JP2005003245A - Pulse tube refrigerator - Google Patents
Pulse tube refrigerator Download PDFInfo
- Publication number
- JP2005003245A JP2005003245A JP2003165392A JP2003165392A JP2005003245A JP 2005003245 A JP2005003245 A JP 2005003245A JP 2003165392 A JP2003165392 A JP 2003165392A JP 2003165392 A JP2003165392 A JP 2003165392A JP 2005003245 A JP2005003245 A JP 2005003245A
- Authority
- JP
- Japan
- Prior art keywords
- pulse tube
- low temperature
- tube refrigerator
- temperature end
- working gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011148 porous material Substances 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 11
- 239000007789 gas Substances 0.000 description 29
- 238000010586 diagram Methods 0.000 description 17
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1408—Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1413—Pulse-tube cycles characterised by performance, geometry or theory
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1421—Pulse-tube cycles characterised by details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1423—Pulse tubes with basic schematic including an inertance tube
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
Abstract
【課題】整流効果の増大、圧力損失や温度上昇といったエネルギーロスの低減、および、短い距離で整流する省スペース化を共に実現し、トータル的な性能を大幅に向上したパルス管冷凍機を提供する。
【解決手段】圧縮機、蓄冷器、低温端、パルス管および位相制御部を直列に接続して流路を形成し、流路を流れる作動ガスの熱交換により低温端に寒冷を発生するパルス管冷凍機において、空間部12dを挟んで2枚の多孔板12aを配置した構成の整流部12とし、パルス管へ流入する作動ガスを整流するパルス管冷凍機とした。
【選択図】 図1Provided is a pulse tube refrigerator that realizes both an increase in rectification effect, reduction in energy loss such as pressure loss and temperature rise, and space saving by rectifying over a short distance, and greatly improved total performance. .
A pulse tube that forms a flow path by connecting a compressor, a regenerator, a low temperature end, a pulse tube, and a phase control unit in series, and generates cold at the low temperature end by heat exchange of working gas flowing through the flow path. In the refrigerator, a rectifying unit 12 having a configuration in which two porous plates 12a are arranged with a space 12d interposed therebetween is used as a pulse tube refrigerator that rectifies the working gas flowing into the pulse tube.
[Selection] Figure 1
Description
【0001】
【発明の属する技術分野】
本発明は、極低温冷凍機として用いられるパルス管冷凍機に関する。
【0002】
【従来の技術】
まず、従来技術のパルス管冷凍機の構成について図を参照しつつ説明する。
図6は従来技術のパルス管冷凍機の概略構成図である。図7は従来技術の低温端の構成図で、図7(a)は端部本体内を上側から見た図、図7(b)は低温端の側断面図である。
パルス管冷凍機100は、図6に示すように、パルス管110、圧縮機120、蓄冷器130、位相制御部140、低温端150を備えている。
【0003】
さらに圧縮機120は、シリンダ121とピストン122とを備え、位相制御部140はイナータンスチューブ141とバッファタンク142とを備え、また、低温端150は熱交換部151と整流部152とを備えている。このようなパルス管冷凍機100には流路が形成される。流路内には作動ガス(冷媒ガス)として、例えば、ヘリウムが封入されている。
【0004】
続いてパルス管冷凍機100の動作原理について説明する。パルス管冷凍機100の運転時に圧縮機120のシリンダ121内でピストン122が往復動作することにより、シリンダ121内の作動ガスが圧縮、膨張される。このような作動ガスは圧縮機120から蓄冷器130、低温端150、パルス管110を通り、位相制御部140との間を往復動流として流れる。
また、作動ガスは、位相制御部140のイナータンスチューブ141とバッファタンク142の中を、ほぼ正弦波的に圧力振幅を伴って流れる。
これにより、作動ガスの圧力変化と流量変化の間には位相差が発生する。
【0005】
これら流体回路を電気回路に例えると、イナータンスチューブ141は電気回路のインダクタンス、レジスタンス、キャパシタンス成分に相当し、また、バッファタンク142はキャパシタンス成分に相当する。
このような位相制御部140は、作動ガスの圧力に対する流量の位相差を−90°から+90°まで変化させることができる。
【0006】
このようにパルス管冷凍機100の運転時には、パルス管110および位相制御部140による位相制御効果により、パルス管110内で作動ガスの圧力と流量の間に位相差が生じ、この圧力と流量とがなす仕事が低温部でのPV仕事となり、低温端150に寒冷を発生する。この発生寒冷を低温PV仕事と呼ぶ。
【0007】
ここで、低温端150は前記のように蓄冷器130とパルス管110との間に介装されており、略U字型に構成されている。パルス管冷凍機100の運転時には、圧縮機120の圧縮工程で送り出された作動ガスは低温となってパルス管110に流入し、その内部で断熱膨張してこれにより吸熱して位相制御部140に流出する。また、前記とは逆に作動ガスが位相制御部140からパルス管110を通過して低温端150に還流する工程では、ほぼ一定体積で変化するため熱の発生または吸収は行わない。つまり低温端150では発熱がなく吸熱のみなされ、寒冷を発生することとなる。
【0008】
この場合に作動ガスがPV仕事を効率よく行うためには、作動ガスがパルス管110内で、あたかも、ある二面の固定面により区画されたピストン(以下「ガスピストン」と呼称する)111として作用することが必要であり、少なくとも低温端150側では固定面を必ず形成する必要がある。このようなガスピストン111の形成のためには、パルス管110内で偏りのない一様な速度分布を形成させることが必要不可欠となっている。
【0009】
そこで、図7で示すように、低温端150ではパルス管110と熱交換部151との間に整流部152が介在している。この整流部152は所定厚さを持った板に多数の孔部153を規則的に形成したものであり、パルス管110内へ流入する作動ガスを整流し、整流済みの作動ガスによりガスピストン111を形成して、位相差に乱れがないようにする。
従来技術のパルス管冷凍機100はこのようなものであった。
【0010】
また、パルス管冷凍機の他の従来技術として、例えば、特許文献1(特開2002−235962号)や特許文献2(特開2002−349981号)がある。これら従来技術は、パルス管へ流入する作動ガスを整流してパルス管内で効果的にガスピストンを形成する発明に係るものであり、特許文献1では熱交換器に加えて遮蔽体を設置する発明が、また、特許文献2では整流用金網の設置の仕方を工夫する発明が、それぞれ開示されている。
【0011】
【特許文献1】
特開2002−235962号公報
(段落番号0010〜0018,図1〜図5)
【特許文献2】
特開2002−349981号公報
(段落番号0010〜0015,図1〜図4)
【0012】
【発明が解決しようとする課題】
ガスピストンの形成をより効果的にするための一つの方策として、整流部の整流機能をさらに向上させることが考えられる。そこで、先に図6,図7を用いて説明したパルス管冷凍機1000の整流部152よりも整流効果を増大させる必要がある。
【0013】
特許文献1,2に記載された他の従来技術では、遮蔽体の挿入、目の細かな金網の使用、金網枚数の増加を行っているが、圧力損失や不必要なエネルギー変換を引き起こして、結果的にトータル的な性能を増大させることがうまくできていないという問題があった。さらには、熱交換器以外に遮蔽体などの挿入物が入るために全体的に大きな構造になりがちであった。
そこで、新規で簡易な構造を採用し、整流効果を高めた整流部、およびこの整流部を搭載したパルス管冷凍機が希求されている。
【0014】
本発明の上記した問題点に鑑みてなされたものであり、その目的は、整流効果の増大、圧力損失や温度上昇といったエネルギーロスの低減、および、短い距離で整流する省スペース化を共に実現し、トータル的な性能を大幅に向上したパルス管冷凍機を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決するため、本発明の請求項1に係る発明のパルス管冷凍機は、圧縮機、蓄冷器、低温端、パルス管および位相制御部を直列に接続して流路を形成し、流路を流れる作動ガスの熱交換により低温端に寒冷を発生するパルス管冷凍機において、
n(nは1以上の自然数)の空間部と(n+1)枚の多孔板とを交互に配置した構成を有し、パルス管へ流入する作動ガスを整流する整流部と、を備えることを特徴とする。
【0016】
また、本発明の請求項2に係る発明のパルス管冷凍機は、
請求項1記載のパルス管冷凍機において、
(n+1)枚の多孔板は、パルス管に近づくにつれて多孔板の孔径が小さくなることを特徴とする。
【0017】
また、本発明の請求項3に係る発明のパルス管冷凍機は、
請求項1または請求項2記載のパルス管冷凍機において、
蓄冷器、低温端、およびパルス管を略U字型に構成するU字リターン型であることを特徴とする。
【0018】
【発明の実施の形態】
続いて、本発明のパルス管冷凍機に係る第1実施形態について、図を参照しつつ説明する。図1は本実施形態のパルス管冷凍機の要部となる低温端の構成図であり、図1(a)は端部本体内を上側から見た図、図1(b)は低温端の側断面図である。図2は減衰率と抵抗係数の関係を説明する説明図であり、図2(a)は減衰率−抵抗係数線図、図2(b)は変数の説明図である。図3は減衰率−温度差線図である。
【0019】
本実施形態のパルス管冷凍機は、図6を用いて説明した従来技術のパルス管冷凍機の構成とほぼ同じであり、図6に示すように、パルス管110、圧縮機120、蓄冷器130、位相制御部140を備える点は同じであるが、低温端150に代えて、図1で示すような低温端10を採用した点が相違している。以下、低温端10の構成およびその改良点について説明する。なお、それ以外の構成および冷凍原理は同じであるため、重複する説明を省略する。
【0020】
本実施形態の低温端10は、図1で示すように、端部本体11、整流部12を備えている。さらに端部本体11内には、作動ガスの流路となる空間である熱交換部13が形成される。
【0021】
整流部12は、図1(a),(b)で示すように、2枚の多孔板12a、環体12bを備えている。この多孔板12aには、図1(a),(b)で示すように、所定厚さtを有する板であり、多数の孔部12cが形成されている。このような2枚の多孔板12aが環体12bを挟持したとき、間に空間部12dが形成される。このように整流部12は、一つの空間部12dを2枚の多孔板12aが挟むような構成となる。
このような整流部12は、パルス管110(図6参照)への作動ガスの出入口であって、パルス管110と熱交換部13との間に配置されることとなる。
【0022】
続いてこのような整流部12の優位性についての理論的な説明を行う。
まず、整流効果を示す指標として擾乱速度の減衰率A∞を用いるものとし、減衰率A∞は、以下の理論式により算出する。
【0023】
【数1】
A∞=(1+α−αK)/(1+α+K)
【0024】
ここで、αは流出角係数であり、流入角θと流出角φを用いて次式で示す関係がある。
【0025】
【数2】
φ=α・θ
【0026】
また、Kは抵抗係数であり抵抗体前後の差圧Δp、平均流速Uおよび密度ρを用いて次式で算出する。
【0027】
【数3】
【0028】
上記数1〜数3の式は多孔板が1枚の時の理論式であり、複数枚(例えば2枚)の場合の理論式は確立されていない。そこで図2(a)の減衰率−抵抗係数特性図から数式を算出し、実験式とした。実験式は次式で示すようになる。
【0029】
【数4】
|A∞|=0.2164K4−1.2016K3+2.5245K2−2.5868K+1.1782 :K≦2
|A∞|=−0.0049K3+0.0628K2−0.2509K+0.2057 :2≦K≦5
但し、L/λ=0.2(=L/D)の場合である。
【0030】
ここで、Lおよびλは、図2(b)で示すように、多孔板間の隙間および擾乱の波長(円管の場合は外径Dに相当)である。図2(a)の意味するところは、例えば同じ抵抗係数K=1をもつ多孔板を持つ場合、1枚では擾乱を0.4までしか減衰できないことに対して、2枚入れることで0.13まで減衰することができる。すなわち、単純にN倍の効果ではなく、N乗程度の効果を得ることができる。
【0031】
以上のことから、多孔板を2枚使用する場合には1枚当たりのΔpは小さくできるため、厚さtを小さくしたり、開口率Bを大きくしたりと、設置スペース低減等の設計上の自由度を大きく向上することができる。
【0032】
なお、本発明では整流部に熱交換機能も同時に持たせるために、熱交換能力を考慮する。その場合には、多孔板内ガス温度と電熱面における温度差ΔTを指標に考える。
図2(b)で示すように、多孔板の場合には、ある一定の外径Dに対して開けられ孔(径d)の数は、孔径dとピッチpを決めた時点で決まる。したがって必然的に開口率B(=Ad/Ad)も決まる。
【0033】
それでは、実際に計算してみる。現状の1枚のみの多孔板を基準に取る。その寸法を孔径d/D=0.1、厚さt/D=0.5、開口率B=0.6とし、例えば開口率Bを同程度(0.54〜0.6)に取って2枚使用時の減衰率A∞と温度差ΔTを比較したものを図3に示す。また、この時の多孔板の厚さをt/D=0.1とし、多孔板間の隙間をL/D=0.2として計算した。
【0034】
図3で示すように、2枚時の孔径を変化させて穴数を増加させると、ガスとの接触面積が増大するため、熱交換能力の指標である温度差ΔTが減少すると同時に、減衰率は低減していく。
逆に圧力損失は接触面積が増大するために増加傾向にある。
【0035】
本計算例の場合には厚さ0.05の時に1枚時と同程度の圧力損失(1.00と1,13)で減衰率を0.145→0.098に低減させ、温度差を2.26→1.39とし、トータル能力を増大させることが可能である。
さらに、設置スペースとして軸方向の総長さ(厚さ)を0.5→0.4(=0.1×2+0.2)と低減することが可能である。
【0036】
本計算例では、多孔板の厚さ、開口率、隙間などを固定して計算したが、これらのパラメータを自由に設定することであらゆる設計が可能である。
【0037】
続いて本発明の第2実施形態について図を参照しつつ説明する。図4は本実施形態のパルス管冷凍機の要部となる低温端の構成図であり、図4(a)は端部本体内を上側から見た図、図4(b)は低温端の側断面図である。
本実施形態のパルス管冷凍機は、図6を用いて説明した従来技術のパルス管冷凍機の構成とほぼ同じであり、図6に示すように、パルス管110、圧縮機120、蓄冷器130、位相制御部140を備える点は同じであるが、低温端150に代えて、図4で示すような低温端20を採用した点が相違している。以下、低温端20の構成およびその改良点について説明する。なお、それ以外の構成および冷凍原理は同じであるため、重複する説明を省略する。
【0038】
本実施形態の低温端20は、図4で示すように、端部本体21、整流部22を備えている。さらに端部本体21内には、作動ガスの流路となる空間である熱交換部23が形成される。
【0039】
整流部22は、図4(a),(b)で示すように、上側(パルス管から離れた側)に大径多孔板22a、環体22b、下側(パルス管に近い側)に小径多孔板22cを備えている。大径多孔板22aは、図4(a),(b)で示すように、所定厚さtの板に、多数の大径孔部22dが形成されている。また、大径多孔板22aは、図4(b)で示すように、所定厚さtの板に、多数の小径孔部22eが形成されている。
【0040】
このような大径多孔板22aと小径多孔板22cとが環体22bを挟持したとき、空間部22fが形成される。このように整流部22は、大径多孔板22aと小径多孔板22cという2枚の多孔板で1個の空間部22fを挟むような構成となる。
このような整流部22は、パルス管110(図6参照)への作動ガスの出入口であって、パルス管110と熱交換部23との間に配置されることとなる。
【0041】
このように本実施形態では、熱交換部側、つまりに乱れが大きい側(折り返し側)で孔径が大きい大径多孔板22aを配置し、また、パルス管側で孔径の小さい小径多孔板22cを配置した。
これにより、容易に所望の減衰率と温度差とを得ることが可能である。例えば、先に説明した計算例を用いるとパルス管側でd/D=0.04、折り返し側でd/D=0.05を組み合わせることで、その中間の能力の低温端を形成することができる。
【0042】
これら第1,第2実施形態では整流部は2枚であるものとして説明したが、3枚以上の組合せも可能である。図5は、3枚の多孔板を有する整流部の側断面図である。
図5(a)で示すように、整流部30は、孔径が同じ多孔板31を3枚、中心に空間部32aを有する円環32を2個それぞれ備え、2個の空間部32aと3枚の多孔板31と交互に配置した構成を有するようにしても良い。
さらに、図5(b)で示すように、整流部40は、孔径がそれぞれ異なる大径多孔板41、中径多孔板42、小径多孔板43、中心に空間部44aを有する円環44を2個それぞれ備え、2個の空間部44aと3枚の大径多孔板41、中径多孔板42、小径多孔板43と交互に配置した構成を有するようにしても良い。
【0043】
このような整流部の構成について一般化すると、n(nは1以上の自然数)の空間部と(n+1)枚の多孔板と交互に配置した構成を有し、パルス管の出入口に配置される。なお、パルス管の出入口ではパルス管と熱交換部との間の流路に配置されることが少なくとも必要であるが、これに加えてパルス管とイナータンスチューブとの間に配置しても良い。
【0044】
さらに、孔径を同径とするか(第1実施形態)あるいパルス管から離れた側(熱交換部側)で大径とし、また、パルス管側で小径となる(第2実施形態)ように構成する。
このような基準に則る各種の整流部とすれば、整流効果を高めることが可能となる。
【0045】
【発明の効果】
以上述べたように本発明によれば、整流効果の増大、圧力損失や温度上昇といったエネルギーロスの低減、および、短い距離で整流する省スペース化を共に実現し、トータル的な性能を大幅に向上したパルス管冷凍機を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態のパルス管冷凍機の要部となる低温端の構成図であり、図1(a)は端部本体内を上側から見た図、図1(b)は低温端の側断面図である。
【図2】減衰率と抵抗係数の関係を説明する説明図であり、図2(a)は減衰率−抵抗係数線図、図2(b)は変数の説明図である。
【図3】減衰率−温度差線図である。
【図4】本発明の第2実施形態のパルス管冷凍機の要部となる低温端の構成図であり、図4(a)は端部本体内を上側から見た図、図4(b)は低温端の側断面図である。
【図5】3枚の多孔板を有する整流部の側断面図である。
【図6】従来技術のパルス管冷凍機の概略構成図である。
【図7】従来技術の低温端の構成図で、図7(a)は端部本体内を上側から見た図、図7(b)は低温端の側断面図である。
【符号の説明】
10 :低温端
11 :端部本体
12 :整流部
12a :多孔板
12b :環体
12c :孔部
12d :空間部
13 :熱交換部
20 :低温端
21 :端部本体
22 :整流部
22a :大径多孔板
22b :環体
22c :小径多孔板
22d :大径孔部
22e :小径孔部
22f :空間部
23 :熱交換部
30 :整流部
31 :多孔板
32 :環体
32a :空間部
40 :整流部
41 :大径多孔板
42 :中径多孔板
43 :小径多孔板
44 :環体
44a :空間部
100 :パルス管冷凍機
110 :パルス管
111 :ガスピストン
120 :圧縮機
121 :シリンダ
122 :ピストン
130 :蓄冷器
140 :位相制御部
141 :イナータンスチューブ
142 :バッファタンク
150 :低温端
151 :熱交換部
152 :整流部
153 :孔部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse tube refrigerator used as a cryogenic refrigerator.
[0002]
[Prior art]
First, the configuration of a conventional pulse tube refrigerator will be described with reference to the drawings.
FIG. 6 is a schematic configuration diagram of a conventional pulse tube refrigerator. FIG. 7 is a configuration diagram of the low temperature end of the prior art, FIG. 7 (a) is a view of the inside of the end body viewed from above, and FIG. 7 (b) is a side sectional view of the low temperature end.
As shown in FIG. 6, the pulse tube refrigerator 100 includes a pulse tube 110, a
[0003]
Further, the
[0004]
Next, the operation principle of the pulse tube refrigerator 100 will be described. When the pulse tube refrigerator 100 is operated, the piston 122 reciprocates in the cylinder 121 of the
Further, the working gas flows in the inertance tube 141 and the buffer tank 142 of the phase control unit 140 with a pressure amplitude substantially sinusoidally.
Thereby, a phase difference is generated between the pressure change and the flow rate change of the working gas.
[0005]
When these fluid circuits are compared with electric circuits, the inertance tube 141 corresponds to the inductance, resistance, and capacitance components of the electric circuit, and the buffer tank 142 corresponds to the capacitance component.
Such a phase control unit 140 can change the phase difference of the flow rate with respect to the pressure of the working gas from −90 ° to + 90 °.
[0006]
As described above, when the pulse tube refrigerator 100 is operated, a phase difference is generated between the pressure and the flow rate of the working gas in the pulse tube 110 due to the phase control effect by the pulse tube 110 and the phase control unit 140. The work that is performed becomes the PV work in the low temperature part, and cold is generated at the low temperature end 150. This generated cold is called low-temperature PV work.
[0007]
Here, the low temperature end 150 is interposed between the regenerator 130 and the pulse tube 110 as described above, and has a substantially U-shape. When the pulse tube refrigerator 100 is in operation, the working gas sent out in the compression process of the
[0008]
In this case, in order for the working gas to efficiently perform the PV work, the working gas is assumed to be as a piston (hereinafter referred to as “gas piston”) 111 partitioned in the pulse tube 110 by two fixed surfaces. It is necessary to act, and a fixed surface must be formed at least on the low temperature end 150 side. In order to form such a gas piston 111, it is indispensable to form a uniform velocity distribution without deviation in the pulse tube 110.
[0009]
Therefore, as shown in FIG. 7, a rectification unit 152 is interposed between the pulse tube 110 and the heat exchange unit 151 at the low temperature end 150. The rectifying unit 152 is formed by regularly forming a large number of
The prior art pulse tube refrigerator 100 is like this.
[0010]
Other conventional techniques of the pulse tube refrigerator include, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-235962) and Patent Document 2 (Japanese Patent Laid-Open No. 2002-349981). These prior arts relate to an invention in which the working gas flowing into the pulse tube is rectified to effectively form a gas piston in the pulse tube.
[0011]
[Patent Document 1]
JP-A-2002-235932 (paragraph numbers 0010 to 0018, FIGS. 1 to 5)
[Patent Document 2]
JP 2002-349981 A (paragraph numbers 0010 to 0015, FIGS. 1 to 4)
[0012]
[Problems to be solved by the invention]
As one measure for making the formation of the gas piston more effective, it is conceivable to further improve the rectification function of the rectification unit. Therefore, it is necessary to increase the rectification effect as compared with the rectification unit 152 of the pulse tube refrigerator 1000 described above with reference to FIGS.
[0013]
In other conventional techniques described in
Therefore, there is a demand for a rectification unit that adopts a new and simple structure and enhances the rectification effect, and a pulse tube refrigerator equipped with this rectification unit.
[0014]
The present invention has been made in view of the above-mentioned problems, and its purpose is to realize both an increase in the rectification effect, a reduction in energy loss such as a pressure loss and a temperature rise, and a space saving that rectifies at a short distance. An object of the present invention is to provide a pulse tube refrigerator with greatly improved total performance.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the pulse tube refrigerator of the invention according to
It has a configuration in which n (n is a natural number of 1 or more) space portions and (n + 1) perforated plates are alternately arranged, and includes a rectifying portion that rectifies the working gas flowing into the pulse tube. And
[0016]
The pulse tube refrigerator of the invention according to
The pulse tube refrigerator according to
The (n + 1) perforated plates are characterized in that the pore diameter of the perforated plate decreases as approaching the pulse tube.
[0017]
The pulse tube refrigerator of the invention according to
In the pulse tube refrigerator according to
It is a U-shaped return type in which the regenerator, the low temperature end, and the pulse tube are configured in a substantially U shape.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, a first embodiment according to the pulse tube refrigerator of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a low temperature end which is a main part of the pulse tube refrigerator of the present embodiment, FIG. 1A is a view of the inside of the end body viewed from above, and FIG. It is a sectional side view. FIG. 2 is an explanatory diagram for explaining the relationship between an attenuation factor and a resistance coefficient, FIG. 2 (a) is an attenuation factor-resistance coefficient diagram, and FIG. 2 (b) is an explanatory diagram of variables. FIG. 3 is an attenuation rate-temperature difference diagram.
[0019]
The pulse tube refrigerator of the present embodiment is almost the same as the configuration of the conventional pulse tube refrigerator described with reference to FIG. 6, and as shown in FIG. 6, the pulse tube 110, the
[0020]
As shown in FIG. 1, the low temperature end 10 of the present embodiment includes an end main body 11 and a rectifying unit 12. Further, in the end body 11, a heat exchanging portion 13 that is a space serving as a flow path for the working gas is formed.
[0021]
As shown in FIGS. 1A and 1B, the rectifying unit 12 includes two perforated plates 12a and an annular body 12b. As shown in FIGS. 1A and 1B, the perforated plate 12a is a plate having a predetermined thickness t, and has a large number of
Such a rectification unit 12 is an inlet / outlet of the working gas to / from the pulse tube 110 (see FIG. 6), and is disposed between the pulse tube 110 and the heat exchange unit 13.
[0022]
Next, a theoretical explanation of the superiority of the rectifying unit 12 will be given.
First, the disturbance rate attenuation rate A ∞ is used as an index indicating the rectifying effect, and the attenuation rate A ∞ is calculated by the following theoretical formula.
[0023]
[Expression 1]
A ∞ = (1 + α−αK) / (1 + α + K)
[0024]
Here, α is an outflow angle coefficient, and has a relationship represented by the following equation using the inflow angle θ and the outflow angle φ.
[0025]
[Expression 2]
φ = α ・ θ
[0026]
K is a resistance coefficient, and is calculated by the following equation using the differential pressure Δp before and after the resistor, the average flow velocity U, and the density ρ.
[0027]
[Equation 3]
[0028]
The above formulas (1) to (3) are theoretical formulas when the number of perforated plates is one, and the theoretical formulas for a plurality of (for example, two) perforations are not established. Therefore, an equation is calculated from the attenuation factor-resistance coefficient characteristic diagram of FIG. The empirical formula is as follows.
[0029]
[Expression 4]
| A ∞ | = 0.2164K 4 −1.2016K 3 + 2.5245K 2 −2.5868K + 1.1782: K ≦ 2
| A ∞ | = −0.0049K 3 + 0.0628K 2 −0.2509K + 0.2057: 2 ≦ K ≦ 5
However, it is a case where L / λ = 0.2 (= L / D).
[0030]
Here, L and λ are the gap between the perforated plates and the wavelength of the disturbance (corresponding to the outer diameter D in the case of a circular tube), as shown in FIG. 2 (b). The meaning of FIG. 2 (a) means that, for example, if there are perforated plates having the same resistance coefficient K = 1, the disturbance can be attenuated only to 0.4 with one sheet, but by adding two sheets, the value becomes 0.2. It can be attenuated to 13. That is, an effect of the order of the Nth power can be obtained instead of a simple N-fold effect.
[0031]
From the above, when two porous plates are used, Δp per sheet can be reduced. Therefore, the thickness t can be reduced, the aperture ratio B can be increased, and the installation space can be reduced. The degree of freedom can be greatly improved.
[0032]
In the present invention, the heat exchange capability is taken into consideration in order to provide the rectification unit also with a heat exchange function. In that case, the gas difference in the perforated plate and the temperature difference ΔT on the heating surface are considered as indices.
As shown in FIG. 2B, in the case of a perforated plate, the number of holes (diameter d) opened for a certain outer diameter D is determined when the hole diameter d and the pitch p are determined. Therefore, the aperture ratio B (= A d / A d ) is inevitably determined.
[0033]
Let's actually calculate. The current perforated plate is taken as a reference. The dimensions are the hole diameter d / D = 0.1, the thickness t / D = 0.5, and the aperture ratio B = 0.6. For example, the aperture ratio B is set to the same level (0.54 to 0.6). FIG. 3 shows a comparison between the attenuation rate A ∞ and the temperature difference ΔT when two sheets are used. Further, the thickness of the porous plate at this time was calculated as t / D = 0.1, and the gap between the porous plates was calculated as L / D = 0.2.
[0034]
As shown in FIG. 3, when the number of holes is increased by changing the hole diameter at the time of two sheets, the contact area with the gas increases, so that the temperature difference ΔT, which is an index of the heat exchange capacity, decreases, and at the same time the attenuation rate Will be reduced.
Conversely, the pressure loss tends to increase because the contact area increases.
[0035]
In the case of this calculation example, when the thickness is 0.05, the attenuation factor is reduced from 0.145 to 0.098 with the same pressure loss (1.00 and 1,13) as that of one sheet, and the temperature difference is reduced. The total capacity can be increased from 2.26 to 1.39.
Further, the total length (thickness) in the axial direction as the installation space can be reduced from 0.5 to 0.4 (= 0.1 × 2 + 0.2).
[0036]
In this calculation example, calculation was performed with the thickness, aperture ratio, gap, etc. of the perforated plate fixed, but any design is possible by freely setting these parameters.
[0037]
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a configuration diagram of a low temperature end which is a main part of the pulse tube refrigerator of the present embodiment, FIG. 4A is a view of the inside of the end body viewed from the upper side, and FIG. It is a sectional side view.
The pulse tube refrigerator of the present embodiment is almost the same as the configuration of the conventional pulse tube refrigerator described with reference to FIG. 6, and as shown in FIG. 6, the pulse tube 110, the
[0038]
The low temperature end 20 of the present embodiment includes an end body 21 and a rectifying unit 22 as shown in FIG. Further, in the end portion main body 21, a heat exchanging portion 23, which is a space serving as a working gas flow path, is formed.
[0039]
As shown in FIGS. 4A and 4B, the rectifying unit 22 has a large-diameter porous plate 22a on the upper side (side away from the pulse tube), an annular body 22b, and a small diameter on the lower side (side closer to the pulse tube). A perforated plate 22c is provided. As shown in FIGS. 4A and 4B, the large-diameter porous plate 22a has a large number of large-diameter hole portions 22d formed in a plate having a predetermined thickness t. As shown in FIG. 4B, the large-diameter porous plate 22a has a large number of small-
[0040]
When such a large-diameter porous plate 22a and a small-diameter porous plate 22c sandwich the annular body 22b, a space 22f is formed. In this way, the rectifying unit 22 is configured such that one space 22f is sandwiched between two porous plates, a large-diameter porous plate 22a and a small-diameter porous plate 22c.
Such a rectification unit 22 is an inlet / outlet of the working gas to / from the pulse tube 110 (see FIG. 6), and is disposed between the pulse tube 110 and the heat exchange unit 23.
[0041]
As described above, in the present embodiment, the large-diameter porous plate 22a having a large pore diameter is arranged on the heat exchanging portion side, that is, on the side where the disturbance is large (folded side), and the small-diameter porous plate 22c having a small pore diameter on the pulse tube side Arranged.
This makes it possible to easily obtain a desired attenuation factor and temperature difference. For example, using the calculation example described above, a combination of d / D = 0.04 on the pulse tube side and d / D = 0.05 on the return side can form a low-temperature end having an intermediate capacity. it can.
[0042]
In the first and second embodiments, the rectifying unit is described as being two, but a combination of three or more is also possible. FIG. 5 is a side sectional view of a rectifying unit having three perforated plates.
As shown in FIG. 5A, the rectifying unit 30 includes three perforated plates 31 having the same hole diameter and two annular rings 32 each having a space 32a at the center, and the two
Further, as shown in FIG. 5 (b), the rectifying unit 40 includes two large-diameter perforated plates 41, medium-diameter perforated plates 42, small-diameter perforated plates 43, and annular rings 44 each having a space 44a in the center. Each of them may be provided with two spaces 44 a and three large-diameter perforated plates 41, medium-diameter perforated plates 42, and small-diameter perforated plates 43.
[0043]
When generalizing the configuration of such a rectifying unit, it has a configuration in which n (n is a natural number of 1 or more) space portions and (n + 1) perforated plates are alternately arranged and arranged at the entrance and exit of the pulse tube. . In addition, at least at the entrance / exit of the pulse tube, it is necessary to be disposed in the flow path between the pulse tube and the heat exchange unit. .
[0044]
Furthermore, the same hole diameter (first embodiment) or a larger diameter on the side away from the pulse tube (heat exchange section side) and a smaller diameter on the pulse tube side (second embodiment) Configure.
If the various rectification units comply with such a standard, the rectification effect can be enhanced.
[0045]
【The invention's effect】
As described above, according to the present invention, the rectifying effect is increased, the energy loss such as pressure loss and temperature rise is reduced, and the space saving by rectifying at a short distance is realized, and the total performance is greatly improved. An improved pulse tube refrigerator can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a low-temperature end that is a main part of a pulse tube refrigerator according to a first embodiment of the present invention, and FIG. ) Is a side sectional view of the low temperature end.
2A and 2B are explanatory diagrams for explaining a relationship between an attenuation rate and a resistance coefficient. FIG. 2A is an attenuation rate-resistance coefficient diagram, and FIG. 2B is an explanatory diagram of variables.
FIG. 3 is an attenuation rate-temperature difference diagram.
FIG. 4 is a configuration diagram of a low-temperature end that is a main part of a pulse tube refrigerator according to a second embodiment of the present invention, and FIG. ) Is a side sectional view of the low temperature end.
FIG. 5 is a side sectional view of a rectifying unit having three perforated plates.
FIG. 6 is a schematic configuration diagram of a conventional pulse tube refrigerator.
7A and 7B are configuration diagrams of the low temperature end of the prior art, in which FIG. 7A is a view of the inside of the end body viewed from above, and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10: Low temperature end 11: End main part 12: Rectification part 12a: Perforated plate 12b:
Claims (3)
n(nは1以上の自然数)の空間部と(n+1)枚の多孔板とを交互に配置した構成を有し、パルス管へ流入する作動ガスを整流する整流部と、を備えることを特徴とするパルス管冷凍機。In a pulse tube refrigerator that connects a compressor, a regenerator, a low temperature end, a pulse tube, and a phase control unit in series to form a flow path, and generates cold at the low temperature end by heat exchange of the working gas flowing through the flow path,
It has a configuration in which n (n is a natural number of 1 or more) space portions and (n + 1) perforated plates are alternately arranged, and includes a rectifying portion that rectifies the working gas flowing into the pulse tube. And pulse tube refrigerator.
(n+1)枚の多孔板は、パルス管に近づくにつれて多孔板の孔径が小さくなることを特徴とするパルス管冷凍機。The pulse tube refrigerator according to claim 1, wherein
The (n + 1) perforated plate is a pulse tube refrigerator characterized in that the pore diameter of the perforated plate becomes smaller as it approaches the pulse tube.
蓄冷器、低温端、およびパルス管を略U字型に構成するU字リターン型であることを特徴とするパルス管冷凍機。In the pulse tube refrigerator according to claim 1 or 2,
A pulse tube refrigerator characterized by being a U-shaped return type in which a regenerator, a low temperature end, and a pulse tube are formed in a substantially U-shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165392A JP2005003245A (en) | 2003-06-10 | 2003-06-10 | Pulse tube refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165392A JP2005003245A (en) | 2003-06-10 | 2003-06-10 | Pulse tube refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005003245A true JP2005003245A (en) | 2005-01-06 |
Family
ID=34091887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003165392A Pending JP2005003245A (en) | 2003-06-10 | 2003-06-10 | Pulse tube refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005003245A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102128510A (en) * | 2010-01-20 | 2011-07-20 | 住友重机械工业株式会社 | Pulse tube refrigerator |
US20140338368A1 (en) * | 2013-05-20 | 2014-11-20 | Sumitomo Heavy Industries, Ltd. | Stirling-type pulse tube refrigerator and flow smoother thereof |
-
2003
- 2003-06-10 JP JP2003165392A patent/JP2005003245A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102128510A (en) * | 2010-01-20 | 2011-07-20 | 住友重机械工业株式会社 | Pulse tube refrigerator |
CN105485955A (en) * | 2010-01-20 | 2016-04-13 | 住友重机械工业株式会社 | Pulse tube refrigerator |
US20140338368A1 (en) * | 2013-05-20 | 2014-11-20 | Sumitomo Heavy Industries, Ltd. | Stirling-type pulse tube refrigerator and flow smoother thereof |
CN104180568A (en) * | 2013-05-20 | 2014-12-03 | 住友重机械工业株式会社 | Stirling-type pulse tube refrigerator and flow smoother thereof |
JP2014228171A (en) * | 2013-05-20 | 2014-12-08 | 住友重機械工業株式会社 | Stirling type pulse pipe refrigeration machine and rectifier thereof |
CN104180568B (en) * | 2013-05-20 | 2016-09-28 | 住友重机械工业株式会社 | Stirling Type Pulse Tube Cryocooler and commutator thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101788207B (en) | Microchannel Enhanced Heat Exchange System and Heat Transfer Method of Rotary Room Temperature Magnetic Refrigerator | |
US6640579B2 (en) | Laminated heat exchanger and refrigeration cycle | |
JP6091601B2 (en) | Plate heat exchanger and refrigeration cycle apparatus equipped with the same | |
JP5881515B2 (en) | Plate heat exchanger, manufacturing method thereof, and heat pump device | |
JP5394405B2 (en) | Heat exchanger | |
JPWO2016117069A1 (en) | Plate heat exchanger and heat pump outdoor unit | |
JP6214670B2 (en) | Heat exchanger and refrigeration cycle apparatus using the heat exchanger | |
JP2012163313A (en) | Heat exchanger, and air conditioner | |
WO2011004603A1 (en) | Heat engine regenerator and stirling engine using the regenerator | |
JP2005003245A (en) | Pulse tube refrigerator | |
JP4468851B2 (en) | Pulse tube refrigerator | |
JP6383942B2 (en) | Heat exchanger | |
JP3744413B2 (en) | Pulse tube refrigerator heat exchanger | |
JP2005265261A (en) | Pulse pipe refrigerator | |
EP2667136B1 (en) | Stacked heat exchanger and heat pump system having the same installed therein | |
JP5526494B2 (en) | Refrigeration equipment | |
CN110701833A (en) | Water-cooling shell and tube condenser | |
JP6184904B2 (en) | Separator heat exchanger | |
JP2003148822A (en) | Cryogenic refrigerator regenerator | |
CN217876562U (en) | Heat regenerator, refrigerating system and refrigerating equipment | |
JP2005127633A (en) | Pulse tube refrigerator | |
JP2020003098A (en) | Pulse tube refrigerator | |
JP2006078003A (en) | Pulse tube refrigerating machine | |
CN106940087A (en) | Teat pump boiler and water tank | |
JPH08271170A (en) | Plate-shaped heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050914 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060613 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060731 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061003 |