【0001】
【発明の属する分野】
本発明は、金属、セラミックス、ガラスなどからなるワークの表面を研磨するのに用いられる研磨パッド及びその製造方法に関し、特に、表面に高い平滑性と平坦性が要求される半導体ウエハ、半導体デバイスウエハ、液晶表示素子、薄膜映像デバイス、磁気ディスク基板、光ディスク基板などのワークの表面を研磨するのに用いられる研磨パッド及びその製造方法並びに研磨方法に関するものである。
【0002】
【従来の技術】
電話、カメラ、コンピュータなどの電子機器には、機能の制御や情報の記憶又は表示のため、半導体装置や磁気ディスクなどが主要電子部品として使用されている。
【0003】
このような電子部品に用いられる半導体デバイスウエハなどのワークの表面は、研磨工程を経た後、多層配線工程や被膜工程など、各種電子部品の製造工程で要求される様々な工程、さらに検査工程を経て製品化される。
【0004】
このようなワークの製造段階で要求される一連の工程は、設計段階で予定される部品性能や機能を発揮させるため、ナノメートル単位の精度で行わなければならず、このため、各工程には高い精度が要求され、研磨工程においても、ワークの表面を高度に平坦化することが要求されている。
【0005】
このように高い精度が要求される研磨工程におけるワークの研磨は、表面に研磨パッドを貼り付けた定盤を回転させながら、定盤の研磨パッドの表面に、砥粒を分散した研磨スラリーを供給し、この上に、ワークを押し付けながら回転させて行われる。
【0006】
このようなワークの研磨では、従来、研磨パッドとして、織布又は不織布からなるクロスパッドや発泡体パッドが使用されていた。これは、これら研磨パッドには柔軟性や弾力性があり、また表面に研磨クズを取り込める隙間や気泡空隙を有することから、ワークの表面を高度に平坦化できるものと考えられていたからである(例えば、特許文献1を参照)。
【0007】
【特許文献1】
特開2000−239651号公報(段落0012、0015)
【0008】
【発明が解決しようとする課題】
上記の多層配線工程や被膜工程などでは、凹凸面を有する下地層の上に、次の層を積層すると、上側の層の表面には、下地層の凹凸面にほぼ相似する凹凸面が形成される(例えば、半導体デバイスウエハの多層配線構造物の表面)。
【0009】
この上側の層の表面を、従来の研磨パッドのような柔軟性や弾力性を有する研磨パッドを使用して研磨すると、上側の層の凹凸面に起因した緩やかな凹凸が形成され、ワークの表面を高精度に平坦化できない、という問題が生じる。
【0010】
この問題は、以下のようにして生じると考えられる。図3を参照する。柔軟性や弾力性を有する従来の研磨パッドを上側の層32の凹凸面に押し付けると、凸部だけでなく、凹部内の底面にまで研磨パッドが入り込み、研磨スラリーに含まれている砥粒を凹部34内の底面に作用させ、凹凸面の凸部33と凹部34内とを同時に研磨する。このとき、凹部34内の底面に作用している研磨パッドの圧力は、凸部33に作用している研磨パッドの圧力よりも低いので、凹部34内の研磨レートは、凸部33の研磨レートよりも低くなっている。そして、上側の層32の凸部33が目標レベル(符号36で示す真直ぐな破線)まで研磨される前に、上側の層32の凹部34の底面が目標レベル36を超えて研磨され、これにより、下地層31の凹凸面に起因した緩やかな凹凸(破線35で示す残留段差を有する)が形成されると考えられる(後記する比較試験結果1にあるように、実際に、柔軟性や弾力性を有する従来の研磨パッドを使用すると、下地層の凹凸面の凹部上のワークの表面が緩やかに凹む)。
【0011】
本発明は、上記問題に鑑みてなされたものであり、したがって、本発明の目的は、ワークの表面を高精度に平坦化できる研磨パッド及びその製造方法並びに研磨方法を提供することである。
【0012】
また、本発明の他の目的は、ワークの表面の平坦化を短時間で高精度に行える研磨パッド及びその製造方法並びに研磨方法を提供することである。
【0013】
【課題を解決するための手段】
<研磨パッド> 上記問題を解決する本発明の研磨パッドは、平坦な表面を有する板状の無発泡体、及びこの無発泡体の内部及び表面に分散して固定される砥粒から構成される。この研磨パッドの表面の平均表面粗さは、0.5μm〜10μmの範囲にあり、研磨中、この無発泡体の平坦な表面から突き出している砥粒がワークの表面に作用し、これにより、ワークの表面が研磨される。
【0014】
本発明の研磨パッドのショアD硬度は、50〜85の範囲、好適に70〜85の範囲にある。本発明では、研磨中、このような硬さの研磨パッドの表面にワークが押し付けられているので、ワークが、研磨パッドの内部に沈み込むことがなく、研磨パッドが、ワークによって引きずられて、柔軟性や弾力性を有する研磨パッドのように、大きく弾性変形することがない。
【0015】
また、本発明の研磨パッドの表面には、研磨中に発生した研磨クズなどの異物を取り込める溝が形成され、異物は、この溝を通じて、外部へ流し出される。これにより、本発明の研磨パッドが短時間で目詰まりすることがない。また、この溝は、研磨液を研磨パッドの表面にわたって均一に供給する流路としての機能も有する。
【0016】
無発泡体は、ポリウレタン系、ポリエチレン系、ポリスチレン系、ポリ塩化ビニル系又はアクリル系の樹脂からなる板である。この板状の無発泡体の厚さは、好適に0.5mm〜3mmの範囲にある。
【0017】
砥粒として、一次粒子、二次粒子、又は一次粒子と二次粒子との混合粒子が使用される。この一次粒子の平均粒径は、0.005μm〜0.5μmの範囲にある。また、二次粒子の平均粒径が0.01μm〜20μmの範囲にある。
【0018】
砥粒は、酸化セリウム、酸化珪素、アルミナ、炭化珪素、ジルコニア、酸化鉄、二酸化マンガン、酸化チタン及びダイヤモンドから選択される材料からなる粒子、又はこれら材料からなる二種以上の粒子からなる。無発泡体に固定される砥粒の含有率は、10体積%〜60体積%、好適に20体積%〜50体積%の範囲にある。
【0019】
本発明の研磨パッドは、ベースシートの表面と裏面に接着剤を塗布した両面接着シートからさらに構成され得る。この両面接着シートは、ベースシートの表面の接着剤を介して無発泡体の裏面に固定される。このベースシートとして、弾性を有するシートが使用され得る。
【0020】
<製造方法> 樹脂溶液と砥粒と硬化剤とを混合して、砥粒分散液を製造し、この砥粒分散液を減圧して脱泡して、無泡砥粒分散液を製造し、この無泡砥粒分散液を硬化して、内部及び表面に砥粒を固定した板状の無発泡体のブロック(厚さ1mm〜6mm)を成形し、このブロックを所定の厚さに加工して板状の無発泡体を製造し、これにより、上記本発明の研磨パッドが製造される。また、所定の厚さに加工した板状の無発泡体の表面に上記の溝を形成し得る。
【0021】
<研磨方法> ワークの表面の研磨は、上記本発明の研磨パッドを表面に貼り付けた定盤、この定盤を回転させる手段、ワークを保持するワーク保持手段、及び研磨液又は研磨スラリーを供給する手段から構成される研磨装置を使用して行われ、定盤を回転させ、この定盤の表面に貼り付けた研磨パッドの表面に研磨液又は研磨スラリーを供給し、この上に、ワーク保持手段に保持したワークの表面を押し付けることによって行われる。
【0022】
【発明の実施の形態】
<研磨パッド> 図1A及び図1Bに示すように、本発明の研磨パッド10は、平坦な表面を有する板状の無発泡体11、及びこの無発泡体11の内部及び表面に分散して固定される砥粒12から構成される。この研磨パッド10の表面の平均表面粗さは、0.5μm〜10μmの範囲にあり、研磨中、この無発泡体11の平坦な表面から突き出している砥粒12がワークWの表面に作用し、これにより、ワークWの表面が研磨される。
【0023】
研磨パッド10のショアD硬度は、50〜85の範囲、好適に70〜85の範囲にある。本発明では、図2に示すように、研磨中、このような硬さの研磨パッド10の表面にワークWが押し付けられているので、ワークWが、研磨パッド10の内部に沈み込むことがなく、研磨パッド10が、ワークWによって引きずられて、大きく弾性変形することがない。
【0024】
無発泡体11は、ポリウレタン系、ポリエチレン系、ポリスチレン系、ポリ塩化ビニル系又はアクリル系の樹脂からなる板である。この板状の無発泡体11の厚さは、好適に0.5mm〜3mmの範囲にある。
【0025】
本発明の研磨パッド10の表面には、研磨中に発生した研磨クズなどの異物を取り込める溝13が形成され、異物は、この溝13を通じて、外部へ流し出される。これにより、本発明の研磨パッド10は、短時間で目詰まりすることがない。また、この溝13は、研磨液又は研磨スラリーを研磨パッド10の表面にわたって均一に供給する流路としての機能も有する。溝13の平面形状は、直線、曲線及びこれらを組み合わせた幾何学的なパターンから選択でき(例えば、放射状、格子状、螺旋状、同心円状など)、好適に、螺旋状又は同心円状である。溝13の断面形状は、矩形であることが好ましい。これは、研磨パッド10が摩耗しても、溝13の形状が一定(すなわち、研磨パッド10の平面形状が一定)となるからである。溝13のピッチは0.5mm〜10mmの範囲にある。溝13の深さは、0.2mm〜1mmの範囲にあり、板状の無発泡体11の厚さの1/2以内の深さにある。溝13の深さと幅の比は、3:5〜4:1の範囲にある。
【0026】
砥粒12として、一次粒子、二次粒子(凝集粒子)、又は一次粒子と二次粒子との混合粒子が使用される。この一次粒子の平均粒径は、0.005μm〜0.5μmの範囲にある。また、二次粒子の平均粒径が0.01μm〜20μmの範囲にある。二次粒子は、研磨中、研磨パッド10から脱粒しても、崩壊して、これが遊離し、小さい一次粒子の遊離砥粒となり、ワークWの表面に作用するので、ワークWの表面を傷付けることがない。
【0027】
砥粒12は、酸化セリウム、酸化珪素、アルミナ、炭化珪素、ジルコニア、酸化鉄、二酸化マンガン、酸化チタン及びダイヤモンドから選択される材料からなる粒子、又はこれら材料からなる二種以上の粒子からなる。無発泡体11に固定される砥粒12の含有率は、10体積%〜60体積%、好適に20体積%〜50体積%の範囲にある。この含有率が低すぎると、十分な研磨力が得られず、含有率が高すぎると、研磨中に砥粒12が脱粒し易くなり、ワークWの表面を傷付けることがある。
【0028】
研磨パッド10は、ベースシート15の表面と裏面に接着剤16を塗布した両面接着シート14からさらに構成され得る。この両面接着シート14は、ベースシート15の表面の接着剤16を介して無発泡体11の裏面に固定される。このベースシート15として、弾性を有するシート(例えば、織布、不織布、発泡体などからなるシート)が使用され得る。実用上、両面接着シート14の裏面の接着剤16の乾燥防止のため、この上に、剥型紙(図示せず)が貼り付けられており、使用時に、この剥型紙を剥がして、研磨パッド10を定盤の表面に接着できるようになっている。
【0029】
<製造方法> 本発明の研磨パッド10は、まず、樹脂溶液と砥粒12と硬化剤とを混合して、砥粒分散液を製造する。そして、この砥粒分散液を減圧して脱泡し、無泡砥粒分散液を製造する。ここで、砥粒として、二次粒子を使用することが好ましい。これは、二次粒子は、溶液中に均一に分散され易く、また、上記のように、研磨中に崩壊するからである。
【0030】
次に、この無泡砥粒分散液を硬化して、内部及び表面に砥粒12を固定した板状の無発泡体のブロックを成形する。無泡砥粒分散液の硬化は、成形型を使用して行われる。このブロックの厚さは、1mm〜6mmの範囲にあることが好ましい。これは、成形後の厚さ方向の砥粒の分散を均一にするためである。ブロックは、成形型から取り出した後に、研磨工具を使用してブロックの両面を研削し、所定の厚さに加工され、内部及び表面に砥粒12を固定した板状の無発泡体11が製造される。また、既知の旋盤加工技術を利用して、この板状の無発泡体11の表面に上記の溝13を形成することができる。さらに、この板状の無発泡体11の裏面に上記の両面接着シート14を固定してもよい。
【0031】
このようにして、本発明の研磨パッドが製造される。
【0032】
<研磨方法> ワークの研磨は、図2に示す研磨装置20を使用して行える。図示の研磨装置は、定盤21、定盤21を回転させる手段(図示せず)、ワークWを保持するワーク保持手段(符号22で示すチャック)、及び研磨液又は研磨スラリーを供給する手段(符号23で示すノズル)から構成され、さらにワーク保持手段(チャック22)を回転させる手段(図示せず)を有する。ワークWの研磨は、図示のように、定盤21の表面に本発明の研磨パッド10を表面に貼り付け、この定盤21を矢印Rの方向に回転させ、この研磨パッド10の表面にノズル23を通じて研磨液を供給し、この上に、チャック22に保持したワークWの表面を押し付け、これを矢印rの方向に回転させることによって行われる。なお、研磨パッド10の表面が摩耗した際には、既知のコンディショニング作業を行って、表面を修正できる。
【0033】
研磨液として、水が使用される。ワークWの表面を化学的機械的に研磨するため、この研磨液に、ワークWの表面と化学的に反応する薬液をさらに添加してもよい。このような薬液は、ワークWの被研磨面を構成する材料に従って適宜に選定できる。例えば、被研磨面を構成する材料が二酸化珪素である場合、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、フッ酸、フッ化物などが使用される。被研磨面がタングステンである場合、硝酸鉄、ヨウ素酸カリウムなどが使用される。被研磨面が銅である場合、グリシン、キナルジン酸、過酸化水素、ベンゾトリアゾールなどが使用される。
【0034】
本発明では、研磨液に代えて、水又は水ベースの水溶液に上記の砥粒を分散させている研磨スラリーを使用できる。また、砥粒分酸性を向上させるため、研磨スラリーに、アルコール類やグリコール類をさらに添加してもよい。さらに、ワークWの表面を化学的機械的に研磨するため、研磨スラリーに、ワークWの表面と化学的に反応する薬液をさらに添加してもよい。
【0035】
<実施例> 本発明の研磨パッドを以下のようにして製造した。
【0036】
60℃に加温したHDI系プレポリマー(100部)に、十分に乾燥させた平均粒径0.2μmの酸化セリウム(50部)を加え、十分に攪拌した後、減圧して脱泡し、混合液Aを製造した。また、50℃に加温したポリエーテル系ポリオール(80部)に、十分に乾燥させた平均粒径0.2μmの酸化セリウム(40部)を加え、十分に攪拌した後、減圧して脱泡し、混合液Bを製造した。
【0037】
次に、混合液Aに混合液Bを加え、これを、泡が混入しないように、遊星運動式の攪拌機を使用して、短時間で攪拌し、減圧して十分に脱泡して混合液Cを製造した。
【0038】
次に、この混合液Cを成形型に充填し、型内に120℃で10分間保持し、厚さ約3mmの板を成形し、これを成形型から取り出し、この板を100℃の恒温槽内に約12時間保持した後、自然冷却した。
【0039】
次に、この板を所定の形状(円形)に型抜きし、厚さ2mmに研削し、ショアD硬度72の円板を製造した。
【0040】
次に、この研磨パッドの表面に、旋盤を使用して、螺旋状の溝(ピッチ2mm、深さ0.5mm、幅1mm)を形成し、ポリウレタンからなる平坦な表面を有する板状の無発泡体の内部及び表面に砥粒を分散し固定した溝付きの実施例の研磨パッドを製造した。
【0041】
<比較例> 比較例の研磨パッドとして、独立気泡を有する厚さ1.27mmの発泡ポリウレタンからなる市販の発泡体パッド(製品名:IC1000、ロデール社)を使用した。なお、この発泡体パッドには、砥粒は固定されていない。
【0042】
<比較試験1> 実施例の研磨パッドと、比較例の研磨パッドとを使用して、ワークの表面を研磨した。ワークは、8インチシリコンウエハの表面にテスト用多層配線構造物(幅50μm、ピッチ100μm及び深さ0.8μmの段差パターンの上に、厚さ2μmのSiO2膜をCVDにより形成したもの)を形成し、これを20mm×20mmに切断したものである。研磨は、図2に示すような市販の片面研磨装置(製品名:SPL−15、岡本工作機械製作所)(定盤サイズ:380mm)を使用して行った。そして、研磨量(段差を除去したときの量を100%とする)に対する残留段差(SiO2膜の表面に残留する段差の深さ)を比較した。
【0043】
実施例の研磨パッドを使用した試験では、純水に水酸化カリウムを添加したpH11.3の研磨液(砥粒を含んでいない)を使用し、下記の表1に示す条件で研磨を行った。
【表1】
【0044】
また、比較例の研磨パッドを使用した試験では、SiO2膜の研磨に一般的に使用されている市販のスラリー(製品名:SS−25、キャボット社)を2倍に希釈した研磨スラリーを使用し、下記の表2に示す条件で研磨を行った。
【表2】
【0045】
<比較試験結果1> 比較試験1の結果を下記の表3に示す。SiO2膜の段差を除去したとき(研磨量が100%のとき)、表3に示すように、実施例の残留段差は、0.027μm(比較例の約3分の1)であり、比較例(従来技術)よりも著しく平坦化されたことがわかる。
【表3】
【0046】
<比較試験2> 実施例の研磨パッドと、比較例の研磨パッドとを使用して、ワークの表面を研磨した。ワークは、4インチシリコンウエハの表面に厚さ1μmの酸化膜を形成したものである。研磨は、上記の比較試験1に使用した市販の片面研磨装置(製品名:SPL−15、岡本工作機械製作所)(定盤サイズ:380mm)を使用して行った。そして、研磨レート(単位時間当りの研磨量)と平均表面粗さについて比較した。
【0047】
実施例の研磨パッドを使用した試験では、純水に水酸化カリウムを添加したpH11.3の研磨液(砥粒を含んでいない)を使用し、上記の表1に示す条件で研磨を行った。また、SiO2膜の研磨に一般的に使用されている市販のスラリー(製品名:SS−25、キャボット社)を2倍に希釈した研磨スラリー(砥粒を含んでいる)を使用し、上記の表2に示す条件で研磨を行った。
【0048】
また、比較例の研磨パッドを使用した試験では、SiO2膜の研磨に一般的に使用されている市販のスラリー(製品名:SS−25、キャボット社)を2倍に希釈した研磨スラリーを使用し、上記の表2に示す条件で研磨を行った。
【0049】
<比較試験結果2> 比較試験2の結果を表4に示す。表4に示すように、砥粒を含んだ研磨スラリーを使用することにより、実施例では、比較例の約2倍の研磨レートで、ワークの表面を平坦化できた。
【表4】
【0050】
【発明の効果】
本発明が以上のように構成されるので、以下のような効果を奏する。
【0051】
ワークが、研磨パッドの内部に沈み込むことがなく、研磨パッドが、ワークによって引きずられて大きく弾性変形することがないので、研磨液(砥粒を含まない)を使用して、ワークの表面を高精度に平坦化できる。また、研磨スラリー(砥粒を含む)を使用することで、ワークの表面の平坦化を短時間で高精度に行える。
【図面の簡単な説明】
【図1】図1A及び図1Bは、本発明の研磨パッドの断面図である。
【図2】図2は、本発明に従った研磨装置の斜視図である。
【図3】図3は、多層配線構造物の断面図である。
【符号の説明】
10・・・研磨パッド
11・・・板状の無発泡体
12・・・砥粒
13・・・溝
14・・・両面接着シート
15・・・ベースシート
16・・・接着剤
20・・・研磨装置
21・・・定盤
22・・・チャック
23・・・ノズル
R、r・・・回転方向
W・・・ワーク
31・・・下地層
32・・・上側の層
33・・・凸部
34・・・凹部
35・・・残留段差
36・・・目標レベル[0001]
[Field of the Invention]
The present invention relates to a polishing pad used for polishing the surface of a workpiece made of metal, ceramics, glass, and the like, and a method for manufacturing the same, and in particular, a semiconductor wafer and a semiconductor device wafer that require high smoothness and flatness on the surface. The present invention relates to a polishing pad used for polishing a surface of a workpiece such as a liquid crystal display element, a thin film video device, a magnetic disk substrate, an optical disk substrate, a manufacturing method thereof, and a polishing method.
[0002]
[Prior art]
In electronic devices such as telephones, cameras, and computers, semiconductor devices, magnetic disks, and the like are used as main electronic components for controlling functions and storing or displaying information.
[0003]
The surface of a workpiece such as a semiconductor device wafer used for such an electronic component is subjected to various processes required in the manufacturing process of various electronic parts, such as a multilayer wiring process and a coating process, and an inspection process after undergoing a polishing process. It is commercialized after that.
[0004]
A series of processes required in the manufacturing stage of such workpieces must be performed with nanometer accuracy to achieve the performance and functions of parts planned in the design stage. High accuracy is required, and the surface of the workpiece is required to be highly planarized even in the polishing process.
[0005]
For polishing a workpiece in such a polishing process that requires high accuracy, a polishing slurry in which abrasive grains are dispersed is supplied to the surface of the polishing pad of the surface plate while rotating the surface plate with the polishing pad attached to the surface. Then, it is performed by rotating the workpiece while pressing on it.
[0006]
In polishing such a workpiece, conventionally, a cloth pad or a foam pad made of a woven fabric or a non-woven fabric has been used as a polishing pad. This is because these polishing pads have flexibility and elasticity, and since the surface has gaps and bubble voids that can take in polishing scraps, it was considered that the surface of the workpiece can be highly planarized (for example, , See Patent Document 1).
[0007]
[Patent Document 1]
JP 2000-239651 A (paragraphs 0012 and 0015)
[0008]
[Problems to be solved by the invention]
In the multilayer wiring process and the coating process described above, when the next layer is laminated on the underlying layer having an uneven surface, an uneven surface substantially similar to the uneven surface of the underlying layer is formed on the surface of the upper layer. (For example, the surface of a multilayer wiring structure of a semiconductor device wafer).
[0009]
When the surface of the upper layer is polished using a polishing pad having flexibility and elasticity like a conventional polishing pad, loose unevenness due to the uneven surface of the upper layer is formed, and the surface of the workpiece There arises a problem that it cannot be flattened with high accuracy.
[0010]
This problem is considered to occur as follows. Please refer to FIG. When a conventional polishing pad having flexibility and elasticity is pressed against the concavo-convex surface of the upper layer 32, the polishing pad enters not only the convex portion but also the bottom surface in the concave portion, and the abrasive grains contained in the polishing slurry are removed. By acting on the bottom surface in the concave portion 34, the convex portion 33 of the concave and convex surface and the inside of the concave portion 34 are polished simultaneously. At this time, since the pressure of the polishing pad acting on the bottom surface in the concave portion 34 is lower than the pressure of the polishing pad acting on the convex portion 33, the polishing rate in the concave portion 34 is the polishing rate of the convex portion 33. Is lower than. And before the convex part 33 of the upper layer 32 is grind | polished to a target level (straight broken line shown with the code | symbol 36), the bottom face of the recessed part 34 of the upper layer 32 is grind | polished exceeding the target level 36, thereby Therefore, it is considered that moderate unevenness (having a residual step indicated by a broken line 35) due to the uneven surface of the underlayer 31 is formed (as shown in Comparative Test Result 1 described later, actually, flexibility and elasticity) When using a conventional polishing pad having a surface of the workpiece, the surface of the workpiece on the concave portion of the concave and convex surface of the underlayer is gently recessed.
[0011]
The present invention has been made in view of the above problems. Accordingly, an object of the present invention is to provide a polishing pad that can flatten the surface of a workpiece with high accuracy, a manufacturing method thereof, and a polishing method.
[0012]
Another object of the present invention is to provide a polishing pad that can flatten the surface of a workpiece with high accuracy in a short time, a manufacturing method thereof, and a polishing method.
[0013]
[Means for Solving the Problems]
<Polishing pad> The polishing pad of the present invention that solves the above problems is composed of a plate-like non-foamed body having a flat surface, and abrasive grains that are dispersed and fixed inside and on the surface of the non-foamed body. . The average surface roughness of the surface of this polishing pad is in the range of 0.5 μm to 10 μm, and during polishing, abrasive grains protruding from the flat surface of this non-foamed substance act on the surface of the workpiece, The surface of the workpiece is polished.
[0014]
The Shore D hardness of the polishing pad of the present invention is in the range of 50 to 85, preferably in the range of 70 to 85. In the present invention, since the work is pressed against the surface of the polishing pad having such hardness during polishing, the work does not sink into the polishing pad, and the polishing pad is dragged by the work, Unlike a polishing pad having flexibility and elasticity, it does not deform elastically.
[0015]
In addition, a groove for taking in foreign matters such as polishing debris generated during polishing is formed on the surface of the polishing pad of the present invention, and the foreign matter flows out through the groove. Thereby, the polishing pad of the present invention is not clogged in a short time. The groove also has a function as a flow path for uniformly supplying the polishing liquid over the surface of the polishing pad.
[0016]
The non-foamed body is a plate made of polyurethane, polyethylene, polystyrene, polyvinyl chloride or acrylic resin. The thickness of the plate-like non-foamed material is preferably in the range of 0.5 mm to 3 mm.
[0017]
As abrasive grains, primary particles, secondary particles, or mixed particles of primary particles and secondary particles are used. The average particle size of the primary particles is in the range of 0.005 μm to 0.5 μm. The average particle size of the secondary particles is in the range of 0.01 μm to 20 μm.
[0018]
The abrasive grains consist of particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two or more kinds of particles made of these materials. The content of the abrasive grains fixed to the non-foamed body is in the range of 10% to 60% by volume, preferably 20% to 50% by volume.
[0019]
The polishing pad of the present invention can be further composed of a double-sided adhesive sheet in which an adhesive is applied to the front and back surfaces of the base sheet. This double-sided adhesive sheet is fixed to the back surface of the non-foamed body via an adhesive on the surface of the base sheet. As this base sheet, a sheet having elasticity can be used.
[0020]
<Manufacturing method> A resin solution, abrasive grains, and a curing agent are mixed to produce an abrasive dispersion, and the abrasive dispersion is depressurized and degassed to produce a foam-free abrasive dispersion. This foam-free abrasive dispersion is cured to form a plate-like non-foam block (thickness 1 mm to 6 mm) with abrasive grains fixed inside and on the surface, and this block is processed to a predetermined thickness. Thus, a plate-like non-foamed body is produced, whereby the polishing pad of the present invention is produced. Moreover, said groove | channel can be formed in the surface of the plate-shaped non-foamed material processed into predetermined thickness.
[0021]
<Polishing method> For polishing the surface of the workpiece, a surface plate with the polishing pad of the present invention attached to the surface, a means for rotating the surface plate, a work holding means for holding the work, and a polishing liquid or a polishing slurry are supplied. This is done by using a polishing apparatus composed of means for rotating the surface plate, supplying a polishing liquid or polishing slurry to the surface of the polishing pad affixed to the surface of the surface plate, and holding the workpiece thereon This is done by pressing the surface of the workpiece held on the means.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
<Polishing Pad> As shown in FIGS. 1A and 1B, the polishing pad 10 of the present invention is dispersed and fixed to a plate-like non-foamed body 11 having a flat surface, and the inside and the surface of the non-foamed body 11. It is comprised from the abrasive grain 12 made. The average surface roughness of the surface of the polishing pad 10 is in the range of 0.5 μm to 10 μm, and the abrasive grains 12 protruding from the flat surface of the non-foamed body 11 act on the surface of the workpiece W during polishing. Thereby, the surface of the workpiece W is polished.
[0023]
The Shore D hardness of the polishing pad 10 is in the range of 50 to 85, preferably in the range of 70 to 85. In the present invention, as shown in FIG. 2, the workpiece W is pressed against the surface of the polishing pad 10 having such hardness during polishing, so that the workpiece W does not sink into the polishing pad 10. The polishing pad 10 is not dragged by the workpiece W and greatly elastically deformed.
[0024]
The non-foamed body 11 is a plate made of polyurethane, polyethylene, polystyrene, polyvinyl chloride or acrylic resin. The thickness of the plate-like non-foamed body 11 is preferably in the range of 0.5 mm to 3 mm.
[0025]
On the surface of the polishing pad 10 of the present invention, a groove 13 for taking in foreign matters such as polishing debris generated during polishing is formed, and the foreign matter flows out through the groove 13. Thereby, the polishing pad 10 of the present invention is not clogged in a short time. The groove 13 also has a function as a flow path for uniformly supplying the polishing liquid or the polishing slurry over the surface of the polishing pad 10. The planar shape of the groove 13 can be selected from a straight line, a curved line, and a geometric pattern obtained by combining these (for example, a radial shape, a lattice shape, a spiral shape, a concentric shape, etc.), and is preferably a spiral shape or a concentric shape. The cross-sectional shape of the groove 13 is preferably rectangular. This is because even when the polishing pad 10 is worn, the shape of the groove 13 is constant (that is, the planar shape of the polishing pad 10 is constant). The pitch of the grooves 13 is in the range of 0.5 mm to 10 mm. The depth of the groove 13 is in the range of 0.2 mm to 1 mm, and the depth is within ½ of the thickness of the plate-like non-foamed body 11. The ratio of the depth and width of the groove 13 is in the range of 3: 5 to 4: 1.
[0026]
As the abrasive grains 12, primary particles, secondary particles (aggregated particles), or mixed particles of primary particles and secondary particles are used. The average particle size of the primary particles is in the range of 0.005 μm to 0.5 μm. The average particle size of the secondary particles is in the range of 0.01 μm to 20 μm. Even if the secondary particles fall off from the polishing pad 10 during polishing, they break down and become loose, and become free abrasive grains of small primary particles that act on the surface of the workpiece W, so that the surface of the workpiece W is damaged. There is no.
[0027]
The abrasive grains 12 are made of particles selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two or more kinds of particles made of these materials. The content of the abrasive grains 12 fixed to the non-foamed body 11 is in the range of 10% to 60% by volume, preferably 20% to 50% by volume. If the content is too low, sufficient polishing power cannot be obtained, and if the content is too high, the abrasive grains 12 are likely to fall during polishing, and the surface of the workpiece W may be damaged.
[0028]
The polishing pad 10 can be further composed of a double-sided adhesive sheet 14 in which an adhesive 16 is applied to the front and back surfaces of the base sheet 15. The double-sided adhesive sheet 14 is fixed to the back surface of the non-foamed body 11 via the adhesive 16 on the surface of the base sheet 15. As the base sheet 15, an elastic sheet (for example, a sheet made of a woven fabric, a nonwoven fabric, a foam, or the like) can be used. Practically, in order to prevent the adhesive 16 on the back surface of the double-sided adhesive sheet 14 from being dried, a release paper (not shown) is affixed thereon. In use, the release paper is peeled off to remove the polishing pad 10. Can be bonded to the surface of the surface plate.
[0029]
<Manufacturing method> First, the polishing pad 10 of this invention mixes a resin solution, the abrasive grain 12, and a hardening | curing agent, and manufactures an abrasive grain dispersion liquid. Then, the abrasive dispersion is depressurized and defoamed to produce a foam-free abrasive dispersion. Here, secondary particles are preferably used as the abrasive grains. This is because the secondary particles are easily dispersed uniformly in the solution and, as described above, disintegrate during polishing.
[0030]
Next, the foam-free abrasive dispersion is cured to form a plate-like non-foamed block in which the abrasive grains 12 are fixed inside and on the surface. The foam-free abrasive dispersion is cured using a mold. The thickness of this block is preferably in the range of 1 mm to 6 mm. This is to make the dispersion of the abrasive grains in the thickness direction after forming uniform. After the block is taken out of the mold, both sides of the block are ground using a polishing tool, processed to a predetermined thickness, and a plate-like non-foamed body 11 having abrasive grains 12 fixed inside and on the surface is manufactured. Is done. Further, the groove 13 can be formed on the surface of the plate-like non-foamed body 11 using a known lathe processing technique. Furthermore, you may fix said double-sided adhesive sheet 14 to the back surface of this plate-shaped non-foamed body 11.
[0031]
In this way, the polishing pad of the present invention is manufactured.
[0032]
<Polishing Method> The workpiece can be polished using a polishing apparatus 20 shown in FIG. The illustrated polishing apparatus includes a surface plate 21, means for rotating the surface plate 21 (not shown), work holding means for holding the work W (chuck indicated by reference numeral 22), and means for supplying polishing liquid or polishing slurry ( And a means (not shown) for rotating the work holding means (chuck 22). As shown in the figure, the workpiece W is polished by attaching the polishing pad 10 of the present invention to the surface of the surface plate 21, rotating the surface plate 21 in the direction of arrow R, and applying a nozzle to the surface of the polishing pad 10. The polishing liquid is supplied through 23, and the surface of the workpiece W held on the chuck 22 is pressed onto the polishing liquid and rotated in the direction of arrow r. In addition, when the surface of the polishing pad 10 is worn, the surface can be corrected by performing a known conditioning operation.
[0033]
Water is used as the polishing liquid. In order to chemically and mechanically polish the surface of the workpiece W, a chemical solution that chemically reacts with the surface of the workpiece W may be further added to the polishing solution. Such a chemical solution can be appropriately selected according to the material constituting the surface to be polished of the workpiece W. For example, when the material constituting the surface to be polished is silicon dioxide, potassium hydroxide, tetramethylammonium hydroxide, hydrofluoric acid, fluoride, or the like is used. When the surface to be polished is tungsten, iron nitrate, potassium iodate, or the like is used. When the surface to be polished is copper, glycine, quinaldic acid, hydrogen peroxide, benzotriazole, or the like is used.
[0034]
In the present invention, a polishing slurry in which the above abrasive grains are dispersed in water or a water-based aqueous solution can be used instead of the polishing liquid. In order to improve the acidity of the abrasive grains, alcohols and glycols may be further added to the polishing slurry. Furthermore, in order to chemically and mechanically polish the surface of the workpiece W, a chemical solution that chemically reacts with the surface of the workpiece W may be further added to the polishing slurry.
[0035]
<Example> The polishing pad of this invention was manufactured as follows.
[0036]
To the HDI-based prepolymer (100 parts) heated to 60 ° C., cerium oxide (50 parts) having an average particle size of 0.2 μm sufficiently dried was added, and after sufficiently stirring, degassed under reduced pressure, A liquid mixture A was produced. Further, cerium oxide (40 parts) having an average particle size of 0.2 μm, which has been sufficiently dried, is added to a polyether polyol (80 parts) heated to 50 ° C., sufficiently stirred, and then degassed by reducing the pressure. Thus, a mixed solution B was produced.
[0037]
Next, the mixed solution B is added to the mixed solution A, and the mixture is stirred for a short time using a planetary motion stirrer so that bubbles are not mixed, depressurized sufficiently, and sufficiently defoamed. C was produced.
[0038]
Next, the mixed solution C is filled into a mold, held in the mold at 120 ° C. for 10 minutes, a plate having a thickness of about 3 mm is formed, taken out from the mold, and the plate is kept in a constant temperature bath at 100 ° C. It was naturally cooled after being kept for about 12 hours.
[0039]
Next, this plate was die-cut into a predetermined shape (circular shape) and ground to a thickness of 2 mm to produce a disc having a Shore D hardness of 72.
[0040]
Next, on the surface of the polishing pad, a lathe is used to form a spiral groove (pitch 2 mm, depth 0.5 mm, width 1 mm), and a plate-like non-foam having a flat surface made of polyurethane. The polishing pad of the Example with a groove | channel which disperse | distributed and fixed the abrasive grain inside and the surface of the body was manufactured.
[0041]
<Comparative example> As a polishing pad of a comparative example, a commercially available foam pad (product name: IC1000, Rodel) made of foamed polyurethane having closed cells and a thickness of 1.27 mm was used. Note that abrasive grains are not fixed to the foam pad.
[0042]
<Comparative Test 1> The surface of the workpiece was polished using the polishing pad of the example and the polishing pad of the comparative example. The workpiece is a test multi-layer wiring structure (a 2 μm thick SiO 2 film formed by CVD on a step pattern having a width of 50 μm, a pitch of 100 μm and a depth of 0.8 μm) on the surface of an 8-inch silicon wafer. It is formed and cut into 20 mm × 20 mm. Polishing was performed using a commercially available single-side polishing apparatus (product name: SPL-15, Okamoto Machine Tool Works) (surface plate size: 380 mm) as shown in FIG. Then, the remaining step (depth of the step remaining on the surface of the SiO 2 film) with respect to the polishing amount (the amount when the step is removed is set to 100%) was compared.
[0043]
In the test using the polishing pad of the example, polishing was performed under the conditions shown in Table 1 below using a polishing solution (without abrasive grains) having a pH of 11.3 in which potassium hydroxide was added to pure water. .
[Table 1]
[0044]
Moreover, in the test using the polishing pad of the comparative example, a polishing slurry obtained by diluting a commercially available slurry (product name: SS-25, Cabot Corporation) that is generally used for polishing the SiO 2 film is used twice. Then, polishing was performed under the conditions shown in Table 2 below.
[Table 2]
[0045]
<Comparative Test Result 1> The results of Comparative Test 1 are shown in Table 3 below. When the step of the SiO 2 film is removed (when the polishing amount is 100%), as shown in Table 3, the residual step of the example is 0.027 μm (about one third of the comparative example). It can be seen that the surface is significantly flattened compared to the example (prior art).
[Table 3]
[0046]
<Comparative Test 2> The surface of the workpiece was polished using the polishing pad of the example and the polishing pad of the comparative example. The workpiece is obtained by forming a 1 μm thick oxide film on the surface of a 4-inch silicon wafer. Polishing was performed using a commercially available single-side polishing apparatus (product name: SPL-15, Okamoto Machine Tool) (surface plate size: 380 mm) used in the comparative test 1. Then, the polishing rate (polishing amount per unit time) and the average surface roughness were compared.
[0047]
In the test using the polishing pad of the example, polishing was performed under the conditions shown in Table 1 above using a polishing solution of pH 11.3 (not containing abrasive grains) in which potassium hydroxide was added to pure water. . In addition, a polishing slurry (containing abrasive grains) obtained by diluting a commercially available slurry (product name: SS-25, Cabot Corp.) generally used for polishing SiO 2 film twice, and the above Polishing was performed under the conditions shown in Table 2.
[0048]
Moreover, in the test using the polishing pad of the comparative example, a polishing slurry obtained by diluting a commercially available slurry (product name: SS-25, Cabot Corporation) that is generally used for polishing the SiO 2 film is used twice. Then, polishing was performed under the conditions shown in Table 2 above.
[0049]
<Comparative Test Result 2> The results of Comparative Test 2 are shown in Table 4. As shown in Table 4, by using a polishing slurry containing abrasive grains, in the example, the surface of the workpiece could be flattened at a polishing rate about twice that of the comparative example.
[Table 4]
[0050]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
[0051]
Since the workpiece does not sink into the polishing pad and the polishing pad is not dragged and greatly elastically deformed by the workpiece, a polishing liquid (not containing abrasive grains) is used to clean the surface of the workpiece. Flatten with high accuracy. Further, by using a polishing slurry (including abrasive grains), the surface of the workpiece can be flattened with high accuracy in a short time.
[Brief description of the drawings]
1A and 1B are cross-sectional views of a polishing pad of the present invention.
FIG. 2 is a perspective view of a polishing apparatus according to the present invention.
FIG. 3 is a cross-sectional view of a multilayer wiring structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Polishing pad 11 ... Plate-shaped non-foamed body 12 ... Abrasive grain 13 ... Groove 14 ... Double-sided adhesive sheet 15 ... Base sheet 16 ... Adhesive 20 ... Polishing device 21 ... Surface plate 22 ... Chuck 23 ... Nozzle R, r ... Rotational direction W ... Work 31 ... Under layer 32 ... Upper layer 33 ... Convex 34 ... Recess 35 ... Remaining step 36 ... Target level