Nothing Special   »   [go: up one dir, main page]

JP2005091655A - Endoscope objective optical system - Google Patents

Endoscope objective optical system Download PDF

Info

Publication number
JP2005091655A
JP2005091655A JP2003323943A JP2003323943A JP2005091655A JP 2005091655 A JP2005091655 A JP 2005091655A JP 2003323943 A JP2003323943 A JP 2003323943A JP 2003323943 A JP2003323943 A JP 2003323943A JP 2005091655 A JP2005091655 A JP 2005091655A
Authority
JP
Japan
Prior art keywords
lens group
lens
focal length
optical system
objective optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003323943A
Other languages
Japanese (ja)
Other versions
JP4426236B2 (en
Inventor
Hiroaki Fujii
宏明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2003323943A priority Critical patent/JP4426236B2/en
Publication of JP2005091655A publication Critical patent/JP2005091655A/en
Application granted granted Critical
Publication of JP4426236B2 publication Critical patent/JP4426236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an endoscope objective optical system the entire length of which is short and the outside diameter of the lens of which is small, and which has excellent aberration performance as an enlarging endoscope objective optical system which varies the focal length of the entire system by moving a part of lens groups and realizes normal observation at the wide angle of visibility and enlarging observation at high magnification. <P>SOLUTION: The endoscope objective optical system is constituted of a 1st negative lens group, a 2nd positive lens group, a 3rd positive lens group and a 4th lens being a meniscus lens whose image side surface is convex in order from an object side. A focusing state is held while changing the focal length of the entire system by moving the 2nd and the 3rd lens groups in a state where an object distance is changed without changing the entire length from the 1st lens group to an image surface, and satisfies a following conditional expression (1). (1) -0.05<fw/f4<0.01 provided that f4; the focal length of the 4th lens and fw; the focal length at the short focal length end of the entire system. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、第1レンズから像面までの全長を一定に保ちながら、一部のレンズ群を移動させて全系の焦点距離を可変にし、広視野角での通常観察と高倍率での拡大観察を可能にする拡大内視鏡対物光学系に関する。   In the present invention, while maintaining the entire length from the first lens to the image plane, a part of the lens group is moved to change the focal length of the entire system, and normal observation at a wide viewing angle and enlargement at a high magnification are performed. The present invention relates to a magnifying endoscope objective optical system that enables observation.

通常観察と拡大観察を可能にする内視鏡対物光学系として、一部のレンズ群を移動させて焦点距離を変化させる内視鏡観察光学系が知られている。可動群が一つの群だけの場合、全系のコンパクト性、全長一定を保ちつつ変倍比を大きくするには移動群の倍率が等倍を挟むのが一般的であるが、物体-像面間距離(物像間距離)は移動群の倍率が等倍にな
った個所で最短となり、この最短状態から拡大側にレンズ群を移動させると物体距離が大きくなるので中間の焦点域での使用には不向きである。特開2000-267002号公
報は、一つの群だけを移動させて変倍していて、移動群が等倍を挟まない実施例も含んでいるが、この実施例では、拡大時の物体距離を0.8mm程度(広角端の焦点距離が1mmの場合)と非常に短くして倍率を大きくしているため照明がうまくあたらない部分がでてしまう。また、通常観察時の広画角を得るためには第1レンズ群の外径が大きくなる。特許第2876252号公報では、パワーの大きい負レンズ群で変倍しているため、収差補正のためにレンズ枚数が多い。
2. Description of the Related Art As an endoscope objective optical system that enables normal observation and magnified observation, an endoscope observation optical system that changes a focal length by moving some lens groups is known. When there is only one movable group, it is common for the magnification of the moving group to be at the same magnification in order to increase the zoom ratio while maintaining the compactness of the entire system and the constant overall length, but the object-image plane The distance between objects (distance between object images) is the shortest at the point where the magnification of the moving group is equal, and the object distance increases when the lens group is moved from this shortest state to the enlargement side, so it can be used in the intermediate focal range. Not suitable for. Japanese Patent Application Laid-Open No. 2000-267002 includes an example in which only one group is moved and scaled to change the magnification, and the moving group does not sandwich the same magnification. Since the magnification is increased to be as short as about 0.8 mm (when the focal length at the wide angle end is 1 mm), there will be a portion where the illumination is not successful. In addition, the outer diameter of the first lens unit is increased in order to obtain a wide angle of view during normal observation. In Japanese Patent No. 2876252, zooming is performed by a negative lens unit having a large power, so that the number of lenses is large for aberration correction.

特開平11-295596号公報ではレンズ群と撮像素子を移動させているが、CCD
などの撮像素子は信号処理基板やケーブルが付随するため、これを移動させるには強い駆動力が必要になる。特にアクチュエーターやモーターなどで駆動する場合、移動群(体)の負荷を軽減するのは重要になる。従って像面は変倍によらず固定された状態が望ましい。
In Japanese Patent Laid-Open No. 11-295596, the lens group and the image sensor are moved.
Since an image pickup device such as this is accompanied by a signal processing board and a cable, a strong driving force is required to move the image pickup element. In particular, when driving with an actuator or motor, it is important to reduce the load on the moving group (body). Therefore, it is desirable that the image plane be fixed regardless of the magnification.

複数のレンズ群を移動させて変倍させる従来例として特開2001-166203号公
報や特開2001-91832号公報がある。前者は全体として負-正-正の3群構成で、
第2、第3レンズ群を移動させて変倍しているが、第2群のパワーが小さくて変倍比が小さい。また、拡大観察時の像面湾曲が大きい。後者は負-正-負-正の4群構成で、第3群
と第2または第4群を移動させて変倍しているが、第3レンズ群のパワーが強いため、収差補正のためにレンズ枚数が多くなり、全長が長くなる。
特開2000-267002号公報 特許第2876252号公報 特開平11-295596号公報 特開2001-166203号公報 特開2001-91832号公報
Japanese Patent Laid-Open No. 2001-166203 and Japanese Patent Laid-Open No. 2001-91832 are conventional examples of changing the magnification by moving a plurality of lens groups. The former is composed of three groups of negative-positive-positive as a whole.
Although the magnification is changed by moving the second and third lens groups, the power of the second group is small and the magnification ratio is small. In addition, the field curvature during magnification observation is large. The latter is a negative-positive-negative-positive four-group configuration, and zooming is performed by moving the third group and the second or fourth group. However, since the power of the third lens group is strong, the aberration is corrected. In addition, the number of lenses increases and the overall length becomes longer.
JP 2000-267002 A Japanese Patent No. 2876252 JP 11-295596 A Japanese Patent Laid-Open No. 2001-166203 JP 2001-91832 A

本発明は、一部のレンズ群を移動させて全系の焦点距離を可変にし、広視野角での通常観察と高倍率での拡大観察を可能にする拡大内視鏡対物光学系において、全長、レンズ外径を小さく、収差性能が良好な内視鏡対物光学系を得ることを目的とする。   The present invention relates to a magnifying endoscope objective optical system that allows normal observation at a wide viewing angle and magnified observation at a high magnification by changing the focal length of the entire system by moving some lens groups. An object of the present invention is to obtain an endoscope objective optical system having a small lens outer diameter and good aberration performance.

本発明の内視鏡対物光学系は、物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群、及び像側が凸面であるメニスカスレンズの第4レンズからなり、第1レンズ群から像面迄の全長を変化させる
ことなく、物体距離を変化させながら第2レンズ群と第3レンズ群を移動させることにより、全系の焦点距離を変化させつつ合焦状態を保持し、かつ次の条件式(1)を満足することを特徴としている。
(1)−0.05<fw/f4<0.01
但し、
f4;第4レンズの焦点距離、
fw;全系の短焦点距離端での焦点距離、
である。
The endoscope objective optical system according to the present invention includes, in order from the object side, a first lens group having a negative power, a second lens group having a positive power, a third lens group having a positive power, and a convex surface on the image side. The entire system is obtained by moving the second lens group and the third lens group while changing the object distance without changing the total length from the first lens group to the image plane. The in-focus state is maintained while changing the focal length of and the following conditional expression (1) is satisfied.
(1) -0.05 <fw / f4 <0.01
However,
f4: focal length of the fourth lens,
fw: focal length at the short focal length end of the entire system,
It is.

本発明の内視鏡対物光学系は、次の条件式(2)を満足することが好ましい。
(2)−2.2<f1/fw<−1.5
但し、
f1;第1レンズ群の焦点距離、
である。
The endoscope objective optical system according to the present invention preferably satisfies the following conditional expression (2).
(2) -2.2 <f1 / fw <-1.5
However,
f1: focal length of the first lens group,
It is.

また、次の条件式(3)を満足することが好ましい。
(3) 0.80<d2w/d2t<1.32
但し、
2w;短焦点距離端における第2レンズ群後側主点から第3レンズ群前側主点までの距離、
2t;最大倍率位置における第2レンズ群後側主点から第3レンズ群前側主点までの距離、
である。
Moreover, it is preferable that the following conditional expression (3) is satisfied.
(3) 0.80 <d 2w / d 2t <1.32
However,
d 2w ; distance from the rear principal point of the second lens group to the front principal point of the third lens group at the short focal length end;
d 2t ; distance from the rear principal point of the second lens group to the front principal point of the third lens group at the maximum magnification position;
It is.

本発明の内視鏡対物光学系は、次の条件式(4)及び(5)を満足することが好ましい。
(4)1.9<f2/fw<2.3
(5)6<f3/fw<7
但し、
f2;第2レンズ群の焦点距離、
f3;第3レンズ群の焦点距離、
である。
The endoscope objective optical system of the present invention preferably satisfies the following conditional expressions (4) and (5).
(4) 1.9 <f2 / fw <2.3
(5) 6 <f3 / fw <7
However,
f2: focal length of the second lens group,
f3: focal length of the third lens group,
It is.

また、次の条件式(6)を満足することが好ましい。
(6)0.4<(f23t×fw)/(f23w×ft)<0.65
但し、
23t;第2レンズ群と第3レンズ群の最大倍率位置における合成焦点距離、
23w;第2レンズ群と第3レンズ群の短焦点距離端における合成焦点距離、
ft;全系の最大倍率位置での焦点距離、
である。
Moreover, it is preferable that the following conditional expression (6) is satisfied.
(6) 0.4 <(f 23t × fw) / (f 23w × ft) <0.65
However,
f 23t ; composite focal length at the maximum magnification position of the second lens group and the third lens group,
f 23w ; composite focal length at the short focal length end of the second lens group and the third lens group,
ft: focal length at the maximum magnification position of the entire system,
It is.

本発明によれば、一部のレンズ群を移動させて全系の焦点距離を可変にし、広視野角での通常観察と高倍率での拡大観察を可能にする拡大内視鏡対物光学系において、全長、レンズ外径を小さく、収差性能が良好な内視鏡対物光学系を得ることができる。   According to the present invention, in a magnifying endoscope objective optical system that moves a part of lens groups to make the focal length of the entire system variable, and enables normal observation at a wide viewing angle and magnified observation at a high magnification. It is possible to obtain an endoscope objective optical system that has a small overall length and a lens outer diameter and good aberration performance.

図17は、本発明による内視鏡対物光学系を電子内視鏡に適用した一態様を示している。内視鏡体内挿入部100には、物体側から順に、負のパワーを有する固定の第1レンズ群10と、絞りSと、正のパワーを有する可動の第2レンズ群20と、正のパワーを有す
る可動の第3レンズ群30と、像側が凸面であるメニスカスレンズの固定第4レンズ群40と、カバーガラス(フィルタ類)CGと、撮像素子50とが位置している。第4レンズ群40は正負のいずれのパワーも取り得る。絞りSは第2レンズ群20に搭載されていて、第2レンズ群20と一緒に移動する。
FIG. 17 shows an aspect in which the endoscope objective optical system according to the present invention is applied to an electronic endoscope. The endoscope insertion unit 100 includes, in order from the object side, a fixed first lens group 10 having a negative power, a diaphragm S, a movable second lens group 20 having a positive power, and a positive power. , A fixed fourth lens group 40 of a meniscus lens having a convex surface on the image side, a cover glass (filters) CG, and an image sensor 50 are located. The fourth lens group 40 can take either positive or negative power. The diaphragm S is mounted on the second lens group 20 and moves together with the second lens group 20.

以上の内視鏡対物光学系において、広角での通常観察状態から拡大観察状態に移行させるには、第1レンズ群10から撮像素子50(像面)迄の全長を変化させることなく、物体距離を小さくし(体内挿入部全体を観察物体に接近させ)ながら、第2レンズ群20と第3レンズ群30を各々独立に物体側に移動させて、全系の焦点距離を変化させ、最低倍率端から最大倍率端に変化させる。別言すると、第2レンズ群20と第3レンズ群30は、短焦点距離端Sでの物体距離OSを基準にしたとき、第2レンズ群20と第3レンズ群30を各々独立に物体側に移動させ、最大倍率観察位置Lに向けて合焦物体距離OLを短縮する。第1レンズ群10から撮像素子50(像面)迄の距離は変化しない。なお、第2、第3レンズ群の移動軌跡によっては、広角での通常観察状態から拡大観察状態への切替えにおいて物体距離と倍率が単調に変化しても、全系の焦点距離変化は単調にならない場合もある(途中で焦点距離が最大になり、最大倍率状態では焦点距離がそれより短くなることもある)。   In the above-described endoscope objective optical system, in order to shift from the normal observation state at the wide angle to the magnification observation state, the object distance is not changed without changing the total length from the first lens group 10 to the image sensor 50 (image plane). The second lens group 20 and the third lens group 30 are moved to the object side independently while changing the focal length of the entire system, while reducing the minimum magnification. Change from the end to the maximum magnification end. In other words, when the second lens group 20 and the third lens group 30 are based on the object distance OS at the short focal length end S, the second lens group 20 and the third lens group 30 are independently set on the object side. And the in-focus object distance OL is shortened toward the maximum magnification observation position L. The distance from the first lens group 10 to the image sensor 50 (image plane) does not change. Depending on the movement trajectory of the second and third lens groups, even if the object distance and magnification change monotonously when switching from the normal observation state at the wide angle to the magnification observation state, the change in the focal length of the entire system is monotonous. In some cases, the focal length becomes maximum on the way, and the focal length may be shorter in the maximum magnification state.

このように、第2レンズ群20と第3レンズ群30の2つのレンズ群を移動させることにより、広角での通常観察と拡大観察の切替時に第1レンズ群10に対して像面を固定し、さらに合焦物体距離の変化を単調にすることができる。この変化が単調でないことは、広角での通常観察から拡大観察へ移行の途中で物体が第1レンズに相対的に接近してまた
遠ざかることを意味するから、物体距離が単調に変化することは、短焦点距離端、最大倍率位置の中間領域で観察を行う場合に重要である。物体距離変化が単調でない場合、通常観察から拡大観察に連続的に移行する操作において、スコープ先端を途中までは物体に近づいていくが途中からは遠ざかるという不自然な操作をしなければならず操作性が悪い(あるいは操作に熟練を要する)。
In this way, by moving the two lens groups, the second lens group 20 and the third lens group 30, the image plane is fixed with respect to the first lens group 10 when switching between normal observation and magnified observation at a wide angle. Furthermore, the change of the in-focus object distance can be made monotonous. The fact that this change is not monotonic means that the object moves relatively close to and away from the first lens during the transition from normal observation at wide angle to magnified observation, so that the object distance changes monotonously. This is important when observing in the middle region between the short focal length end and the maximum magnification position. When the object distance change is not monotonous, an operation that continuously moves from normal observation to magnified observation requires an unnatural operation of approaching the object to the middle of the scope but moving away from the middle. Poor nature (or skill required for operation).

本実施形態の特徴の一つは、移動群(第2レンズ群と第3レンズ群)の後部(像面側)に弱いパワーを有する、像側が凸面であるメニスカス形状の第4レンズを配置した点にある。第4レンズ群のパワーは正負いずれもあり得る。レンズ外径を小さくしつつ通常観察時の広視野角を得るには第1レンズ群の負のパワーを大きくすることが好ましい。しかし単純に第1レンズ群の負のパワーを大きくすると、第1レンズ群の倍率が小さくなるために、拡大時に高倍率を得るには正のパワーを有する移動群の焦点距離を長くする必要が生じる。そして、移動群の焦点距離を長くすると移動量が大きくなり全体の長さが大きくなる。そこで本実施形態では、第2レンズ群と第3レンズ群の後部に1以上の倍率(m4>1、m4;第4レンズの横倍率)を持つ第4レンズを配置することにより、第4レンズで拡大して、第2レンズ群と第3レンズ群のパワーを大きくすることを可能とし、収差性能を良好にしながら全長の短縮を可能とした。   One of the features of this embodiment is that a meniscus fourth lens having a weak power and a convex surface on the image side is disposed at the rear (image surface side) of the moving group (second lens group and third lens group). In the point. The power of the fourth lens group can be positive or negative. In order to obtain a wide viewing angle during normal observation while reducing the lens outer diameter, it is preferable to increase the negative power of the first lens group. However, if the negative power of the first lens group is simply increased, the magnification of the first lens group is reduced. Therefore, in order to obtain a high magnification at the time of enlargement, it is necessary to increase the focal length of the moving group having a positive power. Arise. If the focal length of the moving group is increased, the moving amount increases and the overall length increases. Therefore, in the present embodiment, the fourth lens having a magnification of 1 or more (m4> 1, m4; lateral magnification of the fourth lens) is disposed at the rear of the second lens group and the third lens group. The power of the second lens group and the third lens group can be increased, and the overall length can be shortened while improving the aberration performance.

条件式(1)は、第4レンズの焦点距離に対する条件である。   Conditional expression (1) is a condition for the focal length of the fourth lens.

条件式(1)の上限を上回ると、第4レンズの倍率が小さくなり、全長の短縮および外径の縮小を図りつつ拡大時の全系の倍率を上げることが困難になる。条件式(1)の下限を下回ると、第4レンズの負のパワーが大きくなるため、テレセントリック性が悪化する。テレセントリック性が悪化すると、CCD上で起こるシェーディングにより周辺光量が低下してしまう。また、コマ収差が大きくなり、結像性能が劣化する。また、撮像素子50に代えてイメージガイドファイバーを用いるファイバ内視鏡ではNA(一般に0.3程度と小さい)の範囲から外れることにより、同様に周辺光量が低下してしまう。   If the upper limit of conditional expression (1) is exceeded, the magnification of the fourth lens becomes small, and it becomes difficult to increase the magnification of the entire system during enlargement while shortening the overall length and reducing the outer diameter. If the lower limit of conditional expression (1) is surpassed, the negative power of the fourth lens increases, and the telecentricity deteriorates. When the telecentricity deteriorates, the amount of peripheral light decreases due to shading that occurs on the CCD. In addition, coma aberration increases and imaging performance deteriorates. Further, in a fiber endoscope using an image guide fiber instead of the image pickup element 50, the peripheral light amount is similarly reduced by deviating from the range of NA (generally as small as about 0.3).

また第4レンズは、レンズパワーが小さく、像側に凸面を向けたメニスカス形状にすることで最終面の正の屈折力によってテレセントリック性の悪化を緩和しながら全長を縮小させることができる。   The fourth lens has a small lens power, and can be reduced in overall length by reducing the telecentricity due to the positive refractive power of the final surface by forming a meniscus shape with a convex surface facing the image side.

また、内視鏡の観察距離は拡大観察および通常観察では第1レンズから2〜15mm程度の範囲が主となり、その際の第4レンズの横倍率が条件式(7)を満たしていることが望ましい。
(7)1.0<m4<1.2
但し、
m4;第4レンズの横倍率、
である。
Further, the observation distance of the endoscope is mainly in the range of about 2 to 15 mm from the first lens in magnified observation and normal observation, and the lateral magnification of the fourth lens at that time satisfies the conditional expression (7). desirable.
(7) 1.0 <m4 <1.2
However,
m4: lateral magnification of the fourth lens,
It is.

条件式(7)の下限を下回ると、全長および径を縮小する効果が無くなってしまう。条件式(7)の上限を上回って第4レンズの倍率を大きくする(負のパワーを大きくする)と、第4レンズで発生する収差の影響が大きくなり、テレセントリック性の悪化や収差性能の劣化が増大する。   If the lower limit of conditional expression (7) is not reached, the effect of reducing the overall length and diameter will be lost. If the magnification of the fourth lens is increased beyond the upper limit of conditional expression (7) (negative power is increased), the influence of the aberration generated in the fourth lens increases, resulting in a deterioration in telecentricity and aberration performance. Will increase.

また、全長を短くし、径を小さくするために第1レンズ群は1枚の負レンズで構成するのが望ましい。第1レンズ群を複数のレンズから構成すると、絞りと第1レンズ入射面との距離が離れることにより、全長が長くなり、第1入射面が大径化する。このとき、第1レンズ群は、焦点距離に関する条件式(2)を満足することが好ましい。   In order to shorten the overall length and reduce the diameter, it is desirable that the first lens group is composed of a single negative lens. When the first lens group is composed of a plurality of lenses, the distance between the stop and the first lens incident surface is increased, so that the entire length is increased and the first incident surface is increased in diameter. At this time, it is preferable that the first lens group satisfies the conditional expression (2) regarding the focal length.

条件式(2)の下限を下回ると、通常観察で広画角を得ようとするときにレンズ外径が大きくなる。また、拡大時に像面湾曲が大きくなる。条件式(2)の上限を上回ると、第1レンズ群の倍率が小さくなるため、拡大時の全系の倍率を大きくするためには正のレンズ群の焦点距離が長くなり全系が大型化する。また、第1レンズ群で発生する非点収差、コマ収差が大きくなり、他のレンズ群で補正するのが困難になる。   If the lower limit of conditional expression (2) is not reached, the outer diameter of the lens increases when attempting to obtain a wide angle of view through normal observation. In addition, the field curvature increases during enlargement. If the upper limit of conditional expression (2) is exceeded, the magnification of the first lens group decreases, and in order to increase the magnification of the entire system at the time of magnification, the focal length of the positive lens group becomes longer and the entire system becomes larger. To do. In addition, astigmatism and coma generated in the first lens group become large, and correction with other lens groups becomes difficult.

変倍時の収差性能の変化(特に拡大時の性能劣化)を抑えるためには条件式(3)を満足することが好ましい。   In order to suppress a change in aberration performance during zooming (particularly performance degradation during zooming), it is preferable to satisfy conditional expression (3).

条件式(3)の下限を下回ると、通常観察時と拡大時での倍率色収差の変化が大きくなるためバランスを取りづらくなり、どちらかの解像力が低下してしまう。条件式(3)の上限を上回ると、拡大時に第2レンズ群と第3レンズ群の合成焦点距離が短く(倍率が小さく)なるため、拡大時の全系の倍率を大きくするためには第2、第3レンズ群の移動量が大きくなるか、第1レンズ群の倍率が小さくなり全系が長くなる。また、第1レンズ群で発生する非点収差、コマ収差が大きくなり、他のレンズ群で補正するのが困難になる。   If the lower limit of conditional expression (3) is not reached, the change in lateral chromatic aberration during normal observation and enlargement will become large, making it difficult to achieve a balance, and the resolution of either will decrease. If the upper limit of conditional expression (3) is exceeded, the combined focal length of the second lens group and the third lens group becomes short (magnification becomes small) at the time of enlargement, so in order to increase the magnification of the entire system at the time of enlargement, 2. The amount of movement of the third lens group is increased, or the magnification of the first lens group is decreased and the entire system is lengthened. In addition, astigmatism and coma generated in the first lens group become large, and correction with other lens groups becomes difficult.

条件式(4)は第2レンズ群の焦点距離を規定する。   Conditional expression (4) defines the focal length of the second lens group.

条件式(4)の下限から外れると、拡大観察時に十分な倍率が得られない。さらに、球面収差が大きくなり、解像力が低下する。条件式(4)の上限から外れると、変倍比を大きくするために第2レンズ群の移動量が大きくなり、全長が長くなる。   If the lower limit of conditional expression (4) is not satisfied, sufficient magnification cannot be obtained during magnified observation. Furthermore, the spherical aberration increases and the resolution decreases. If the upper limit of conditional expression (4) is deviated, the amount of movement of the second lens unit increases to increase the zoom ratio, and the overall length becomes longer.

条件式(5)は第3レンズ群の焦点距離を規定する。   Conditional expression (5) defines the focal length of the third lens group.

条件式(5)の下限から外れると、収差性能、特に拡大時の非点収差が増大して解像力が低下してしまう。条件式(5)の上限から外れると、通常観察時に広角を保つために第2レンズ群の焦点距離が短くなるか、第1レンズ群の負のパワーが弱くなり大径化する。   If the lower limit of conditional expression (5) is not satisfied, aberration performance, particularly astigmatism at the time of enlargement, will increase and resolution will decrease. If the upper limit of conditional expression (5) is not satisfied, the focal length of the second lens group will be shortened to maintain a wide angle during normal observation, or the negative power of the first lens group will become weak and the diameter will increase.

条件式(6)は移動群の合成焦点距離変化の範囲を規定する。   Conditional expression (6) defines the range of change in the combined focal length of the moving group.

条件式(6)の下限から外れると、変倍時の移動群のパワー変化が大きいため収差の変動が大きくなり、各焦点域で収差をバランスさせるのが困難になる。条件式(6)の上限から外れると、第2、第3レンズ群の間隔が大きくなるため、全長が長くなる。   If the lower limit of conditional expression (6) is not reached, the power variation of the moving group at the time of zooming is large, so that the fluctuation of aberration becomes large, and it becomes difficult to balance the aberration in each focal region. If the upper limit of conditional expression (6) is not met, the distance between the second and third lens groups becomes large, and the total length becomes long.

次に具体的な実施例を示す。諸収差図及び表中、球面収差で表される色収差(軸上色収差)図及び倍率色収差図中のd線、g線、c線はそれぞれの波長に対する収差であり、Sはサジタル、Mはメリディオナル、mは全系の横倍率、fは全系の焦点距離、ODISは物体距離(物体から最も物体側のレンズ面までの空気換算距離)、fB はバックフォーカス(カバーガラスCGの最も像側の面から撮像素子50の撮像面までの空気換算距離)、FEは実効Fナンバー、Wは半画角(゜)、Yは像高、rは曲率半径、dはレンズ厚またはレンズ間隔、Nd はd線の屈折率、νdはアッベ数を示す。 Next, specific examples will be described. In the various aberration diagrams and tables, the d-line, g-line, and c-line in the chromatic aberration (axial chromatic aberration) diagram and magnification chromatic aberration diagram represented by spherical aberration are aberrations for each wavelength, S is sagittal, and M is meridional. , M is the lateral magnification of the entire system, f is the focal length of the entire system, ODIS is the object distance (air equivalent distance from the object to the lens surface closest to the object), fB Is the back focus (air equivalent distance from the most image side surface of the cover glass CG to the imaging surface of the image sensor 50), FE is the effective F number, W is the half field angle (°), Y is the image height, and r is the curvature. Radius, d is the lens thickness or lens interval, N d is the refractive index of the d line, and ν d is the Abbe number.

また、回転対称非球面は次式で定義される。
x=cy2/[1+[1-(1+K)c2y2]1/2]+A4y4+A6y6+A8y8 +A10y10+A12y12・・・
(但し、xは非球面形状、cは曲率、yは光軸からの高さ、Kは円錐係数、A4、A6、A8、A10・・・・・は各次数の非球面係数)
[実施例1]
図1ないし図4は、本発明の内視鏡対物光学系の実施例1を示している。図1及び図3はそれぞれ、短焦点距離端(最低倍率位置)及び最大倍率位置におけるレンズ構成図であり、図2及び図4はそれぞれ、図1及び図3のレンズ構成での諸収差図である。表1はその数値データである。負の第1レンズ群10は単レンズからなり、正の第2レンズ群20は正レンズと負レンズの接合レンズからなり、正の第3レンズ群30は負レンズと正レンズの接合レンズからなり、正の第4レンズ40は像側に凸のメニスカス単レンズからなっている。絞りSは、第2レンズ群20(3面)の前方(物体側)0.119の位置にある。
(表1)
FE= 1:6.6 - 9.4
f = 1.01 - 2.12
ODIS=-7.729 - -2.973
m = -0.114 - -0.741
W = 65.6 - 22.0
fB= 0.05
面NO. r d Nd νd
1 ∞ 0.357 1.88300 40.8
2 1.860 2.703-0.595
3 -13.525 0.595 1.88300 40.8
4 -3.298 0.357 1.84666 23.8
5 -1.546 0.635
6 ∞ 0.357 1.92286 18.9
7 1.246 0.752 1.77250 49.6
8 -2.936 0.663-3.058
9 -3.245 0.357 1.84666 23.8
10 -3.340 0.286
11 ∞ 0.595 1.52400
12 ∞ 0.357 1.53000
13 ∞ -
[実施例2]
図5ないし図8は、本発明の内視鏡対物光学系の実施例2を示している。図5及び図7
はそれぞれ、短焦点距離端(最低倍率位置)及び最大倍率位置におけるレンズ構成図であり、図6及び図8はそれぞれ図5及び図7のレンズ構成での諸収差図である。表2はその数値データである。基本的なレンズ構成は、第2レンズ群20が正単レンズからなる点、及び第4レンズ群が負の単レンズからなる点を除き、実施例1と同様である。絞りSは、第2レンズ群20(3面)の前方(物体側)0.116の位置にある。
(表2)
FE= 1:6.6 - 9.3
f = 1.00 - 2.07
ODIS=-7.574 - -2.913
m = -0.115 - -0.741
W = 60.3 - 20.4
fB= 0.05
面NO. r d Nd νd
1 ∞ 0.350 1.88300 40.8
2 1.697 2.867-0.699
3 -6.966 0.946 1.88300 40.8
4 -1.504 1.030
5 10.940 0.350 1.92286 18.9
6 1.352 0.978 1.77250 49.6
7 -4.438 0.396-2.937
8 -2.840 0.350 1.84666 23.8
9 -3.293 0.234
10 ∞ 0.583 1.52400
11 ∞ 0.350 1.53000
12 ∞ -
[実施例3]
図9ないし図12は、本発明の内視鏡対物光学系の実施例3を示している。図9及び図11はそれぞれ、短焦点距離端及(最低倍率位置)び最大倍率位置におけるレンズ構成図であり、図10及び図12はそれぞれ図9及び図11のレンズ構成での諸収差図である。表3はその数値データである。 基本的なレンズ構成は実施例2と同様である。絞りSは
、第2レンズ群20(3面)の前方(物体側)0.140の位置にある。
(表3)
FE= 1:5.2 - 6.1
f = 0.99 - 1.67
ODIS=-12.382 - -3.095
m =-0.075 - -0.494
W =70.0 - 31.9
fB=0.05
面NO. r d Nd νd
1 ∞ 0.371 1.88300 40.8
2 1.377 2.037-0.759
3 -103.642 1.542 1.77250 49.6
4 -1.505 0.604
5 7.456 0.371 1.92286 18.9
6 1.354 0.771 1.77250 49.6
7 -5.304 0.366-1.694
8 -1.993 0.371 1.84666 23.8
9 -2.349 0.630
10 ∞ 0.619 1.52400
11 ∞ 0.371 1.53000
12 ∞ -
[実施例4]
図13ないし図16は、本発明の内視鏡対物光学系の実施例4を示している。図13及び図15はそれぞれ、短焦点距離端(最低倍率位置)及び最大倍率位置におけるレンズ構成図であり、図14及び図16はそれぞれ図13及び図15のレンズ構成での諸収差図である。表4はその数値データである。基本的なレンズ構成は、第2レンズ群20が正単レンズからなる点を除き、実施例1と同様である。絞りSは、第2レンズ群20(3面)の前方(物体側)0.123の位置にある。
(表4)
FE= 1:5.2 - 6.2
f= 1.00 - 1.73
ODIS=-12.354 - -3.089
m =-0.075 - -0.494
W =70.3 - 31.9
fB= 0.05
面NO. r d Nd νd
1 ∞ 0.371 1.88300 40.8
2 1.644 2.160-0.741
3* -2.768 1.272 1.77250 49.6
4 -1.183 0.924
5 15.428 0.371 1.92286 18.9
6 1.579 0.751 1.77250 49.6
7 -4.144 0.365-1.539
8 -2.264 0.371 1.84666 23.8
9 -2.409 0.618
10 ∞ 0.618 1.52400
11 ∞ 0.371 1.53000
12 ∞ -
*は回転対称非球面。
非球面データ(表示していない非球面係数は0.00である。);
NO A4 A6 A8
3 -0.54874×10-1 -0.44115×10 0.18410×102
各実施例の各条件式に対する値を表5に示す。
(表5)
A rotationally symmetric aspherical surface is defined by the following equation.
x = cy 2 / [1+ [1- (1 + K) c 2 y 2 ] 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10 + A12y 12 ...
(Where x is an aspherical shape, c is a curvature, y is a height from the optical axis, K is a conical coefficient, A4, A6, A8, A10... Are aspherical coefficients of each order)
[Example 1]
1 to 4 show Embodiment 1 of the endoscope objective optical system of the present invention. FIGS. 1 and 3 are lens configuration diagrams at the short focal length end (minimum magnification position) and the maximum magnification position, respectively. FIGS. 2 and 4 are graphs showing various aberrations in the lens configuration of FIGS. is there. Table 1 shows the numerical data. The negative first lens group 10 is composed of a single lens, the positive second lens group 20 is composed of a cemented lens of a positive lens and a negative lens, and the positive third lens group 30 is composed of a cemented lens of a negative lens and a positive lens. The positive fourth lens 40 is a meniscus single lens convex on the image side. The stop S is at a position 0.119 in front (object side) of the second lens group 20 (three surfaces).
(Table 1)
FE = 1: 6.6-9.4
f = 1.01-2.12
ODIS = -7.729--2.973
m = -0.114--0.741
W = 65.6-22.0
fB = 0.05
Surface NO. R d N d ν d
1 ∞ 0.357 1.88300 40.8
2 1.860 2.703-0.595
3 -13.525 0.595 1.88 300 40.8
4 -3.298 0.357 1.84666 23.8
5 -1.546 0.635
6 ∞ 0.357 1.92286 18.9
7 1.246 0.752 1.77250 49.6
8 -2.936 0.663-3.058
9 -3.245 0.357 1.84666 23.8
10 -3.340 0.286
11 ∞ 0.595 1.52400
12 ∞ 0.357 1.53000
13 ∞-
[Example 2]
5 to 8 show Embodiment 2 of the endoscope objective optical system of the present invention. 5 and 7
FIG. 6 is a lens configuration diagram at the short focal length end (minimum magnification position) and the maximum magnification position, respectively, and FIGS. 6 and 8 are aberration diagrams in the lens configurations of FIGS. 5 and 7, respectively. Table 2 shows the numerical data. The basic lens configuration is the same as that of Example 1 except that the second lens group 20 is composed of a positive single lens and the fourth lens group is composed of a negative single lens. The stop S is at a position 0.116 in front (object side) of the second lens group 20 (three surfaces).
(Table 2)
FE = 1: 6.6-9.3
f = 1.00-2.07
ODIS = -7.574--2.913
m = -0.115--0.741
W = 60.3-20.4
fB = 0.05
Surface NO. R d N d ν d
1 ∞ 0.350 1.88300 40.8
2 1.697 2.867-0.699
3 -6.966 0.946 1.88300 40.8
4 -1.504 1.030
5 10.940 0.350 1.92286 18.9
6 1.352 0.978 1.77250 49.6
7 -4.438 0.396-2.937
8 -2.840 0.350 1.84666 23.8
9 -3.293 0.234
10 ∞ 0.583 1.52400
11 ∞ 0.350 1.53000
12 ∞-
[Example 3]
9 to 12 show a third embodiment of the endoscope objective optical system according to the present invention. 9 and 11 are lens configuration diagrams at the short focal length end (minimum magnification position) and the maximum magnification position, respectively, and FIGS. 10 and 12 are aberration diagrams in the lens configurations of FIGS. 9 and 11, respectively. is there. Table 3 shows the numerical data. The basic lens configuration is the same as in the second embodiment. The stop S is at a position 0.140 in front (object side) of the second lens group 20 (three surfaces).
(Table 3)
FE = 1: 5.2-6.1
f = 0.99-1.67
ODIS = -12.382--3.095
m = -0.075--0.494
W = 70.0-31.9
fB = 0.05
Surface NO. R d N d ν d
1 ∞ 0.371 1.88300 40.8
2 1.377 2.037-0.759
3 -103.642 1.542 1.77250 49.6
4 -1.505 0.604
5 7.456 0.371 1.92286 18.9
6 1.354 0.771 1.77250 49.6
7 -5.304 0.366-1.694
8 -1.993 0.371 1.84666 23.8
9 -2.349 0.630
10 ∞ 0.619 1.52400
11 ∞ 0.371 1.53000
12 ∞-
[Example 4]
FIGS. 13 to 16 show Embodiment 4 of the endoscope objective optical system of the present invention. 13 and 15 are lens configuration diagrams at the short focal length end (minimum magnification position) and the maximum magnification position, respectively, and FIGS. 14 and 16 are aberration diagrams in the lens configurations of FIGS. 13 and 15, respectively. . Table 4 shows the numerical data. The basic lens configuration is the same as that of Example 1 except that the second lens group 20 is a positive single lens. The stop S is at a position 0.123 in front (object side) of the second lens group 20 (three surfaces).
(Table 4)
FE = 1: 5.2-6.2
f = 1.00-1.73
ODIS = -12.354--3.089
m = -0.075--0.494
W = 70.3-31.9
fB = 0.05
Surface NO. R d N d ν d
1 ∞ 0.371 1.88300 40.8
2 1.644 2.160-0.741
3 * -2.768 1.272 1.77250 49.6
4 -1.183 0.924
5 15.428 0.371 1.92286 18.9
6 1.579 0.751 1.77250 49.6
7 -4.144 0.365-1.539
8 -2.264 0.371 1.84666 23.8
9 -2.409 0.618
10 ∞ 0.618 1.52400
11 ∞ 0.371 1.53000
12 ∞-
* Is a rotationally symmetric aspherical surface.
Aspheric data (Aspheric coefficient not shown is 0.00);
NO A4 A6 A8
3 -0.54874 × 10 -1 -0.44 115 × 10 0.18410 × 10 2
Table 5 shows values for the conditional expressions in the respective examples.
(Table 5)

表5から明らかなように、実施例1〜4は、条件式(1)ないし(7)を満足しており、諸収差も比較的よく補正されている。   As is apparent from Table 5, Examples 1 to 4 satisfy the conditional expressions (1) to (7), and various aberrations are relatively well corrected.

本発明による内視鏡対物光学系の実施例1の短焦点距離端におけるレンズ構成図である。It is a lens block diagram in the short focal distance end of Example 1 of the endoscope objective optical system by this invention. 図1のレンズ構成の諸収差図である。FIG. 2 is a diagram illustrating various aberrations of the lens configuration in FIG. 1. 本発明による内視鏡対物光学系の実施例1の最大倍率位置におけるレンズ構成図である。It is a lens block diagram in the maximum magnification position of Example 1 of the endoscope objective optical system by this invention. 図3のレンズ構成の諸収差図である。FIG. 4 is a diagram illustrating various aberrations of the lens configuration in FIG. 3. 本発明による内視鏡対物光学系の実施例2の短焦点距離端におけるレンズ構成図である。It is a lens block diagram in the short focal distance end of Example 2 of the endoscope objective optical system by this invention. 図5のレンズ構成の諸収差図である。FIG. 6 is a diagram illustrating various aberrations of the lens configuration in FIG. 5. 本発明による内視鏡対物光学系の実施例2の最大倍率位置におけるレンズ構成図である。It is a lens block diagram in the maximum magnification position of Example 2 of the endoscope objective optical system by this invention. 図7のレンズ構成の諸収差図である。FIG. 8 is a diagram illustrating various aberrations of the lens configuration in FIG. 7. 本発明による内視鏡対物光学系の実施例3の短焦点距離端におけるレンズ構成図である。It is a lens block diagram in the short focal distance end of Example 3 of the endoscope objective optical system by this invention. 図9のレンズ構成の諸収差図である。FIG. 10 is a diagram illustrating various aberrations of the lens configuration in FIG. 9. 本発明による内視鏡対物光学系の実施例3の最大倍率位置におけるレンズ構成図である。It is a lens block diagram in the maximum magnification position of Example 3 of the endoscope objective optical system by this invention. 図11のレンズ構成の諸収差図である。FIG. 12 is a diagram illustrating various aberrations of the lens configuration in FIG. 11. 本発明による内視鏡対物光学系の実施例4の短焦点距離端におけるレンズ構成図である。It is a lens block diagram in the short focal distance end of Example 4 of the endoscope objective optical system by this invention. 図13のレンズ構成の諸収差図である。FIG. 14 is a diagram illustrating various aberrations of the lens configuration in FIG. 13. 本発明による内視鏡対物光学系の実施例4の最大倍率位置におけるレンズ構成図である。It is a lens block diagram in the maximum magnification position of Example 4 of the endoscope objective optical system by this invention. 図15のレンズ構成の諸収差図である。FIG. 16 is a diagram illustrating various aberrations of the lens configuration in FIG. 15. 本発明による内視鏡対物光学系の内視鏡先端部への搭載模式図及び簡易移動図である。It is the mounting schematic diagram and the simple movement figure in the endoscope front-end | tip part of the endoscope objective optical system by this invention.

Claims (6)

物体側から順に、負のパワーを有する第1レンズ群、正のパワーを有する第2レンズ群、正のパワーを有する第3レンズ群、及び像側が凸面であるメニスカスレンズの第4レンズからなり、第1レンズ群から像面迄の全長を変化させることなく、物体距離を変化させながら第2レンズ群と第3レンズ群を移動させることにより、全系の焦点距離を変化させつつ合焦状態を保持し、次の条件式(1)を満足することを特徴とする内視鏡対物光学系。(1)−0.05<fw/f4<0.01
但し、
f4;第4レンズの焦点距離、
fw;全系の短焦点距離端での焦点距離。
In order from the object side, a first lens group having negative power, a second lens group having positive power, a third lens group having positive power, and a fourth lens of a meniscus lens having a convex surface on the image side, By moving the second lens group and the third lens group while changing the object distance without changing the total length from the first lens group to the image plane, the in-focus state can be changed while changing the focal length of the entire system. An endoscope objective optical system that holds and satisfies the following conditional expression (1): (1) -0.05 <fw / f4 <0.01
However,
f4: focal length of the fourth lens,
fw: focal length at the short focal length end of the entire system.
請求項1記載の内視鏡対物光学系において、次の条件式(2)を満足する内視鏡対物光学系。
(2)−2.2<f1/fw<−1.5
但し、
f1;第1レンズ群の焦点距離。
The endoscope objective optical system according to claim 1, wherein the endoscope objective optical system satisfies the following conditional expression (2).
(2) -2.2 <f1 / fw <-1.5
However,
f1: focal length of the first lens unit.
請求項1または2記載の内視鏡対物光学系において、次の条件式(3)を満足する内視鏡対物光学系。
(3) 0.80<d2w/d2t<1.32
但し、
2w;短焦点距離端における第2レンズ群後側主点から第3レンズ群前側主点までの距離、
2t;最大倍率位置における第2レンズ群後側主点から第3レンズ群前側主点までの距離。
The endoscope objective optical system according to claim 1 or 2, wherein the endoscope objective optical system satisfies the following conditional expression (3).
(3) 0.80 <d 2w / d 2t <1.32
However,
d 2w ; distance from the rear principal point of the second lens group to the front principal point of the third lens group at the short focal length end;
d 2t : Distance from the rear principal point of the second lens group to the front principal point of the third lens group at the maximum magnification position.
請求項1ないし3のいずれか1項記載の内視鏡対物光学系において、次の条件式(4)及び(5)を満足する内視鏡対物光学系。
(4)1.9<f2/fw<2.3
(5)6<f3/fw<7
但し、
f2;第2レンズ群の焦点距離、
f3;第3レンズ群の焦点距離。
The endoscope objective optical system according to any one of claims 1 to 3, wherein the endoscope objective optical system satisfies the following conditional expressions (4) and (5).
(4) 1.9 <f2 / fw <2.3
(5) 6 <f3 / fw <7
However,
f2: focal length of the second lens group,
f3: focal length of the third lens group.
請求項1ないし4のいずれか1項記載の内視鏡対物光学系において、次の条件式(6)を満足する内視鏡対物光学系。
(6)0.4<(f23t×fw)/(f23w×ft)<0.65
但し、
23t;第2レンズ群と第3レンズ群の最大倍率位置における合成焦点距離、
23w;第2レンズ群と第3レンズ群の短焦点距離端における合成焦点距離、
ft;全系の最大倍率位置での焦点距離。
The endoscope objective optical system according to any one of claims 1 to 4, wherein the endoscope objective optical system satisfies the following conditional expression (6).
(6) 0.4 <(f 23t × fw) / (f 23w × ft) <0.65
However,
f 23t ; composite focal length at the maximum magnification position of the second lens group and the third lens group,
f 23w ; composite focal length at the short focal length end of the second lens group and the third lens group,
ft: focal length at the maximum magnification position of the entire system.
請求項1ないし5のいずれか1項記載の内視鏡対物光学系を設けた内視鏡。
An endoscope provided with the endoscope objective optical system according to any one of claims 1 to 5.
JP2003323943A 2003-09-17 2003-09-17 Endoscope objective optical system Expired - Fee Related JP4426236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003323943A JP4426236B2 (en) 2003-09-17 2003-09-17 Endoscope objective optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003323943A JP4426236B2 (en) 2003-09-17 2003-09-17 Endoscope objective optical system

Publications (2)

Publication Number Publication Date
JP2005091655A true JP2005091655A (en) 2005-04-07
JP4426236B2 JP4426236B2 (en) 2010-03-03

Family

ID=34454843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003323943A Expired - Fee Related JP4426236B2 (en) 2003-09-17 2003-09-17 Endoscope objective optical system

Country Status (1)

Country Link
JP (1) JP4426236B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139164A (en) * 2004-11-15 2006-06-01 Konica Minolta Photo Imaging Inc Variable power optical system
JP2006309076A (en) * 2005-05-02 2006-11-09 Ricoh Opt Ind Co Ltd Lens for projection and projector device
JP2009020337A (en) * 2007-07-12 2009-01-29 Nikon Corp Zoom lens, optical equipment and method for varying power of zoom lens
JP2009294666A (en) * 2009-08-06 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
CN103969819A (en) * 2013-01-25 2014-08-06 北京威斯顿亚太光电仪器有限公司 Stray light removing hard tube endoscope optical system
JP2018025591A (en) * 2016-08-08 2018-02-15 Hoya株式会社 Objective optical system for endoscope and endoscope
CN111886531A (en) * 2018-03-22 2020-11-03 奥林巴斯株式会社 Endoscope objective optical system
CN117420657A (en) * 2023-05-26 2024-01-19 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) Miniature wide-field objective lens for multispectral imaging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6674450B2 (en) 2015-09-07 2020-04-01 Hoya株式会社 Variable magnification optical system for endoscope, and endoscope

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139164A (en) * 2004-11-15 2006-06-01 Konica Minolta Photo Imaging Inc Variable power optical system
JP2006309076A (en) * 2005-05-02 2006-11-09 Ricoh Opt Ind Co Ltd Lens for projection and projector device
JP4739810B2 (en) * 2005-05-02 2011-08-03 リコー光学株式会社 Projection lens and projector device
JP2009020337A (en) * 2007-07-12 2009-01-29 Nikon Corp Zoom lens, optical equipment and method for varying power of zoom lens
JP2009294666A (en) * 2009-08-06 2009-12-17 Canon Inc Zoom lens and imaging apparatus having the same
CN103969819A (en) * 2013-01-25 2014-08-06 北京威斯顿亚太光电仪器有限公司 Stray light removing hard tube endoscope optical system
JP2018025591A (en) * 2016-08-08 2018-02-15 Hoya株式会社 Objective optical system for endoscope and endoscope
CN111886531A (en) * 2018-03-22 2020-11-03 奥林巴斯株式会社 Endoscope objective optical system
CN111886531B (en) * 2018-03-22 2022-06-03 奥林巴斯株式会社 Endoscope objective optical system
CN117420657A (en) * 2023-05-26 2024-01-19 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) Miniature wide-field objective lens for multispectral imaging

Also Published As

Publication number Publication date
JP4426236B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP3845331B2 (en) Endoscope objective optical system
JP4373819B2 (en) Imaging optical system
JP4950608B2 (en) Zoom lens and imaging apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JPH05173071A (en) Wide angle zoom lens
JP2000284177A (en) Three-group zoom lens
JPWO2014129170A1 (en) Zoom lens system, interchangeable lens device and camera system
JP4479204B2 (en) Highly variable magnification optical system capable of image shift
JP2011197469A (en) Zoom lens system, interchangeable lens device, and camera system
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
JP2003121738A (en) Zoom lens
JP4379780B2 (en) Zoom lens barrel for microscope and microscope using the same
JPH0627373A (en) Telephoto zoom lens
JP4426236B2 (en) Endoscope objective optical system
JP4717399B2 (en) Zoom lens and imaging apparatus having the same
JP4380158B2 (en) Zoom lens
JPH11160621A (en) Zoom lens
JP4203284B2 (en) Telephoto zoom lens
JP2002014282A (en) Endoscopic objective variable power optical system
JP2017116702A (en) Zoom lens and imaging apparatus including the same
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JPWO2016129054A1 (en) Zoom imaging device
JP2003262793A (en) Zoom lens
JP4642408B2 (en) Zoom lens and camera using the same
JP2004004932A (en) Zoom lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Ref document number: 4426236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees