Nothing Special   »   [go: up one dir, main page]

JP2005093214A - Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell - Google Patents

Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell Download PDF

Info

Publication number
JP2005093214A
JP2005093214A JP2003324388A JP2003324388A JP2005093214A JP 2005093214 A JP2005093214 A JP 2005093214A JP 2003324388 A JP2003324388 A JP 2003324388A JP 2003324388 A JP2003324388 A JP 2003324388A JP 2005093214 A JP2005093214 A JP 2005093214A
Authority
JP
Japan
Prior art keywords
liquefied petroleum
petroleum gas
container
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003324388A
Other languages
Japanese (ja)
Inventor
Kozo Takatsu
幸三 高津
Takeji Takekoshi
岳二 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003324388A priority Critical patent/JP2005093214A/en
Publication of JP2005093214A publication Critical patent/JP2005093214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of supplying liquefied petroleum gas having low fluctuation in composition, and stable sulfur content in a hydrogen producing system, and to provide a superior fuel cell system equipped with a fuel cell using the hydrogen gas generated at the hydrogen production system. <P>SOLUTION: The hydrogen production system has (A) a liquefied petroleum gas supply side container, and (B) a preparatory side container thereof, storing liquefied petroleum gas as a fuel supply means. The method of supplying the liquefied petroleum gas to the hydrogen production system of the fuel cell is carried out, by continuously supplying the liquefied liquid petroleum gas to the hydrogen production system, by switching the fuel supplying means from the (A) container to the (B) container, while the pressure-drop of the (A) container, where the switching is carried out before the pressure of the container (A) becomes lower than 0.11 MPaG. This method is utilized in the fuel cell system. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、硫黄分の含有量を安定させた液化石油ガスを燃料電池用水素製造システムへ供給する方法に関する。   The present invention relates to a method for supplying a liquefied petroleum gas having a stable sulfur content to a hydrogen production system for a fuel cell.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系の液化石油ガス、ナフサ、灯油などの石油系炭化水素の使用が研究されている。
これらのガス状又は液状炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に部分酸化改質、自己熱改質または水蒸気改質などで処理する方法が用いられている。
液化石油ガスや都市ガスなどを改質して燃料電池用水素を製造する場合、改質触媒の被毒を抑制するためには、ガス中の硫黄分を低減させることが要求される。
また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を低減させることが要求される。
また、使用される脱硫剤の性能を最大限に発揮させるには、できるだけ硫黄分含有量の少ない液化石油ガス等を用いることが望ましい。
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, further petroleum liquefied petroleum gas, naphtha, The use of petroleum-based hydrocarbons such as kerosene has been studied.
When producing hydrogen using these gaseous or liquid hydrocarbons, there is generally a method of treating the hydrocarbons by partial oxidation reforming, autothermal reforming or steam reforming in the presence of a reforming catalyst. It is used.
When producing hydrogen for fuel cells by reforming liquefied petroleum gas or city gas, it is required to reduce the sulfur content in the gas in order to suppress poisoning of the reforming catalyst.
Moreover, when propylene, butene, etc. are used as a raw material for petrochemical products, it is required to reduce the sulfur content in order to prevent poisoning of the catalyst.
In order to maximize the performance of the desulfurizing agent used, it is desirable to use liquefied petroleum gas or the like having as low a sulfur content as possible.

前記液化石油ガス中の硫黄化合物について詳細に分析すると、一般にメチルメルカブタンや硫化カルボニルなどに加えて、付臭剤として添加されたジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)、メチルエチルサルファイド(MES)などが含まれている。このような硫黄分を液化石油ガスなどの燃料ガスから吸着除去するための各種吸着剤が知られている(例えば特許文献1〜4参照)。しかしながら、これらの吸着剤は、150〜300℃程度では高い脱硫性能を示すものがあるが、常温での脱硫性能については、必ずしも充分に満足し得るものではないのが実状であった。   When the sulfur compounds in the liquefied petroleum gas are analyzed in detail, in general, in addition to methyl mercaptan and carbonyl sulfide, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), and methyl ethyl sulfide are added as odorants. (MES) and the like are included. Various adsorbents for adsorbing and removing such a sulfur content from a fuel gas such as liquefied petroleum gas are known (see, for example, Patent Documents 1 to 4). However, some of these adsorbents exhibit high desulfurization performance at about 150 to 300 ° C., but the actual condition is that the desulfurization performance at room temperature is not always satisfactory.

また、液化石油ガス等の液化ガスを自然気化方式で燃料電池用水素製造システムへ供給する場合、液化石油ガスを一旦容器に収容し、その容器からシステムへ供給されるが、容器中の液化石油ガス量の減少に伴い容器から供給されるガスの組成が変動する。前記液化石油ガスを2本以上の容器から供給する場合には、自動切替器が用いられるが、一般に普及しているタイプは、ガスを供給している容器の圧力が0.1MPaGに低下したところで予備の容器に切り替えられる。しかし、供給ガス中の硫黄濃度に注目すると供給当初数質量ppmであった濃度が容器の圧力が0.1MPaGに低下した時点では数十質量ppmまで濃度が上昇する。
従って、定置式の燃料電池用の燃料として、液化石油ガスから水素を製造する場合、前述のように脱硫、改質工程を経るが、燃料電池用水素製造システムの生産性の向上及び品質の安定を図るためには原料となる液化ガスの組成変化は小さい方が望ましい。
In addition, when liquefied gas such as liquefied petroleum gas is supplied to the fuel cell hydrogen production system by the natural vaporization method, the liquefied petroleum gas is temporarily stored in a container and supplied from the container to the system. As the amount of gas decreases, the composition of the gas supplied from the container varies. When supplying the liquefied petroleum gas from two or more containers, an automatic switching device is used. However, a widely used type is where the pressure of the container supplying the gas is reduced to 0.1 MPaG. Switch to spare container. However, when attention is paid to the sulfur concentration in the supply gas, the concentration increases from several mass ppm at the beginning of supply to several tens mass ppm when the pressure of the container is reduced to 0.1 MPaG.
Therefore, when hydrogen is produced from liquefied petroleum gas as a fuel for a stationary fuel cell, it undergoes desulfurization and reforming processes as described above. However, the productivity of the fuel cell hydrogen production system is improved and the quality is stabilized. In order to achieve this, it is desirable that the composition change of the liquefied gas as a raw material is small.

特開2001−286753号公報JP 2001-286753 A 特開2001−305123号公報JP 2001-305123 A 特開平2−302496号公報(第2頁)Japanese Patent Laid-Open No. 2-302496 (page 2) 特開2001−123188号公報(第3頁)JP 2001-123188 A (page 3)

本発明は、このような状況下、燃料電池用水素製造システムへ液化石油ガスを供給するに当り、供給中の液化石油ガスの組成変動が小さく、硫黄含有量が安定した液化石油ガスの供給方法を提供することを目的とするものである。また、該水素製造システムにより製造される水素ガスを燃料とする燃料電池を有する、優れた燃料電池システムを提供することを目的とするものである。   Under such circumstances, the present invention provides a method for supplying a liquefied petroleum gas in which the composition variation of the liquefied petroleum gas being supplied is small and the sulfur content is stable when the liquefied petroleum gas is supplied to the fuel cell hydrogen production system. Is intended to provide. It is another object of the present invention to provide an excellent fuel cell system having a fuel cell that uses hydrogen gas produced by the hydrogen production system as fuel.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、液化石油ガス供給側の容器の圧力が特定の圧力未満に低下しないうちに予備側の容器に切替え、燃料電池用水素製造システムへ供給することにより、組成変化が小さく、硫黄含有量が安定した液化石油ガスを供給できることを見出した。本発明はかかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the inventors of the present invention switched to a preliminary container before the pressure of the container on the liquefied petroleum gas supply side dropped below a specific pressure, It has been found that by supplying to a production system, liquefied petroleum gas having a small composition change and a stable sulfur content can be supplied. The present invention has been completed based on such findings.

すなわち、本発明は、
(1) 燃料供給手段として、液化石油ガスを収容してなる、(A)液化石油ガス供給側容器と(B)その予備側容器とを有し、(A)容器の圧力低下に伴い、(B)容器に切替を行なうことで、燃料電池用水素製造システムへ連続的に供給するに当り、前記切替を、(A)容器の圧力が0.11MPaG未満に低下しないうちに行なうことを特徴とする燃料電池用水素製造システムへの液化石油ガス供給方法、
(2) (A)容器の圧力が、0.13〜0.3MPaGの範囲で切替を行なう上記(1)の燃料電池用水素製造システムへの液化石油ガス供給方法、
(3) さらに、前記燃料供給手段の出口側に液化石油ガスから硫黄分を除く脱硫手段を設けた上記(1)、(2)の燃料電池用水素製造システムへの液化石油ガス供給方法、及び
(4) (1)〜(3)の液化石油ガス供給方法を用いた燃料電池システム、
を提供するものである。
That is, the present invention
(1) As a fuel supply means, it has (A) a liquefied petroleum gas supply side container and (B) its spare side container which contain liquefied petroleum gas, and (A) B) By switching to the container, when continuously supplying the fuel cell hydrogen production system, the switching is performed before (A) the pressure of the container is less than 0.11 MPaG. A method for supplying liquefied petroleum gas to a hydrogen production system for fuel cells,
(2) (A) The liquefied petroleum gas supply method to the fuel cell hydrogen production system according to (1), wherein the pressure in the container is switched in the range of 0.13 to 0.3 MPaG.
(3) The liquefied petroleum gas supply method to the fuel cell hydrogen production system according to (1) and (2) above, further comprising a desulfurization means for removing sulfur from the liquefied petroleum gas on the outlet side of the fuel supply means, and (4) A fuel cell system using the liquefied petroleum gas supply method of (1) to (3),
Is to provide.

本発明によれば、液化石油ガス中の硫黄濃度の変動を小さく抑えることができ、脱硫手段を付加することにより、さらに硫黄濃度の低く、かつ安定した液化石油ガスを提供することができる。   According to the present invention, fluctuations in sulfur concentration in liquefied petroleum gas can be suppressed to a small level, and by adding desulfurization means, a liquefied petroleum gas having a lower sulfur concentration and being stable can be provided.

以下に、本発明について図面を参照にしながら詳細に説明する。
図1は、本発明の液化石油ガスの供給方法の一実施態様を示す概略工程図である。1は供給側容器(A)、2は予備側容器(B)、3は流量計、4は自動切替弁、5は流量計、6は三方弁、7は脱硫処理前の硫黄含有量測定手段、8は三方弁、9は脱硫剤の入った脱硫器、10は三方弁、11は脱硫処理後の硫黄含有量測定手段、12は次工程への出口及び13は次工程への出口を示す。
図1に示す容器は2本の組み合わせであるが、本数については2本以上であれば特に制限はない。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic process diagram showing an embodiment of a method for supplying liquefied petroleum gas according to the present invention. 1 is a supply side container (A), 2 is a backup side container (B), 3 is a flow meter, 4 is an automatic switching valve, 5 is a flow meter, 6 is a three-way valve, 7 is a sulfur content measuring means before desulfurization treatment , 8 is a three-way valve, 9 is a desulfurizer containing a desulfurizing agent, 10 is a three-way valve, 11 is a sulfur content measuring means after desulfurization treatment, 12 is an outlet to the next process, and 13 is an outlet to the next process. .
Although the container shown in FIG. 1 is a combination of two, the number is not particularly limited as long as it is two or more.

先ず、液化石油ガスは(A)供給側の容器1から供給されるが、容器(A)1の圧力が0.11MPaG(MPaGは、ゲージ圧力をMPa単位で表したもの)未満にならないうちに自動切替弁4によって(B)予備側容器2に切替ることが必要である。
切替ることによって容器(B)2が供給側容器となり、容器(B)2から液化石油ガスが供給される。それに伴って、容器(A)1が予備側容器に変更される。この変更を交互に繰り返すことにより連続的に燃料電池用水素供給システムに液化石油ガスを供給することができる。
液化石油ガスを収容している容器は、−20℃〜50℃の温度範囲で使用されるのが好ましく、0℃〜40℃の範囲で使用されるのがさらに好ましい。
使用温度が−20℃より低いと液化石油ガス容器の圧力が低くなるため容器内の液化石油ガスを十分に消費することができず、50℃より高いと液化石油ガスの圧力が高すぎて危険である。
切替を行なう圧力の範囲は0.11MPaG以上であればよく特に制限は無いが、通常0.13〜0.3MPaGの範囲が好ましく、さらに好ましくは0.15〜0.25MPaGの範囲である。
上記範囲内に切替圧力を設定することにより、組成の変動が小さく、硫黄含有量の少ない液化石油ガスが供給できると共に、容器内の残存液化石油ガスの量が多くなることはない。
First, liquefied petroleum gas is supplied from the container 1 on the supply side (A), but before the pressure in the container (A) 1 becomes less than 0.11 MPaG (MPaG is the gauge pressure expressed in MPa). It is necessary to switch to the spare side container 2 by the automatic switching valve 4 (B).
By switching, the container (B) 2 becomes a supply side container, and liquefied petroleum gas is supplied from the container (B) 2. Accordingly, the container (A) 1 is changed to a spare side container. By repeating this change alternately, liquefied petroleum gas can be continuously supplied to the fuel cell hydrogen supply system.
The container containing the liquefied petroleum gas is preferably used in a temperature range of −20 ° C. to 50 ° C., more preferably 0 ° C. to 40 ° C.
If the operating temperature is lower than −20 ° C., the pressure of the liquefied petroleum gas container is lowered, so that the liquefied petroleum gas in the container cannot be sufficiently consumed. It is.
The pressure range for switching is not particularly limited as long as it is 0.11 MPaG or more, but is usually preferably in the range of 0.13-0.3 MPaG, more preferably in the range of 0.15-0.25 MPaG.
By setting the switching pressure within the above range, it is possible to supply liquefied petroleum gas having a small composition variation and low sulfur content, and the amount of residual liquefied petroleum gas in the container does not increase.

続いて容器(A)1又は容器(B)2に供給された液化石油ガスは、硫黄含有量測定手段7により、脱硫処理前の硫黄含有量を測定することができる。硫黄含有量が通常0.05質量ppm以下であれば次工程の出口である12より燃料電池用水素供給システムに液化ガスを供給することが可能である。
次に、液化石油ガスの硫黄含有量が、0.05質量ppmを超えた場合は、脱硫手段である脱硫剤を充填した脱硫器9によって脱硫処理を行なう。脱硫処理をした液化石油ガスは、硫黄含有量測定手段11により、脱硫処理後の硫黄含有量を測定することができる。硫黄含有量が通常0.05質量ppm以下に脱硫された液化石油ガスは次工程の出口である13より燃料電池用水素供給システムに供給する。
Subsequently, the liquefied petroleum gas supplied to the container (A) 1 or the container (B) 2 can measure the sulfur content before the desulfurization treatment by the sulfur content measuring means 7. If the sulfur content is usually 0.05 mass ppm or less, the liquefied gas can be supplied to the fuel cell hydrogen supply system from 12 which is the outlet of the next step.
Next, when the sulfur content of the liquefied petroleum gas exceeds 0.05 ppm by mass, desulfurization treatment is performed by the desulfurizer 9 filled with a desulfurizing agent as desulfurization means. The sulfur content after the desulfurization treatment can be measured by the sulfur content measuring means 11 in the liquefied petroleum gas subjected to the desulfurization treatment. The liquefied petroleum gas desulfurized to a sulfur content of generally 0.05 mass ppm or less is supplied to the fuel cell hydrogen supply system from the outlet 13 of the next process.

前述のように、脱硫手段に入る前の工程で液化石油ガスに含まれる硫黄分の変動が少ないため、脱硫剤への負荷を低減できる。
本発明における脱硫手段に用いられる脱硫剤としては、特に制限はなく従来脱硫剤として慣用されているもの、例えば、活性炭、ゼオライト又は金属酸化物系の吸着剤等が用いられる。この脱硫剤は、単独で用いてもよいし、二種以上組み合わせて用いてもよい。
また、脱硫条件としては、通常温度は0〜200℃の範囲で選ばれ、GHSV(ガス時空間速度)は200〜60,000h-1、好ましくは400〜4,000h-1の範囲で選ばれる。
As described above, the load on the desulfurization agent can be reduced because there is little variation in the sulfur content contained in the liquefied petroleum gas in the step before entering the desulfurization means.
The desulfurization agent used in the desulfurization means in the present invention is not particularly limited, and those conventionally used as a desulfurization agent, for example, activated carbon, zeolite, or a metal oxide-based adsorbent are used. These desulfurization agents may be used alone or in combination of two or more.
As desulfurization conditions, the normal temperature is selected in the range of 0 to 200 ° C., and the GHSV (gas hourly space velocity) is selected in the range of 200 to 60,000 h −1 , preferably 400 to 4,000 h −1. .

次に、脱硫処理液化石油ガスを、部分酸化改質触媒、自己熱改質触媒又は水蒸気改質触媒と接触させることにより、それぞれ部分酸化改質、自己熱改質又は水蒸気改質して、水素を製造する。
この改質処理においては、脱硫処理炭化水素含有ガス中の硫黄化合物の濃度は、各改質触媒の寿命の点から、0.05質量ppm以下が好ましく、特に0.01質量ppm以下が好ましい。
前記部分酸化改質は、炭化水素の部分酸化反応により、水素を製造する方法であって、部分酸化改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、GHSV1,000〜100,000h-1、酸素(O2)/炭素比0.2〜0.8の条件で改質反応が行われる。
また、自己熱改質は、部分酸化改質と水蒸気改質とを組み合わせた方法であって、自己熱改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、酸素(O2)/炭素比0.1〜1、スチーム/炭素比0.1〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
Next, the desulfurized liquefied petroleum gas is brought into contact with a partial oxidation reforming catalyst, an autothermal reforming catalyst, or a steam reforming catalyst to perform partial oxidation reforming, autothermal reforming, or steam reforming, respectively. Manufacturing.
In this reforming treatment, the concentration of the sulfur compound in the desulfurized hydrocarbon-containing gas is preferably 0.05 mass ppm or less, and particularly preferably 0.01 mass ppm or less from the viewpoint of the life of each reforming catalyst.
The partial oxidation reforming is a method for producing hydrogen by a partial oxidation reaction of hydrocarbons, and in the presence of a partial oxidation reforming catalyst, usually a reaction pressure of normal pressure to 5 MPa, a reaction temperature of 400 to 1,100 ° C. The reforming reaction is carried out under the conditions of GHSV 1,000 to 100,000 h −1 and oxygen (O 2 ) / carbon ratio 0.2 to 0.8.
Autothermal reforming is a method in which partial oxidation reforming and steam reforming are combined, and usually in the presence of an autothermal reforming catalyst, reaction pressure is normal pressure to 5 MPa, reaction temperature is 400 to 1,100. The reforming reaction is performed under the conditions of ° C., oxygen (O 2 ) / carbon ratio of 0.1 to 1, steam / carbon ratio of 0.1 to 10, and GHSV of 1,000 to 100,000 h −1 .

さらに、水蒸気改質は、炭化水素に水蒸気を接触させて、水素を製造する方法であって、水蒸気改質触媒の存在下、通常、反応圧力常圧〜3MPa、反応温度200〜900℃、スチーム/炭素比1.5〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
本発明においては、前記の部分酸化改質触媒、自己熱改質触媒、水蒸気改質触媒としては、従来公知の各触媒の中から適宣選択して用いることができるが、特にルテニウム系及びニッケル系触媒が好適である。また、これらの触媒の担体としては、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含む担体を好ましく挙げることができる。該担体は、これらの金属酸化物のみからなる担体であってもよく、アルミナなどの他の耐火性多孔質無機酸化物に、上記金属酸化物を含有させてなる担体であってもよい。
Furthermore, steam reforming is a method for producing hydrogen by bringing steam into contact with a hydrocarbon, usually in the presence of a steam reforming catalyst, at a reaction pressure of normal pressure to 3 MPa, a reaction temperature of 200 to 900 ° C., steam. The reforming reaction is performed under the conditions of / carbon ratio of 1.5 to 10 and GHSV of 1,000 to 100,000 h −1 .
In the present invention, the partial oxidation reforming catalyst, the autothermal reforming catalyst, and the steam reforming catalyst can be appropriately selected from conventionally known catalysts, but are particularly ruthenium-based and nickel-based. System catalysts are preferred. Moreover, as a support | carrier of these catalysts, the support | carrier containing at least 1 type chosen from manganese oxide, a cerium oxide, and a zirconia can be mentioned preferably. The support may be a support made of only these metal oxides, or may be a support made by adding the above metal oxide to another refractory porous inorganic oxide such as alumina.

本願の第二発明は、改質器と、該改質器により製造される水素ガスを燃料とする燃料電池とを有することを特徴とする燃料電池システムであり、図2を参照にしながら詳細に説明する。
前述の図1に示す脱硫器9によって脱硫され次工程への出口13を経た燃料は、水タンク(図示せず)から水ポンプ20を経た水と混合した後気化器16に導入されて気化され、次いで空気ブロアー25から送り出された空気と混合され改質器21に送り込まれる。改質器21には前述の改質触媒が充填されており、改質器21に送り込まれた燃料混合物(液化石油ガス由来のガス、水蒸気及び酸素を含む混合気)から、前述した改質反応のいずれかによって水素が製造される。
The second invention of the present application is a fuel cell system comprising a reformer and a fuel cell using hydrogen gas produced by the reformer as a fuel, and will be described in detail with reference to FIG. explain.
The fuel desulfurized by the desulfurizer 9 shown in FIG. 1 and passed through the outlet 13 to the next process is mixed with water from a water tank (not shown) through the water pump 20 and then introduced into the vaporizer 16 to be vaporized. Then, it is mixed with the air sent out from the air blower 25 and fed into the reformer 21. The reformer 21 is filled with the above-described reforming catalyst, and the above-described reforming reaction is performed from the fuel mixture (a gas mixture containing liquefied petroleum gas, water vapor, and oxygen) fed into the reformer 21. To produce hydrogen.

このようにして製造された水素又は合成ガスはCO変成器22、CO選択酸化器23を通じてCO濃度が燃料電池の特性に及ぼさない程度まで低減される。これらの反応器に用いる触媒例としては、CO変成器22には、鉄−クロム系触媒、銅−亜鉛系触媒あるいは貴金属系触媒等が挙げられ、CO選択酸化器23には、ルテニウム系触媒、白金系触媒あるいはそれらの混合触媒等が挙げられる。   The hydrogen or synthesis gas produced in this way is reduced to the extent that the CO concentration does not reach the characteristics of the fuel cell through the CO converter 22 and the CO selective oxidizer 23. Examples of the catalyst used in these reactors include an iron-chromium-based catalyst, a copper-zinc-based catalyst, or a noble metal-based catalyst for the CO converter 22, and a CO selective oxidizer 23 for a ruthenium-based catalyst, Examples thereof include platinum-based catalysts and mixed catalysts thereof.

燃料電池24は負極24Aと正極24Bとの間に高分子電解質24Cを備えた固体高分子形燃料電池である。負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロアー25から送られる空気が、それぞれ必要であれば適当な加湿処理を行った後(加湿装置は図示せず)導入される。
この時、負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極24A、24B間に直流電流が発生する。その場合、負極には、白金黒もしくは活性炭担持のPt触媒あるいはPt−Ru合金触媒などが使用され、正極には、白金黒もしくは活性炭担持のPt触媒などが使用される。
The fuel cell 24 is a solid polymer fuel cell having a polymer electrolyte 24C between a negative electrode 24A and a positive electrode 24B. The hydrogen-rich gas obtained by the above method is introduced into the negative electrode side, and the air sent from the air blower 25 is introduced into the positive electrode side after appropriate humidification treatment if necessary (humidifier not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 24A and 24B. To do. In that case, platinum black or a Pt catalyst supported on activated carbon or a Pt—Ru alloy catalyst is used for the negative electrode, and platinum black or a Pt catalyst supported on activated carbon is used for the positive electrode.

負極24A側に改質器21のバーナ21Aを接続して余った水素を燃料とすることができる。また、正極24B側に気水分離器26を接続し、正極24B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水を水蒸気の生成に利用することができる。燃料電池24では発電に伴って熱が発生するため、排熱回収装置27を付設してこの熱を回収して有効利用することができる。排熱回収装置27は、燃料電池24に付設され反応時に生じた熱を奪う熱交換器27Aと、この熱交換器27Aで奪った熱を水と熱交換するための熱交換器27Bと、冷却器27Cと、これら熱交換器27A、27B及び冷却器27Cへ冷媒を循環させるポンプ27Dとを備え、熱交換器27Bにおいて得られる温水は他の設備などで有効に利用することができる。   The excess hydrogen can be used as fuel by connecting the burner 21A of the reformer 21 to the negative electrode 24A side. Further, an air / water separator 26 is connected to the positive electrode 24B side, water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 24B side are separated, and water is used for generation of water vapor. can do. Since heat is generated in the fuel cell 24 with power generation, an exhaust heat recovery device 27 can be attached to recover the heat for effective use. The exhaust heat recovery device 27 is attached to the fuel cell 24 and deprives heat generated during the reaction, a heat exchanger 27B for exchanging heat deprived by the heat exchanger 27A with water, The heat exchanger 27C and a pump 27D that circulates the refrigerant to the heat exchangers 27A and 27B and the cooler 27C are provided, and the hot water obtained in the heat exchanger 27B can be effectively used in other facilities.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
補給開始圧力が、0.15MPaGの切替器を製作した(切替器A)。
新しい容器に硫黄濃度4.9質量ppmの液化石油ガスを充填した2本の容器から切替器Aを介して240g/hでガスを供給した。各容器からのガスの供給を流量計で監視し、予備側容器からのガス供給が始まって使用側容器からのガスの供給がなくなるまでの間、市販の脱硫剤(ズードケミー触媒株式会社製、商品名 G−132B)20cm3を充填した反応管にガスを流して脱硫を行なった。この間、供給ガス中の脱硫処理前の硫黄濃度および脱硫処理後の硫黄濃度を分析した。結果を第1表に示す。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
A switch having a replenishment start pressure of 0.15 MPaG was manufactured (switch A).
Gas was supplied at 240 g / h via the switch A from two containers filled with liquefied petroleum gas having a sulfur concentration of 4.9 ppm by mass in a new container. The supply of gas from each container is monitored with a flow meter, and a commercial desulfurization agent (product made by Zude Chemie Catalysts Co., Ltd., from the start of the gas supply from the backup side container until the supply of gas from the use side container ceases) Name G-132B) Desulfurization was performed by flowing gas into a reaction tube filled with 20 cm 3 . During this time, the sulfur concentration in the feed gas before the desulfurization treatment and the sulfur concentration after the desulfurization treatment were analyzed. The results are shown in Table 1.

実施例2
補給開始圧力が0.25MPaGの切替器を製作した(切替器B)。
新しい容器に硫黄濃度4.9質量ppmの液化石油ガスを充填した2本の容器から切替器Bを介して240g/hでガスを供給した。各容器からのガスの供給を流量計で監視し、予備側容器からのガス供給が始まって使用側容器からのガスの供給がなくなるまでの間、市販の脱硫剤(ズードケミー触媒株式会社製、商品名 G−132B)20cm3を充填した反応管にガスを流して脱硫を行なった。この間、供給ガス中の脱硫処理前の硫黄濃度および脱硫処理後の硫黄濃度を分析した。結果を第1表に示す。
Example 2
A switch with a replenishment start pressure of 0.25 MPaG was manufactured (switch B).
Gas was supplied at 240 g / h from two containers filled with liquefied petroleum gas having a sulfur concentration of 4.9 mass ppm into a new container via the switch B. The supply of gas from each container is monitored with a flow meter, and a commercial desulfurization agent (product made by Zude Chemie Catalysts Co., Ltd., from the start of the gas supply from the backup side container until the supply of gas from the use side container ceases) Name G-132B) Desulfurization was performed by flowing gas into a reaction tube filled with 20 cm 3 . During this time, the sulfur concentration in the feed gas before the desulfurization treatment and the sulfur concentration after the desulfurization treatment were analyzed. The results are shown in Table 1.

比較例1
補給開始圧力が0.10MPaGの切替器(切替器C)を用いて、新しい容器に硫黄濃度4.9質量ppmの液化石油ガスを充填した2本の容器から切替器Cを介して240g/hでガスを供給した。各容器からのガスの供給を流量計で監視し、予備側容器からのガス供給が始まって使用側容器からのガスの供給がなくなるまでの間、市販の脱硫剤(ズードケミー触媒株式会社製、商品名 G−132B)20cm3を充填した反応管にガスを流して脱硫を行なった。この間、供給ガス中の硫黄濃度および脱硫後の出口ガス中の硫黄濃度を分析した。結果を第1表に示す。
Comparative Example 1
Using a switch (switch C) with a replenishment start pressure of 0.10 MPaG, 240 g / h from two containers filled with liquefied petroleum gas having a sulfur concentration of 4.9 mass ppm into the new container via switch C Gas was supplied. The supply of gas from each container is monitored with a flow meter, and a commercial desulfurization agent (product made by Zude Chemie Catalysts Co., Ltd., from the start of the gas supply from the backup side container until the supply of gas from the use side container ceases) Name G-132B) Desulfurization was performed by flowing gas into a reaction tube filled with 20 cm 3 . During this time, the sulfur concentration in the feed gas and the sulfur concentration in the outlet gas after desulfurization were analyzed. The results are shown in Table 1.

Figure 2005093214
Figure 2005093214

第1表より次のようなことが分かる。
供給側の容器の圧力が0.11MPaG未満にならないうち、すなわち使用側の容器の圧力が0.11MPaG以上で、かつ好ましくは0.30MPaG以下の範囲で予備側容器に切替ることにより、切替時の供給ガスの中の硫黄濃度があまり高くならない状態で脱硫器へ送ることができその結果、硫黄含有量が安定した液化石油ガスを次工程の燃料電池用水素製造システムに供給できると共に脱硫剤の負荷を低減できる。
The following can be seen from Table 1.
When the pressure on the supply side container does not become less than 0.11 MPaG, that is, when the pressure on the use side container is 0.11 MPaG or more and preferably in the range of 0.30 MPaG or less, it is As a result, the liquefied petroleum gas with a stable sulfur content can be supplied to the hydrogen production system for fuel cells in the next process and the desulfurizing agent can be supplied. The load can be reduced.

本発明の液化石油ガス供給方法の一実施態様を示す概略工程図である。It is a schematic process drawing which shows one embodiment of the liquefied petroleum gas supply method of this invention. 本発明の燃料電池システムの一実施態様を示す概略工程図である。It is a schematic process drawing which shows one embodiment of the fuel cell system of this invention.

符号の説明Explanation of symbols

1 供給側容器
2 予備側容器
3 流量計
4 自動切替弁
5 流量計
6 三方弁
7 脱硫処理前の硫黄含有量測定手段
8 三方弁
9 脱硫器
10 三方弁
11 脱硫処理後の硫黄含有量測定手段
12 次工程への出口
13 次工程への出口
14 燃料電池システム
15 水素製造システム
16 気化器
17 水供給管
18 燃料導入管
19 接続管
20 水ポンプ
21 改質器
21A 改質器のバーナー
22 CO変換器
23 CO選択酸化器
24 燃料電池
24A 燃料電池負極
24B 燃料電池正極
24C 燃料電池高分子電解質
25 空気ブロワー
26 気水分離器
27 排熱回収器
27A 熱交換器
27B 熱交換器
27C 冷却器
27D 冷媒循環ポンプ


DESCRIPTION OF SYMBOLS 1 Supply side container 2 Spare side container 3 Flowmeter 4 Automatic change-over valve 5 Flowmeter 6 Three-way valve 7 Sulfur content measuring means before desulfurization process 8 Three-way valve 9 Desulfurizer 10 Three-way valve 11 Sulfur content measuring means after desulfurization process 12 Outlet to next process 13 Outlet to next process 14 Fuel cell system 15 Hydrogen production system 16 Vaporizer 17 Water supply pipe 18 Fuel introduction pipe 19 Connection pipe 20 Water pump 21 Reformer 21A Reformer burner 22 CO conversion 23 CO selective oxidizer 24 Fuel cell 24A Fuel cell negative electrode 24B Fuel cell positive electrode 24C Fuel cell polymer electrolyte 25 Air blower 26 Air / water separator 27 Waste heat recovery device 27A Heat exchanger 27B Heat exchanger 27C Cooler 27D Refrigerant circulation pump


Claims (4)

燃料供給手段として、液化石油ガスを収容してなる、(A)液化石油ガス供給側容器と(B)その予備側容器とを有し、(A)容器の圧力低下に伴い、(B)容器に切替を行なうことで、燃料電池用水素製造システムへ連続的に供給するに当り、前記切替を、(A)容器の圧力が0.11MPaG未満に低下しないうちに行なうことを特徴とする燃料電池用水素製造システムへの液化石油ガス供給方法。 As a fuel supply means, it has (A) a liquefied petroleum gas supply side container and (B) its spare side container, which contain liquefied petroleum gas. In order to supply continuously to the hydrogen production system for fuel cells, the switching is performed before (A) the pressure in the container does not drop below 0.11 MPaG. To supply liquefied petroleum gas to industrial hydrogen production systems. (A)容器の圧力が、0.13〜0.3MPaGの範囲で切替を行なう請求項1記載の燃料電池用水素製造システムへの液化石油ガス供給方法。 (A) The method for supplying liquefied petroleum gas to a hydrogen production system for a fuel cell according to claim 1, wherein the pressure in the container is switched in the range of 0.13 to 0.3 MPaG. さらに、前記燃料供給手段の出口側に液化石油ガスから硫黄分を除く脱硫手段を設けた請求項1又は2記載の燃料電池用水素製造システムへの液化石油ガス供給方法。 The method for supplying liquefied petroleum gas to a fuel cell hydrogen production system according to claim 1 or 2, further comprising a desulfurization means for removing sulfur from the liquefied petroleum gas on the outlet side of the fuel supply means. 請求項1〜3のいずれか1項に記載の液化石油ガス供給方法を用いた燃料電池システム。




The fuel cell system using the liquefied petroleum gas supply method of any one of Claims 1-3.




JP2003324388A 2003-09-17 2003-09-17 Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell Pending JP2005093214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324388A JP2005093214A (en) 2003-09-17 2003-09-17 Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324388A JP2005093214A (en) 2003-09-17 2003-09-17 Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell

Publications (1)

Publication Number Publication Date
JP2005093214A true JP2005093214A (en) 2005-04-07

Family

ID=34455157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324388A Pending JP2005093214A (en) 2003-09-17 2003-09-17 Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell

Country Status (1)

Country Link
JP (1) JP2005093214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084621A (en) * 2005-09-20 2007-04-05 Hagio Koatsu Yoki Kk Desulfurizing agent cartridge
JP2008044830A (en) * 2006-08-11 2008-02-28 Samsung Sdi Co Ltd Fuel reformer, method of operating the same, fuel cell system, and method of operating the fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233901A (en) * 1999-02-10 2000-08-29 Sanyo Electric Co Ltd Hydrogen production device, fuel cell system and their operation
JP2004055339A (en) * 2002-07-19 2004-02-19 Idemitsu Gas & Life Co Ltd Fuel cell system
JP2005011753A (en) * 2003-06-20 2005-01-13 Yazaki Corp Method and device for supplying fuel gas to fuel cell system
JP2005060422A (en) * 2003-08-12 2005-03-10 Mitsubishi Heavy Ind Ltd Lpg desulfurization system and desulfurization method
JP2005093126A (en) * 2003-09-12 2005-04-07 Fuji Electric Holdings Co Ltd Fuel cell power generator and its operation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233901A (en) * 1999-02-10 2000-08-29 Sanyo Electric Co Ltd Hydrogen production device, fuel cell system and their operation
JP2004055339A (en) * 2002-07-19 2004-02-19 Idemitsu Gas & Life Co Ltd Fuel cell system
JP2005011753A (en) * 2003-06-20 2005-01-13 Yazaki Corp Method and device for supplying fuel gas to fuel cell system
JP2005060422A (en) * 2003-08-12 2005-03-10 Mitsubishi Heavy Ind Ltd Lpg desulfurization system and desulfurization method
JP2005093126A (en) * 2003-09-12 2005-04-07 Fuji Electric Holdings Co Ltd Fuel cell power generator and its operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084621A (en) * 2005-09-20 2007-04-05 Hagio Koatsu Yoki Kk Desulfurizing agent cartridge
JP2008044830A (en) * 2006-08-11 2008-02-28 Samsung Sdi Co Ltd Fuel reformer, method of operating the same, fuel cell system, and method of operating the fuel cell system

Similar Documents

Publication Publication Date Title
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP2006318721A (en) Liquefied petroleum gas for lp-gas fuel cell, its desulfurizing method, and fuel cell system
WO2009122861A1 (en) Hydrogen production apparatus and fuel cell system using the hydrogen production apparatus
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP2003017109A (en) Polymer electrolyte fuel cell power generating system, and power generating method of polymer electrolyte fuel cell
JPH0757756A (en) Fuel cell power generation system
JP2765950B2 (en) Fuel cell power generation system
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP2006202564A (en) Hydrogen manufacturing system for fuel cell
JP5098073B2 (en) Energy station
JP2005007383A (en) Adsorbent for removing sulfur compound and method for producing hydrogen for fuel cell
JP5547994B2 (en) Desulfurization method, desulfurization apparatus and fuel cell power generation system
JP2006277980A (en) Desulfurization method of fuel for fuel cell
JP2005093214A (en) Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell
JP2006265480A (en) Method for desulfurizing hydrocarbon-containing gas and fuel battery system
JP5809049B2 (en) Method of using steam reforming catalyst for fuel cell and hydrogen production system
JP3050850B2 (en) Fuel cell power generation system
JP2828661B2 (en) Method for producing fuel gas for phosphoric acid electrolyte fuel cell
JP2006316154A (en) Liquefied petroleum gas for lp gas fuel cell, its desulfurization method and fuel cell system
JP2001068136A (en) Solid high-polymer fuel cell system and operating method therefor
JP2004175966A (en) Method and apparatus for desulfurizing kerosene, fuel cell system and method for operating the same system
JP2005294089A (en) Method of supplying liquefied petroleum gas to hydrogen production system for fuel cell and fuel cell system using it
JP2011225410A (en) Hydrogen generating apparatus, fuel cell system with the same and method of operating hydrogen generating apparatus
JP2993507B2 (en) Fuel cell power generation system
JPH0927338A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100702

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100723