Nothing Special   »   [go: up one dir, main page]

JP2005002357A - Extremely low carbon steel cast slab-manufacturing method - Google Patents

Extremely low carbon steel cast slab-manufacturing method Download PDF

Info

Publication number
JP2005002357A
JP2005002357A JP2003163515A JP2003163515A JP2005002357A JP 2005002357 A JP2005002357 A JP 2005002357A JP 2003163515 A JP2003163515 A JP 2003163515A JP 2003163515 A JP2003163515 A JP 2003163515A JP 2005002357 A JP2005002357 A JP 2005002357A
Authority
JP
Japan
Prior art keywords
mass
molten steel
concentration
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003163515A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasai
勝浩 笹井
Wataru Ohashi
渡 大橋
Katsuyuki Isokami
勝行 礒上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003163515A priority Critical patent/JP2005002357A/en
Publication of JP2005002357A publication Critical patent/JP2005002357A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely low carbon steel plate, an extremely low carbon steel cast slab, and a method for manufacturing the same in which surface defects can be reliably prevented by minutely depositing oxides during the solidification without generating any inclusions in molten steel. <P>SOLUTION: In the extremely low carbon steel cast slab manufacturing method, molten steel is decarburized so that carbon concentration becomes ≤ 0.005 mass %, at least Ta and W are added to the molten steel, and the molten steel is cast after the concentration of dissolved oxygen in the molten steel is adjusted to be ≥ 0.02 mass % but ≤ 0.06 mass %. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、加工性、成形性に優れ、且つ表面欠陥も発生し難い極低炭素鋳片の製造方法に関するものである。
【0002】
【従来の技術】
転炉や真空処理容器で精錬された溶鋼中には、多量の溶存酸素が含まれており、この過剰酸素は酸素との親和力が強い強脱酸元素であるAlにより脱酸されるのが一般的である。しかし、Alは脱酸によりアルミナ系介在物を生成し、これが凝集合体して粗大なアルミナクラスターとなる。このアルミナクラスターは鋼板製造時に表面疵発生の原因となり、薄鋼板の品質を大きく劣化させる。特に、炭素濃度が低く、精錬後の溶存酸素濃度が高い薄鋼板用素材である極低炭素溶鋼では、アルミナクラスターの量が非常に多く、表面疵の発生率が極めて高いため、アルミナ系介在物の低減対策は大きな課題となっている。
【0003】
これに対して、従来は、介在物吸着用フラックスを溶鋼表面に添加してアルミナ系介在物を除去する特許文献1の方法、或いは注入流を利用してCaOフラックスを溶鋼中に添加し、これによりアルミナ系介在物を吸着除去する特許文献2の方法が提案、実施されてきた。一方、アルミナ系介在物を除去するのではなく、生成させない方法として、特許文献3にあるように溶鋼をMgで脱酸し、Alでは殆ど脱酸しない薄鋼板用溶鋼の溶製方法も開示されている。
【0004】
【特許文献1】
特開平5−104219号公報
【特許文献2】
特開昭63−149057号公報
【特許文献3】
特開平5−302112号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述した特許文献1や特許文献2に開示されている様な、アルミナ系介在物を除去する方法では、極低炭素溶鋼中に多量に生成したアルミナ系介在物を表面疵が発生しない程度まで低減することは非常に難しい。
また、特許文献3に開示されている様な、アルミナ系介在物を全く生成しないMg脱酸では、Mgの蒸気圧が高く、溶鋼への歩留まりが非常に低いため、極低炭素鋼のように溶存酸素濃度が高い溶鋼をMgだけで脱酸するには多量のMgを必要とし、製造コストを考えると実用的なプロセスとは言えない。
【0006】
これらの問題を鑑み、本発明は溶鋼中で殆ど介在物を生成させることなく、凝固時に酸化物を微細に析出させることにより、確実に表面疵を防止できる薄鋼板用素材の極低炭素溶鋼を溶製する方法を提示することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下の構成を要旨とする。
(1)溶鋼の炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。
(2)溶鋼の炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを0.005質量%以上、0.1質量%以下添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。
(3)真空脱ガス処理により炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。
(4)真空脱ガス処理により炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを0.005質量%以上、0.1質量%以下添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。
(5)さらに、Nbを0.005質量%以上0.1質量%以下添加することを特徴とする(1)から(4)のいずれかに記載の極低炭素鋼鋳片の製造方法。
(6)溶鋼を鋳造するに際し、電磁攪拌、或いは電磁場の印加を行いながら鋳造することを特徴とする(1)から(5)のいずれかに記載の極低炭素鋼鋳片の製造方法。
(7)溶鋼を鋳造するに際し、電磁攪拌を行って、メニスカス位置における溶鋼を30cm/s以上、100cm/s以下の平均流速で旋回させながら鋳造することを特徴とする(1)から(5)のいずれかに記載の極低炭素鋼鋳片の製造方法。
(8)溶鋼を鋳造するに際し、電磁場の印加を行い、メニスカス位置における溶鋼を0.1Hz以上、100Hz以下で水平方向に振動させながら鋳造することを特徴とする(1)から(5)のいずれかに記載の極低炭素鋼鋳片の製造方法。
【0008】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明の製造法では、転炉や電気炉等の製鋼炉で精錬して、或いはさらに真空脱ガス処理等を行って、炭素濃度を0.005質量%以下とした溶鋼に少なくともTa、Wを添加し、且つ溶存酸素濃度を0.02〜0.06質量%になるように調整する。
【0009】
この溶製法の基本思想は、鋳造時に酸素と反応してCOガスを発生させない程度まで炭素濃度を低減し、且つ脱炭処理により増加した溶存酸素を極力少量のAl添加により脱酸するか、またはAlを添加せず、溶存酸素を多量に残すことにより、溶鋼中に殆ど介在物を生成させず、且つ脱酸力の極めて弱いTa、Wを添加してCやNを固定することで、薄板用鋼板としての材質をも確保することにある。
【0010】
転炉や真空処理容器で脱炭処理された溶鋼中には、多量の溶存酸素が含まれており、この溶存酸素は通常Alの添加により殆ど脱酸される((1)式の反応)ため、多量のアルミナ系介在物を生成する。
2Al+3O=Al (1)
このアルミナ系介在物は脱酸直後からお互いに凝集合体し、粗大なアルミナ系介在物となり、鋼板製造時に表面欠陥発生の原因となる。しかし、脱炭処理後の溶鋼中にAlを全く添加しないか、或いは添加する場合でも少量を添加し、殆ど脱酸しなければ、多量の溶存酸素が溶鋼中に含まれているが、介在物は殆ど生成せず、非常に清浄性の高い溶鋼が得られる。通常、このような溶存酸素の高い溶鋼を鋳造すると、凝固時にCOガスが発生し、激しい突沸現象が生じると共に、鋳片内に多量の気泡が捕捉されるため、鋳造性が悪化するだけでなく、鋳片品質も大きく低下する。
【0011】
そこで、本発明では、極力少量のAl添加により脱酸するか、またはAlを全く添加せずに溶存酸素を残す代わりに、C濃度を極力低下させることにより、凝固時のCOガス発生を抑制することに着目した。その結果、実験的検討からC濃度を0.005質量%以下にすれば、凝固時のCOガス発生速度は極めて低下することが判明した。
【0012】
また、特に薄板用鋼板等においては加工性を高めるために、C濃度を極力低下させるとともに、鋼中に固溶したCとNを他元素の添加により固定することが重要である。通常AlやTi等が鋼中のCとNを固定する元素として使用されるが、これらの元素をCやNを固定するに十分な量を添加すると溶鋼を強く脱酸することにより、大きな介在物を生成してしまう。そこで、本発明ではNやCを十分に固定できる程度の量を添加しても、殆ど溶鋼を脱酸しないような、脱酸力が極めて弱い元素としてTaやWを添加することにより、CやNを充分に固定しつつ、ほとんど脱酸しないことが可能であることを見出した。
【0013】
上記の様にC濃度を0.005質量%以下まで脱炭するには、通常は大気圧下で転炉等で吹酸するため、溶鋼中の溶存酸素濃度は増加する。また、転炉での処理だけではC濃度を0.005質量%以下まで脱炭できない場合は、さらに引き続いて減圧下で脱炭させる。この減圧下での脱炭処理は、通常真空脱ガス処理で行う。この様に処理した溶鋼中の溶存酸素濃度は、高くなっている。
【0014】
溶鋼中の溶存酸素濃度が高過ぎると、凝固時のCOガス発生を抑制することはできないため、この場合溶存酸素濃度もある程度低くする必要がある。これら過剰な溶存酸素分を、AlやTi等で脱酸することは可能であるが、実験的な検討から溶存酸素濃度で0.02質量%よりも低下させるほどAlやTiを添加すると、アルミナやチタニア等の介在物が多くなり過ぎ、浮上除去されずに溶鋼中に残留してしまう。また、TaやWを添加した際に、溶存酸素濃度が本発明の範囲であれば、AlやTi等を全く添加しなくても良い。反対に、溶存酸素濃度が0.06質量%を超えると、C濃度を0.005質量%以下に下げても鋳片内にCO気泡が捕捉されてしまうため、圧延後に気泡系の欠陥が発生する。よって、溶鋼中の溶存酸素濃度は0.02質量%以上、0.06質量%以下にする必要がある。なお、溶鋼中の炭素濃度については脱炭処理中に溶鋼サンプルを採取して、カウントバック法によりC濃度を測定でき、また溶鋼中の酸素濃度については酸素センサー(固定電解質を用いた川惣電気製等)により溶存酸素濃度を測定することができる。
【0015】
次に、溶鋼に添加されたTaとWの好ましい溶鋼中の濃度について説明する。溶鋼中の少なくともTa、W濃度が0.005質量%未満ではC、Nを十分固定しにくくなり、0.1質量%超では加工性が低下し易くなることから、少なくともTa、Wの溶鋼中濃度は0.005質量%以上、0.1質量%以下になる様にすることが好ましい。なお、本発明において、少なくともTa、Wというのは、Ta単独、W単独、TaとWの両方のいずれかという意味である。
また、この範囲のTa、Wの添加量であれば、TaやWと平衡する酸素濃度は0.02質量%以上であり、TaやWを添加しても溶存酸素を0.02質量%以上確保できる。
【0016】
NbはTaやWと同様に脱酸力がほとんどなく、さらにC、Nを固定する機能を有するため、TaやWの機能を補い加工性を向上する上で0.005質量%以上添加すると効果的であるが、Nb添加量も多くなり過ぎると、例えばNb濃度が0.1%を越えると焼鈍温度が高くなるといった問題を生じる。このため、Nb濃度は0.005質量%から0.1質量%の範囲とすることが好ましい。
【0017】
また上記の様に、溶鋼のC濃度を0.005質量%以下まで脱炭する方法としては、通常は真空脱ガス装置を用いることで達成できる。
さらに、最近では、連続鋳造機内に鋳型内電磁攪拌装置、あるいは電磁コイルが装備されるようになっており、これらを用いることで、CO気泡を鋳片に捕捉させることなく、鋳造できることを知見した。
【0018】
本発明者らは凝固時に電磁攪拌を行う際の、鋳型内メニスカスにおける溶鋼流速を30〜100cm/s程度確保すれば、溶存酸素濃度を0.06質量%程度にしてもCO気泡を鋳片に捕捉させることなく、鋳造できるため好ましいことを知見している。なお、電磁攪拌による溶鋼の旋回流速が30cm/s未満では十分なCO気泡の洗浄効果が得られにくく、旋回流速が100cm/s超ではCO気泡は洗浄されるが、溶鋼表面にあるモールドパウダーを巻き込み、表面欠陥が発生し易くなる。
【0019】
また、鋳片へのCO気泡の捕捉防止に対しては、鋳型内に装備された電磁コイルにより鋳型内の溶鋼を0.1Hzから100Hzの周波数で振動させることも有効であるため、好ましいことを見いだしている。この場合、周波数100Hz超では振動方向の変化に溶鋼流が追従しにくくなるため、0.1Hz未満では反対に振動方向の変化速度が遅いため、何れも振動による凝固界面の気泡洗浄効果は十分に得られにくい。
【0020】
以上の結果から、本発明により溶鋼中で殆ど介在物を生成させることなく、凝固時に微細な介在物を析出させ分散させることができるため、鋼板製造時に介在物は表面疵発生の原因とならず、薄板用鋼板の品質は大きく向上できる。
薄板用鋼板は、自動車用外板等の加工が厳しい用途に用いられるため、加工性を付加する必要がある。薄板用鋼板の加工性を高めるためには、C濃度を極力低下させ、その上で鋼中に固溶したCとNを他元素の添加により固定することが重要である。C濃度に関しては、加工性の観点から0.01質量%以下、好ましくは0.005質量%以下にするのが良い。凝固時のCO気泡発生防止の条件もC濃度0.005質量%以下であるので、本発明では加工性と気泡発生防止の条件を同時に満足できる。なお、C濃度の下限値は特に規定するものではない。
【0021】
また、鋼板中の成分の作用について言及する。
鋼板中のSi濃度は、0.005質量%以上、0.03質量%以下であることが好ましい。Si濃度は0.005質量%未満では板の強度が不足するため、またSi濃度が0.03質量%超では板の加工性が低下するためである。また、Si濃度が0.03質量%以下であれば平衡酸素濃度も0.02質量%超となり、溶存酸素濃度を0.02質量%以上確保することは可能である。
【0022】
また、鋼板中のMn濃度は0.08質量%以上、0.3質量%以下であることが好ましい。鋼板中のMn濃度が0.08質量%未満になると熱間圧延時にへげ疵が発生し易くなり、またMn濃度は0.3質量%を超えると板の加工性が低下する。また、MnはSiに比べても非常に脱酸力が弱いため、Mn濃度を0.3質量%にしても平衡酸素濃度は0.1質量%超であり、溶鋼中に0.02質量%から0.06質量%の溶存酸素を確保できる。
【0023】
本発明では、凝集合体し易いアルミナ系介在物を生成させないように、溶鋼中にAlを添加しないことが好ましいが、耐火物等から不可避的に侵入するアルミナ系介在物については問題とならない。これは、少量のアルミナ系介在物であれば、溶鋼中の溶存酸素が高いため、溶鋼とアルミナ系介在物の界面エネルギーは低下しており、凝集合体が殆ど生じないためである。また、鋼中のTiはCとNをTiNやTiCとして固定するため、加工性を向上させる上で有効であるが、Tiの添加量も多くなると、例えばTi濃度が0.003質量%超になると平衡酸素濃度が0.02質量%未満になるため、十分な溶存酸素濃度を確保できない。よって、加工性をさらに高める必要からTiを添加する場合には、0.003質量%以下の範囲で添加しても良い。
【0024】
【実施例】
以下に、実施例及び比較例を挙げて、本発明について説明する。
[実施例1]
転炉での精錬と環流式真空脱ガス装置での処理により、C濃度を0.0018質量%とした溶鋼300tを溶製した。この溶鋼に合金を添加し、Si濃度を0.01質量%、Mn濃度を0.15質量%、TaとWの合計濃度を0.015質量%、溶存酸素濃度を0.045質量%とした。この溶鋼を連続鋳造法で厚み250mm、幅1800mmのスラブに鋳造した。鋳造した鋳片は8500mm長さに切断し、1コイル単位とした。このようにして得られたスラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、表面欠陥は発生しなかった。
【0025】
[実施例2]
転炉での精錬と環流式真空脱ガス装置での処理によりC濃度を0.0015質量%とした溶鋼300tを溶製した。この溶鋼に合金を添加し、Si濃度を0.01質量%、Mn濃度を0.15質量%、TaとWの合計濃度を0.01質量%、Nb濃度を0.025質量%、Ti濃度を0.001質量%、溶存酸素濃度を0.04質量%とした。この溶鋼を鋳型内電磁攪拌装置を有する連続鋳造機を用いて、メニスカスにおける溶鋼を平均流速45cm/sで電磁攪拌しながら、厚み250mm、幅1800mmのスラブに鋳造した。鋳造した鋳片は8500mm長さに切断し、1コイル単位とした。このようにして得られたスラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。鋳片品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、表面欠陥は発生しなかった。
【0026】
[比較例1]
転炉での精錬と環流式真空脱ガス装置での処理により炭素濃度を0.0015質量%とした取鍋内溶鋼をAlで脱酸し、その上で合金を添加し、Al濃度を0.04質量%、Si濃度を0.012質量%、Mn濃度を0.2質量%、溶存酸素濃度を0.0002質量%とした。この溶鋼を連続鋳造法で厚み250mm、幅1800mmのスラブに鋳造した。鋳造した鋳片は8500mm長さに切断し、1コイル単位とした。このようにして得られたスラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。鋳片品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、スラブ平均で5個/コイルの表面欠陥が発生した。
【0027】
【発明の効果】
以上に説明したように、本発明によると、溶鋼中に殆ど介在物を生成させることなく、凝固時に酸化物を微細に析出させることができるため、確実に表面疵を防止できる加工性、成形性に優れた薄鋼板用の極低炭素溶鋼を製造することが可能となる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an extremely low carbon slab that is excellent in workability and formability and hardly causes surface defects.
[0002]
[Prior art]
The molten steel refined in a converter or vacuum processing vessel contains a large amount of dissolved oxygen, and this excess oxygen is generally deoxidized by Al, a strong deoxidizing element with a strong affinity for oxygen. Is. However, Al produces alumina inclusions by deoxidation, which aggregate and coalesce into coarse alumina clusters. This alumina cluster causes surface flaws during the production of the steel sheet and greatly deteriorates the quality of the thin steel sheet. In particular, ultra-low carbon molten steel, which is a material for thin steel sheets with a low carbon concentration and a high dissolved oxygen concentration after refining, has a very high amount of alumina clusters and a very high rate of surface flaws. Measures to reduce this are a major issue.
[0003]
On the other hand, conventionally, the inclusion adsorbing flux is added to the surface of the molten steel to remove alumina inclusions, or the CaO flux is added to the molten steel using an injection flow. Thus, the method of Patent Document 2 for adsorbing and removing alumina inclusions has been proposed and implemented. On the other hand, as a method that does not remove alumina inclusions but does not generate them, a method for melting molten steel for thin steel sheets that deoxidizes molten steel with Mg and hardly deoxidizes with Al as disclosed in Patent Document 3 is also disclosed. ing.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-104219 [Patent Document 2]
JP 63-149057 A [Patent Document 3]
Japanese Patent Laid-Open No. 5-302112
[Problems to be solved by the invention]
However, in the method for removing alumina inclusions as disclosed in Patent Document 1 and Patent Document 2 described above, surface defects are not generated in the alumina inclusions produced in a large amount in the ultra-low carbon molten steel. It is very difficult to reduce to
In addition, Mg deoxidation that does not generate any alumina inclusions as disclosed in Patent Document 3 has a high vapor pressure of Mg and a very low yield to molten steel. In order to deoxidize molten steel having a high dissolved oxygen concentration with only Mg, a large amount of Mg is required.
[0006]
In view of these problems, the present invention provides an ultra-low carbon molten steel material for thin steel sheets that can reliably prevent surface flaws by generating fine oxides during solidification without generating inclusions in the molten steel. The purpose is to present a method of melting.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is summarized as follows.
(1) After decarburizing the molten steel to a carbon concentration of 0.005 mass% or less, at least Ta and W are added to the molten steel, and the dissolved oxygen concentration in the molten steel is 0.02 mass% or more and 0.06 mass%. A method for producing an ultra-low carbon steel slab characterized by casting molten steel adjusted to less than 1%.
(2) After decarburizing the molten steel to a carbon concentration of 0.005% by mass or less, at least Ta and W are added to the molten steel by 0.005% by mass to 0.1% by mass and further dissolved oxygen in the molten steel A method for producing an ultra-low carbon steel slab characterized by casting molten steel having a concentration adjusted to 0.02 mass% or more and 0.06 mass% or less.
(3) After decarburizing the carbon concentration to 0.005 mass% or less by vacuum degassing treatment, at least Ta and W are added to the molten steel, and the dissolved oxygen concentration in the molten steel is 0.02 mass% or more, 0 A method for producing an ultra-low carbon steel slab characterized by casting molten steel adjusted to 0.06 mass% or less.
(4) After decarburizing the carbon concentration to 0.005 mass% or less by vacuum degassing treatment, at least Ta and W are added to the molten steel at 0.005 mass% to 0.1 mass%, and further in the molten steel A method for producing an ultra-low carbon steel slab characterized by casting molten steel having a dissolved oxygen concentration adjusted to 0.02 mass% or more and 0.06 mass% or less.
(5) Furthermore, 0.005 mass% or more and 0.1 mass% or less of Nb is added, The manufacturing method of the ultra-low-carbon steel slab in any one of (1) to (4) characterized by the above-mentioned.
(6) The method for producing an ultra-low carbon steel slab according to any one of (1) to (5), wherein the molten steel is cast while performing electromagnetic stirring or application of an electromagnetic field.
(7) When casting molten steel, electromagnetic stirring is performed, and the molten steel at the meniscus position is cast while being swirled at an average flow velocity of 30 cm / s or more and 100 cm / s or less (1) to (5) The manufacturing method of the ultra-low carbon steel slab in any one of.
(8) When casting molten steel, an electromagnetic field is applied, and the molten steel at the meniscus position is cast while being oscillated in the horizontal direction at 0.1 Hz or more and 100 Hz or less. A method for producing a very low carbon steel slab according to claim 1.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
In the production method of the present invention, at least Ta and W are added to molten steel having a carbon concentration of 0.005% by mass or less by refining in a steel making furnace such as a converter or an electric furnace, or by further performing vacuum degassing treatment or the like. And the dissolved oxygen concentration is adjusted to 0.02 to 0.06% by mass.
[0009]
The basic idea of this melting method is to reduce the carbon concentration to such an extent that it does not generate CO gas by reacting with oxygen during casting, and the dissolved oxygen increased by decarburization treatment is deoxidized by adding as little Al as possible, or By adding a large amount of dissolved oxygen without adding Al, almost no inclusions are formed in the molten steel, and by adding Ta and W, which have very weak deoxidizing power, C and N are fixed. It is also to secure the material for the steel plate.
[0010]
The molten steel decarburized in a converter or vacuum processing vessel contains a large amount of dissolved oxygen, and this dissolved oxygen is usually almost deoxidized by the addition of Al (reaction (1)). A large amount of alumina inclusions are produced.
2Al + 3O = Al 2 O 3 (1)
The alumina inclusions aggregate and coalesce with each other immediately after deoxidation to form coarse alumina inclusions, which cause surface defects during steel plate production. However, if Al is not added at all in the molten steel after decarburization treatment or if a small amount is added and almost no deoxidization is performed, a large amount of dissolved oxygen is contained in the molten steel. Is hardly produced, and a very clean steel can be obtained. Normally, when casting such molten steel with high dissolved oxygen, CO gas is generated during solidification, and a severe bumping phenomenon occurs, and a large amount of bubbles are trapped in the slab, which not only deteriorates the castability. The slab quality is also greatly reduced.
[0011]
Therefore, in the present invention, CO gas generation during solidification is suppressed by reducing the C concentration as much as possible instead of deoxidizing by adding as little Al as possible, or leaving dissolved oxygen without adding any Al at all. Focused on that. As a result, it has been found from experimental studies that the CO gas generation rate during solidification is extremely reduced when the C concentration is 0.005 mass% or less.
[0012]
In particular, in the case of a steel sheet for thin plates, it is important to reduce the C concentration as much as possible and to fix C and N dissolved in the steel by addition of other elements in order to improve workability. Usually, Al, Ti, etc. are used as elements for fixing C and N in steel, but if these elements are added in an amount sufficient to fix C and N, the molten steel is strongly deoxidized, resulting in large interposition. It will generate things. Therefore, in the present invention, by adding Ta or W as an element having extremely weak deoxidizing power so as to hardly deoxidize molten steel even if an amount that can sufficiently fix N or C is added, C or It has been found that N can be fixed sufficiently and hardly deoxidized.
[0013]
In order to decarburize the C concentration to 0.005% by mass or less as described above, since the acid is usually blown in a converter or the like at atmospheric pressure, the dissolved oxygen concentration in the molten steel increases. Further, when the C concentration cannot be decarburized to 0.005% by mass or less only by the treatment in the converter, it is further decarburized under reduced pressure. This decarburization treatment under reduced pressure is usually performed by vacuum degassing treatment. The dissolved oxygen concentration in the molten steel treated in this way is high.
[0014]
If the dissolved oxygen concentration in the molten steel is too high, the generation of CO gas during solidification cannot be suppressed. In this case, the dissolved oxygen concentration must be lowered to some extent. It is possible to deoxidize these excess dissolved oxygen with Al, Ti, etc., but if Al or Ti is added so that the dissolved oxygen concentration is lower than 0.02% by mass from experimental investigation, alumina And too much inclusions such as titania remain in the molten steel without being lifted and removed. Further, when Ta or W is added, if the dissolved oxygen concentration is within the range of the present invention, Al, Ti or the like may not be added at all. On the other hand, if the dissolved oxygen concentration exceeds 0.06% by mass, CO bubbles are trapped in the slab even if the C concentration is lowered to 0.005% by mass or less, resulting in bubble-type defects after rolling. To do. Therefore, the dissolved oxygen concentration in molten steel needs to be 0.02 mass% or more and 0.06 mass% or less. Regarding the carbon concentration in the molten steel, a molten steel sample can be collected during the decarburization treatment, and the C concentration can be measured by the count-back method. The oxygen concentration in the molten steel can be measured by an oxygen sensor (Kawabe Electric using a fixed electrolyte). The dissolved oxygen concentration can be measured by manufacturing, etc.).
[0015]
Next, the preferable concentration in the molten steel of Ta and W added to the molten steel will be described. If at least the Ta and W concentrations in the molten steel are less than 0.005% by mass, it becomes difficult to fix C and N sufficiently, and if it exceeds 0.1% by mass, the workability tends to decrease. Therefore, at least in the molten steel of Ta and W The concentration is preferably 0.005 mass% or more and 0.1 mass% or less. In the present invention, at least Ta and W mean either Ta alone, W alone, or both Ta and W.
In addition, if the addition amount of Ta and W is within this range, the oxygen concentration equilibrated with Ta and W is 0.02% by mass or more, and even if Ta or W is added, dissolved oxygen is 0.02% by mass or more. It can be secured.
[0016]
Nb has almost no deoxidizing power like Ta and W, and also has a function of fixing C and N. Therefore, it is effective to add 0.005% by mass or more to supplement the function of Ta and W to improve workability. However, if the amount of Nb added is too large, for example, if the Nb concentration exceeds 0.1%, the annealing temperature becomes high. For this reason, it is preferable to make Nb density | concentration into the range of 0.005 mass% to 0.1 mass%.
[0017]
Further, as described above, the method for decarburizing the C concentration of molten steel to 0.005% by mass or less can usually be achieved by using a vacuum degassing apparatus.
Furthermore, recently, in-mold electromagnetic stirrers or electromagnetic coils have been installed in continuous casting machines, and it has been found that by using these, casting can be performed without trapping CO bubbles in the slab. .
[0018]
When the present inventors secure a flow rate of molten steel at the meniscus in the mold of about 30 to 100 cm / s when performing electromagnetic stirring during solidification, the CO bubbles are formed in the slab even if the dissolved oxygen concentration is about 0.06% by mass. It has been found preferable because it can be cast without being captured. If the swirling flow velocity of molten steel by electromagnetic stirring is less than 30 cm / s, it is difficult to obtain a sufficient effect of cleaning CO bubbles. If the swirling flow velocity exceeds 100 cm / s, the CO bubbles are washed, but the mold powder on the surface of the molten steel is removed. Entrainment and surface defects are likely to occur.
[0019]
In addition, it is preferable to prevent the capture of CO bubbles in the slab, because it is also effective to vibrate the molten steel in the mold at a frequency of 0.1 Hz to 100 Hz by the electromagnetic coil provided in the mold. I have found it. In this case, since the molten steel flow hardly follows changes in the vibration direction when the frequency exceeds 100 Hz, the rate of change in the vibration direction is slow when the frequency is less than 0.1 Hz. It is difficult to obtain.
[0020]
From the above results, according to the present invention, it is possible to precipitate and disperse fine inclusions during solidification without generating inclusions in the molten steel. The quality of the steel sheet for thin plate can be greatly improved.
Since the steel sheet for thin plates is used for applications where processing of the outer plate for automobiles and the like is severe, it is necessary to add workability. In order to improve the workability of the steel sheet for thin plates, it is important to reduce the C concentration as much as possible and fix C and N dissolved in the steel by adding other elements. The C concentration is 0.01% by mass or less, preferably 0.005% by mass or less from the viewpoint of workability. Since the condition for preventing CO bubble generation during solidification is also 0.005% by mass or less, the present invention can satisfy both the workability and the condition for preventing bubble generation at the same time. The lower limit value of the C concentration is not particularly specified.
[0021]
Reference is also made to the action of the components in the steel sheet.
The Si concentration in the steel sheet is preferably 0.005% by mass or more and 0.03% by mass or less. This is because if the Si concentration is less than 0.005 mass%, the strength of the plate is insufficient, and if the Si concentration exceeds 0.03 mass%, the workability of the plate decreases. Further, if the Si concentration is 0.03% by mass or less, the equilibrium oxygen concentration also exceeds 0.02% by mass, and it is possible to ensure the dissolved oxygen concentration to be 0.02% by mass or more.
[0022]
Moreover, it is preferable that Mn density | concentration in a steel plate is 0.08 mass% or more and 0.3 mass% or less. If the Mn concentration in the steel sheet is less than 0.08% by mass, cracks are likely to occur during hot rolling, and if the Mn concentration exceeds 0.3% by mass, the workability of the plate is lowered. Further, since Mn has a very weak deoxidizing power compared with Si, even if the Mn concentration is 0.3% by mass, the equilibrium oxygen concentration is over 0.1% by mass, and 0.02% by mass in the molten steel. From 0.06 mass%, dissolved oxygen can be secured.
[0023]
In the present invention, it is preferable not to add Al to the molten steel so that alumina inclusions that easily aggregate and coalesce are not formed, but there is no problem with alumina inclusions that inevitably infiltrate from refractories and the like. This is because, if a small amount of alumina inclusions are present, the dissolved oxygen in the molten steel is high, so that the interfacial energy between the molten steel and the alumina inclusions is lowered, and almost no agglomeration occurs. Ti in steel is effective in improving workability because C and N are fixed as TiN and TiC. However, when the amount of Ti added is increased, for example, the Ti concentration exceeds 0.003 mass%. Then, since the equilibrium oxygen concentration is less than 0.02% by mass, a sufficient dissolved oxygen concentration cannot be ensured. Therefore, when adding Ti to further improve the workability, it may be added in a range of 0.003% by mass or less.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples.
[Example 1]
300 t of molten steel with a C concentration of 0.0018% by mass was produced by refining in a converter and treatment in a reflux-type vacuum degassing apparatus. An alloy was added to the molten steel, the Si concentration was 0.01% by mass, the Mn concentration was 0.15% by mass, the total concentration of Ta and W was 0.015% by mass, and the dissolved oxygen concentration was 0.045% by mass. . This molten steel was cast into a slab having a thickness of 250 mm and a width of 1800 mm by a continuous casting method. The cast slab was cut to a length of 8500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm. Regarding quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, no surface defects occurred.
[0025]
[Example 2]
300 t of molten steel having a C concentration of 0.0015% by mass was produced by refining in a converter and treatment in a reflux vacuum degassing apparatus. An alloy is added to this molten steel, the Si concentration is 0.01 mass%, the Mn concentration is 0.15 mass%, the total concentration of Ta and W is 0.01 mass%, the Nb concentration is 0.025 mass%, the Ti concentration Was 0.001 mass%, and the dissolved oxygen concentration was 0.04 mass%. The molten steel was cast into a slab having a thickness of 250 mm and a width of 1800 mm while electromagnetically stirring the molten steel in the meniscus at an average flow rate of 45 cm / s using a continuous casting machine having an in-mold electromagnetic stirring device. The cast slab was cut to a length of 8500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm. Regarding the slab quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, no surface defects occurred.
[0026]
[Comparative Example 1]
The molten steel in the ladle having a carbon concentration of 0.0015% by mass by refining in a converter and treatment in a reflux vacuum degassing apparatus is deoxidized with Al, and then an alloy is added thereto, and the Al concentration is reduced to 0.1. 04 mass%, Si concentration was 0.012 mass%, Mn concentration was 0.2 mass%, and dissolved oxygen concentration was 0.0002 mass%. This molten steel was cast into a slab having a thickness of 250 mm and a width of 1800 mm by a continuous casting method. The cast slab was cut to a length of 8500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm. Regarding the slab quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, surface defects of 5 pieces / coil were generated on average on the slab.
[0027]
【The invention's effect】
As described above, according to the present invention, the oxide can be finely precipitated at the time of solidification without generating any inclusions in the molten steel, so that the workability and formability can be reliably prevented. It is possible to produce an ultra-low carbon molten steel for thin steel sheets that is excellent in the quality.

Claims (8)

溶鋼の炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。After decarburizing the molten steel to a carbon concentration of 0.005 mass% or less, at least Ta and W are added to the molten steel, and the dissolved oxygen concentration in the molten steel is 0.02 mass% or more and 0.06 mass% or less. A method for producing an ultra-low carbon steel slab, characterized by casting the adjusted molten steel. 溶鋼の炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを0.005質量%以上、0.1質量%以下添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。After decarburizing the molten steel to a carbon concentration of 0.005 mass% or less, at least Ta and W are added to the molten steel in an amount of 0.005 mass% to 0.1 mass%, and the dissolved oxygen concentration in the molten steel is reduced to 0. A method for producing an ultra-low carbon steel slab characterized by casting molten steel adjusted to 0.02 mass% or more and 0.06 mass% or less. 真空脱ガス処理により炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。After decarburizing to a carbon concentration of 0.005% by mass or less by vacuum degassing treatment, at least Ta and W are added to the molten steel, and the dissolved oxygen concentration in the molten steel is 0.02% by mass to 0.06% by mass. A method for producing an ultra-low carbon steel slab characterized by casting molten steel adjusted to less than 1%. 真空脱ガス処理により炭素濃度を0.005質量%以下まで脱炭した後、該溶鋼に少なくともTa、Wを0.005質量%以上、0.1質量%以下添加し、さらに溶鋼中の溶存酸素濃度を0.02質量%以上、0.06質量%以下に調整した溶鋼を鋳造することを特徴とする極低炭素鋼鋳片の製造方法。After decarburizing to a carbon concentration of 0.005 mass% or less by vacuum degassing treatment, at least Ta and W are added to the molten steel at 0.005 mass% to 0.1 mass%, and dissolved oxygen in the molten steel A method for producing an ultra-low carbon steel slab characterized by casting molten steel having a concentration adjusted to 0.02 mass% or more and 0.06 mass% or less. さらに、Nbを0.005質量%以上0.1質量%以下添加することを特徴とする請求項1〜4のいずれかに記載の極低炭素鋼鋳片の製造方法。Furthermore, 0.005 mass% or more and 0.1 mass% or less of Nb are added, The manufacturing method of the ultra-low-carbon steel slab in any one of Claims 1-4 characterized by the above-mentioned. 溶鋼を鋳造するに際し、電磁攪拌、或いは電磁場の印加を行いながら鋳造することを特徴とする請求項1〜5のいずれかに記載の極低炭素鋼鋳片の製造方法。6. The method for producing an ultra-low carbon steel slab according to claim 1, wherein the molten steel is cast while electromagnetic stirring or application of an electromagnetic field is performed. 溶鋼を鋳造するに際し、電磁攪拌を行って、メニスカス位置における溶鋼を30cm/s以上、100cm/s以下の平均流速で旋回させながら鋳造することを特徴とする請求項1〜5のいずれかに記載の極低炭素鋼鋳片の製造方法。6. When casting molten steel, electromagnetic stirring is performed, and the molten steel at the meniscus position is cast while turning at an average flow velocity of 30 cm / s or more and 100 cm / s or less. Method for producing ultra-low carbon steel slabs. 溶鋼を鋳造するに際し、電磁場の印加を行い、メニスカス位置における溶鋼を0.1Hz以上、100Hz以下で水平方向に振動させながら鋳造することを特徴とする請求項1〜5のいずれかに記載の極低炭素鋼鋳片の製造方法。6. The pole according to claim 1, wherein when casting the molten steel, an electromagnetic field is applied, and the molten steel at the meniscus position is cast while being oscillated in a horizontal direction at 0.1 Hz or more and 100 Hz or less. Low carbon steel slab manufacturing method.
JP2003163515A 2003-06-09 2003-06-09 Extremely low carbon steel cast slab-manufacturing method Withdrawn JP2005002357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163515A JP2005002357A (en) 2003-06-09 2003-06-09 Extremely low carbon steel cast slab-manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163515A JP2005002357A (en) 2003-06-09 2003-06-09 Extremely low carbon steel cast slab-manufacturing method

Publications (1)

Publication Number Publication Date
JP2005002357A true JP2005002357A (en) 2005-01-06

Family

ID=34090607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163515A Withdrawn JP2005002357A (en) 2003-06-09 2003-06-09 Extremely low carbon steel cast slab-manufacturing method

Country Status (1)

Country Link
JP (1) JP2005002357A (en)

Similar Documents

Publication Publication Date Title
JP4280163B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP3733098B2 (en) Method of melting steel sheet for ultra-low carbon or low-carbon sheet with excellent surface quality and continuous cast slab
JP5381243B2 (en) Method for refining molten steel
US20120261085A1 (en) Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab
JP3686579B2 (en) Method of melting steel sheet for thin plate and slab cast using the same
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
JP3742619B2 (en) Low carbon steel slab manufacturing method
JP4660038B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP3605390B2 (en) Method for producing ultra-low carbon steel sheet and slab thereof
JP2005002357A (en) Extremely low carbon steel cast slab-manufacturing method
JP4660037B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP4025718B2 (en) Extremely low carbon steel sheet excellent in surface properties, workability and formability, and method for producing the same
JP4035081B2 (en) Method for producing ultra-low carbon steel slab
JP3679770B2 (en) Manufacturing method of low carbon steel sheet and its slab
JP2001105101A (en) Melting method of steel plate for thin sheet
JP4392364B2 (en) Method for producing ultra-low carbon steel
JP4227478B2 (en) Low carbon steel slab manufacturing method
JP4392365B2 (en) Method for producing ultra-low carbon steel
JP4828052B2 (en) Manufacturing method of steel sheet for thin sheet
JP4520653B2 (en) Casting method for thin plate slab
JP2002003930A (en) Method for melting steel plate for thin sheet
JP2001032014A (en) Method for manufacturing steel plate for sheet steel
US20100158746A1 (en) Extremely Low Carbon Steel Plate Excellent in Surface Characteristics, Workability, and Formability and a Method of Producing Extremely Low Carbon Cast Slab
JP4608148B2 (en) Manufacturing method of highly clean thin steel plate and steel plate
JP2002249818A (en) Method for refining thin steel sheet, and slab cast by using the steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905