上記分割された上ヘッダーが作動し始めるようタイマーT1〜T4をセットする。
Also in the second embodiment, the longitudinal temperature distribution uniform cooling process can be performed. This longitudinal temperature distribution uniform cooling process is performed by blocking the water flow when the steel plate tip / rear end passes through the slow cooling device, as in the first embodiment. Specifically, as shown in FIG. 16, the
これにより、図16に示すように鋼板進入段階に応じて上ヘッダー11が作動し、厚板先端部の水冷が緩和されることになる。タイマーによる冷却水噴射タイミングは、第1実施形態と同じく、予め求められた又は緩冷却前に測定された先端部温度降下長さを基準に定め、先尾端部水量制限長を先尾端温度降下距離に相応するものとして、この区間に亘って水冷が遮断されるようにすればよい。鋼板後端部での冷却水量の調整は上記と同様にして行えばよい。
As a result, as shown in FIG. 16, the
しかしながら、鋼板長手方向先尾端において冷却水を遮断することは、鋼板幅端部相当位置に遮蔽部材を設置して冷却水量を制限することと同一の効果をもたらす。そのため、鋼板端部温度降下量と鋼板先尾端部温度降下量が同一又は近似している場合は、鋼板全面に亘って同一速度冷却処理前に鋼板面内温度をほぼ均一にすることが可能であるが、これらの間に大きな差が存在する場合には、幅方向又は長さ方向の一方しか均一化ができないという結果を招く。緩冷却装置は、長手方向全長に亘って板幅方向端部の冷却水量を制限するため、幅方向と長手方向の水量を独立に制御することができないためである。 However, blocking the cooling water at the leading end in the longitudinal direction of the steel plate has the same effect as limiting the amount of cooling water by installing a shielding member at a position corresponding to the width end of the steel plate. Therefore, when the steel plate end temperature drop amount and the steel plate leading end temperature drop amount are the same or similar, the steel plate surface temperature can be made substantially uniform before the same speed cooling treatment over the entire surface of the steel plate. However, if there is a large difference between them, only one of the width direction and the length direction can be made uniform. This is because the slow cooling device limits the amount of cooling water at the end in the plate width direction over the entire length in the longitudinal direction, so that the amount of water in the width direction and the longitudinal direction cannot be controlled independently.
この問題に対処するため、たとえば、緩冷却装置により幅方向の温度分布のみを均一化し、しかる後、第1実施形態で説明した手段により長手方向の温度分布の均一化を図ることができる。また、緩冷却装置において幅方向ともに長手方向についても水量制限を行い、さらに通過型制御冷却装置において長手方向の水量制限を行って、鋼板長手方向の温度分布をより均一化することもできる。さらに、緩冷却装置において、複数の冷却ゾーンを設け、緩冷却装置の前段において端部の冷却水量制御を行う方法をとることも可能である。 In order to deal with this problem, for example, only the temperature distribution in the width direction can be made uniform by the slow cooling device, and thereafter, the temperature distribution in the longitudinal direction can be made uniform by the means described in the first embodiment. In addition, the amount of water in the longitudinal direction can be restricted in the slow cooling device in the longitudinal direction, and the amount of water in the longitudinal direction can be restricted in the passage-type control cooling device, so that the temperature distribution in the longitudinal direction of the steel sheet can be made more uniform. Furthermore, it is also possible to employ a method in which a plurality of cooling zones are provided in the slow cooling device, and the amount of cooling water at the end is controlled in the previous stage of the slow cooling device.
上記緩冷却装置10を用いる場合においては、緩冷却装置10と制御冷却装置20との間に図17に示すように、矯正機30を設置することができる。これにより、同一速度冷却処理前に鋼板平坦度を改善することができ、制御冷却装置内でノズルと鋼板の距離が安定し、冷却が均一に行われるようになる。また、これにより、製品鋼板の材質の均一性や平坦度の確保が容易になる。なお、矯正機30は、緩冷却装置10の直前、さらに制御冷却装置20の後面側にも設けることができる。さらに、先に述べた第1実施形態をとる場合においても、矯正機30を通過型制御冷却装置20の直前に設置することが望ましく、それにより処理された鋼板の材質の均一性や平坦度の確保が一層容易になる。また、この場合においても制御冷却装置20の後面側にも設けることができるのは当然である。
In the case of using the
以上、本発明を第1実施形態および第2実施形態に分けて説明した。これらの手法は、鋼板製造ラインや製品の特徴に合わせて採用すればよい。これらを適宜組み合わせて採用することも可能である。たとえば、材質の制限により冷却初期に緩冷却できない場合や、緩冷却装置を導入するスペースがない場合は、第1の実施形態を基本とすればよく、長手方向よりも幅方向の温度均一性を高くしたい場合は第2実施形態を採用すればよい。また、緩冷却装置と制御冷却装置が直列に設置されている設備では、第2実施形態を基本として本発明にしたがい設備改造等を行えばよい。 The present invention has been described above by dividing it into the first embodiment and the second embodiment. These methods may be adopted in accordance with the characteristics of the steel plate production line or product. It is also possible to employ a combination of these as appropriate. For example, if slow cooling is not possible at the beginning of cooling due to material restrictions, or if there is no space for introducing a slow cooling device, the first embodiment may be used as a basis, and temperature uniformity in the width direction is longer than the longitudinal direction. If it is desired to increase the height, the second embodiment may be adopted. In addition, in a facility in which the slow cooling device and the control cooling device are installed in series, the facility may be modified according to the present invention based on the second embodiment.
なお、本発明で用いる遮蔽部材は、鋼板の幅方向の端部をノズルから放出される水から遮断するものであれば、ブロック状、板状、樋状(湾曲)等、いかなる形状でもよい。しかしながら、この遮蔽部材は、常に高圧を受け、かつ高温高湿環境にさらされるので、耐食性の素材から構成されかつ、剛性の大きな構造を有するものとするのが好ましい。また、遮蔽部材の作成及び取扱いの点からは、その形状を板状とするのが最も好ましい。 In addition, the shielding member used in the present invention may have any shape such as a block shape, a plate shape, and a bowl shape (curved shape) as long as the end portion in the width direction of the steel plate is shielded from water discharged from the nozzle. However, since this shielding member always receives high pressure and is exposed to a high temperature and high humidity environment, it is preferable that the shielding member is made of a corrosion-resistant material and has a structure with high rigidity. From the viewpoint of creating and handling the shielding member, the shape is most preferably a plate.
遮蔽板を採用する場合、その出入り方向の長さは、先述の鋼板端部温度降下距離より僅かに大きいものとするのがよい。その長さが短すぎると、鋼板端部温度降下距離を遮蔽しきれず、一方長すぎると、遮蔽板の前後進機構が大きくなりすぎて、たとえば制御冷却装置内のような狭いスペースに遮蔽板を取り付けること自体が困難になる。先に述べたように鋼板端部温度降下距離は、一般に、300mm程度であるから、遮蔽板の出入り方向の長さは350〜400mm程度とすればよい。またその材質は、冷却水に含まれる塩素など腐食性物質の影響を考慮して、ステンレス鋼など耐食性鋼を用い、あるいは亜鉛、クロムなどでメッキされた表面防食処理の行われた炭素鋼などを用いることが好ましい。 When the shielding plate is employed, the length in the direction of entering and exiting is preferably slightly larger than the above-described steel plate end portion temperature drop distance. If the length is too short, the temperature drop distance at the end of the steel plate cannot be shielded. On the other hand, if the length is too long, the forward / backward movement mechanism of the shielding plate becomes too large, and the shielding plate is placed in a narrow space such as in a control cooling device. Installation itself becomes difficult. As described above, the steel plate end portion temperature drop distance is generally about 300 mm, and therefore the length of the shield plate in the exit / entry direction may be about 350 to 400 mm. In consideration of the influence of corrosive substances such as chlorine contained in the cooling water, the material is made of corrosion-resistant steel such as stainless steel, or carbon steel plated with zinc or chromium and subjected to surface anticorrosion treatment. It is preferable to use it.
図18及び19は通過型制御冷却装置の一冷却ゾーンにおいて本発明にしたがい板状の遮蔽部材を適用したときの、冷却ゾーン周りの様子の1例を示す概念図である。ここに示されている例では、遮蔽部材として、鋼板進行方向に300mm、遮蔽部材の出入り方向に350mm、厚さ7mmのZn−Niメッキ鋼板が使用されている。そして、この板状遮蔽板は、遮断した冷却水が鋼板端部の外側に導かれるように、水平面に対して15°の傾斜を付けて前後進機構(図示しない)にとりつけられている。 18 and 19 are conceptual diagrams showing an example of a state around the cooling zone when the plate-shaped shielding member according to the present invention is applied in one cooling zone of the passing type control cooling device. In the example shown here, a Zn—Ni plated steel sheet having a thickness of 300 mm in the traveling direction of the steel sheet, 350 mm in the direction of entering and exiting the shielding member, and a thickness of 7 mm is used as the shielding member. The plate-like shielding plate is attached to a forward / reverse mechanism (not shown) with an inclination of 15 ° with respect to the horizontal plane so that the blocked cooling water is guided to the outside of the steel plate end.
図20及び21は緩冷却装置において本発明にしたがい板状の遮蔽部材を適用した様子の1例を示す概念図である。この場合においては、遮蔽部材が緩冷却装置の作動域全長10mをカバーしかつ、遮蔽部材の自重によるたわみを十分小さくするために、図20に示すように、断面L字型としこれをリブにより500mmピッチで補強した構造として十分な剛性を付与している。その材質は、Ni−Znメッキ鋼板であり、各部分の寸法は、図20に示すように、長さ10m、幅350mm、厚み7mm、高さ50mmであり、これが緩冷却装置の鋼板パスライン端部を挟んで上下各1対を左右に配置し、これらを図21に示すように取り付けて、鋼板端部に冷却水が当らないようにしている。
20 and 21 are conceptual diagrams showing an example of a state in which a plate-like shielding member according to the present invention is applied to a slow cooling device. In this case, as shown in FIG. 20, the shielding member covers the
厚板圧延機により圧延された厚鋼板を下記発明例1〜3、比較例1〜5の条件によって制御冷却に供した。この制御冷却に供した厚鋼板の寸法、目標特性値、制御冷却条件及び制御冷却前温度分布状態は下記のとおりであった。
(1)寸法:板厚25mm、板幅3800mm、板長25mm
(2)目標特性値:490MPa級(許容範囲は490〜610MPa)
(3)制御冷却条件:制御冷却開始温度:750℃(板幅中央部)、制御冷却終了温度:550℃
(4)幅方向温度分布均一化冷却処理前温度分布状態:鋼板端部温度降下量:30℃、鋼板端部温度降下距離:200mm、板先尾端部の温度降下量:50℃、先尾端温度降下距離:500mm
The thick steel plates rolled by the thick plate mill were subjected to controlled cooling according to the conditions of Invention Examples 1 to 3 and Comparative Examples 1 to 5 below. The dimensions, target characteristic values, control cooling conditions, and pre-control cooling temperature distribution state of the thick steel plate subjected to this controlled cooling were as follows.
(1) Dimensions: Plate thickness 25mm, plate width 3800mm, plate length 25mm
(2) Target characteristic value: 490 MPa class (allowable range is 490 to 610 MPa)
(3) Control cooling conditions: Control cooling start temperature: 750 ° C (plate width center), Control cooling end temperature: 550 ° C
(4) Uniform temperature distribution in the width direction Pre-cooling temperature distribution state: Steel plate end temperature drop: 30 ° C, Steel plate end temperature drop: 200mm, Plate tip end temperature drop: 50 ° C Edge temperature drop distance: 500mm
(発明例1:第1実施形態)
図3〜5に記載の形式の通過型制御冷却装置を用い、遮蔽部材として図18、19に記載のものを用いた。装置の設備仕様、冷却条件は下記のとおりである。
(1)設備仕様:冷却ゾーン数:15、1ゾーン当たりの設備長:1.0m、装置全長:15m、冷却水量:1500l/min・m2、冷却速度:約30℃/s、(2)幅方向温度分布均一化冷却処理条件
(a)遮蔽部材使用ゾーン:第1〜3冷却ゾーン(ただし第3冷却ゾーンは下面のみ)
(算定根拠:1ゾーン当たりの冷却量:(750℃-550℃)/15=13.3℃、幅方向端部遮蔽部材使用必要ゾーン数:30℃/13.3℃=2.26)
(b)遮蔽量:200mm(鋼板端部温度降下距離に対応)
(3)長手方向温度分布均一化冷却処理条件
(a)水量制限ゾーン:第1〜4冷却ゾーン(算定根拠:50℃/13.3℃=3.8)
(b)水量制限先尾端長:500mm(先尾端温度降下距離に対応、この間水冷を行わない)
(4)同一速度冷却処理条件:冷却速度は約30℃/s、通板速度:134m/min(冷却時間:6.6s)
(Invention Example 1: First Embodiment)
A passing type control cooling device of the type shown in FIGS. 3 to 5 was used, and the shielding member shown in FIGS. 18 and 19 was used. Equipment specifications and cooling conditions of the equipment are as follows.
(1) Equipment specifications: Number of cooling zones: 15, equipment length per zone: 1.0 m, total length of equipment: 15 m, cooling water volume: 1500 l / min · m 2 , cooling rate: about 30 ° C./s, (2) Width direction temperature distribution uniform cooling treatment condition
(a) Shield member use zone: 1st to 3rd cooling zone (however, the 3rd cooling zone is only on the lower surface)
(Calculation grounds: Cooling amount per zone: (750 ° C-550 ° C) /15=13.3°C, number of required zones in the width direction end shielding member: 30 ° C / 13.3 ° C = 2.26)
(b) Shielding amount: 200 mm (corresponding to the temperature drop at the end of the steel plate)
(3) Longitudinal temperature distribution uniform cooling treatment conditions
(a) Water volume restriction zone: 1st to 4th cooling zone (Calculation basis: 50 ℃ / 13.3 ℃ = 3.8)
(b) Water volume restriction leading edge length: 500 mm (corresponding to the leading edge temperature drop distance, water cooling is not performed during this time)
(4) Same speed cooling treatment conditions: cooling rate is about 30 ° C./s, plate speed: 134 m / min (cooling time: 6.6 s)
(発明例2:第2実施形態)
図14に記載の形式の緩冷却装置付き制御冷却装置を用いた。これらに用いる遮蔽部材はそれぞれ、図18、19、及び図20、21に示すものである。緩冷却装置構成の設備仕様、これによる幅方向温度分布均一化冷却処理条件及び長手方向温度分布均一化冷却処理条件は下記のとおりである。
(1)設備条件:設備長:10m、冷却水量:100l/min/m2(ラミナーフローノズル)、冷却速度:約4℃/s
(2)幅方向温度分布均一化冷却処理条件
(a)遮蔽幅:200mm(鋼板端部温度降下距離に対応)
(b)厚鋼板通板速度:80m/min(算定根拠:30(鋼板端部温度降下量)/4(冷却速度)=7.5s、10m(設備長)/7.5/60=80m/min)
(3)長手方向温度分布均一化冷却処理条件:先尾端部水量制限長:500mm(先尾端温度降下距離に対応、この間水冷を行わない)
(Invention Example 2: Second Embodiment)
A controlled cooling device with a slow cooling device of the type shown in FIG. 14 was used. The shielding members used for these are shown in FIGS. 18 and 19, and FIGS. The equipment specifications of the slow cooling device configuration, the width direction temperature distribution uniform cooling treatment condition, and the longitudinal direction temperature distribution uniform cooling treatment condition are as follows.
(1) Equipment conditions: equipment length: 10 m, cooling water volume: 100 l / min / m 2 (laminar flow nozzle), cooling rate: about 4 ° C./s
(2) Uniform cooling treatment conditions in the width direction
(a) Shielding width: 200 mm (corresponding to the steel plate end temperature drop distance)
(b) Thick steel plate speed: 80 m / min (Calculation grounds: 30 (temperature drop at the end of steel plate) / 4 (cooling speed) = 7.5 s, 10 m (equipment length) /7.5/60=80 m / min)
(3) Longitudinal temperature distribution uniform cooling treatment condition: leading edge water volume restriction length: 500 mm (corresponding to the leading edge temperature drop distance, during which water cooling is not performed)
上記緩冷却装置に続く制御冷却装置の設備仕様、冷却条件は下記のとおりである。
(1)設備仕様:冷却ゾーン数:15、1ゾーン当たりの設備長:1.0m、装置全長:15m、冷却水量:2000l/min・m2、冷却速度:約30℃/s(発明例1と同一仕様)
(2)幅方向温度分布均一化冷却処理条件:不要(緩冷却装置において実施)
(3)長手方向温度分布均一化冷却処理条件
(a)水量制限ゾーン:第1〜2冷却ゾーン(算定根拠:制御冷却装置侵入時の板先尾端部の温度降下量:20℃(30℃分を緩冷却装置において解消)、制御冷却装置の1ゾーン当たりの冷却量:(720℃-550℃)/15=11.3℃、20℃/11.3℃=1.8ゾーン)
(b)水量制限先尾端長:500mm(先尾端温度降下距離に対応、この間水冷を行わない)
(4)同一速度冷却処理条件:冷却速度は約30℃/s、通板速度:158m/min(冷却時間:5.7s)
The equipment specifications and cooling conditions of the control cooling device following the slow cooling device are as follows.
(1) Equipment specifications: Number of cooling zones: 15, equipment length per zone: 1.0 m, total length of equipment: 15 m, amount of cooling water: 2000 l / min · m 2 , cooling rate: about 30 ° C./s (Invention Example 1 Same specifications)
(2) Uniform cooling process for temperature distribution in the width direction: Not required (implemented in a slow cooling system)
(3) Longitudinal temperature distribution uniform cooling treatment conditions
(a) Water volume restriction zone: 1st and 2nd cooling zone (Calculation grounds: Temperature drop at the end of the plate tip when entering the control cooling device: 20 ° C (30 ° C is eliminated in the slow cooling device), Control cooling device Cooling amount per zone: (720 ℃ -550 ℃) /15=11.3℃, 20 ℃ / 11.3 ℃ = 1.8 zones)
(b) Water volume restriction leading edge length: 500 mm (corresponding to the leading edge temperature drop distance, water cooling is not performed during this time)
(4) Same speed cooling treatment conditions: Cooling speed is about 30 ° C./s, plate speed: 158 m / min (cooling time: 5.7 s)
(発明例3、緩冷却装置と制御冷却装置の間に矯正機を設置)
本発明の第2実施形態において緩冷却装置と制御冷却装置の間に矯正機を設置して緩冷却後の鋼板に平坦化処理を行った。冷却条件は、発明例2の場合と同一である。
(Invention Example 3, a straightening machine is installed between the slow cooling device and the control cooling device)
In the second embodiment of the present invention, a straightening machine was installed between the slow cooling device and the control cooling device, and the steel plate after the slow cooling was flattened. The cooling conditions are the same as in the case of Invention Example 2.
(比較例1)
発明例1と同一設備を用い、同一通板速度で冷却した。しかしながら幅方向温度分布均一化冷却処理及び長手方向温度分布均一化冷却処理を行わなかった。
(Comparative Example 1)
The same equipment as that of Invention Example 1 was used and cooled at the same plate passing speed. However, neither the width direction temperature distribution uniform cooling process nor the longitudinal direction temperature distribution uniform cooling process was performed.
(比較例2)
発明例2と同一設備を用い、同一通板速度で冷却した。しかしながら幅方向温度分布均一化冷却処理及び長手方向温度分布均一化冷却処理を行わなかった。
(Comparative Example 2)
The same equipment as that of Invention Example 2 was used and cooled at the same plate passing speed. However, neither the width direction temperature distribution uniform cooling process nor the longitudinal direction temperature distribution uniform cooling process was performed.
(比較例3)
緩冷却装置のみを用い、その操業条件を下記のとおりとした。
(1)設備条件:設備長:10m、冷却水量:500l/min/m2(ラミナーフローノズル)、冷却速度:約14℃/s
(2)幅方向温度分布均一化冷却処理条件:行わない
(3)長手方向温度分布均一化冷却処理条件:行わない
(4)通板速度:42m/min(750℃〜550℃まで通過冷却するために必要な冷却時間:14.3s、設備長:10m)
(Comparative Example 3)
Only the slow cooling device was used, and the operating conditions were as follows.
(1) Equipment conditions: equipment length: 10 m, cooling water volume: 500 l / min / m 2 (laminar flow nozzle), cooling rate: about 14 ° C./s
(2) Uniform cooling treatment condition in the width direction: No
(3) Longitudinal temperature distribution uniform cooling treatment condition: not performed
(4) Plate passing speed: 42 m / min (cooling time required for cooling by passing from 750 ° C to 550 ° C: 14.3 s, equipment length: 10 m)
(比較例4)
緩冷却装置のみを用い、その操業条件を下記のとおりとした。
(1)設備条件:設備長:10m、冷却水量:500l/min/m2(ラミナーフローノズル)、冷却速度:約14℃/s(比較例3と同一)
(2)幅方向温度分布均一化冷却処理条件
(a)遮蔽幅:200mm(鋼板端部温度降下距離に対応)
(b)厚鋼板通板速度:42m/min(750℃〜550℃まで通過冷却するために必要な冷却時間:14.3s、設備長:10m)
(3)長手方向温度分布均一化冷却処理条件:先尾端部水量制限長:500mm(先尾端温度降下距離に対応、この間水冷を行わない)
(Comparative Example 4)
Only the slow cooling device was used, and the operating conditions were as follows.
(1) Equipment conditions: equipment length: 10 m, cooling water amount: 500 l / min / m 2 (laminar flow nozzle), cooling rate: about 14 ° C./s (same as Comparative Example 3)
(2) Uniform cooling treatment conditions in the width direction
(a) Shielding width: 200 mm (corresponding to the steel plate end temperature drop distance)
(b) Thick steel plate passing speed: 42 m / min (cooling time required for passing cooling from 750 ° C. to 550 ° C .: 14.3 s, equipment length: 10 m)
(3) Longitudinal temperature distribution uniform cooling treatment condition: leading edge water volume restriction length: 500 mm (corresponding to the leading edge temperature drop distance, during which water cooling is not performed)
(比較例5)
発明例1と同様に図3〜5に記載の形式の制御冷却装置を用い、下記の条件によって幅方向温度分布均一化冷却処理及び長手方向温度分布均一化冷却処理を行った。この場合において冷却速度は約30℃/s、通板速度は134m/min(冷却時間:6.6s)であり、発明例1の場合と同一である。
(Comparative Example 5)
Similar to Example 1, the control cooling device of the type shown in FIGS. 3 to 5 was used, and the width direction temperature distribution uniform cooling process and the longitudinal direction temperature distribution uniform cooling process were performed under the following conditions. In this case, the cooling rate is about 30 ° C./s, and the plate passing rate is 134 m / min (cooling time: 6.6 s), which is the same as in the case of the first invention example.
(1)幅方向温度分布均一化冷却処理条件
(a)遮蔽部材使用ゾーン:制御冷却装置の全冷却ゾーン
(b)遮蔽量:200mm(鋼板端部温度降下距離に対応)
(3)長手方向温度分布均一化冷却処理条件
(a)水量制限ゾーン:第1〜4冷却ゾーン(算定根拠:50℃/13.3℃=3.8)
(b)水量制限先尾端長:500mm(先尾端温度降下距離に対応、この間水冷を行わない)
(1) Uniform cooling treatment conditions in the width direction
(a) Shielding member use zone: All cooling zones of the control cooling device
(b) Shielding amount: 200 mm (corresponding to the temperature drop at the end of the steel plate)
(3) Longitudinal temperature distribution uniform cooling treatment conditions
(a) Water volume restriction zone: 1st to 4th cooling zone (Calculation basis: 50 ℃ / 13.3 ℃ = 3.8)
(b) Water volume restriction leading edge length: 500 mm (corresponding to the leading edge temperature drop distance, water cooling is not performed during this time)
表1に上記各操業条件及び操業データをまとめて対比して示す。また、表2には本発明例の効果を比較例と対比して示す。ここで、表2に記載の温度降下量とは、制御冷却直後の鋼板の幅方向温度分布に基づいて決定される値であって、鋼板幅方向における鋼板温度の勾配が0(ゼロ)になる位置における温度と、鋼板端部の温度との差で定義される値である。この値は、鋼板端部が中央部よりも低い場合は正の値をとるが、中央部よりも高い場合は負の値をとる。鋼板先尾端部についても、同様に定義されたものである。 Table 1 summarizes and compares the above operating conditions and operating data. Table 2 shows the effects of the examples of the present invention in comparison with the comparative examples. Here, the amount of temperature drop described in Table 2 is a value determined based on the temperature distribution in the width direction of the steel plate immediately after the controlled cooling, and the gradient of the steel plate temperature in the steel plate width direction becomes 0 (zero). It is a value defined by the difference between the temperature at the position and the temperature at the end of the steel plate. This value takes a positive value when the end of the steel plate is lower than the central portion, but takes a negative value when the end is higher than the central portion. The steel plate leading end is similarly defined.
また、表2に記載の引張り強さは、図22に示すように、冷却後の鋼板の先端部及び尾端部からそれぞれ150mmの位置から先端部供試材51、尾端部供試材52を、側端部から100mmの位置から側端部供試材53、を、また鋼板幅方向及び長手の中央位置から中央部供試材54を切り出し、それぞれについてJIS5号試験片により引張り強さを測定した結果である。なお、表2において先尾端部と表示されている値は、上記先端部供試材51、尾端部供試材52から得られた引張強さの平均値である。
Further, as shown in FIG. 22, the tensile strengths shown in Table 2 are the
一方、表2に記載の条切りキャンバー値は、図22に示すように、鋼板の先端部及び尾端部それぞれ幅3.8m(製品幅)、長さ10mの側端部条切りキャンバー測定用試材55、先尾端部条切りキャンバー測定用試材56を切り出し、これらから図23、24に示すように短冊状の試材を離すときの最大曲がり量をもって代表させる。このうち側端部条切りキャンバー値は、側端部条切りキャンバー測定用試材55を図23に示すように、厚鋼板の一方の側端部から300mm入った位置で切断し、得られた短冊状試材58の最大曲がり量をもって代表させる。一方、先尾端部条切りキャンバー値は、先尾端部条切りキャンバー測定用試材56を図24に示すように、厚鋼板の尾端から300mm入った位置で切断し、得られた短冊状試材59の最大曲がり量をもって代表させる。
On the other hand, as shown in FIG. 22, the cut-off camber values shown in Table 2 are for the measurement of the side-end cut-off camber having a width of 3.8 m (product width) and a length of 10 m, respectively. The
表2から分るように、本発明を適用した場合には、全体として冷却速度が大きいにもかかわらず、冷却後の鋼板端部の温度降下量は、−10℃から10℃の間にあり、冷却前の鋼板端部温度降下量(30℃)に比べ減少している。また、先尾端部温度降下量も−9℃〜13℃となり、冷却前の温度降下量(50℃)に比べ減少している。その結果、鋼板面内の残留応力も低減され、条切りキャンバー値も3〜9mm(側端部)、2〜5mm(先尾端部)となり、実用上、矯正を行うことなく組立て工程に供することのできる値となった。 As can be seen from Table 2, when the present invention is applied, the temperature drop at the end of the steel sheet after cooling is between −10 ° C. and 10 ° C. despite the large cooling rate as a whole. It is reduced compared to the temperature drop (30 ° C.) at the end of the steel plate before cooling. Moreover, the amount of temperature drop at the leading end is also −9 ° C. to 13 ° C., which is smaller than the temperature drop before cooling (50 ° C.). As a result, the residual stress in the steel sheet surface is also reduced, and the cut camber value is 3 to 9 mm (side end) and 2 to 5 mm (front end), which is practically used for the assembly process without correction. It became a value that can be.
また、鋼板の引張り強さも、鋼板先尾端部及び側端部の値が550MPa程度となっており、中央部の値とほぼ一致しており、鋼板面内で安定している。さらに、緩冷却後に矯正を実施した後、制御冷却を行った発明例3の場合には、制御冷却前に鋼板形状が矯正された結果、制御冷却時においてより一層、同一速度での冷却処理が可能となり、冷却後の板幅方向端部及び先尾端部の温度降下量が小さくなるとともに、条切りキャンバー値も極めて小さくなった。 Also, the tensile strength of the steel sheet is about 550 MPa at the front end and the side end of the steel sheet, which is almost the same as the value at the center, and is stable within the surface of the steel sheet. Furthermore, in the case of the invention example 3 in which the control cooling is performed after the correction is performed after the slow cooling, the steel plate shape is corrected before the control cooling. As a result, the cooling process at the same speed is further performed during the control cooling. As a result, the temperature drop amount at the end in the plate width direction and the end at the leading end after cooling became small, and the cut camber value also became extremely small.
これに対し、幅方向端部及び長手方向先尾端の水量制御を行わなかった比較例1〜3では、冷却後の幅方向及び先尾端の温度降下量が冷却前のそれと比較して拡大され、その結果、条切りキャンバー値が157〜202mm(側端部)、32〜36mm(先尾端部)と極めて大きな値となった。また、引張り強さも板幅方向側端部及び先尾端部の値が、中央部に比べて大きくなっており、一部のものでは許容範囲上限を超えている。 On the other hand, in Comparative Examples 1 to 3 in which the water amount control of the width direction end portion and the longitudinal leading end is not performed, the temperature drop amount in the width direction and the leading end after cooling is larger than that before cooling. As a result, the cut camber values were extremely large values of 157 to 202 mm (side end portion) and 32 to 36 mm (front end portion). In addition, the tensile strength values at the end in the plate width direction and the end at the leading end are larger than those at the center, and some of them exceed the upper limit of the allowable range.
また、比較例4〜5の場合には、冷却後の幅方向端部及び先尾端の温度が中央部と比較して高くなったため、板幅方向端部及び先尾端部の引張り強さが中央部と比較して小さくなり、一部許容範囲下限値を下回る結果となった。この場合、条切りキャンバー値はそれぞれ91mm、121mm(側端部)、13mm、8mm(先尾端部)であり、実用上、矯正を行うことなく組立て工程に供することのできるレベルには達していない。 Moreover, in the case of Comparative Examples 4-5, since the temperature of the width direction edge part after cooling and the tip end became high compared with the center part, the tensile strength of a board width direction edge part and a tip end part Was smaller than the central part, and partly below the lower limit of the allowable range. In this case, the streak camber values are 91 mm, 121 mm (side end), 13 mm, and 8 mm (front end), respectively, and have reached a level that can be practically used in the assembly process without correction. Absent.
1:厚板圧延機
2:厚鋼板
3:ローラーテーブル
10:ラミナーフロー冷却帯
11:上ヘッダー
12:下ヘッダー
13,14:水流
15:遮蔽部材
16:(遮蔽部材の)前後進機構
17:フォトセル
20:通過型制御冷却装置
21:上ヘッダー
22:下ヘッダー
23:上スリットノズル
24:下スリットノズル
25:前段部
26:後段部
27:水切りロール
28:上部遮蔽部材
29:下部遮蔽部材
30:緩冷却帯前温度計
31:入側温度計
32:出側温度計
41:流量制御装置
42:三方弁
51:先端部引張試験試材
52:尾端部引張試験試材
53:側端部引張試験試材
54:中央部引張試験試材
55:側端部条切りキャンバー測定用試材
56:先尾端部条切りキャンバー測定用試材
58:短冊状試材
59:短冊状試材
1: Thick plate rolling machine
2: Thick steel plate
3: Roller table
10: Laminar flow cooling zone
11: Upper header
12: Lower header
13, 14: Water flow
15: Shielding member
16: Forward / reverse mechanism (of shielding member)
17: Photocell
20: Pass-through controlled cooling system
21: Upper header
22: Lower header
23: Upper slit nozzle
24: Lower slit nozzle
25: Front part
26: Rear part
27: Draining roll
28: Upper shielding member
29: Lower shielding member
30: Thermometer before slow cooling zone
31: Entry side thermometer
32: Outlet thermometer
41: Flow control device
42: Three-way valve
51: Tip tensile test material
52: Tail end tensile test sample
53: Side end tensile test material
54: Central tensile test material
55: Specimen for measuring side edge cut camber
56: Specimen for measuring the leading edge section cutting camber
58: Strip sample
59: Strip sample
Claims (21)
The thick steel plate obtained by carrying out control cooling by the method in any one of Claims 1-11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004174133A JP4604564B2 (en) | 2003-06-13 | 2004-06-11 | Method and apparatus for controlling cooling of thick steel plate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003170006 | 2003-06-13 | ||
JP2004174133A JP4604564B2 (en) | 2003-06-13 | 2004-06-11 | Method and apparatus for controlling cooling of thick steel plate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010007935A Division JP5218435B2 (en) | 2003-06-13 | 2010-01-18 | Controlled cooling method for thick steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005021984A true JP2005021984A (en) | 2005-01-27 |
JP4604564B2 JP4604564B2 (en) | 2011-01-05 |
Family
ID=34197086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004174133A Expired - Fee Related JP4604564B2 (en) | 2003-06-13 | 2004-06-11 | Method and apparatus for controlling cooling of thick steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4604564B2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008053947A1 (en) * | 2006-10-30 | 2008-05-08 | Jfe Steel Corporation | Method of cooling hot-rolled steel strip |
JP2008248291A (en) * | 2007-03-29 | 2008-10-16 | Nippon Steel Corp | Method for manufacturing thick steel plate superior in low-temperature toughness of base material and weld heat-affected zone |
JP2008261000A (en) * | 2007-04-11 | 2008-10-30 | Nippon Steel Corp | Manufacturing method of thick steel plate having low yield ratio |
JP2010179308A (en) * | 2009-02-03 | 2010-08-19 | Jfe Steel Corp | Quality assurance system for thick steel plate |
JP2010179309A (en) * | 2009-02-03 | 2010-08-19 | Jfe Steel Corp | Quality assurance system for thick steel plate |
JP2011025282A (en) * | 2009-07-27 | 2011-02-10 | Jfe Steel Corp | Equipment and method for cooling thick steel plate |
CN102397891A (en) * | 2010-09-16 | 2012-04-04 | 鞍钢股份有限公司 | Equivalent laminar cooling method |
JP2012196692A (en) * | 2011-03-22 | 2012-10-18 | Kobe Steel Ltd | Method for cooling control of steel stock and continuous rolling mill |
JP2013103236A (en) * | 2011-11-11 | 2013-05-30 | Jfe Steel Corp | Method of cooling hot-rolled steel sheet and cooling facility for the hot-rolled steel sheet |
KR20180097724A (en) * | 2016-01-27 | 2018-08-31 | 제이에프이 스틸 가부시키가이샤 | Manufacturing method of hot-rolled steel strip and manufacturing method of hot-rolled steel strip |
KR20180098542A (en) * | 2015-12-30 | 2018-09-04 | 아르셀러미탈 | Process and apparatus for cooling metal substrates |
CN109127738A (en) * | 2018-09-27 | 2019-01-04 | 宝钢湛江钢铁有限公司 | A kind of control preventing steel edge portion inhomogeneous cooling and guidance system |
EP3453465A1 (en) * | 2017-09-07 | 2019-03-13 | Centre de Recherches Métallurgiques ASBL - Centrum voor Research in de Metallurgie VZW | Compact intense cooling device for strip in cold rolling mill |
JP2019073754A (en) * | 2017-10-13 | 2019-05-16 | 新日鐵住金株式会社 | Method for producing heat-treated steel sheet, and steel sheet cooling device |
CN113617854A (en) * | 2021-08-26 | 2021-11-09 | 宝钢湛江钢铁有限公司 | Method for controlling tail shape of TMCP steel plate |
CN114472548A (en) * | 2020-10-23 | 2022-05-13 | 宝山钢铁股份有限公司 | System and method for reducing head-tail temperature difference in rolling process of super-long plate |
JP2022115684A (en) * | 2021-01-28 | 2022-08-09 | Jfeスチール株式会社 | Manufacturing equipment and manufacturing method of steel plate |
JP7515002B2 (en) | 2021-03-04 | 2024-07-11 | Primetals Technologies Japan株式会社 | Method and device for determining initial position of edge mask |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110527809B (en) * | 2019-08-26 | 2020-12-22 | 武汉科技大学 | Preparation method of hot-rolled high-strength strip steel capable of reducing residual stress |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686622A (en) * | 1979-12-18 | 1981-07-14 | Nippon Kokan Kk <Nkk> | On-line accelerated cooling method of steel plate |
JPH06285531A (en) * | 1993-03-31 | 1994-10-11 | Nippon Steel Corp | Cooling device for hot steel plate |
JPH07150229A (en) * | 1993-11-26 | 1995-06-13 | Kawasaki Steel Corp | Apparatus for control-cooling hot rolled thick steel plate |
JPH11347629A (en) * | 1998-06-09 | 1999-12-21 | Nkk Corp | Straightening and cooling device for high temperature steel plate and its straightening and cooling method |
-
2004
- 2004-06-11 JP JP2004174133A patent/JP4604564B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686622A (en) * | 1979-12-18 | 1981-07-14 | Nippon Kokan Kk <Nkk> | On-line accelerated cooling method of steel plate |
JPH06285531A (en) * | 1993-03-31 | 1994-10-11 | Nippon Steel Corp | Cooling device for hot steel plate |
JPH07150229A (en) * | 1993-11-26 | 1995-06-13 | Kawasaki Steel Corp | Apparatus for control-cooling hot rolled thick steel plate |
JPH11347629A (en) * | 1998-06-09 | 1999-12-21 | Nkk Corp | Straightening and cooling device for high temperature steel plate and its straightening and cooling method |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101026972B1 (en) | 2006-10-30 | 2011-04-11 | 제이에프이 스틸 가부시키가이샤 | Method of cooling hot-rolled steel strip |
WO2008053947A1 (en) * | 2006-10-30 | 2008-05-08 | Jfe Steel Corporation | Method of cooling hot-rolled steel strip |
JP2008248291A (en) * | 2007-03-29 | 2008-10-16 | Nippon Steel Corp | Method for manufacturing thick steel plate superior in low-temperature toughness of base material and weld heat-affected zone |
JP2008261000A (en) * | 2007-04-11 | 2008-10-30 | Nippon Steel Corp | Manufacturing method of thick steel plate having low yield ratio |
JP2010179309A (en) * | 2009-02-03 | 2010-08-19 | Jfe Steel Corp | Quality assurance system for thick steel plate |
JP2010179308A (en) * | 2009-02-03 | 2010-08-19 | Jfe Steel Corp | Quality assurance system for thick steel plate |
JP2011025282A (en) * | 2009-07-27 | 2011-02-10 | Jfe Steel Corp | Equipment and method for cooling thick steel plate |
CN102397891A (en) * | 2010-09-16 | 2012-04-04 | 鞍钢股份有限公司 | Equivalent laminar cooling method |
JP2012196692A (en) * | 2011-03-22 | 2012-10-18 | Kobe Steel Ltd | Method for cooling control of steel stock and continuous rolling mill |
JP2013103236A (en) * | 2011-11-11 | 2013-05-30 | Jfe Steel Corp | Method of cooling hot-rolled steel sheet and cooling facility for the hot-rolled steel sheet |
KR20180098542A (en) * | 2015-12-30 | 2018-09-04 | 아르셀러미탈 | Process and apparatus for cooling metal substrates |
JP2019505388A (en) * | 2015-12-30 | 2019-02-28 | アルセロールミタル | Method and apparatus for cooling a metal substrate |
US11072839B2 (en) | 2015-12-30 | 2021-07-27 | Arcelormittal | Process and device for cooling a metal substrate |
KR102559142B1 (en) | 2015-12-30 | 2023-07-24 | 아르셀러미탈 | Processes and equipment for cooling metal substrates |
KR20180097724A (en) * | 2016-01-27 | 2018-08-31 | 제이에프이 스틸 가부시키가이샤 | Manufacturing method of hot-rolled steel strip and manufacturing method of hot-rolled steel strip |
KR102103367B1 (en) * | 2016-01-27 | 2020-04-22 | 제이에프이 스틸 가부시키가이샤 | Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip |
EP3453465A1 (en) * | 2017-09-07 | 2019-03-13 | Centre de Recherches Métallurgiques ASBL - Centrum voor Research in de Metallurgie VZW | Compact intense cooling device for strip in cold rolling mill |
JP7077574B2 (en) | 2017-10-13 | 2022-05-31 | 日本製鉄株式会社 | Manufacturing method of heat-treated steel sheet and steel sheet cooling device |
JP2019073754A (en) * | 2017-10-13 | 2019-05-16 | 新日鐵住金株式会社 | Method for producing heat-treated steel sheet, and steel sheet cooling device |
CN109127738A (en) * | 2018-09-27 | 2019-01-04 | 宝钢湛江钢铁有限公司 | A kind of control preventing steel edge portion inhomogeneous cooling and guidance system |
CN114472548A (en) * | 2020-10-23 | 2022-05-13 | 宝山钢铁股份有限公司 | System and method for reducing head-tail temperature difference in rolling process of super-long plate |
CN114472548B (en) * | 2020-10-23 | 2024-06-04 | 宝山钢铁股份有限公司 | System and method for reducing head-tail temperature difference in ultra-long plate rolling process |
JP2022115684A (en) * | 2021-01-28 | 2022-08-09 | Jfeスチール株式会社 | Manufacturing equipment and manufacturing method of steel plate |
JP7306413B2 (en) | 2021-01-28 | 2023-07-11 | Jfeスチール株式会社 | Steel plate manufacturing equipment and manufacturing method |
JP7515002B2 (en) | 2021-03-04 | 2024-07-11 | Primetals Technologies Japan株式会社 | Method and device for determining initial position of edge mask |
CN113617854A (en) * | 2021-08-26 | 2021-11-09 | 宝钢湛江钢铁有限公司 | Method for controlling tail shape of TMCP steel plate |
Also Published As
Publication number | Publication date |
---|---|
JP4604564B2 (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218435B2 (en) | Controlled cooling method for thick steel plate | |
JP4604564B2 (en) | Method and apparatus for controlling cooling of thick steel plate | |
JP4238260B2 (en) | Steel plate cooling method | |
US8282747B2 (en) | Cooling method of steel plate | |
JP5327140B2 (en) | Method for cooling hot rolled steel sheet | |
JP6699688B2 (en) | Hot rolled steel sheet manufacturing method | |
EP2979769B1 (en) | Thick steel plate manufacturing method and manufacturing device | |
JP4029865B2 (en) | Hot rolled steel sheet manufacturing equipment and hot rolled steel sheet manufacturing method | |
WO2014087520A1 (en) | Device for cooling hot-rolled steel sheet | |
JP2610019B2 (en) | Cooling method of hot steel plate | |
JP4360250B2 (en) | Steel plate manufacturing method and manufacturing equipment | |
JPH1034226A (en) | Method for cooling high-temperature metallic sheet and device therefor | |
JP7077574B2 (en) | Manufacturing method of heat-treated steel sheet and steel sheet cooling device | |
JP5482365B2 (en) | Steel sheet cooling method, manufacturing method and manufacturing equipment | |
TWI753487B (en) | Secondary cooling method and device for continuous casting slab | |
JP2000237858A (en) | Continuous casting method | |
US20200377967A1 (en) | Steel material cooling device and cooling method | |
JP4661226B2 (en) | Steel plate cooling method and cooling device | |
JP4709615B2 (en) | Method for cooling hot rolled steel sheet | |
JPS61219412A (en) | Uniform cooling method of hot steel plate and its apparatus | |
JP6981435B2 (en) | Hot-rolled steel sheet manufacturing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100714 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100907 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4604564 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |