JP2005094043A - Gallium nitride compound semiconductor light emitting device - Google Patents
Gallium nitride compound semiconductor light emitting device Download PDFInfo
- Publication number
- JP2005094043A JP2005094043A JP2004367183A JP2004367183A JP2005094043A JP 2005094043 A JP2005094043 A JP 2005094043A JP 2004367183 A JP2004367183 A JP 2004367183A JP 2004367183 A JP2004367183 A JP 2004367183A JP 2005094043 A JP2005094043 A JP 2005094043A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- light emitting
- type cladding
- cladding layer
- gallium nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Led Devices (AREA)
Abstract
Description
本発明は発光ダイオードに利用される半導体発光素子に係り、特に窒化ガリウム系化合物半導体からなる基板を用いた窒化ガリウム系化合物発光素子に関する。 The present invention relates to a semiconductor light emitting device used for a light emitting diode, and more particularly to a gallium nitride compound light emitting device using a substrate made of a gallium nitride compound semiconductor.
窒化ガリウム系化合物半導体は、可視光発光デバイスや高温動作電子デバイス用の半導体材料として多用されるようになっており、青色や緑色の発光ダイオードの分野での展開が進んでいる。 Gallium nitride compound semiconductors are widely used as semiconductor materials for visible light emitting devices and high-temperature operating electronic devices, and are being developed in the field of blue and green light emitting diodes.
可視光で発光可能な窒化ガリウム系化合物半導体発光素子は、基本的には、サファイアやSiC等からなる基板の上にバッファ層を介して、n型クラッド層と、発光層となるInGaNからなる活性層と、p型クラッド層とを積層させたものが主流である。特に、近来では、基板にサファイアを用い、有機金属気相成長法により、GaNやAlN等からなる低温成長バッファ層を介してダブルへテロ構造を成長させたものは、高輝度で信頼性が高く、屋外用のパネルディスプレイ用発光ダイオード等に広く用いられるようになってきている。 A gallium nitride-based compound semiconductor light emitting device capable of emitting visible light basically has an n-type cladding layer and an active layer made of InGaN serving as a light emitting layer through a buffer layer on a substrate made of sapphire or SiC. The mainstream is a laminate of a layer and a p-type cladding layer. In particular, in recent years, a double heterostructure grown using a sapphire substrate and a low temperature growth buffer layer made of GaN, AlN, or the like by metalorganic vapor phase epitaxy has high brightness and high reliability. It has been widely used for light-emitting diodes for outdoor panel displays.
しかしながら、最近、GaNからなる基板が作製されるようになり、これを用いた窒化ガリウム系化合物半導体発光素子がいくつか提案されるようになってきている。例えば、特開平7―94784号公報には、GaNを基板とし基板の上にp―n接合を含む積層体を形成させた青色発光素子が開示されている。この公報によれば、GaNを基板として用い他の赤色発光ダイオード等と同様に対向する電極の間に基板が存在する構造が可能となり、電極位置に対する制約をなくすることができるとされている。 However, recently, a substrate made of GaN has been produced, and several gallium nitride-based compound semiconductor light emitting devices using the substrate have been proposed. For example, Japanese Patent Application Laid-Open No. 7-94784 discloses a blue light emitting device in which GaN is used as a substrate and a laminate including a pn junction is formed on the substrate. According to this publication, a structure in which a substrate exists between electrodes facing each other in the same manner as other red light emitting diodes using GaN as a substrate is possible, and restrictions on electrode positions can be eliminated.
また、特開平10―150220号公報においては、n型GaNからなる基板を用い、基板の側を主発光面側とすることができる発光素子が開示されている。 Japanese Patent Application Laid-Open No. 10-150220 discloses a light-emitting element that uses a substrate made of n-type GaN and can have the substrate side as the main light-emitting surface side.
図2は、上記公報において示された従来の窒化ガリウム系化合物半導体発光素子の構造を示す断面図である。n型のGaNからなる基板11の上には、n型クラッド12層と、活性層13と、p型クラッド層14とが順次積層されており、基板11の積層面側でない一面の上の一部にn側電極15が設けられ、p型クラッド層14の上の全面にわたってp側電極16が設けられている。p側電極16を下向きに実装することにより、n側電極15を設けた面の側を主発光面側とし、面発光を得ることができる。このような構成によれば、電流―光出力特性が改善された安価な発光素子を提供することができるとされている。
図2に示す構造の発光素子においては、GaNからなる基板11が活性層13からの発光に対し透明であるので、基板11に設けたn側電極15の側を主発光面とすることができる。このn側電極15は、通常、ワイヤボンディング用のパッドとして用いられるため、発光に対し透過性を有しない程度の厚膜で形成される。 In the light emitting device having the structure shown in FIG. 2, since the substrate 11 made of GaN is transparent to light emitted from the active layer 13, the side of the n-side electrode 15 provided on the substrate 11 can be the main light emitting surface. . Since the n-side electrode 15 is normally used as a wire bonding pad, the n-side electrode 15 is formed of a thick film that is not permeable to light emission.
したがって、この電極の下の活性層13で発せられ基板11の主発光面の側へ向かう光は、厚膜のn側電極15で遮られてしまうこととなる。このため、発光素子の上方のおける配光特性は、n側電極15を形成した領域の上部で落ち込む凹状の分布となる。このような分布の配光特性は、発光素子直上で均一な配光特性と高い発光強度を必要とする用途においては望ましくないという問題がある。 Therefore, the light emitted from the active layer 13 below the electrode and traveling toward the main light emitting surface of the substrate 11 is blocked by the thick n-side electrode 15. For this reason, the light distribution characteristic above the light emitting element has a concave distribution that falls in the upper part of the region where the n-side electrode 15 is formed. Such a distribution of light distribution characteristics has a problem that it is not desirable in applications that require uniform light distribution characteristics and high light emission intensity directly above the light emitting element.
このような凹状の分布を回避しようとして主発光面となる基板11の面積を大きくするためにn側電極15のサイズを小さくすると、ワイヤボンディングの作業が困難となるので、n側電極15のサイズを小さくすることは好ましくない。したがって、ボンディング等の電気的接続の作業性を確保してもなお発光特性を改善することができる発光素子が望まれている。 If the size of the n-side electrode 15 is reduced in order to increase the area of the substrate 11 serving as the main light emitting surface in order to avoid such a concave distribution, the wire bonding operation becomes difficult. It is not preferable to reduce the value. Therefore, there is a demand for a light-emitting element that can improve light-emitting characteristics even when workability of electrical connection such as bonding is ensured.
本発明において解決すべき課題は、窒化ガリウム系化合物半導体からなる基板を用い、この基板の側を主発光面側とする発光素子において、発光素子直上での配光特性を改善するとともに、発光強度を高く保持することができる新規な構造を提供することである。 The problem to be solved in the present invention is to improve the light distribution characteristics immediately above the light emitting element and to improve the light emission intensity in a light emitting element using a substrate made of a gallium nitride compound semiconductor and having the substrate side as the main light emitting surface side. It is to provide a novel structure that can maintain high.
本発明は、n型の窒化ガリウム系化合物半導体からなる基板の上に、窒化ガリウム系化合物半導体からなるn型クラッド層と活性層とp型クラッド層との積層構造が設けられ、前記基板に接続される電極を有する半導体発光素子であって、前記電極は、前記積層構造の表面側からその一部を除去させて露出された前記基板の表面に直接接して設けられていることを特徴とする。 In the present invention, a laminated structure of an n-type cladding layer, an active layer, and a p-type cladding layer made of a gallium nitride compound semiconductor is provided on a substrate made of an n-type gallium nitride compound semiconductor, and is connected to the substrate. A semiconductor light emitting device having an electrode to be provided, wherein the electrode is provided in direct contact with the surface of the substrate exposed by removing a part thereof from the surface side of the laminated structure. .
また、本発明においては、前記n型クラッド層は、その電子濃度が1×1016cm-3以上で1×1017cm-3未満であることを特徴とする。 In the present invention, the n-type cladding layer has an electron concentration of 1 × 10 16 cm −3 or more and less than 1 × 10 17 cm −3 .
このような構成によれば、基板の側を主発光面側とする発光素子において、発光素子直上での配光特性を改善することができるとともに、発光強度を高く保持することが可能となる。 According to such a configuration, in the light-emitting element in which the substrate side is the main light-emitting surface side, it is possible to improve the light distribution characteristics directly above the light-emitting element and to keep the emission intensity high.
以上のように本発明によれば、窒化ガリウム系化合物半導体からなる基板を用い、この基板の側を主発光面側とする発光素子において、発光素子直上での配光特性を改善するとともに、発光強度を高く保持することができるので、発光素子直上で均一な配光分布が望まれる表面実装型発光ダイオードや発光素子を基板上に複数配列させたライン状光源などの用途に好適に用いることができる。
また、発光素子直上での発光強度を高く保持することができるので、従来の砲弾形状の樹脂レンズ付き発光ダイオードにも用いることができる。
さらに、n側電極の配置とn型クラッド層の電子濃度の条件を特定することにより、n型の基板とn型クラッド層における電流広がりが確保されるので、n側電極のサイズを小さくすることが可能となる。このため、Auバンプ等による電気的接続を用いることができるので、電極サイズによるワイヤボンディング等の作業性の制約が解消され、電気的接続の作業性が確保される。
As described above, according to the present invention, in a light emitting device using a substrate made of a gallium nitride compound semiconductor and having the substrate side as a main light emitting surface side, the light distribution characteristics immediately above the light emitting device are improved and light emission is achieved. Since the strength can be kept high, it can be suitably used for applications such as surface-mounted light-emitting diodes that require a uniform light distribution directly above the light-emitting elements and line light sources in which a plurality of light-emitting elements are arranged on a substrate. it can.
Further, since the light emission intensity directly above the light emitting element can be maintained, it can be used for a conventional shell-shaped light emitting diode with a resin lens.
Furthermore, by specifying the conditions of the arrangement of the n-side electrode and the electron concentration of the n-type cladding layer, current spreading in the n-type substrate and the n-type cladding layer is ensured, so the size of the n-side electrode is reduced. Is possible. For this reason, since the electrical connection by Au bumps etc. can be used, the restrictions of workability, such as wire bonding by an electrode size, are eliminated, and the workability of electrical connection is ensured.
請求項1に記載の発明は、n型の窒化ガリウム系化合物半導体からなる基板の上に、窒化ガリウム系化合物半導体からなるn型クラッド層と活性層とp型クラッド層との積層構造が設けられ、前記基板に接続される電極を有する半導体発光素子であって、前記電極は、前記積層構造の表面側からその一部を除去させて露出された前記基板の表面に直接接して設けられていることを特徴とするものであり、基板側を主発光面側とする場合に発光素子直上での配光特性をほぼ均一なものとすることができるという作用を有する。 In the first aspect of the present invention, a laminated structure of an n-type cladding layer, an active layer, and a p-type cladding layer made of a gallium nitride compound semiconductor is provided on a substrate made of an n-type gallium nitride compound semiconductor. A semiconductor light emitting device having an electrode connected to the substrate, wherein the electrode is provided in direct contact with the surface of the substrate exposed by removing a part thereof from the surface side of the stacked structure. When the substrate side is the main light emitting surface side, the light distribution characteristics directly above the light emitting element can be made substantially uniform.
請求項2に記載の発明は、請求項1に記載の発明において、前記n型クラッド層は、その電子濃度が1×1016cm-3以上で1×1017cm-3未満であることを特徴とすることを特徴とするものであり、n側電極から基板へ注入された電子が基板とn型クラッド層との界面で広がりやすくなるという作用を有する。
The invention according to
請求項3に記載の発明は、請求項2に記載の発明において、前記n型クラッド層は、GaNからなることを特徴とするものであり、n型クラッド層の結晶性を良好なものとすることができるとともに、電子濃度を上記範囲に制御しやすいという作用を有する。
The invention according to
以下に、本発明の実施の形態の具体例を、図1を参照しながら説明する。 A specific example of the embodiment of the present invention will be described below with reference to FIG.
(実施の形態)
図1に、本発明の一実施の形態に係る窒化ガリウム系化合物半導体発光素子の構造を示す断面図を示す。
(Embodiment)
FIG. 1 is a sectional view showing the structure of a gallium nitride-based compound semiconductor light emitting device according to an embodiment of the present invention.
図1において、n型のGaNからなる基板1の上に、GaNからなるn型クラッド層2と、InGaNからなる活性層3と、GaNからなる第一p型クラッド層4と、AlGaNからなる第二p型クラッド層5と、InGaNからなるp型コンタクト層6とが、が順次積層されている。p型コンタクト層6の表面上にはp側電極7が形成されており、p型コンタクト層6の表面側から、p型コンタクト層6と第二p型クラッド層5と第一p型クラッド層4と活性層3とn型クラッド層2と基板1の一部をエッチングにより除去して露出された基板1の表面上に、n側電極8が形成されている。
In FIG. 1, an n-
基板1には、n型窒化ガリウム系化合物半導体を使用することができる。中でも、製造が比較的容易で、かつ比較的結晶性の良好なものが得られるGaNからなるものを使用することが好ましい。基板1にはSiやGe等のn型不純物がドープされて、その電子濃度を1×1017cm-3から1×1019cm-3の範囲に制御されたものを用いる。電子濃度が1×1017cm-3よりも低くなると、抵抗率が高くなり基板1に注入された電子が基板1で広がりにくくなる傾向にあるからであり、1×1019cm-3よりも高くなると、n型不純物を高濃度にドープしたことに起因して基板1の結晶性が悪くなる傾向にあるからである。
For the
n型クラッド層2には、活性層3よりもバンドギャップの大きいn型の窒化ガリウム系化合物半導体を用いることができ、その電子濃度を1×1016cm-3以上で1×1017cm-3未満とすることが望ましい。電子濃度をこの範囲に特定することで、基板1との電子濃度の差、すなわち抵抗率の差を大きくとることができ、基板1とn型クラッド層2との界面において、基板1の電子が面内で十分に広がり、これにより活性層3への均一な電子の注入が実現できるため、活性層3における発光分布が均一となり、その結果、基板1の側の主発光面で均一な面発光が得られるからである。
For the n-
n型クラッド層2には、GaNやAlGaN、InGaN等を用いることができるが、基板1にGaNを用いる場合には、n型不純物をドープした、またはアンドープのGaNを用いることが望ましい。窒化ガリウム系化合物半導体は、アンドープの状態でもn型の導電型を示すからであり、中でもGaNはn型不純物をドープすることにより電子濃度を制御することが容易だからである。しかも、上記の電子濃度の範囲であれば、
n型不純物をドープすることによるn型クラッド層2の結晶性の低下を防ぐことができるので、その上に成長させる活性層3の結晶性を低下させることがなく、発光効率を高く保持できる点においても好ましい。
GaN, AlGaN, InGaN, or the like can be used for the n-
Since it is possible to prevent the crystallinity of the n-
n型クラッド層2の層厚は、0.05μm以上で0.5μm以下の範囲とすることが望ましい。0.05μmよりも薄いと電流広がりの効果が小さくなる傾向にあり、0.5μmよりも厚くなると発光素子のシリーズ抵抗が高くなって動作電圧が高くなるからである。そして、n型クラッド層2の層厚に応じて電子濃度を調整することで、電流広がりの効果を奏しながらシリーズ抵抗の低減を図ることができる。本発明者らの知見によれば、n型クラッド層2の層厚を厚くするとともに電子濃度を上記範囲内で高くすると良い。
The layer thickness of the n-
活性層3には、Inを含み、n型クラッド層2並びに第一及び第二p型クラッド層4、5のバンドギャップよりも小さいバンドギャップを有する窒化ガリウム系化合物半導体を用いることができる。特に、Alを含まないInGaNを用いると、青色から緑色の波長域での発光強度を高くすることができる。さらに、膜厚を100nmよりも薄くして単一量子井戸構造とすると、活性層3の結晶性を高めることができ、発光効率をより一層高めることができる。
As the
また、活性層3は、膜厚を100nmよりも薄いInGaNからなる量子井戸層と、この量子井戸層よりもバンドギャップの大きいInGaN、GaN等からなる障壁層とを交互に積層させた多重量子井戸構造とすることもできる。
The
第一p型クラッド層4には、活性層3よりもバンドギャップの大きい窒化ガリウム系化合物半導体を用いることができる。特に、GaNを用いると、活性層3との界面の結晶性を良好に保つことができるので、好ましい。
For the first p-
第一p型クラッド層4にはp型不純物がドープされて、導電型をp型とされる。このp型不純物をドープするのに結晶成長時にp型不純物の原料ガスを流すことで実現することもできるが、第一p型クラッド層4の上に成長させる第二p型クラッド層5にドープさせたp型不純物を拡散させてドープすると、発光効率を高めることができる。
The first p-
第一p型クラッド層4の層厚は、30nm以上60nm以下の範囲とすることが好ましい。
The layer thickness of the first p-
第二p型クラッド層5には、活性層3よりもバンドギャップの大きい窒化ガリウム系化合物半導体を用いることができる。特に、第一p型クラッド層4よりもバンドギャップの大きいAlGaNを用いると、活性層3への電子の閉じ込めを効率的に行うことができ、発光効率を高くすることができるので好ましい。さらに、第一p型クラッド層4と接する側からp型コンタクト層6と接する側にかけて、Al組成が収斂するように組成を傾斜させて変化させた構造とすると、発光効率を高くすることができるとともに、動作電圧を低減することができるので好ましい。
For the second p-
第二p型クラッド層5の層厚は、0.03μm以上で0.3μm以下の範囲とすることが好ましい。
The layer thickness of the second p-
p型コンタクト層6には、GaNやInGaN、AlGaNを用いることができるが、p側電極7との接触抵抗を小さくできるGaNやInGaNを用いることが好ましい。特に、組成傾斜させたAlGaNからなる第二p型クラッド層5とInGaNからなるp型コンタクト層6とを組み合わせて用いると、発光効率の向上と動作電圧の低減を同時に効果的に行うことができる。
GaN, InGaN, or AlGaN can be used for the p-
p型コンタクト層6の層厚は、0.02μm以上0.2μm以下の範囲とすることが好ましい。
The layer thickness of the p-
第一p型クラッド層4、第二p型クラッド層5、およびp型コンタクト層6にドープされるp型不純物には、Mg、Zn、Cd,C等を用いることができるが、比較的容易にp型とすることができるMgを用いることが好ましい。
Mg, Zn, Cd, C, or the like can be used as the p-type impurity doped in the first p-
p側電極7には、AuやNi、Pt、Pd、Mg等の単体金属、あるいはそれらの合金や積層構造を用いることができる。特に、発光波長に対する反射率が高いPt,Mg等の金属を用いると、活性層3からp側電極7の側へ向かう光を反射させて、基板1の側から取り出すことができるので、発光強度向上の面で好ましい。
For the p-side electrode 7, a single metal such as Au, Ni, Pt, Pd, or Mg, or an alloy or a laminated structure thereof can be used. In particular, when a metal such as Pt or Mg having a high reflectance with respect to the emission wavelength is used, the light traveling from the
n側電極8は、基板1の上に形成されたn型クラッド層2、活性層3、第一p型クラッド層4、第二p型クラッド層5およびp型コンタクト層6からなる積層構造の表面側からこれらの一部を除去させて露出させた基板1の表面に直接接して形成される。n側電極8をこのように配置する構成とすることにより、基板1の前記積層構造を形成していない面側を主発光面とすることができ、上記したn型クラッド層2と基板1との界面
における電流広がり効果により、この主発光面において均一な面発光が得られる。
The n-
n側電極8には、AlやTi等の単体金属、またはAlやTi、Au、Ni、V、Cr等を含む合金、若しくはそれらの積層構造を用いることができる。
For the n-
以下、本発明の窒化ガリウム系化合物半導体発光素子の製造方法の具体例について図面を参照しながら説明する。以下の実施例は、主として有機金属気相成長法を用いた窒化ガリウム系化合物半導体の成長方法を示すものであるが、成長方法はこれに限定されるものではなく、分子線エピタキシー法や有機金属分子線エピタキシー法等を用いることも可能である。 Hereinafter, specific examples of the method for producing a gallium nitride-based compound semiconductor light emitting device of the present invention will be described with reference to the drawings. The following examples mainly show a growth method of a gallium nitride-based compound semiconductor using a metal organic vapor phase growth method, but the growth method is not limited to this, and a molecular beam epitaxy method or an organic metal It is also possible to use a molecular beam epitaxy method or the like.
(実施例)本実施例においては、図1に示す窒化ガリウム系化合物半導体発光素子を作製した。 Example In this example, the gallium nitride compound semiconductor light emitting device shown in FIG. 1 was fabricated.
まず、表面を鏡面に仕上げられたGaNからなる基板1を反応管内の基板ホルダーに載置した後、基板1の表面温度を1100℃に10分間保ち、水素ガスを流しながら基板1を加熱することにより、基板1の表面に付着している有機物等の汚れや水分を取り除くためのクリーニングを行った。
First, a
続いて、基板1の表面温度を1100℃に5分間保ち、水素ガスと窒素ガスとアンモニアとを流しながら、基板1の表面の結晶性を向上させる。
Subsequently, the surface temperature of the
次に、基板1の表面温度を1050℃にまで降下させた後、主キャリアガスとして窒素ガスと水素ガスを流しながら、トリメチルガリウム(TMG)を含むTMG用のキャリアガスと、Si源であるSiH4(モノシラン)ガスと、を流しながら成長させて、SiをドープしたGaNからなるn型クラッド層2を0.2μmの厚さで成長させた。このn型クラッド層2の電子濃度は3×1016cm-3であった。
Next, after the surface temperature of the
n型クラッド層2を成長後、TMG用のキャリアガスとSiH4ガスとを止め、基板温度を750℃にまで降下させ、750℃において、主キャリアガスとして窒素ガスを流し、新たにTMG用のキャリアガスと、TMI用のキャリアガスと、を流しながらアンドープのIn0.2Ga0.8Nからなる単一量子井戸構造の活性層3を3nmの厚さで成長させた。
After the n-
活性層3を成長後、TMI用のキャリアガスを止め、TMG用のキャリアガスを流しながら基板温度を1050℃に向けて昇温させながら、引き続きアンドープのGaNを4nmの厚さで成長させ、基板温度が1050℃に達したら、新たに主キャリアガスとしての窒素ガスと水素ガスと、TMA用のキャリアガスと、Mg源であるCp2Mg用のキャリアガスと、を流しながら成長させて、MgをドープさせたAlGaNからなる第二p型クラッド層5を0.1μmの厚さで成長させる。このAlGaNの成長時には、TMA用のキャリアガスを時間とともにリニアに減少させつつ、TMG用のキャリアガスを時間とともにリニアに増加させて、組成がAl0.15Ga0.85NからAl0.01Ga0.99Nまで変化した傾斜組成AlGaNとして第二p型クラッド層5を成長させた。
After the
この後、TMG用のキャリアガスとTMA用のキャリアガスとを止め、基板温度を1050℃に保持し、MgをドープさせたAlGaNからアンドープで形成したGaNにMgを拡散させ、第一p型クラッド層4を形成させた。
Thereafter, the carrier gas for TMG and the carrier gas for TMA are stopped, the substrate temperature is kept at 1050 ° C., Mg is diffused from undoped AlGaN to Mg, and the first p-
第一p型クラッド層4および第二p型クラッド層5を形成後、基板温度を800℃にまで降下させ、800℃において、新たにTMG用のキャリアガスと、TMI用のキャリアガスと、Cp2Mg用のキャリアガスと、を流しながら成長させて、MgをドープさせたIn0.05Ga0.95Nからなるp型コンタクト層6を0.1μmの厚さで成長させた。
After forming the first p-
p型コンタクト層6を成長後、TMG用のキャリアガスとTMI用のキャリアガスとCp2Mg用のキャリアガスとを止め、主キャリアガスとアンモニアをそのまま流しながら室温程度にまで冷却させて、ウェハーを反応管から取り出した。
After the growth of the p-
次に、p型コンタクト層6の表面上にCVD法によりSiO2膜を堆積させた後、フォトリソグラフィにより所定の形状にパターンニングしてエッチング用のマスクを形成させた。そして、反応性イオンエッチング法により、p型コンタクト層6と第二p型クラッド層5と第一p型クラッド層4と活性層3とn型クラッド層2と基板1の一部を約0.5μmの深さで積層方向と逆の方向に向かって除去させて、基板1の表面を露出させた。そして、フォトリソグラフィーと蒸着法により露出させた基板1の表面上にAlからなるn側電極8を蒸着形成させた。さらに、同様にしてp型コンタクト層6の表面上にPtとAuとからなるp側電極7を蒸着形成させた。
Next, an SiO 2 film was deposited on the surface of the p-
この後、基板1の裏面を研磨して100μm程度の厚さに調整し、スクライブによりチップ状に分離した。このようにして、図1に示す窒化ガリウム系化合物半導体発光素子が得られた。
Thereafter, the back surface of the
この発光素子を、電極形成面側を下向きにして、正負一対の電極を有するSiダイオードの上にAuバンプにより接着させた。このとき、発光素子のp側電極7およびn側電極8が、それぞれSiダイオードの負電極および正電極と接続されるようして発光素子を搭載する。この後、発光素子を搭載させたSiダイオードを、Agペーストによりステム上に載置し、Siダイオードの正電極をステム上の電極にワイヤで結線し、その後樹脂モールドして発光ダイオードを作製した。この発光ダイオードを20mAの順方向電流で駆動したところ、ピーク発光波長470nmの青色で発光し、基板1の側から均一な面発光が得られた。このときの発光出力は1.1mWであり、順方向動作電圧は3.4Vであった。
This light emitting element was bonded by Au bumps on a Si diode having a pair of positive and negative electrodes with the electrode formation surface side facing down. At this time, the light-emitting element is mounted so that the p-side electrode 7 and the n-
1 基板
2 n型クラッド層
3 活性層
4 第一p型クラッド層
5 第二p型クラッド層
6 p型コンタクト層
7 p側電極
8 n側電極
1 substrate 2 n-
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004367183A JP2005094043A (en) | 2004-12-20 | 2004-12-20 | Gallium nitride compound semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004367183A JP2005094043A (en) | 2004-12-20 | 2004-12-20 | Gallium nitride compound semiconductor light emitting device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34286498A Division JP2000174338A (en) | 1998-12-02 | 1998-12-02 | Gallium nitride based compound semiconductor light- emitting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005094043A true JP2005094043A (en) | 2005-04-07 |
JP2005094043A5 JP2005094043A5 (en) | 2006-01-19 |
Family
ID=34464526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004367183A Pending JP2005094043A (en) | 2004-12-20 | 2004-12-20 | Gallium nitride compound semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005094043A (en) |
-
2004
- 2004-12-20 JP JP2004367183A patent/JP2005094043A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8513694B2 (en) | Nitride semiconductor device and manufacturing method of the device | |
JP4954536B2 (en) | Nitride semiconductor light emitting device | |
TWI310963B (en) | Epitaxial substrate for compound semiconductor light-emitting device, method for producing the same and light-emitting device | |
KR101646664B1 (en) | Light emitting device, method for fabricating the light emitting device and light emitting device package | |
JPH05251739A (en) | Semiconductor light emitting device | |
KR20130042784A (en) | Nitride semiconductor light emitting device | |
KR100700529B1 (en) | Light emitting diode with current spreading layer and manufacturing method thereof | |
JP2009302314A (en) | GaN-BASED SEMICONDUCTOR DEVICE | |
JPH11340505A (en) | Gallium nitride-based compound semiconductor light emitting element | |
KR100661960B1 (en) | Light emitting diode and manufacturing method thereof | |
JP2006261358A (en) | Semiconductor light-emitting element | |
JP2004063732A (en) | Light-emitting element | |
KR20140013249A (en) | Uv light emitting device and light emitting device package | |
JP3724213B2 (en) | Gallium nitride compound semiconductor light emitting device | |
JP3763701B2 (en) | Gallium nitride semiconductor light emitting device | |
JP5379703B2 (en) | Ultraviolet semiconductor light emitting device | |
JP2000174341A (en) | Gallium nitride based compound semiconductor light- emitting element | |
JPH11145511A (en) | Gallium nitride compound semiconductor light-emitting element | |
JP3777869B2 (en) | Gallium nitride compound semiconductor light emitting device | |
KR101068864B1 (en) | Semiconductor light emitting device and menufacturing method thereof | |
JP4062360B2 (en) | Light emitting element | |
JP2950316B2 (en) | Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same | |
JP4055794B2 (en) | Gallium nitride compound semiconductor light emitting device | |
KR101919109B1 (en) | Uv light emitting deviceand uv light emitting device package | |
JP2000174338A (en) | Gallium nitride based compound semiconductor light- emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051122 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051122 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090602 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090803 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091222 |