Nothing Special   »   [go: up one dir, main page]

JP2005097989A - Method for constructing diaphragm wall - Google Patents

Method for constructing diaphragm wall Download PDF

Info

Publication number
JP2005097989A
JP2005097989A JP2003334286A JP2003334286A JP2005097989A JP 2005097989 A JP2005097989 A JP 2005097989A JP 2003334286 A JP2003334286 A JP 2003334286A JP 2003334286 A JP2003334286 A JP 2003334286A JP 2005097989 A JP2005097989 A JP 2005097989A
Authority
JP
Japan
Prior art keywords
excavation
excavated
cutter
rod
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003334286A
Other languages
Japanese (ja)
Other versions
JP4111898B2 (en
Inventor
Osamu Ueda
修 上田
Masaki Hatakeyama
正樹 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MLT SOIL KK
Honma Corp
Original Assignee
MLT SOIL KK
Honma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MLT SOIL KK, Honma Corp filed Critical MLT SOIL KK
Priority to JP2003334286A priority Critical patent/JP4111898B2/en
Publication of JP2005097989A publication Critical patent/JP2005097989A/en
Application granted granted Critical
Publication of JP4111898B2 publication Critical patent/JP4111898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for constructing a diaphragm wall for reducing environmental load by hardly lessening earth removal, and performing efficient construction. <P>SOLUTION: The ground is excavated by a screw rod consolidating excavated sand and soil into an excavated hole. Thereafter, a cutter 32 is rotated, and a trench G of constant width is continuously excavated by moving the cutter 32 in parallel in the state where the chain cutter 32 is built in the ground, and a fixation agent B is injected into the excavated trench G to form a soil cement wall being the diaphragm wall. Hard ground such as a bedrock 11A is excavated with the screw rod, then, since the screw rod consolidates the excavated sand and soil into the excavated hole, earth removal is lessened, and since the wall face of the trench G excavated by the cutter 32 is previously consolidated, resistance is small during excavation and movement of the cutter 32 thereafter and construction can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、土木建築工事において構築する地中連続壁の施工方法に関するものである。   The present invention relates to an underground continuous wall construction method constructed in civil engineering construction.

地中連続壁の施工性の向上を図ったものとして、掘削刃を備えたエンドレスチェーンがカッターポストに設けられた駆動輪と誘導輪との間に掛け渡されて成るチェーン式カッターをガイドに取付け、このチェーン式カッターを地中に挿入した状態で、同カッターを回転させながら上記ガイドにより水平に移動させて地中に連続壁を掘削し、この掘削された連続溝内に固化材を注入することによって地中に連続壁を造成する施工方法(例えば特許文献1)が知られている。   To improve the workability of the underground continuous wall, a chain type cutter, in which an endless chain equipped with a drilling blade is stretched between a drive wheel and a guide wheel provided on the cutter post, is attached to the guide. While the chain cutter is inserted into the ground, it is horizontally moved by the guide while rotating the cutter to excavate the continuous wall into the ground, and the solidified material is injected into the excavated continuous groove. There is a known construction method (for example, Patent Document 1) for creating a continuous wall in the ground.

上記の施工方法では、カッターにより掘削しながら、掘削孔内において掘削土砂と注入した固化材とを混合して連続壁を構築することができ、掘削土砂を連続壁の材料とするため、排土が少ない利点がある。   In the construction method described above, a continuous wall can be constructed by mixing the excavated sediment and the injected solidified material in the excavation hole while excavating with a cutter, and the excavated sediment is used as a material for the continuous wall. There are few advantages.

しかし、発明者らは、実際の施工を通して、連続壁の構築場所の一部に岩盤などがあると、チェーン式カッターでは岩盤を掘削することができないことを見出した。そこで、岩盤などの掘削に用いられているロックオーガーにより、岩盤部分の掘削を行ったが、ロックオーガーは一般的に高さ寸法が大のため、上方空間に制約のある現場で使用することができず、十分な施工空間を取れないと施工ができない問題が予想される。さらに、チェーン式カッターの使用により、排土が少ないという利点が得られるのに対して、ロックオーガーを使用すると、排土が発生し、その排土を処理しなければならない問題が発生することなどが予想される。
特開平7−180154号公報
However, the inventors have found that the rock cannot be excavated with a chain cutter if there is a rock in a part of the construction site of the continuous wall through actual construction. Therefore, the rock auger was excavated with a rock auger used for excavation of rock, etc. However, the rock auger is generally large in height, so it can be used at sites where the upper space is restricted. A problem that cannot be done unless sufficient construction space is available. In addition, the use of a chain cutter provides the advantage of less soil removal, whereas the use of a lock auger causes soil removal and the problem that the soil must be processed. Is expected.
JP-A-7-180154

そこで、本発明は、排土が少なく、効率的な施工が可能で、環境負荷の低減が可能な地中連続壁の施工方法を提供することを目的とし、加えて、上部空間に制約のある現場での施工を可能とする地中連続壁の施工方法を提供することを目的とする。   Then, this invention aims at providing the construction method of an underground continuous wall which can reduce the environmental load, and can perform efficient construction with little earth removal, and in addition, there is a restriction in the upper space. It aims at providing the construction method of the underground continuous wall which enables construction on the spot.

請求項1の発明は、チェーン式カッターを地中に建て込んだ状態で、カッターを回転させると共に、該カッターを水平方向に移動させることにより一定幅の溝を連続して掘削し、この掘削された溝内に固化材を注入して地中壁を形成する地中連続壁の施工方法において、掘削土砂を掘削孔に圧密する軸回転式掘削装置の掘削ロッドにより地中を掘削した後、前記カッターによる掘削を行う施工方法である。   According to the first aspect of the present invention, in the state where the chain type cutter is embedded in the ground, the cutter is rotated and the cutter is moved in the horizontal direction to continuously excavate a groove having a constant width. In the underground continuous wall construction method of injecting solidification material into the trench and forming the underground wall, after excavating the underground with a drilling rod of a shaft rotary excavator that compacts the excavated soil into the drilling hole, It is a construction method for excavating with a cutter.

また、請求項2の発明は、前記掘削ロッドは、彎曲面を有する圧密コテを備える施工方法である。   The invention of claim 2 is a construction method in which the excavation rod includes a consolidation iron having a curved surface.

また、請求項3の発明は、リーダーに前記掘削ロッドの駆動装置を昇降自在に設け、掘削ロッドを地中に挿入した後、この掘削ロッドの上部と前記駆動装置側との間で継ぎ足しロッドを接続する施工方法である。   According to a third aspect of the present invention, the excavation rod drive device is provided in a leader so as to be movable up and down, and after the excavation rod is inserted into the ground, an additional rod is connected between the upper portion of the excavation rod and the drive device side. It is a construction method to connect.

請求項1の構成によれば、軸回転式掘削装置の掘削ロッドにより岩盤などの固い地盤を掘削し、その際、掘削ロッドは掘削土砂を掘削孔に圧密するから、地上への排土が少なく、且つカッターにより掘削する溝の壁面が予め圧密されているから、後のカッター掘削移動時の抵抗が少なく、施工性の向上を図ることができる。   According to the configuration of the first aspect, the hard ground such as the rock is excavated by the excavating rod of the rotary shaft excavator, and at that time, the excavating rod compacts the excavated earth and sand into the excavation hole. And since the wall surface of the groove | channel excavated with a cutter is previously consolidated, there is little resistance at the time of a cutter excavation movement later, and it can aim at the improvement of workability.

また、請求項2の構成によれば、掘削ロッドの回転により、圧密コテが掘削孔の内面に掘削土砂を擦り付けるようにして圧密される。   According to the second aspect of the present invention, the consolidation iron is consolidated by rubbing the excavated earth and sand against the inner surface of the excavation hole by the rotation of the excavation rod.

また、請求項3の構成によれば、ロッドを継足しながら掘削を行うから、リーダーの高さ寸法を低く抑えることができ、上部空間に制約のある現場での施工に適したものとなる。   Moreover, according to the structure of Claim 3, since excavation is performed while the rod is extended, the height dimension of the leader can be kept low, and it is suitable for construction on the site where the upper space is restricted.

本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。各実施例では、従来とは異なる新規な施工方法を採用することにより、従来にない機能を付加した地中連続壁の施工方法が得られ、その施工方法を夫々記述する。   Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention. In each embodiment, by adopting a new construction method different from the conventional one, an underground continuous wall construction method with an unprecedented function is obtained, and the construction method is described respectively.

以下、本発明の実施形態を添付図面を参照して説明する。図1〜図6は本発明の第1実施例を示す。図1〜図4に示すように、11は地盤、12は自走車両、13はそのクローラ、14は旋回台、15は運転室、16は後部に設けた油圧ユニットである。本実施例においては、上部水平部材17と、下部水平部材18と、4本の垂直部材19を枠組みしてフレーム20を形成し、このフレーム20を車両12の一側に垂直に立てて固定する。すなわち21は一方のクローラ13の外側面に突設した2個のブラケットで、このブラケット21にフレーム20の下部水平部材18を固定すると共に、フレーム20の上部水平部材17の後面に突設したブラケット22に連結したステー23の後端部を、他のクローラ13の外側に突設したブラケット24に連結してフレーム20を固定する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 6 show a first embodiment of the present invention. As shown in FIGS. 1 to 4, 11 is the ground, 12 is a self-propelled vehicle, 13 is a crawler, 14 is a swivel, 15 is a driver's cab, and 16 is a hydraulic unit provided at the rear. In the present embodiment, the upper horizontal member 17, the lower horizontal member 18, and the four vertical members 19 are framed to form a frame 20, and the frame 20 is fixed vertically on one side of the vehicle 12. . That is, 21 is two brackets projecting on the outer surface of one of the crawlers 13. The lower horizontal member 18 of the frame 20 is fixed to the bracket 21 and the bracket is projected on the rear surface of the upper horizontal member 17 of the frame 20. The frame 20 is fixed by connecting the rear end of the stay 23 connected to 22 to a bracket 24 protruding outside the other crawler 13.

また、フレーム20の上下の水平部材17,18をガイドとして垂直フレーム25を横方向に摺動自在に設ける。25aは上部水平部材17のガイド部と摺動自在に係合するブラケット部であり、25bは下部水平部材18のガイド部と摺動自在に係合するブラケット部である。また上部水平部材17に油圧シリンダー26の基部を枢支すると共に、このピストンロッド26aの先端部を連結部材27を介して垂直フレーム25の上部に連結し、下部水平部材18に油圧シリンダー28の基部を枢支すると共に、このピストンロッド28aの先端部を連結部材29を介して垂直フレーム25の下部に連結する。   Further, a vertical frame 25 is slidable in the lateral direction with the upper and lower horizontal members 17 and 18 of the frame 20 as guides. A bracket portion 25a is slidably engaged with the guide portion of the upper horizontal member 17, and a bracket portion 25b is slidably engaged with the guide portion of the lower horizontal member 18. Further, the base portion of the hydraulic cylinder 26 is pivotally supported on the upper horizontal member 17, and the tip end portion of the piston rod 26 a is connected to the upper portion of the vertical frame 25 via the connecting member 27, and the base portion of the hydraulic cylinder 28 is connected to the lower horizontal member 18. And the tip of the piston rod 28a is connected to the lower portion of the vertical frame 25 via a connecting member 29.

また、垂直フレーム25に対してカッター支持ポスト30を昇降自在に設ける。31(図2参照)はその昇降用油圧シリンダーである。そしてこのカッター支持ポスト30に対してエンドレスチエーン式カッター32を垂直に設ける。33はこのカッター32のカッターポストであって上下に長い箱形フレームからなり、34はカッターポスト33の上端部に設けたスプロケット、35はポスト33の下端部に設けたスプロケット、36はこれら上下のスプロケット34,35にかけ渡した掘削刃付きエンドレスチエーンである。また、37はこのカッター駆動用のモータであり、38はその伝動装置である。図中51は掘削した溝Gにセメント液(セメントスラリー)などの固化材Bを注入する注入装置である。尚、前記カッター32の下端側からセメント液(セメントスラリー)などの固化材Bを注入するようにしてもよい。   Further, the cutter support post 30 is provided so as to be movable up and down with respect to the vertical frame 25. Reference numeral 31 (see FIG. 2) denotes a lifting hydraulic cylinder. An endless chain cutter 32 is provided perpendicular to the cutter support post 30. 33 is a cutter post of this cutter 32, which is composed of a box frame that is long vertically, 34 is a sprocket provided at the upper end of the cutter post 33, 35 is a sprocket provided at the lower end of the post 33, and 36 is the upper and lower This is an endless chain with excavating blades that spans sprockets 34 and 35. 37 is a motor for driving the cutter, and 38 is a transmission device. In the figure, 51 is an injection device for injecting a solidified material B such as cement liquid (cement slurry) into the excavated groove G. A solidifying material B such as a cement liquid (cement slurry) may be injected from the lower end side of the cutter 32.

次に、軸回転式掘削装置について説明すると、図5〜6に示すように、先端にビット109を設置した掘削ヘッド108を接続する圧密コテ113付のスクリューロッド111に圧密コテもスクリューもない棒状の継ぎ足しロッド114を継続させるオーガである。そして、前記スクリューロッド111が掘削ロッドである。このスクリューロッド111は本実施例では、約半ピッチ分のスクリュー羽根112を断続的に設けるもので、ロッド軸方向の圧密コテ113は上下段のスクリュー羽根112の外周先端部相互に渡すように適宜個所に設けた湾曲縦板による。かかるオーガは、重機115に設けたリーダー116を上下する駆動装置119に上端を接続し、ここから垂下して回転駆動される。   Next, the rotary shaft excavator will be described. As shown in FIGS. 5 to 6, the screw rod 111 with the consolidating iron 113 connecting the excavating head 108 with the bit 109 installed at the tip is a rod-like shape having neither a consolidating iron nor a screw. This is an auger that continues the rod 114. The screw rod 111 is a drilling rod. In this embodiment, the screw rod 111 is provided with intermittently about half a pitch of screw blades 112. The rod-shaped consolidation iron 113 is appropriately transferred so as to pass between the outer peripheral tips of the upper and lower screw blades 112. According to the curved vertical plate provided at the place. Such an auger has an upper end connected to a driving device 119 that moves up and down a leader 116 provided in the heavy machine 115, and is driven to rotate by dropping from here.

オーガの回転駆動負荷計測手段118として電流計(駆動装置119が電動モータの場合)または油圧計(駆動装置119が油圧モータの場合)を設け、また、掘削ヘッド108への荷重計測手段(図示せず)してオーガおよびセットしたスクリューの重量を図るロードセルを設けた。この掘削ヘッド108への荷重計測手段118として、前記ロードセルの他に他の実施形態としては、重機115に設けたウインチ120から繰り出される駆動装置119を吊り下げるワイヤーロープ121の張力を図る張力計、もしくは掘削ヘッド118のビット109等に設ける面圧計をもってこれに代えてもよい。   An auger rotational drive load measuring means 118 is provided with an ammeter (when the driving device 119 is an electric motor) or a hydraulic meter (when the driving device 119 is a hydraulic motor), and a load measuring means for the excavation head 108 (not shown). And a load cell for measuring the weight of the auger and the set screw. As a load measuring means 118 to the excavation head 108, in addition to the load cell, as another embodiment, a tensiometer that measures the tension of the wire rope 121 that suspends the drive device 119 fed out from the winch 120 provided in the heavy machine 115, Alternatively, a surface pressure gauge provided on the bit 109 or the like of the excavation head 118 may be used instead.

また、掘削深度距離計122としてワイヤーロープ121の移動量をパルス発信させ、これを変換することにより掘削深度・掘削速度を計測するエンコーダをトップシーブに設けた。これら回転駆動負荷計測手段117、荷重計測手段118、掘削深度距離計122はそれぞれ掘削の自動制御を行うための制御装置としてのコンピュータ(図示せず)に接続される。   Further, the top sheave is provided with an encoder that measures the excavation depth and excavation speed by pulsing the movement amount of the wire rope 121 as the excavation depth distance meter 122 and converting it. These rotational drive load measuring means 117, load measuring means 118, and excavation depth distance meter 122 are each connected to a computer (not shown) as a control device for performing automatic excavation control.

次に、このような軸回転式掘削装置を用いて行う本発明の掘削制御方法についで説明する。駆動装置119を駆動して掘削ヘッド108、スクリューロッド111、ロッド114を回転させこれを地盤に錐揉み状に挿入して掘削を行う場合、掘削ヘッド108のビット109での切削された土砂は掘削ヘッド108から上部のロッド111に至り、圧密コテ113の外周面で孔壁に圧密される。   Next, the excavation control method of the present invention performed using such a shaft rotary excavator will be described. When the excavation head 108, the screw rod 111, and the rod 114 are rotated by driving the driving device 119 and inserted into the ground in the shape of a cone, excavation is performed by excavating the earth and sand cut by the bit 109 of the excavation head 108. From the head 108 to the upper rod 111, the outer peripheral surface of the consolidation iron 113 is consolidated to the hole wall.

通常、このような掘削ロッドにかかる土圧(摩擦抵抗)土の粒子の崩壊運動によるものと考えられる。なお、土の粒子と間隙率の関係は以下の通りである。
(A)土の粒子 0.004mm以下の場合 間隙率は60〜70%
(B)土の粒子 0.0048 〜1.9mm以下の場合 間隙率は35〜50%
(C)土の粒子 2.0mm以上の場合 間隙率は25〜40%
(玉石から転石)
崩壊の無い掘削孔61を造成するには、孔壁周辺の地層の間隙率を下げる。このようにして軸回転式掘削装置を使用することにより掘削土砂を従来のようにら旋型スクリューで地上に排出するのではなく、圧密コテ113で孔壁周辺に押入し、ボイド率(間隙率)を下げながら掘削するため、孔壁は崩壊しないものとなる。また、掘削土砂は地上に排出しない。従って、スクリューロッド111に掛かる土圧(摩擦抵抗)がなくなり、地盤の掘削に重要な掘削ヘッド108の先端ビット109の面圧の調整が計れる。先端ビット109の調整ができれば、掘削速度を上げ、先端ビット109の消耗率を下げ、工期を短縮し経済的に完全な掘削作業ができる。
Usually, it is considered that the earth pressure (friction resistance) applied to the excavating rod is due to the collapse of the soil particles. The relationship between the soil particles and the porosity is as follows.
(A) Soil particles 0.004mm or less Porosity is 60-70%
(B) Soil particles 0.0072 to 1.9 mm or less Porosity is 35 to 50%
(C) Soil particles 2.0mm or more Porosity is 25-40%
(Cobblestone to cobblestone)
In order to create the excavation hole 61 without collapse, the porosity of the formation around the hole wall is lowered. In this way, by using the rotary shaft excavator, the excavated sediment is not discharged to the ground with a helical screw as in the prior art, but is pushed around the hole wall with a compacting iron 113, and the void ratio (porosity) ), The hole wall will not collapse. In addition, excavated soil does not discharge to the ground. Accordingly, the earth pressure (friction resistance) applied to the screw rod 111 is eliminated, and the surface pressure of the tip bit 109 of the excavation head 108, which is important for excavation of the ground, can be adjusted. If the tip bit 109 can be adjusted, the excavation speed can be increased, the wear rate of the tip bit 109 can be reduced, the construction period can be shortened, and an economical complete excavation work can be performed.

このような掘削制御を行うのに、第1の工程として、本発明は軸回転式掘削装置の回転駆動負荷計測手段117で計測する許容電流(または油圧)を基準とし、かかる許容電流(または油圧)が予め設定した基準範囲内であれば圧密コテ113での圧密で掘削孔周辺の間隙率がスムーズに低下しているものとして、掘削ヘッド108への荷重計測手段118で把握する掘削ヘッド108への荷重を高めるように掘削速度を上げる。回転駆動負荷計測手段117の測定値は計器(図示せず)に、荷重計測手段118の測定値は計器(図示せず)に表示するようにしたが、回転駆動負荷計測手段117を間隙率計とて用いることによりその値を間隙率を示す計器(図示せず)に表示するようにしてもよい。また、荷重計測手段118の測定値を面圧計の計器(図示せず)に表示するようにしてもよい。なお、前記許容電流(または油圧)の予め設定した基準範囲は柱状図を基に地層の状態によって基準値が異なるが、これを経験則で決定しておく。また、掘削速度が上がったことの確認は掘削深度距離計122でできる。   In order to perform such excavation control, as a first step, the present invention is based on the allowable current (or hydraulic pressure) measured by the rotational drive load measuring means 117 of the shaft rotary excavator, and the allowable current (or hydraulic pressure). ) Is within a preset reference range, it is assumed that the porosity around the excavation hole has been smoothly reduced by the consolidation of the consolidation iron 113, and the excavation head 108 grasps by the load measuring means 118 to the excavation head 108. Increase the excavation speed to increase the load. The measured value of the rotational drive load measuring means 117 is displayed on a meter (not shown), and the measured value of the load measuring means 118 is displayed on a meter (not shown). The value may be displayed on a meter (not shown) indicating the porosity. Further, the measurement value of the load measuring means 118 may be displayed on a gauge (not shown) of a surface pressure gauge. The preset reference range of the allowable current (or hydraulic pressure) varies depending on the state of the formation based on the columnar diagram, but this is determined by empirical rules. Further, it can be confirmed by the excavation depth meter 122 that the excavation speed has increased.

一方、第2の工程として、軸回転式掘削装置の回転駆動負荷計測手段117で計測する許容電流(または油圧)が基準範囲外であれば、圧密コテ113での圧密が不十分であり、掘削孔周辺の間隙率が低下するまでその位置でスクリューロッド111を回転させた状態で上下動させ、孔壁の圧密を行う。前記第1の工程と第2の工程とを適宜繰り返しながら掘削を続行する。   On the other hand, as the second step, if the allowable current (or hydraulic pressure) measured by the rotational drive load measuring means 117 of the shaft rotary excavator is outside the reference range, the compaction with the compacting iron 113 is insufficient, and the excavation is performed. Until the porosity around the hole is lowered, the screw rod 111 is moved up and down at that position, and the hole wall is consolidated. The excavation is continued while appropriately repeating the first step and the second step.

前記荷重計測手段118の役割は、地盤(柱状図により)に応じた推進力を維持するため、ワイヤーロープ121に設定された範囲の張力を維持するようにウインチ120の速度を制御することにもある。例えば、オーガの回転駆動負荷計測手段117で計測する許容電流(または油圧)が基準範囲内であるが、ワイヤーロープ121がゆるんでいる状態ではウインチ120を止めるか、巻き取るかさせ、一定の推力を維持させるようにしないと、食い込み過ぎたり、回転負荷が急速に上昇し、オーガの回転停止等が生じるおそれがあるからである。また、このような事態は切削刃の破損の原因ともなる。   The role of the load measuring means 118 is also to control the speed of the winch 120 so as to maintain the tension in the range set on the wire rope 121 in order to maintain the propulsive force according to the ground (according to the columnar diagram). is there. For example, the allowable current (or hydraulic pressure) measured by the auger rotational drive load measuring means 117 is within the reference range, but when the wire rope 121 is loose, the winch 120 is stopped or wound to obtain a constant thrust. Otherwise, there is a risk that excessive biting in or the rotational load will rise rapidly and the rotation of the auger will stop. Such a situation also causes damage to the cutting blade.

なお、通常にスムーズに掘削が行われている場合は掘削深度が深くなってもスクリューロッド111にかかる羽根への摩擦面積は変わらず一定しており、ロッド114には摩擦が加えられることはないので、前記のごとく回転駆動負荷計測手段117を間隙率計として用いることにより地層の間隙率の計測も可能である。   In addition, when the excavation is normally performed smoothly, even if the excavation depth is increased, the friction area to the blades on the screw rod 111 is constant and the friction is not applied to the rod 114. Therefore, it is possible to measure the porosity of the formation by using the rotational drive load measuring means 117 as a porosity meter as described above.

また、上記軸回転式掘削装置は、駆動装置119によりスクリューロッド111を回転し、その駆動装置119がリーダー116に沿って降下駆動することにより、スクリューロッド111を地中に押し込み。所定深さだけスクリューロッド111を降下したら、駆動装置119による回転と降下を停止し、スクリューロッド111を駆動装置119から切り離し、駆動装置119をリーダー116に沿って上昇駆動し、継ぎ足しロッド114を継ぎ足し、すなわち、継ぎ足しロッド114の上端を駆動装置119に接続し、下端を地中に挿入したスクリューロッド111の上端に接続する。このように継ぎ足しロッド114を継ぎ足しながら掘削を行うことにより、リーダー116の高さ寸法を抑えることができ、これは、本装置では、先端側のみにスクリュー羽根112と圧密コテ113を設ければよく、継ぎ足しロッド114はそれらスクリュー羽根112と圧密コテ113が不要であるため、継ぎ足しを容易に行うことができる。   In addition, the shaft-rotating excavator rotates the screw rod 111 by the driving device 119, and the driving device 119 descends along the leader 116 to push the screw rod 111 into the ground. When the screw rod 111 is lowered by a predetermined depth, the rotation and lowering by the driving device 119 are stopped, the screw rod 111 is disconnected from the driving device 119, the driving device 119 is driven up along the leader 116, and the additional rod 114 is added. That is, the upper end of the extension rod 114 is connected to the drive device 119, and the lower end is connected to the upper end of the screw rod 111 inserted into the ground. By excavating while adding the extension rod 114 in this way, the height dimension of the leader 116 can be suppressed. In this apparatus, the screw blade 112 and the consolidation iron 113 need only be provided on the tip side. Since the extension rod 114 does not require the screw blade 112 and the consolidation iron 113, the extension rod 114 can be easily added.

次に、前記構成につき、その作用を説明する。地中連続壁を構築しようとする地盤11に岩盤11Aなどの固い地盤があり、カッター32だけでは掘削ができない場合は、まず、上記軸回転式掘削装置により掘削を行い、図7の平面図に示すように、スクリューロッド111の掘削により、溝Gに対応して、隣り合う掘削孔61が連続するように掘削を行う。この軸回転式掘削装置によれば、上述したように圧密コテ113で掘削孔61の壁周辺に押入し、ボイド率(間隙率)を下げながら掘削するため、掘削孔壁は崩壊しないものとなり、掘削孔61の壁面が予め圧密されてた状態となり、また、掘削土砂は地上に排出しない。   Next, the effect | action is demonstrated about the said structure. If the ground 11 where the underground continuous wall is to be built has a hard ground such as the rock 11A and cannot be excavated by the cutter 32 alone, first excavate by the above-mentioned shaft rotary excavator, and the plan view of FIG. As shown, by excavating the screw rod 111, excavation is performed so that the adjacent excavation holes 61 are continuous corresponding to the groove G. According to this rotary shaft excavator, as described above, the hole is not collapsed because the excavation hole 61 is pushed around the wall of the excavation hole 61 with the consolidating iron 113 and the void ratio (porosity) is lowered. The wall surface of the excavation hole 61 is in a consolidated state in advance, and excavation earth and sand are not discharged to the ground.

次に、図1(A)に示すように、地中壁施工位置の始端側の掘削孔61にカッター32を吊し下げて挿入すると共に、このカッター32を垂直フレーム25に取り付ける。つぎに、油圧シリンダー26,28を縮めた状態で、フレーム20の上下部の水平部材17,18によるガイド方向を構築しようとするソイルセメント壁1の方向と一致させ、必要があればクローラ13が移動しないように地盤11に対してアンカー等によって固定し、この状態でカッター32のチエーン36をモータ37によって駆動しながら、油圧シリンダー26,28に圧力油を供給して、各ピストンロッド16a,18aを押し出すことによって、垂直フレーム25を介してカッター32を図1(A)の矢印の方向へ地盤1を掘削しながら移動させる。   Next, as shown in FIG. 1A, the cutter 32 is suspended and inserted into the excavation hole 61 on the start end side of the underground wall construction position, and the cutter 32 is attached to the vertical frame 25. Next, in a state where the hydraulic cylinders 26 and 28 are contracted, the guide direction by the horizontal members 17 and 18 at the upper and lower parts of the frame 20 is made to coincide with the direction of the soil cement wall 1 to be constructed. It is fixed to the ground 11 with an anchor or the like so as not to move, and in this state, while driving the chain 36 of the cutter 32 by the motor 37, pressure oil is supplied to the hydraulic cylinders 26 and 28, and the piston rods 16a and 18a are supplied. The cutter 32 is moved through the vertical frame 25 while excavating the ground 1 in the direction of the arrow in FIG.

そして、各油圧シリンダー26,28のピストンロッド26a,28aが伸びきったならば、そのピストンロッド26a,28aを後退させると共に、自走車両12を図1(B)に示すように、図中右方向へ移動させて、再び前記した操作を繰り返し行って、所定の長さの地中壁用の溝Gを掘削する。また、掘削した溝Gに注入装置51から固化材Bを注入し、固化材Bと溝G内の土砂の一部を撹拌する。この場合、カッター32を図中左側に戻して溝G内を撹拌することができる。   When the piston rods 26a, 28a of the hydraulic cylinders 26, 28 are fully extended, the piston rods 26a, 28a are retracted, and the self-propelled vehicle 12 is moved to the right as shown in FIG. The groove G for excavating a predetermined length of the underground wall is excavated by repeating the above operation again. Further, the solidified material B is injected into the excavated groove G from the injection device 51, and a part of the solidified material B and the earth and sand in the groove G is stirred. In this case, the cutter 32 can be returned to the left side in the figure to stir the groove G.

この場合、地中壁となる地中の両側面がスクリューロッド111の掘削により、溝Gの壁面が予め圧密されているため、まず、カッター32の掘削前に連続掘削孔61の側面が安定しており、カッター32の使用時における抵抗も少なく、施工性の大幅な向上を図ることができる。また、上記の施工方法によればほぼ一定厚さのソイルセメント壁1を形成できる。しかも、軸回転式掘削装置は、掘削孔61の圧密と同じに地上への排土の発生を防止するため、地上における作業も効率良く行うことができる。   In this case, since the both sides of the underground which are the underground walls are consolidated by the excavation of the screw rod 111 and the wall surface of the groove G is previously consolidated, first, the side surface of the continuous excavation hole 61 is stabilized before the cutter 32 is excavated. Therefore, there is little resistance when the cutter 32 is used, and the workability can be greatly improved. Moreover, according to said construction method, the soil cement wall 1 of substantially constant thickness can be formed. In addition, since the shaft-rotating excavator prevents the occurrence of soil discharge on the ground as in the consolidation of the excavation hole 61, work on the ground can be performed efficiently.

本実施例では、ソイルセメント地中連続壁の築造において、対象とする地盤が固く、カッター32のみでの掘削が困難な場合、無排土型の軸回転式掘削装置を用いて先行掘削するので、排土の発生がなく、排土処理する工程がないため、効率的な施工の進捗が図れる。また、排土処理にかかわる費用の支出がないため、経済的である。また、排土の発生がないため、施工現場の景観の向上を図ることができると共に、環境負荷の軽減を図ることができる。また、軸回転式掘削装置は、高さ寸法を抑えたものであるから、低重心で安定すると共に、空頭制限下における作業に障害を生じない。また、山間地などで施工する場合、施工機械がコンパクトなので輸送にかかわるコストが削減できる。   In this embodiment, in the construction of the soil cement underground continuous wall, if the target ground is hard and it is difficult to excavate only with the cutter 32, the excavation is performed using a non-exhaust type shaft rotary excavator. Since there is no generation of soil and there is no process of soil removal, efficient construction progress can be achieved. In addition, it is economical because there is no expenditure for the soil disposal. Moreover, since there is no generation of soil, the landscape at the construction site can be improved and the environmental load can be reduced. In addition, since the rotary shaft excavator has a reduced height dimension, it is stable at a low center of gravity and does not cause any trouble in the work under the sky head limitation. Moreover, when constructing in a mountainous area, the construction machinery is compact, so the costs associated with transportation can be reduced.

このように本実施例では、請求項1に対応して、チェーン式カッター32を地中に建て込んだ状態で、カッター32を回転させると共に、該カッター32を平行に移動させることにより一定幅の溝Gを連続して掘削し、この掘削された溝G内に固化材Bを注入して地中壁たるソイルセメント壁1を形成する地中連続壁の施工方法において、掘削土砂を掘削孔61に圧密する軸回転式掘削装置の掘削ロッドたるスクリューロッド111により地中を掘削した後、カッター32による掘削を行うから、軸回転式掘削装置のスクリューロッド111により岩盤11Aなどの固い地盤を掘削し、その際、スクリューロッド111は掘削土砂を掘削孔61に圧密するから、排土が少なく、且つカッター32により掘削する溝Gの壁面が予め圧密されているから、後のカッター32掘削移動時の抵抗が少なく、施工性の向上を図ることができる。   As described above, in this embodiment, in accordance with the first aspect of the present invention, the cutter 32 is rotated and the cutter 32 is moved in parallel with the chain cutter 32 being built in the ground. In the construction method of the underground continuous wall in which the groove G is continuously excavated and the solidified material B is injected into the excavated groove G to form the soil cement wall 1 as the underground wall, After excavating the ground with the screw rod 111 which is the excavation rod of the shaft rotary excavator that is compacted, the excavation with the cutter 32 is performed, so the hard ground such as the rock mass 11A is excavated with the screw rod 111 of the axial rotary excavator At that time, since the screw rod 111 consolidates the excavated earth and sand into the excavation hole 61, there is little soil discharge, and the wall surface of the groove G excavated by the cutter 32 is pre-consolidated. Anti less, it is possible to improve the workability.

また、このように本実施例では、請求項2に対応して、掘削ロッドたるスクリューロッド111は、彎曲面を有する圧密コテ113を備えるから、スクリューロッド111の回転により、圧密コテ113が掘削孔61の内面に掘削土砂を擦り付けるようにして圧密し、地上への排土の発生を防止できる。   In this way, in this embodiment, the screw rod 111 as the excavation rod is provided with the consolidation iron 113 having the saddle curved surface, so that the consolidation iron 113 is formed into the excavation hole by the rotation of the screw rod 111. The excavated earth and sand is rubbed against the inner surface of 61, so that it is possible to prevent the generation of soil on the ground.

また、このように本実施例では、請求項3に対応して、軸回転式掘削装置は、リーダー116に掘削ロッドたるスクリューロッド111の駆動装置119を昇降自在に設け、スクリューロッド111を地中に挿入した後、このスクリューロッド111の上部と駆動装置119側との間で継ぎ足しロッド114を接続するから、ロッドを継足しながら掘削を行うから、リーダー116の高さ寸法を低く抑えることができ、上部空間に制約のある現場での施工に適したものとなる。   In this way, in this embodiment, in response to claim 3, the rotary shaft excavating apparatus is provided with the drive device 119 of the screw rod 111 as the excavating rod on the leader 116 so as to be movable up and down. Since the rod 114 is connected between the upper part of the screw rod 111 and the drive device 119 after being inserted, the excavation is performed while the rod is being extended, so the height of the leader 116 can be kept low. It is suitable for construction on the site where the upper space is limited.

また、実施例上の効果として、溝Gの方向に掘削孔61を連続して形成、すなわち隣り合う掘削孔61が連通するように掘削したから、排土を完全に防止でき、且つカッター32の抵抗を低く抑えることができる。   Further, as an effect on the embodiment, since the excavation hole 61 is continuously formed in the direction of the groove G, that is, excavation is performed so that the adjacent excavation holes 61 communicate with each other, it is possible to completely prevent soil removal and Resistance can be kept low.

また、実施例上の効果として、 先端に掘削ヘッド108を接続する圧密コテ113付のスクリューロッド111に圧密コテもスクリューもない棒状の継ぎ足しロッド114を継続させ、重機に設けたリーダー116を上下する駆動装置119に上端を接続し、ここから垂下して回転駆動する軸回転式掘削装置を用いて、駆動装置119を駆動して掘削ヘッド108、スクリューロッド111、ロッドを回転させこれを地盤に錐揉み状の挿入して掘削を行い、掘削ヘッド108のビット109での切削された土砂を圧密コテ113の外周面で掘削孔61の壁面に圧密させて、ボイド率(間隙率)を下げながら掘削する場合において、軸回転式掘削装置の回転駆動負荷計測手段117と、掘削ヘッド108への荷重計測手段118とを備え、回転駆動負荷計測手段117で計測する回転駆動負荷が基準範囲内であれば掘削孔61周辺の間隙率が低下したものとして、掘削ヘッド108への荷重計測手段118で把握する掘削ヘッド108への荷重を高めるように掘削速度を上げ、また、軸回転式掘削装置の回転駆動負荷計測手段117で計測する回転駆動負荷が基準範囲外であれば、掘削孔61周辺の間隙率が低下するまでその位置でスクリューロッド111を回転させた状態で上下動させ、掘削孔壁の圧密を行うから、スクリューにかかる抵抗を無くしながら掘削効率を上げることができ、掘削ヘッド108の消耗率を下げ、工期を短縮し、経済的に完全な掘削作業を、オペレータの経験とカンに頼ることなく、自動化して容易に行うことができる   In addition, as an effect of the embodiment, a rod-like extension rod 114 having neither a compacting iron nor a screw is continued to a screw rod 111 with a compacting iron 113 connecting the excavation head 108 at the tip, and the leader 116 provided in the heavy machine is moved up and down. Using a shaft rotary excavator that connects the upper end to the drive device 119 and hangs down from this to drive it, the drive device 119 is driven to rotate the excavation head 108, screw rod 111, and rod, and this is drilled into the ground. Excavation is carried out by inserting a stagnation-like shape, and the earth and sand cut by the bit 109 of the excavation head 108 is consolidated to the wall surface of the excavation hole 61 by the outer peripheral surface of the consolidation iron 113, and excavation is performed while decreasing the void ratio (porosity) The rotary drive load measuring means 117 of the shaft rotary excavator and the load measuring means 118 to the excavation head 108, and the rotational drive load measured by the rotary drive load measuring means 117 is within the reference range. Digging As the porosity around the hole 61 has decreased, the excavation speed is increased so as to increase the load on the excavation head 108 grasped by the load measuring means 118 on the excavation head 108, and the rotational drive load of the shaft rotary excavator If the rotational drive load measured by the measuring means 117 is outside the reference range, the screw rod 111 is rotated up and down at that position until the porosity around the excavation hole 61 decreases, and the excavation hole wall is consolidated. Therefore, the drilling efficiency can be increased while eliminating the resistance to the screw, the consumption rate of the drilling head 108 can be reduced, the construction period can be shortened, and economically complete drilling work can be performed without relying on the experience and can of the operator. Can be automated, easily done

図8は本発明の第2実施例を示し、上記各実施例と同一部分に同一符号を付し、その詳細な説明を省略して詳述すると、この例は掘削ロッドの変形例を示すものであるが、スクリューロッド111の圧密コテ113は、ロッドの表面から湾曲する周面を有するような張出部材を上下に厚さ幅のあるスクリュー羽根状に設けるものとしてもよい。この圧密コテ113の周面は特殊鋼棒による表面ハードフェイシングとして形成した。この例においても、掘削孔61の壁面を圧密すると共に、地上への排土のない掘削を行うことができる。   FIG. 8 shows a second embodiment of the present invention. The same reference numerals are assigned to the same parts as those of the above-described embodiments, and detailed description thereof is omitted. This example shows a modification of the excavation rod. However, the compacting iron 113 of the screw rod 111 may be provided with a protruding member having a circumferential surface curved from the surface of the rod in the form of a screw blade having a thickness up and down. The peripheral surface of the consolidation iron 113 was formed as a surface hard facing with a special steel rod. In this example as well, the wall surface of the excavation hole 61 can be consolidated, and excavation without earth removal can be performed.

なお、本発明は、前記実施例に限定されるものではなく、種々の変形実施が可能である。例えば、前面ブロックの大きさや形状などは適宜選定可能である。例えば、軸回転式掘削装置は掘削土砂を掘削孔に圧密するものであれば、各種のものを用いることができる。また、ビット109の配置などは適宜選定可能である。さらに、実施例では、溝Gの始端側から、掘削孔61を形成し、この掘削孔61の隣りを掘削するというように、溝Gに順次連続して掘削孔61を形成したが、掘削孔61位置から、1つの掘削孔61幅だけ飛ばして次の掘削孔61を形成し、その後、両側の掘削孔61,61間を掘削して掘削孔61,61,61が連続するように施工してもよく、最終的に岩盤などの固い地盤個所で掘削孔61が連続すればよい。もちろん岩盤などの固い地盤の個所では、必ずしも掘削孔61を形成しなくてもよいことは言うまでもなく、少なくともカッターで掘削が困難な個所を軸式回転掘削装置で掘削すればよい。また、本発明による地中連続壁は、高速道路工事や地下鉄駅舎工事に付随する土留め止水壁,沈埋トンネル用立坑工事やポンプ場工事に付随する土留め止水壁,産業廃棄物施設を囲む仕切壁,低水護岸工事などの止水壁、河川改修工事や治水ダム工事や遊水池に設ける止水壁など各種のものに適用可能である。   In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible. For example, the size and shape of the front block can be selected as appropriate. For example, as the shaft rotary excavator, various types can be used as long as the excavated earth and sand are consolidated into the excavation hole. The arrangement of the bits 109 can be selected as appropriate. Furthermore, in the embodiment, the excavation hole 61 is formed from the start end side of the groove G, and the excavation hole 61 is successively formed in the groove G so as to excavate the next to the excavation hole 61. From position 61, one drilling hole 61 is blown to form the next drilling hole 61, and then drilling is performed between the drilling holes 61, 61 on both sides so that the drilling holes 61, 61, 61 are continuous. The excavation hole 61 may finally be continuous at a hard ground such as a bedrock. Needless to say, it is not always necessary to form the excavation hole 61 in a hard ground such as a rock mass, and at least a portion that is difficult to excavate with a cutter may be excavated with an axial rotary excavator. In addition, the underground continuous wall according to the present invention includes a retaining water wall associated with highway construction and subway station construction, a retaining water wall associated with shaft construction for submerged tunnels and pump station construction, and industrial waste facilities. It can be applied to various things such as enclosing partition walls, water barriers such as low water revetments, river repair works, flood control dam works, and water barrier walls provided in the reservoir.

以上のように、本発明に係わる地中連続壁の施工方法は、排土が少なく、効率的な施工が可能で、環境負荷の低減が可能とし、加えて、上部空間に制約のある現場での施工を可能とする地中連続壁の施工方法を提供することができる。   As described above, the construction method of the underground continuous wall according to the present invention has less earth removal, enables efficient construction, and can reduce the environmental load. The construction method of the underground continuous wall which enables construction of can be provided.

本発明の第1実施形態を示す施工方法を説明する断面図であり、図1(A)はカッターを垂直フレームに取り付けて地中に建て込んだ状態を示し、図1(B)は、カッターによる掘削と固化材等の撹拌工程を示し、図1(C)は溝に地中熱交換器を挿入する工程を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing explaining the construction method which shows 1st Embodiment of this invention, FIG. 1 (A) shows the state which attached the cutter to the perpendicular | vertical frame, and built in the ground, FIG.1 (B) is a cutter. Fig. 1 (C) shows a step of inserting a ground heat exchanger into the groove. 同上、施工装置を正面から見た施工時の断面図である。It is sectional drawing at the time of construction which looked at the construction apparatus from the front same as the above. 同上、施工装置を側面から見た施工時の断面図である。It is sectional drawing at the time of construction which looked at the construction apparatus from the side same as the above. 同上、施工装置の平面図である。It is a top view of a construction apparatus same as the above. 同上、軸回転式掘削装置の側面図である。It is a side view of a shaft rotation type excavation apparatus same as the above. 同上、掘削ロッドの側面図である。It is a side view of an excavation rod same as the above. 同上、軸回転式掘削装置により掘削した掘削孔の平面図である。It is a top view of the excavation hole excavated by the shaft rotation type excavation apparatus same as the above. 本発明の第2実施形態を示す掘削ロッドの側面図である。It is a side view of the excavation rod which shows 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 ソイルセメント壁(地中壁)
11 地盤
11A 岩盤
61 掘削孔
111 スクリューロッド(掘削ロッド)
113 圧密コテ
114 継ぎ足しロッド
116 リーダー
119 駆動装置
G 溝
B 固化材
1 Soil cement wall (underground wall)
11 Ground
11A bedrock
61 Drilling hole
111 Screw rod
113 Consolidation iron
114 Extension rod
116 leader
119 Drive G Groove B Solidified material

Claims (3)

チェーン式カッターを地中に建て込んだ状態で、カッターを回転させると共に、該カッターを移動させることにより一定幅の溝を連続して掘削し、この掘削された溝内に固化材を注入して地中壁を形成する地中連続壁の施工方法において、掘削土砂を掘削孔に圧密する軸回転式掘削装置の掘削ロッドにより地中を掘削した後、前記カッターによる掘削を行うことを特徴とする地中連続壁の施工方法。 With the chain cutter built in the ground, the cutter is rotated and the cutter is moved to continuously excavate a groove of a certain width, and a solidified material is injected into the excavated groove. In the construction method of the underground continuous wall forming the underground wall, the excavation by the cutter is performed after excavating the underground with an excavating rod of an axial rotary excavator that compacts excavated earth and sand into an excavation hole. Construction method for underground continuous walls. 前記掘削ロッドは、彎曲面を有する圧密コテを備えることを特徴とする請求項1記載の地中連続壁の施工方法。 The construction method of the underground continuous wall according to claim 1, wherein the excavation rod includes a consolidation iron having a curved surface. 軸回転式掘削装置は、リーダーに前記掘削ロッドの駆動装置を昇降自在に設け、掘削ロッドを地中に挿入した後、この掘削ロッドの上部と前記駆動装置側との間で継ぎ足しロッドを接続することを特徴とする請求項1又は2記載の地中連続壁の施工方法。

The shaft rotary excavator is provided with a drive device for the excavation rod that can be moved up and down in the leader, and after inserting the excavation rod into the ground, the rod is connected between the upper portion of the excavation rod and the drive device side. The construction method of the underground continuous wall of Claim 1 or 2 characterized by the above-mentioned.

JP2003334286A 2003-09-25 2003-09-25 Construction method of underground continuous wall Expired - Lifetime JP4111898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334286A JP4111898B2 (en) 2003-09-25 2003-09-25 Construction method of underground continuous wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334286A JP4111898B2 (en) 2003-09-25 2003-09-25 Construction method of underground continuous wall

Publications (2)

Publication Number Publication Date
JP2005097989A true JP2005097989A (en) 2005-04-14
JP4111898B2 JP4111898B2 (en) 2008-07-02

Family

ID=34462044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334286A Expired - Lifetime JP4111898B2 (en) 2003-09-25 2003-09-25 Construction method of underground continuous wall

Country Status (1)

Country Link
JP (1) JP4111898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110299941A1 (en) * 2010-06-08 2011-12-08 Dimitroff Ted R soil shoring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110299941A1 (en) * 2010-06-08 2011-12-08 Dimitroff Ted R soil shoring method
WO2011156364A2 (en) * 2010-06-08 2011-12-15 Dimitroff Ted R Improved soil shoring method
WO2011156364A3 (en) * 2010-06-08 2012-02-02 Dimitroff Ted R Improved soil shoring method

Also Published As

Publication number Publication date
JP4111898B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US8061065B2 (en) Apparatus and a method for constructing an underground continuous filling wall and stratum
EP0810327B1 (en) Method and device for laying underground continuous walls
US8079163B2 (en) Excavator and a method for constructing an underground continuous wall
US3839871A (en) Earthen dam repair
CN108468334B (en) Gravel stratum dry-excavation clay dado pore-forming bored concrete pile construction device
EP1497503B1 (en) Method and system for placing at least one foundation element in the ground
JPH07173835A (en) Excavator for underground continuous wall
GB2154630A (en) Construction method for foundation piling
JP4111898B2 (en) Construction method of underground continuous wall
JP3849693B2 (en) Stirring evaluation method and excavator for underground continuous wall method
JP2004183310A (en) Soil improvement method and apparatus
JP3428917B2 (en) Auger screw and excavation method using it
CN115478543B (en) Artificial hole digging pile foundation pit supporting structure and construction method
JP5281213B1 (en) Core material and soil cement continuous wall method using the same
CN105297702A (en) Vacuum preloading deep-layer lateral sealing construction method
CN112942310A (en) Construction process of equal-thickness cement-soil stirring continuous wall
JPH09328985A (en) Auger drilling control method
JP4733613B2 (en) Underground continuous wall construction method
CN116220028B (en) Integrated square pile hoisting construction device and construction method thereof
JP3152910B2 (en) Traveling construction machinery
KR200340716Y1 (en) Crawler-crane having a auger-drill and a chain-excavator
CA2623007A1 (en) Machine for making a continuous wall in the ground
CN103774641B (en) A kind of bucket hobboing cutter wheel composite stirring cement-soil stone Gravity Wall construction method
JP2006028869A (en) Construction method of underwater tunnel and underwater excavating machine
JPH06306887A (en) Chain type ditching machine and pipe embedding method therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080408

R150 Certificate of patent or registration of utility model

Ref document number: 4111898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term