JP2005008668A - Polystyrene resin extrusion foam and its manufacturing method - Google Patents
Polystyrene resin extrusion foam and its manufacturing method Download PDFInfo
- Publication number
- JP2005008668A JP2005008668A JP2003171208A JP2003171208A JP2005008668A JP 2005008668 A JP2005008668 A JP 2005008668A JP 2003171208 A JP2003171208 A JP 2003171208A JP 2003171208 A JP2003171208 A JP 2003171208A JP 2005008668 A JP2005008668 A JP 2005008668A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- parts
- cyclopentane
- resin
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、押出発泡法によるスチレン系樹脂発泡体及びその製造方法に関する。更に詳しくは、環境適合性に優れ、優れた断熱性能、難燃性を有するスチレン系樹脂押出発泡体及びその製造方法に関する。
【0002】
【従来の技術】
ポリスチレン系樹脂押出発泡体は樹脂を高温・高圧下の押出機中で溶融し、続いて発泡ガスを注入し、樹脂中に分散溶解して流動性のゲルを形成し、これを押出機のダイから低圧域に押出して急速に発泡させ冷却することにより均質な板状の押出発泡製品が得られる。
【0003】
近年、押出発泡法により得られる発泡体についても、従来から使用されてきた代表的な発泡剤である塩化メチル、塩化エチル等の塩化アルキルは、その毒性から環境上規制されることが検討されている。そこで、特許文献1及び特許文献2には、塩化メチル等の塩化アルキルを発泡剤として使用せずに、その代替としてジメチルエーテル等のエーテル類を発泡剤として使用することが開示されている。
【0004】
しかしながら、エーテル系のガスはスチレン樹脂に対して溶解度が小さいため、造核作用が大きく気泡径が小さくなりすぎて、密度が高くなり大断面がとれにくいという問題がある。特にCO2 等の組み合わせで使用した場合に双方とも溶解度が小さいため、良好なスキン品質で独立気泡の発泡体を得るためには、これらのガスの樹脂に対する溶解度を上げるために、非常に高いゲル圧力が必要となり、高価な設備までもが必要となる。
【0005】
さらに、ジメチルエーテル等のエーテル系の発泡剤は、可燃性であり、二酸化炭素と比べるとポリスチレンに対するガス透過速度が遅いために、製品の難燃性能を低下させる傾向があり、また、シクロペンタンのような炭化水素系の発泡剤と比べるとポリスチレン樹脂に対するガス透過速度が速いために、経時とともに大気中に拡散し、長時間での発泡体の熱伝導率低下に寄与しないという問題がある。
【0006】
【特許文献1】
特開平11−158315号公報
【特許文献2】
特開平11−158317号公報
【0007】
【発明が解決しようとする課題】
本発明で解決しようとする課題は、環境適合性に優れ、熱伝導率をはじめとして優れた物性を有するスチレン系押出発泡体及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
発泡剤として環境上好ましくない塩化メチル等の塩化アルキルに代えて、シクロペンタンを使用することにより、環境適合性に優れ、熱伝導率をはじめとして優れた物性を有するスチレン系押出発泡体を得られることを見出した。
【0009】
本発明によれば下記が提供される。
【0010】
(1)発泡剤としてハロゲン系化合物を使用しないポリスチレン系樹脂押出発泡体であって、発泡剤としてシクロペンタンを用い、かつ可燃性ガス発泡剤の合計量が樹脂100質量部に対して4.5質量部未満でありJIS A9511−1995に規定された燃焼性測定において測定方法A,B又はCのいずれかを満足することを特徴とするスチレン系樹脂押出発泡体。
【0011】
(2)シクロペンタン以外の発泡剤として、さらにプロパン、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、ネオペンタンのいずれか一種以上用いることを特徴とする上記(1)に記載のスチレン系樹脂押出発泡体。
【0012】
(3)発泡剤として、シクロペンタン及びイソブタンを合計で樹脂100質量部に対して3質量部以上4.5質量部未満用い、かつ二酸化炭素を併用し、シクロペンタンの二酸化炭素に対する割合(質量比)を0.3以上とすることを特徴とする上記(1)又は(2)に記載のスチレン系樹脂押出発泡体。
【0013】
(4)前記発泡体の気泡が0.1〜2mmの大気泡(一次気泡)とその気泡径の5〜50%の範囲の大きさの小気泡(二次気泡)からなり、押出発泡後28日経過した時点でJIS A9511−1995に規定されたB類保温板の測定方法において測定した熱伝導率が0.028W/m・K以下である上記(1)〜(3)のいずれか1項に記載のスチレン系樹脂押出発泡体。
【0014】
(5)前記発泡体が輻射低減剤を含有し、押出発泡後28日経過した時点でJIS A9511−1995に規定されたB類保温板の測定方法において測定した熱伝導率が0.028W/m・K以下である上記(1)〜(3)のいずれか1項に記載のスチレン系樹脂押出発泡体。
【0015】
(6)スチレン系樹脂を加熱溶融させ、高温高圧下で、発泡剤を該溶融樹脂に注入し、押出発泡に適する温度に冷却し、ダイを通じて低圧下に押出発泡して製造される押出発泡体の製造方法であって、発泡剤として、ハロゲン系化合物を用いずに、シクロペンタンと、さらにプロパン、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、ネオペンタンのいずれか一種以上用い、かつ可燃性ガス発泡剤の合計量を樹脂100質量部に対して4.5質量部未満とし、JIS A9511−1995に規定された燃焼性測定において測定方法A,B又はCのいずれかを満足することを特徴とするスチレン系樹脂押出発泡体の製造方法。
【0016】
【発明の実施の形態】
本発明は、発泡剤として、環境上好ましくないフロン類や塩化アルキルなどのハロゲン系発泡剤を用いることなく、シクロペンタンを用いることを特徴とする。シクロペンタンは、ポリスチレン樹脂に対する溶解度が高いために、従来の塩化アルキルと同様な設備で同様な押出条件で気泡径のコントロ−ルも容易に大断面積の発泡体の製造を容易にする。また、シクロペンタンは、イソブタン同様にポリスチレン樹脂に対するガス透過速度も小さいことから、フロン等の高価で環境上好ましくないガスを用いなくても、長期間良好な熱伝導率を維持することに貢献する。こうして、環境適合性に優れ、難燃性、熱伝導率をはじめとして優れた物性を有するポリスチレン系押出発泡体が得られる。
【0017】
シクロペンタンはポリスチレン樹脂に対する溶解度が高いため、従来の塩化アルキルなどと同様な設備で運転の自由度が大きい同様な押出条件で気泡径のコントロールも容易に大断面の安定製造が可能である。また、スチレン樹脂に対するガス透過速度も小さいことから、フロン等の高価で環境上好ましくないガスを用いなくとも、長期間良好な熱伝導率を維持できることに貢献する。
【0018】
さらに、本発明では、シクロペンタン以外の発泡剤として、プロパン、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、ネオペンタンのいずれか一種以上用いることで、同様な効果を得ることができ、さらに気泡径や熱伝導率の調整などが可能である。これらのガスは、ハロゲン化合物ではないので環境上好ましいガスであり、かつ、ポリスチレン系樹脂に対する溶解度が大きく、ガス透過性が小さいので押出発泡ガスとして好適である。特にイソブタンは、シクロペンタンと同等にポリスチレン系樹脂に対する溶解度が大きいので気泡径の調整が容易で、且つガス透過性が小さいので長期間良好な熱伝導率を維持できることに貢献する。
【0019】
ただし、本発明では、上記の可燃性ガス発泡剤の量は、合計で樹脂100質量部に対して4.5質量部未満とする。これにより、JIS A 9511に規定される燃焼性を満足できる。可燃性ガス濃度が4.5質量部以上であると、発泡体試験片表面をガス燃焼し、燃焼限界指示線を越えて燃焼してしまう。
【0020】
特に、シクロペンタンとイソブタンを併用し、その合計量が樹脂100質量部に対して3質量部以上4.5質量部未満の量であることが好ましい。イソブタンはポリスチレン樹脂に対するガス透過速度が小さいので長期間良好な熱伝導性を維持する効果に優れている。シクロペンタンとイソブタンを合計量を3質量部以上とすることで特に優れた熱伝導性が得られる。シクロペンタンとイソブタンを合計量が4質量部以上では、上記の如く、所定の難燃性が満足されない。シクロペンタンとイソブタンの質量比は、20〜80:80〜20が好ましく、30〜70:70〜30がより好ましい。
【0021】
さらに、第三の発泡剤として二酸化炭素を併用すると、発泡体の密度を低減できるとともに発泡剤を使用して気泡径の調整が可能でその結果、機械的強度及び熱伝導率等の物性の点で好ましい。さらに、二酸化炭素は不燃性であるため難燃性に対し悪影響を及ぼさない点で好ましい。また、二酸化炭素に対するシクロペンタンの割合(質量比)を0.3以上とすることが好ましく、さらには0.35以上である。ここで、二酸化炭素に対するシクロペンタンの割合を0.3未満とすると、気泡径が小さくなり発泡体の成形性が低下し、発泡体表面のスキン状態も低下する。
【0022】
発泡体の気泡が0.1〜2mmの大気泡(一次気泡)と、その気泡径の5〜50%の範囲の大きさの小気泡(二次気泡)を組み合わせることにより、密度を低減でき、押出発泡後28日経過した時点で、JIS A9511−1995に規定されたB類保温板の測定方法において測定した熱伝導率が0.028W/m・K以下となることも見出した。ここで、断面積当たりの小気泡の割合は20〜60%が好ましい。小気泡の割合が少なすぎると熱伝導率の改善効果が小さく、多すぎでも気泡膜厚みが薄くなりすぎて、輻射を低減できない。
【0023】
また、発泡体の熱伝導率を高めるために、カーボンブラックまたはグラファイト等の輻射低減剤を添加することにより、押出発泡後28日経過した時点で、JIS A9511−1995に規定されたB類保温板の測定方法において測定した熱伝導率が0.028W/m・K以下となることも見出した。ここで、輻射低減剤の添加量は樹脂100質量部に対して5〜10質量部程度が好ましい。
【0024】
一次気泡と二次気泡を組み合わせることにより、熱伝導率が改善され、同じ熱伝導率では密度が低下できることも見出した。
【0025】
本発明で使用されるポリスチレン系樹脂は、例えばスチレン、α−メチルスチレン、クロルスチレン、ジクロルスチレン、ジメチルスチレン、t−ブチルスチレン、ビニルトルエンなどのスチレン誘導体、またはこれらの2種以上の組み合わせからなる共重合体、あるいはそれらとアクリル酸、アクリル酸エステル、メタクリル酸、無水マレイン酸、またはブタジエンのような他と容易に重合し得る化合物との共重合体をいう。
【0026】
本発明で使用される輻射を低減する添加剤としては、カーボンブラック、グラファイトを用いることができる。しかしながら、白色系の酸化チタン等の屈折率の大きな物質を添加することによっても熱線を散乱減衰させるため輻射を低減させる効果がある。
【0027】
本発明においてシクロペンタンと併用される発泡剤としては、前記の如く、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタンの炭化水素、及び二酸化炭素などが挙げられる。
【0028】
発泡剤は、一般的に、ポリスチレン樹脂100質量部当たり約3〜30質量部の量で注入する。
【0029】
また、本発明の発泡性樹脂混合物には、必要に応じて気泡の大きさを調整するためタルク、ケイ酸カルシウム等の気泡調整剤、難燃性を付与するためヘキサブロモシクロドデカン、モノクロロペンタブロモシクロヘキサンの如き難燃剤、ステアリン酸バリウム、ステアリン酸カルシウム等の押出助剤、酸化マグネシウム、ピロリン酸テトラナトリウム等の脱酸剤等を添加することが望ましい。
【0030】
本発明のスチレン系樹脂押出発泡体の製造は、スチレン系樹脂を加熱溶融させ、高温高圧下で、発泡剤を該溶融樹脂に注入し、押出発泡に適する温度に冷却し、ダイを通して低圧下に押出発泡して製造するが、発泡剤として、シクロペンタンを用い、また好ましくはシクロペンタンと併用される発泡剤として、前記の如く、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタンから選ばれた少なくとも1種を用い、これらの可燃性ガス発泡剤の添加量は合計で樹脂100質量部に対して4.5質量部未満とする以外は、公知の方法と同様であることができる。
【0031】
【実施例】
実施例1
重量平均分子量210,000(210M)のスチレン樹脂100質量部に対して、ステアリン酸バリウム0.05質量部、タルク0.05重量部、ヘキサブロモシクロドデカン3質量部を押出機ホッパーより投入し、発泡剤としてイソブタン2質量部、シクロペンタン2質量部、二酸化炭素2.5質量部を圧入し混練した後、冷却機でゲルを均一に冷却し、最適な発泡温度に調整しダイから大気圧下に押出発泡した。押出機出口からダイ入口までのゲル圧力差(勾配)及び得られた発泡体を常温で1週間(但し、熱伝導率は常温で一ヶ月)保存した後に物性測定した結果を第1表に示した。
【0032】
得られた発泡体の物性は下記の方法で測定した。
(密度)
発泡体密度=発泡体重量/発泡体体積
(気泡径)
ASTM D 3567に準じて測定
(熱伝導率λ)
JIS A 9511−1995に準じて測定〔単位はw/m.K〕
A:λ<0.027w/m.K
B:0.027≦λ<0.0275
C:0.0275≦λ<0.0280
D:0.028≦λ
(難燃性)
JIS A 9511−1995に準じて測定し、評価した。
【0033】
測定方法A:消炎時間の平均値が3秒以下である場合は合格、3秒を超えたら不合格。
【0034】
測定方法B:燃焼時間が120秒以下で且つ燃焼距離が60mm以下である場合は合格。
【0035】
燃焼時間が120秒を超えるか若しくは燃焼距離が60mmを超えた場合は不合格。
【0036】
測定方法C:酸素濃度が26%以上である場合は合格、26%未満の場合は不合格。
(ゲル圧力)
A:現行と同等以下、もしくは設備耐圧未満
B:設備耐圧以上
実施例2〜13
表に示した発泡剤組成を用いた以外は、実施例1と同様に実施した。発泡剤の量は樹脂100重量部に対する重量部である。
【0037】
実施例14
カーボンブラックを5質量部添加した以外は、実施例5と同様に実施した。
【0038】
実施例15
カーボンブラックを7質量部添加した以外は、実施例14と同様に実施した。
【0039】
実施例16
グラファイトを5質量部添加した以外は、実施例5と同様に実施した。
【0040】
実施例17
タルク0.07質量部、発泡剤として水0.6質量部を加えた以外は、実施例5と同様に実施した。気泡構造は双峰形であり、一次気泡径は0.4mmで、平均小気泡径(二次気泡径)は約0.1mmであった。
【0041】
実施例18
カーボンブラックを5質量部添加した以外は、実施例17と同様に実施した。気泡構造は双峰形であり、一次気泡径は0.35mmで、平均小気泡径(二次気泡径)は約0.1mmであった。
【0042】
比較例1
発泡剤としてイソブタン2.5質量部、シクロペンタン2質量部、二酸化炭素2.1質量部を用いた以外は、実施例1と同様に実施した。
【0043】
比較例2〜3
表1に示した発泡剤組成を用いた以外は、実施例1と同様に実施した。
【0044】
比較例4
カーボンブラックを5質量部添加した以外は、比較例3と同様に実施した。
【0045】
比較例5
発泡剤としてイソブタン4.0質量部、ジメチルエーテル2.5重量部を用い、タルクを添加しなかった以外は、実施例1と同様に実施した。押出機出口からダイ入口までのゲル系内の圧力は、現行設備の耐圧を超え、難燃性は不合格、押出されたフォームは気泡径も小さくなり、成形性が悪く、発泡体表面のスキン状態も劣った。
【0046】
比較例6
発泡剤としてイソブタン4.0質量部、ジメチルエーテル1.3重量部、タルク1.0重量部を用い、タルクを添加しなかった以外は、実施例1と同様に実施した。押出機出口からダイ入口までのゲル系内の圧力は、現行設備の耐圧を超え、難燃性は不合格、押出されたフォームは気泡径もさらに小さくなり、成形性が悪く、発泡体表面のスキン状態もさらに劣った。
【0047】
【表1】
【0048】
【表2】
【0049】
表1,2から次のことが理解される。
【0050】
発泡剤としてシクロペンタンと、必要に応じてプロパン、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、ネオペンタンのいずれか一種以上を用いることにより、環境適合性に優れ、優れた断熱性能、難燃性を有するスチレン系樹脂押出発泡体が得られた。しかも、フロン類や塩化アルキルのようなハロゲン化合物を用いることなく、現行の設備を用いながら、発泡体の気泡調整が容易で、かつ現行とほぼ同等のゲル圧力の独立気泡で良好なポリスチレン系押出発泡体を得ることができた。また、ポリスチレン樹脂に対するガス透過性も低いので、長時間にわたって熱伝導率低下を防止できる効果がある。
【0051】
特に、イソブタンとシクロペンタンの量が合計で樹脂100質量部当たり3質量部以上であれば、0.028w/mK以下を満足し、可燃性ガスの合計が樹脂100重量部当たり4.5重量部未満であれば難燃性は合格する。
【0052】
また、気泡構造を双峰形とし輻射低減剤としてカーボンブラック又はグラファイトを添加すると、さらに優れた断熱性能を有するポリスチレン系押出発泡体が得られる。
【0053】
より具体的には、実施例2では実施例1に対してシクロペンタンの量を多くすると気泡径が大きくなっている。実施例3では実施例1に対してイソブタンを減らして二酸化炭素を多くすると気泡径が小さくなり、また熱伝導度がやや低下した。実施例6では実施例1に対してイソブタン及びシクロペンタンの量を多くすると気泡径が大きくなっている。実施例8では実施例1に対してイソブタンの量が多くなり熱伝導率が向上されている。実施例14〜16ではカーボンブラック又はグラファイトを添加したので熱伝導率が向上している。実施例17、18では気泡構造を双峰形としたことで熱伝導率が向上されている。
【0054】
比較例1〜3では、可燃性ガスの総量が4.5重量部以上であるため、難燃性が不合格である。比較例5、6では発泡ガスとしてエーテルを用いたため、気泡径が小さくなって、成形性が低下している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a styrene resin foam by an extrusion foaming method and a method for producing the same. More specifically, the present invention relates to a styrene resin extruded foam having excellent environmental compatibility, excellent heat insulation performance and flame retardancy, and a method for producing the same.
[0002]
[Prior art]
Polystyrene resin extruded foam melts the resin in an extruder under high temperature and high pressure, then injects foaming gas, disperses and dissolves in the resin to form a flowable gel, which is formed into the die of the extruder. A homogeneous plate-like extruded foamed product is obtained by extruding from a low pressure region to a low pressure region and rapidly foaming and cooling.
[0003]
In recent years, regarding foams obtained by the extrusion foaming method, alkyl chlorides such as methyl chloride and ethyl chloride, which are typical foaming agents that have been used in the past, have been studied to be environmentally regulated due to their toxicity. Yes. Therefore, Patent Document 1 and Patent Document 2 disclose that alkyl chloride such as methyl chloride is not used as a foaming agent, and ethers such as dimethyl ether are used as a foaming agent instead.
[0004]
However, since ether-based gas has low solubility in styrene resin, there is a problem in that the nucleation effect is large and the bubble diameter is too small, the density is increased and it is difficult to take a large cross section. Especially when used in combination with CO 2 or the like, both have low solubility, so in order to obtain a closed cell foam with good skin quality, in order to increase the solubility of these gases in the resin, a very high gel Pressure is required and even expensive equipment is required.
[0005]
Furthermore, ether-based foaming agents such as dimethyl ether are flammable and have a slower gas permeation rate to polystyrene than carbon dioxide, which tends to reduce the flame retardant performance of the product. As compared with other hydrocarbon-based foaming agents, the gas permeation rate through the polystyrene resin is faster, so that it diffuses into the atmosphere over time and does not contribute to a decrease in the thermal conductivity of the foam over a long period of time.
[0006]
[Patent Document 1]
JP-A-11-158315 [Patent Document 2]
Japanese Patent Laid-Open No. 11-158317
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a styrene-based extruded foam having excellent environmental compatibility and excellent physical properties such as thermal conductivity and a method for producing the same.
[0008]
[Means for Solving the Problems]
By using cyclopentane instead of environmentally undesirable alkyl chloride such as methyl chloride as a foaming agent, a styrene-based extruded foam having excellent environmental compatibility and excellent physical properties such as thermal conductivity can be obtained. I found out.
[0009]
According to the present invention, the following is provided.
[0010]
(1) A polystyrene resin extruded foam that does not use a halogen compound as a foaming agent, and cyclopentane is used as the foaming agent, and the total amount of the combustible gas foaming agent is 4.5 with respect to 100 parts by mass of the resin. mass less than unit JIS A9511 -1995 a defined measuring method a in the combustion measurements, B or styrene resin extruded foam which is characterized by satisfying any of the C.
[0011]
(2) The styrene resin extruded foam as described in (1) above, wherein as the foaming agent other than cyclopentane, one or more of propane, isobutane, normal butane, normal pentane, isopentane and neopentane are used.
[0012]
(3) As a blowing agent, cyclopentane and isobutane are used in a total amount of 3 parts by mass or more and less than 4.5 parts by mass with respect to 100 parts by mass of resin, and carbon dioxide is used in combination, and the ratio of cyclopentane to carbon dioxide (mass ratio) ) Is 0.3 or more, the styrene resin extruded foam according to the above (1) or (2).
[0013]
(4) Bubbles of the foam are composed of large bubbles (primary bubbles) of 0.1 to 2 mm and small bubbles (secondary bubbles) having a size in the range of 5 to 50% of the bubble diameter. Any one of said (1)-(3) whose thermal conductivity measured in the measuring method of the B class heat insulating board prescribed | regulated to JIS A9511-1995 when the day passed is 0.028 W / m * K or less The styrene resin extruded foam described in 1.
[0014]
(5) the foam contains a radiation reducing agent, extrusion foaming after 28 days passed since the beginning with JIS A9511 -1995 a defined Class B insulation board measured thermal conductivity in the measuring method of 0.028 W / m -The styrene resin extrusion foam of any one of said (1)-(3) which is below K.
[0015]
(6) An extruded foam produced by heating and melting a styrene resin, injecting a foaming agent into the molten resin under high temperature and high pressure, cooling to a temperature suitable for extrusion foaming, and extrusion foaming under low pressure through a die. A process for producing a flammable gas blowing agent by using cyclopentane as a foaming agent, and at least one of propane, isobutane, normal butane, normal pentane, isopentane, and neopentane without using a halogen compound. styrene of the total amount is less than 4.5 parts by weight to 100 parts by weight resin, and satisfies either of the measurement methods a, B or C in the combustion measurements specified in JIS A9511 -1995 Of producing a resin-based extruded resin foam.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is characterized in that cyclopentane is used as a foaming agent without using a halogen-based foaming agent such as chlorofluorocarbons and alkyl chloride, which is environmentally undesirable. Since cyclopentane has a high solubility in polystyrene resin, the control of the cell diameter can be easily produced with the same equipment and the same extrusion conditions as those of the conventional alkyl chloride, and the production of the foam having a large cross-sectional area is facilitated. In addition, cyclopentane, like isobutane, has a low gas permeation rate with respect to polystyrene resin, and thus contributes to maintaining good thermal conductivity for a long time without using expensive and environmentally unfavorable gases such as Freon. . Thus, a polystyrene-based extruded foam having excellent environmental compatibility and excellent physical properties such as flame retardancy and thermal conductivity can be obtained.
[0017]
Since cyclopentane has a high solubility in polystyrene resin, the bubble diameter can be easily controlled and stably produced with a large cross section under the same extrusion conditions with a large degree of freedom of operation using the same equipment as conventional alkyl chloride and the like. In addition, since the gas permeation rate with respect to the styrene resin is low, it contributes to maintaining good thermal conductivity for a long period of time without using expensive and environmentally unfavorable gases such as Freon.
[0018]
Furthermore, in the present invention, by using one or more of propane, isobutane, normal butane, normal pentane, isopentane, and neopentane as the blowing agent other than cyclopentane, the same effect can be obtained, and the bubble diameter and heat The conductivity can be adjusted. Since these gases are not halogen compounds, they are environmentally preferable gases, and have high solubility in polystyrene resins and low gas permeability, so that they are suitable as extruded foam gases. In particular, since isobutane has a high solubility in polystyrene resin as well as cyclopentane, it is easy to adjust the bubble diameter, and the gas permeability is small, which contributes to maintaining good thermal conductivity for a long period of time.
[0019]
However, in this invention, the quantity of said combustible gas foaming agent shall be less than 4.5 mass parts with respect to 100 mass parts of resin in total. Thereby, the combustibility prescribed | regulated to JISA9511 can be satisfied. When the combustible gas concentration is 4.5 parts by mass or more, the surface of the foam test piece is burned by gas, and burns beyond the burn-up limit indicating line.
[0020]
In particular, cyclopentane and isobutane are used in combination, and the total amount is preferably 3 parts by mass or more and less than 4.5 parts by mass with respect to 100 parts by mass of the resin. Isobutane has an excellent effect of maintaining good thermal conductivity for a long period of time because of its low gas permeation rate with respect to polystyrene resin. Particularly excellent thermal conductivity can be obtained when the total amount of cyclopentane and isobutane is 3 parts by mass or more. When the total amount of cyclopentane and isobutane is 4 parts by mass or more, the predetermined flame retardancy is not satisfied as described above. The mass ratio of cyclopentane and isobutane is preferably 20-80: 80-20, more preferably 30-70: 70-30.
[0021]
Furthermore, when carbon dioxide is used in combination as the third blowing agent, the density of the foam can be reduced and the bubble diameter can be adjusted using the blowing agent. As a result, physical properties such as mechanical strength and thermal conductivity can be obtained. Is preferable. Furthermore, since carbon dioxide is nonflammable, it is preferable in that it does not adversely affect flame retardancy. Further, the ratio (mass ratio) of cyclopentane to carbon dioxide is preferably 0.3 or more, and more preferably 0.35 or more. Here, when the ratio of cyclopentane to carbon dioxide is less than 0.3, the bubble diameter is reduced, the moldability of the foam is lowered, and the skin state of the foam surface is also lowered.
[0022]
By combining large bubbles (primary bubbles) with a bubble size of 0.1 to 2 mm and small bubbles (secondary bubbles) with a size in the range of 5 to 50% of the bubble diameter, the density can be reduced, upon expiration of extrusion foaming after 28 days, the thermal conductivity was measured at a defined measuring method B class insulation board in JIS A9511 -1995 was also found that the following 0.028W / m · K. Here, the ratio of small bubbles per cross-sectional area is preferably 20 to 60%. If the ratio of small bubbles is too small, the effect of improving the thermal conductivity is small, and if it is too large, the thickness of the bubble film becomes too thin and radiation cannot be reduced.
[0023]
Further, in order to increase the thermal conductivity of the foam, by the addition of radiation reduction agent such as carbon black or graphite, at the time of the lapse of extrusion foaming after 28 days, JIS A9511 -1995 a defined Class B heat insulating board It was also found that the thermal conductivity measured by the measurement method was 0.028 W / m · K or less. Here, the addition amount of the radiation reducing agent is preferably about 5 to 10 parts by mass with respect to 100 parts by mass of the resin.
[0024]
It has also been found that by combining primary bubbles and secondary bubbles, the thermal conductivity is improved, and the density can be lowered with the same thermal conductivity.
[0025]
Examples of the polystyrene-based resin used in the present invention include styrene derivatives such as styrene, α-methylstyrene, chlorostyrene, dichlorostyrene, dimethylstyrene, t-butylstyrene, and vinyltoluene, or combinations of two or more thereof. Or a copolymer of these with a compound that can be easily polymerized with others such as acrylic acid, acrylic ester, methacrylic acid, maleic anhydride, or butadiene.
[0026]
Carbon black and graphite can be used as the additive for reducing radiation used in the present invention. However, adding a substance having a large refractive index such as white titanium oxide also has the effect of reducing radiation because it scatters and attenuates heat rays.
[0027]
Examples of the blowing agent used in combination with cyclopentane in the present invention include propane, normal butane, isobutane, normal pentane, isopentane, neopentane hydrocarbons, and carbon dioxide.
[0028]
The blowing agent is generally injected in an amount of about 3 to 30 parts by mass per 100 parts by mass of polystyrene resin.
[0029]
In addition, the foamable resin mixture of the present invention includes, as necessary, a bubble regulator such as talc and calcium silicate for adjusting the size of bubbles, hexabromocyclododecane, monochloropentabromo for imparting flame retardancy. It is desirable to add a flame retardant such as cyclohexane, an extrusion aid such as barium stearate and calcium stearate, and a deoxidizer such as magnesium oxide and tetrasodium pyrophosphate.
[0030]
In the production of the styrene resin extruded foam of the present invention, a styrene resin is heated and melted, a foaming agent is injected into the molten resin under high temperature and high pressure, cooled to a temperature suitable for extrusion foaming, and then low pressure through a die. Manufactured by extrusion foaming, cyclopentane is used as a blowing agent, and preferably used as a blowing agent used in combination with cyclopentane, as described above, selected from propane, normal butane, isobutane, normal pentane, isopentane, and neopentane. In addition, at least one kind is used, and the addition amount of these combustible gas blowing agents can be the same as the known method except that the total amount is less than 4.5 parts by mass with respect to 100 parts by mass of the resin.
[0031]
【Example】
Example 1
With respect to 100 parts by mass of styrene resin having a weight average molecular weight of 210,000 (210M), 0.05 part by mass of barium stearate, 0.05 part by mass of talc and 3 parts by mass of hexabromocyclododecane are charged from an extruder hopper. 2 parts by mass of isobutane, 2 parts by mass of cyclopentane, and 2.5 parts by mass of carbon dioxide as a foaming agent are press-fitted and kneaded. And foamed. The gel pressure difference (gradient) from the exit of the extruder to the entrance of the die and the physical properties measured after storing the obtained foam at room temperature for 1 week (however, the thermal conductivity is 1 month at room temperature) are shown in Table 1. It was.
[0032]
The physical properties of the obtained foam were measured by the following methods.
(density)
Foam density = foam weight / foam volume (bubble diameter)
Measured according to ASTM D 3567 (thermal conductivity λ)
JIS A 9511 -1995 measured in accordance with [unit w / m. K]
A: λ <0.027 w / m. K
B: 0.027 ≦ λ <0.0275
C: 0.0275 ≦ λ <0.0280
D: 0.028 ≦ λ
(Flame retardance)
Measured in accordance with JIS A 9511 -1995, it was evaluated.
[0033]
Measuring method A: Pass if the average value of the flame extinguishing time is 3 seconds or less, fail if it exceeds 3 seconds.
[0034]
Measurement method B: Pass when the burning time is 120 seconds or shorter and the burning distance is 60 mm or shorter.
[0035]
Fail if the burning time exceeds 120 seconds or the burning distance exceeds 60 mm.
[0036]
Measurement method C: Pass when oxygen concentration is 26% or more, fail when less than 26%.
(Gel pressure)
A: Less than or equal to current or less than equipment breakdown voltage B: More than equipment breakdown voltage Examples 2 to 13
It implemented similarly to Example 1 except having used the foaming agent composition shown to the table | surface. The amount of the foaming agent is parts by weight with respect to 100 parts by weight of the resin.
[0037]
Example 14
The same operation as in Example 5 was carried out except that 5 parts by mass of carbon black was added.
[0038]
Example 15
The same operation as in Example 14 was performed except that 7 parts by mass of carbon black was added.
[0039]
Example 16
The same operation as in Example 5 was performed except that 5 parts by mass of graphite was added.
[0040]
Example 17
The same operation as in Example 5 was carried out except that 0.07 part by mass of talc and 0.6 part by mass of water were added as a foaming agent. The cell structure was bimodal, the primary bubble diameter was 0.4 mm, and the average small bubble diameter (secondary bubble diameter) was about 0.1 mm.
[0041]
Example 18
The same operation as in Example 17 was carried out except that 5 parts by mass of carbon black was added. The bubble structure was a bimodal shape, the primary bubble diameter was 0.35 mm, and the average small bubble diameter (secondary bubble diameter) was about 0.1 mm.
[0042]
Comparative Example 1
The same procedure as in Example 1 was performed except that 2.5 parts by mass of isobutane, 2 parts by mass of cyclopentane, and 2.1 parts by mass of carbon dioxide were used as the blowing agent.
[0043]
Comparative Examples 2-3
It implemented like Example 1 except having used the foaming agent composition shown in Table 1.
[0044]
Comparative Example 4
It carried out similarly to the comparative example 3 except having added 5 mass parts of carbon black.
[0045]
Comparative Example 5
The same procedure as in Example 1 was carried out except that 4.0 parts by mass of isobutane and 2.5 parts by weight of dimethyl ether were used as the blowing agent, and talc was not added. The pressure in the gel system from the exit of the extruder to the entrance of the die exceeds the pressure resistance of the current equipment, flame retardance is rejected, the foam foam has a small cell diameter, poor moldability, skin on the foam surface The condition was inferior.
[0046]
Comparative Example 6
The same procedure as in Example 1 was carried out except that 4.0 parts by mass of isobutane, 1.3 parts by weight of dimethyl ether and 1.0 part by weight of talc were used as the blowing agent, and talc was not added. The pressure in the gel system from the exit of the extruder to the entrance of the die exceeds the pressure resistance of the current equipment, the flame retardance is rejected, the extruded foam has a smaller bubble diameter, the moldability is poor, and the foam surface The skin condition was even worse.
[0047]
[Table 1]
[0048]
[Table 2]
[0049]
The following can be understood from Tables 1 and 2.
[0050]
Uses cyclopentane as a blowing agent and, if necessary, one or more of propane, isobutane, normal butane, normal pentane, isopentane, and neopentane, providing excellent environmental compatibility, excellent heat insulation performance, and flame retardancy A styrene resin extruded foam was obtained. Moreover, without using halogen compounds such as chlorofluorocarbons and alkyl chlorides, it is easy to adjust the foam bubbles while using the existing equipment, and good polystyrene extrusion with closed cells with gel pressure almost the same as the current one. A foam could be obtained. Moreover, since the gas permeability with respect to a polystyrene resin is also low, there exists an effect which can prevent a heat conductivity fall over a long time.
[0051]
In particular, if the total amount of isobutane and cyclopentane is 3 parts by mass or more per 100 parts by mass of resin, 0.028 w / mK or less is satisfied, and the total amount of combustible gas is 4.5 parts by weight per 100 parts by weight of resin. If it is less than this, the flame retardancy will pass.
[0052]
Further, when the cell structure is bimodal and carbon black or graphite is added as a radiation reducing agent, a polystyrene-based extruded foam having further excellent heat insulation performance can be obtained.
[0053]
More specifically, in Example 2, when the amount of cyclopentane is increased compared to Example 1, the bubble diameter is increased. In Example 3, when isobutane was reduced and carbon dioxide was increased compared to Example 1, the bubble diameter was reduced and the thermal conductivity was slightly lowered. In Example 6, when the amount of isobutane and cyclopentane is increased as compared with Example 1, the bubble diameter is increased. In Example 8, the amount of isobutane is larger than that in Example 1, and the thermal conductivity is improved. In Examples 14 to 16, since carbon black or graphite was added, the thermal conductivity was improved. In Examples 17 and 18, the thermal conductivity is improved by forming the cell structure into a bimodal shape.
[0054]
In Comparative Examples 1-3, since the total amount of combustible gas is 4.5 weight part or more, a flame retardance is disqualified. In Comparative Examples 5 and 6, since ether was used as the foaming gas, the bubble diameter was reduced and the moldability was reduced.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003171208A JP4636784B2 (en) | 2003-06-16 | 2003-06-16 | Polystyrene resin extruded foam and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003171208A JP4636784B2 (en) | 2003-06-16 | 2003-06-16 | Polystyrene resin extruded foam and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005008668A true JP2005008668A (en) | 2005-01-13 |
JP4636784B2 JP4636784B2 (en) | 2011-02-23 |
Family
ID=34095776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003171208A Expired - Lifetime JP4636784B2 (en) | 2003-06-16 | 2003-06-16 | Polystyrene resin extruded foam and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4636784B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011046845A (en) * | 2009-08-27 | 2011-03-10 | Dow Kakoh Kk | Styrenic resin extruded foam |
JP2011122120A (en) * | 2009-12-14 | 2011-06-23 | Dow Kakoh Kk | Styrene-based resin extruded foam |
JP2013542302A (en) * | 2010-11-11 | 2013-11-21 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing foamable thermoplastic beads with improved foamability |
WO2014092086A1 (en) * | 2012-12-11 | 2014-06-19 | 旭化成建材株式会社 | Phenolic resin foam and method for producing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63183941A (en) * | 1987-01-27 | 1988-07-29 | Asahi Chem Ind Co Ltd | Heat insulating thermoplastic resin foam |
JP2003012848A (en) * | 2001-06-29 | 2003-01-15 | Jsp Corp | Production method for polystyrene-resin extruded foamed sheet and polystyrene-resin extruded foamed sheet |
JP2003503525A (en) * | 1999-06-17 | 2003-01-28 | ザ ダウ ケミカル カンパニー | Polymer foam and method for producing the same using oil-containing furnace black as insulation improver |
JP2003508613A (en) * | 1999-09-03 | 2003-03-04 | ザ ダウ ケミカル カンパニー | Extruded thermal insulation foam with monovinyl aromatic polymer of broad molecular weight distribution |
-
2003
- 2003-06-16 JP JP2003171208A patent/JP4636784B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63183941A (en) * | 1987-01-27 | 1988-07-29 | Asahi Chem Ind Co Ltd | Heat insulating thermoplastic resin foam |
JP2003503525A (en) * | 1999-06-17 | 2003-01-28 | ザ ダウ ケミカル カンパニー | Polymer foam and method for producing the same using oil-containing furnace black as insulation improver |
JP2003508613A (en) * | 1999-09-03 | 2003-03-04 | ザ ダウ ケミカル カンパニー | Extruded thermal insulation foam with monovinyl aromatic polymer of broad molecular weight distribution |
JP2003012848A (en) * | 2001-06-29 | 2003-01-15 | Jsp Corp | Production method for polystyrene-resin extruded foamed sheet and polystyrene-resin extruded foamed sheet |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011046845A (en) * | 2009-08-27 | 2011-03-10 | Dow Kakoh Kk | Styrenic resin extruded foam |
JP2011122120A (en) * | 2009-12-14 | 2011-06-23 | Dow Kakoh Kk | Styrene-based resin extruded foam |
JP2013542302A (en) * | 2010-11-11 | 2013-11-21 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for producing foamable thermoplastic beads with improved foamability |
WO2014092086A1 (en) * | 2012-12-11 | 2014-06-19 | 旭化成建材株式会社 | Phenolic resin foam and method for producing same |
JPWO2014092086A1 (en) * | 2012-12-11 | 2017-01-12 | 旭化成建材株式会社 | Phenolic resin foam and method for producing the same |
JP2017206714A (en) * | 2012-12-11 | 2017-11-24 | 旭化成建材株式会社 | Phenolic resin foam and manufacturing method thereof |
US10253151B2 (en) | 2012-12-11 | 2019-04-09 | Asahi Kasei Construction Materials Corporation | Phenolic resin foam and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4636784B2 (en) | 2011-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011225641A (en) | Extruded foam of polystyrenic resin and method for producing the same | |
JP5042654B2 (en) | Thermoplastic resin foam | |
JP5248041B2 (en) | Thermoplastic resin foam | |
JP5042653B2 (en) | Thermoplastic resin foam | |
JP2012236959A (en) | Method for producing extrusion-foamed board of polystyrenic resin | |
JP4901026B2 (en) | Manufacturing method of polystyrene resin extruded foam plate and polystyrene resin extruded foam plate | |
JP4346363B2 (en) | Polystyrene resin extruded foam and method for producing the same | |
JP4636784B2 (en) | Polystyrene resin extruded foam and method for producing the same | |
JP3981945B2 (en) | Production method of polystyrene resin extruded foam plate and polystyrene resin extruded foam plate | |
JP5126937B2 (en) | Method for producing polystyrene resin extruded foam plate | |
JP2013256614A (en) | Method for manufacturing polystyrene-based resin extrusion foam | |
JP2014095048A (en) | Method for manufacturing polystyrene resin extruded foamed plate and polystyrene resin extruded foamed plate | |
JP2009173771A (en) | Method for producing styrenic resin extruded foam | |
JP4413080B2 (en) | Flame retardant polystyrene resin extruded foam board | |
JP4708315B2 (en) | Thermoplastic resin foam | |
JP4101684B2 (en) | Styrenic resin foam plate and manufacturing method thereof | |
JP4806244B2 (en) | Method for producing extruded polystyrene resin foam | |
JP2005029615A (en) | Styrenic resin extruded foam | |
JP4474733B2 (en) | Method for producing styrene resin foam | |
JP2012082440A (en) | Polystyrene-based resin-extruded foamed plate | |
JP2009298850A (en) | Method for producing styrene-based resin-extruded foam material | |
JP3721109B2 (en) | Styrenic resin foam and method for producing the same | |
JP2007039601A (en) | Extruded foam | |
JP6124484B2 (en) | Method for producing extruded polystyrene resin foam | |
JP2007063457A (en) | Extrusion foamed article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101026 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4636784 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |