Nothing Special   »   [go: up one dir, main page]

JP2005078820A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005078820A
JP2005078820A JP2003304387A JP2003304387A JP2005078820A JP 2005078820 A JP2005078820 A JP 2005078820A JP 2003304387 A JP2003304387 A JP 2003304387A JP 2003304387 A JP2003304387 A JP 2003304387A JP 2005078820 A JP2005078820 A JP 2005078820A
Authority
JP
Japan
Prior art keywords
carbonate
lithium
aqueous electrolyte
positive electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304387A
Other languages
Japanese (ja)
Inventor
Tomoko Koto
小東  朋子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003304387A priority Critical patent/JP2005078820A/en
Publication of JP2005078820A publication Critical patent/JP2005078820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the charge/discharge cycle performance of a high voltage non-aqueous electrolyte secondary battery where a positive electrode comprises a lithium nickel manganese compound oxide. <P>SOLUTION: The positive electrode active material is a lithium nickel manganese compound oxide expressed by a general formula Li<SB>x</SB>Ni<SB>y</SB>Mn<SB>2-y</SB>O<SB>4-δ</SB>(where, 0<x<1.1, 0.45<y<0.55, and 0≤δ<0.4). The non-aqueous electrolyte contains annular carbonate and chain-like carbonate, and at least either the annular carbonate or chain-like carbonate contains a fluorine element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、正極活物質がリチウム・ニッケル・マンガン複合酸化物である非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery in which a positive electrode active material is a lithium / nickel / manganese composite oxide.

近年、電気機器の携帯化・小型化が進むに伴い、内蔵される電池として、高エネルギー密度でかつ軽量である非水電解質二次電池が適用されるようになった。現在、市販されている非水電解質二次電池の正極活物質としては、主にリチウムコバルト酸化物(LiCoO)が用いられている。しかしながら、今後、さらなる生産量の増加や、電池の大型化にともなって、材料コスト、コバルトの埋蔵量、および環境規制の問題が深刻になる恐れがある。 In recent years, as electric devices have become more portable and smaller, non-aqueous electrolyte secondary batteries having high energy density and light weight have been applied as built-in batteries. At present, lithium cobalt oxide (LiCoO 2 ) is mainly used as a positive electrode active material for non-aqueous electrolyte secondary batteries that are commercially available. However, in the future, with further increase in production and battery size, material cost, cobalt reserves and environmental regulations may become serious.

そこでリチウムコバルト酸化物に置き換わる正極活物質として、リチウムニッケル酸化物(LiNiO)やリチウムマンガン酸化物(LiMn)などが提案されている。その中でも、リチウムマンガン酸化物は低コストおよび低公害性の面で期待されている。 Accordingly, lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ), and the like have been proposed as positive electrode active materials that replace lithium cobalt oxide. Among them, lithium manganese oxide is expected in terms of low cost and low pollution.

最近、特許文献1で報告されているように、リチウムマンガン酸化物のMnの一部をNiで置換したリチウム・ニッケル・マンガン複合酸化物(LiNi0.5Mn1.5)が見出された。このリチウム・ニッケル・マンガン複合酸化物を正極に備えた非水電解質二次電池は5V級の高電圧電池となることから、ポータブルコンピュータ・電動工具・HEVおよびEVなどの組電池としての用途において、直列に接続するセル数を少なくできるという利点がある。 Recently, as reported in Patent Document 1, a lithium-nickel-manganese composite oxide (LiNi 0.5 Mn 1.5 O 4 ) in which a part of Mn of lithium manganese oxide is replaced with Ni was found. It was done. Since the non-aqueous electrolyte secondary battery equipped with the lithium / nickel / manganese composite oxide as a positive electrode is a 5V class high voltage battery, in applications such as portable computers, power tools, HEVs and EVs, There is an advantage that the number of cells connected in series can be reduced.

特表2000−515672号公報。JP 2000-515672 A.

リチウム・ニッケル・マンガン複合酸化物であるLiMn1.5Ni0.5の充放電曲線は、非特許文献1に示されている。 A charge / discharge curve of LiMn 1.5 Ni 0.5 O 4 , which is a lithium / nickel / manganese composite oxide, is shown in Non-Patent Document 1.

太田ら、第41回電池討論会講演要旨集、2D16、P452(2000)。Ota et al., 41st Battery Discussion Meeting, 2D16, P452 (2000).

また、特許文献2では、LiMn1.5Ni0.5等の5V級正極活物質を用いた非水電解質二次電池において、電解液溶媒として環状カーボネートと鎖状カーボネートを混合して用いる技術が開示されている。 Further, in Patent Document 2, in a nonaqueous electrolyte secondary battery using a 5V class positive electrode active material such as LiMn 1.5 Ni 0.5 O 4 , a cyclic carbonate and a chain carbonate are mixed and used as an electrolyte solution solvent. Technology is disclosed.

特開2001−256966号公報。JP 2001-256966 A.

さらに、特許文献3では、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等の4V級正極活物質を用いた非水電解質二次電池において、電解液溶媒としてフッ素化カーボネートと鎖状カーボネートを混合して用い、その体積比率(フッ素化カーボネート:鎖状カーボネート)が5:95から90:10の範囲にすることで、電池の破壊試験に対しての安全性が向上する技術が開示されている。   Furthermore, in Patent Document 3, in a non-aqueous electrolyte secondary battery using a 4V class positive electrode active material such as lithium cobaltate, lithium nickelate, lithium manganate, etc., fluorinated carbonate and chain carbonate are mixed as an electrolyte solvent. And a volume ratio (fluorinated carbonate: chain carbonate) in the range of 5:95 to 90:10 is disclosed, thereby improving the safety against battery destructive testing.

特開平10−116630号公報。JP-A-10-116630.

ところが、このリチウム・ニッケル・マンガン複合酸化物を含む正極を備えた5V級非水電解質二次電池は、リチウムコバルト酸化物やリチウムマンガン酸化物を用いた正極を備えた非水電解質二次電池とは異なり、作動電圧が高いために、電池の充電時に電解質に含まれる非水溶媒が酸化分解されて、電解液が枯渇することにより充放電サイクル性能が低下するといった問題があり、実用化が困難になっている。   However, a 5V class non-aqueous electrolyte secondary battery provided with a positive electrode containing this lithium / nickel / manganese composite oxide is a non-aqueous electrolyte secondary battery provided with a positive electrode using lithium cobalt oxide or lithium manganese oxide. However, since the operating voltage is high, the non-aqueous solvent contained in the electrolyte is oxidatively decomposed when the battery is charged, and there is a problem that the charge / discharge cycle performance deteriorates due to depletion of the electrolyte, making it difficult to put it to practical use. It has become.

本発明は、この5V級非水電解質二次電池の実用化を阻む問題点を、系統的に多くの実験によって解決したもので、その目的は、正極にリチウム・ニッケル・マンガン複合酸化物を備えた非水電解質二次電池の電解質組成を最適化することにより、高電圧非水電解質二次電池の充放電サイクル性能を向上することにある。   The present invention has solved the problem that hinders the practical application of this 5V class non-aqueous electrolyte secondary battery by systematic many experiments, and its purpose is to provide a lithium / nickel / manganese composite oxide on the positive electrode. It is another object of the present invention to improve the charge / discharge cycle performance of a high-voltage nonaqueous electrolyte secondary battery by optimizing the electrolyte composition of the nonaqueous electrolyte secondary battery.

請求項1の発明は、正極活物質が一般式LiNiMn2−y4−δ(但し、0<x<1.1、0.45<y<0.55、0≦δ<0.4)で表されるリチウム・ニッケル・マンガン複合酸化物である非水電解質二次電池において、非水電解質が環状カーボネートと鎖状カーボネートとを含み、前記環状カーボネートまたは鎖状カーボネートの少なくとも1種がフッ素元素を含むことを特徴とする。 According to the first aspect of the present invention, the positive electrode active material has the general formula Li x Ni y Mn 2-y O 4-δ (where 0 <x <1.1, 0.45 <y <0.55, 0 ≦ δ < 0.4), a non-aqueous electrolyte secondary battery that is a lithium / nickel / manganese composite oxide, wherein the non-aqueous electrolyte includes a cyclic carbonate and a chain carbonate, and at least one of the cyclic carbonate and the chain carbonate. The seed is characterized by containing a fluorine element.

本発明の、正極活物質が一般式LiNiMn2−y4−δ(但し、0<x<1.1、0.45<y<0.55、0≦δ<0.4)で表されるリチウム・ニッケル・マンガン複合酸化物である非水電解質二次電池において、非水電解質が環状カーボネートと鎖状カーボネートとを含み、前記環状カーボネートまたは鎖状カーボネートの少なくとも1種がフッ素元素を含む非水電解質二次電池においては、高電圧下での非水溶媒の酸化分解反応が抑制される。 Of the present invention, the positive electrode active material is the formula Li x Ni y Mn 2-y O 4-δ ( where, 0 <x <1.1,0.45 <y <0.55,0 ≦ δ <0.4 ), A non-aqueous electrolyte secondary battery that is a lithium-nickel-manganese composite oxide, wherein the non-aqueous electrolyte includes a cyclic carbonate and a chain carbonate, and at least one of the cyclic carbonate or the chain carbonate is fluorine. In a nonaqueous electrolyte secondary battery containing an element, an oxidative decomposition reaction of a nonaqueous solvent under a high voltage is suppressed.

その結果、5V級電池に特有の、正極における高電圧下での電解質の酸化分解により、電解液が枯渇することによって充放電サイクル性能が低下するといった問題が改善されて、高エネルギー密度、長寿命の高電圧非水電解質二次電池を得ることができる。したがって、本発明の工業的価値は極めて大きい。   As a result, the problem of deterioration of charge / discharge cycle performance due to electrolyte depletion due to oxidative decomposition of electrolyte under high voltage at the positive electrode, which is peculiar to 5V class batteries, has been improved, and high energy density and long life High voltage non-aqueous electrolyte secondary battery can be obtained. Therefore, the industrial value of the present invention is extremely large.

発明者は、5V級電池における、充放電サイクルにともなう電池内部抵抗の増加、寿命性能に劣るといった問題を解決するため、正極にリチウム・ニッケル・マンガン複合酸化物を備えた非水電解質二次電池を作製し、電解質組成について鋭意実験を繰り返し検討した。   In order to solve the problems of the 5V class battery, such as an increase in internal resistance of the battery accompanying charge / discharge cycles and poor life performance, the non-aqueous electrolyte secondary battery comprising a lithium / nickel / manganese composite oxide on the positive electrode Were made and repeated intensive experiments on the electrolyte composition.

その結果、非水電解質が環状カーボネートと鎖状カーボネートとの混合溶媒を含む場合に、50サイクル以上の充放電サイクルが可能であることがわかった。しかしながら、前記混合溶媒を用いた電池においても、溶媒の酸化分解による充放電サイクル劣化が著しかった。   As a result, it was found that when the nonaqueous electrolyte contains a mixed solvent of a cyclic carbonate and a chain carbonate, a charge / discharge cycle of 50 cycles or more is possible. However, even in the battery using the mixed solvent, charge / discharge cycle deterioration due to oxidative decomposition of the solvent was remarkable.

そこで、さらに溶媒を検討した結果、前記環状カーボネートまたは鎖状カーボネートの水素元素の少なくとも一部をフッ素元素で置換することで、充放電サイクル性能が向上することがわかった。なお、以下では「環状カーボネートまたは鎖状カーボネートの水素元素の少なくとも一部をフッ素元素で置換した化合物」を「フッ素化カーボネート」と呼ぶことにする。   As a result of further investigation of the solvent, it was found that the charge / discharge cycle performance was improved by substituting at least part of the hydrogen element of the cyclic carbonate or chain carbonate with a fluorine element. Hereinafter, “a compound obtained by substituting at least a part of a hydrogen element of a cyclic carbonate or a chain carbonate with a fluorine element” will be referred to as “fluorinated carbonate”.

この原因はまだ明らかになっていないが、次のような理由が考えられる。5V級電池において、非水溶媒中にフッ素化カーボネートが含まれる場合に、正極活物質表面に安定な耐酸化性被膜が形成され、その結果正極と溶媒との反応が抑制され、充放電サイクル特性が改善されるものである。   The reason for this has not yet been clarified, but the following reasons are possible. In a 5V class battery, when fluorinated carbonate is contained in a non-aqueous solvent, a stable oxidation-resistant film is formed on the surface of the positive electrode active material, and as a result, the reaction between the positive electrode and the solvent is suppressed, and charge / discharge cycle characteristics Will be improved.

さらに、環状カーボネートまたは鎖状カーボネートの水素元素の少なくとも一部をフッ素元素で置換することで、分子構造が安定化し、耐酸化性が向上し、その結果非水溶媒の酸化分解が抑制され、充放電サイクル特性が改善されるものである。   Furthermore, by substituting at least a part of the hydrogen element of the cyclic carbonate or chain carbonate with the fluorine element, the molecular structure is stabilized and the oxidation resistance is improved. As a result, the oxidative decomposition of the nonaqueous solvent is suppressed, and the charge is reduced. Discharge cycle characteristics are improved.

環状カーボネートとしてはエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などが挙げられる。また鎖状カーボネートとしてはジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などが挙げられる。環状カーボネートまたは鎖状カーボネートは、それぞれ1種類以上混合して用い、さらに混合溶媒の内、少なくとも1種はフッ素元素を含む溶媒を用いる。   Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC). Examples of the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC). One or more cyclic carbonates or chain carbonates are used in combination, and at least one of the mixed solvents is a solvent containing a fluorine element.

本発明で用いるフッ素元素を含む環状カーボネートおよび鎖状カーボネート(以後、フッ素化カーボネート)の種類としては、特に制限は無く、種々のフッ素化カーボネートを適宜使用できる。フッ素化カーボネートとしては、例えば、化1で示される一般式(1)で表されるフッ素化環状カーボネート、または化2で示される一般式(2)で表されるフッ素化鎖状カーボネートから選択される少なくとも1種を使用することができる。   There is no restriction | limiting in particular as a kind of the cyclic carbonate and chain carbonate (henceforth fluorinated carbonate) containing the fluorine element used by this invention, A various fluorinated carbonate can be used suitably. The fluorinated carbonate is selected from, for example, a fluorinated cyclic carbonate represented by the general formula (1) represented by the chemical formula 1 or a fluorinated chain carbonate represented by the general formula (2) represented by the chemical formula 2. At least one of the above can be used.

Figure 2005078820
Figure 2005078820

Figure 2005078820
Figure 2005078820

一般式(1)のR、R、Rは水素原子、R4は水素原子またはアルキル基を表しており、RからRの水素原子の一部または全部をF元素で置換している。また、一般式(2)のRおよびRはアルキル基を表しており、R5およびR6中の水素原子の一部または全部をF元素で置換している。 In the general formula (1), R 1 , R 2 and R 3 represent a hydrogen atom, R 4 represents a hydrogen atom or an alkyl group, and a part or all of the hydrogen atoms of R 1 to R 4 are substituted with an F element. Yes. In addition, R 5 and R 6 in the general formula (2) represent an alkyl group, and part or all of the hydrogen atoms in R 5 and R 6 are substituted with the F element.

本発明の非水電解質二次電池に用いる正極活物質である一般式LiNiMn2−y4−δ(但し、0<x<1.1、0.45<y<0.55、0≦δ<0.4)で表されるリチウム・ニッケル・マンガン複合酸化物は、4.5〜4.9V vs.Li/Liの範囲に放電電位平坦部をもつ。ここで「放電電位平坦部」とは、図1に示した、非特許文献1の453ページのFig.1に示されたLiMn1.5Ni0.5の放電曲線に見られる、約4.7V vs.Li/Liの電圧プラトーのように、放電容量(定電流放電の場合は時間)に対して放電電圧がほとんど変化しない部分を示す。 The non-aqueous electrolyte as a cathode active material for use in secondary battery general formula Li x Ni y Mn 2-y O 4-δ ( although the present invention, 0 <x <1.1,0.45 <y <0.55 , 0 ≦ δ <0.4), the lithium-nickel-manganese composite oxide is 4.5 to 4.9 V vs. It has a discharge potential flat part in the range of Li / Li + . Here, the “discharge potential flat portion” refers to FIG. 1 on page 453 of Non-Patent Document 1 shown in FIG. As shown in the discharge curve of LiMn 1.5 Ni 0.5 O 4 shown in FIG. A portion where the discharge voltage hardly changes with respect to the discharge capacity (time in the case of constant current discharge) like a voltage plateau of Li / Li + is shown.

本発明のリチウム・ニッケル・マンガン複合酸化物は、一般的には、例えば、リチウム源、マンガン源、ニッケル源となる化合物同士を混合して、焼成する固相法により合成することができるが、特許文献1に示されるようなゾルゲル法によっても合成することができる。   The lithium / nickel / manganese composite oxide of the present invention can be synthesized by, for example, a solid phase method in which, for example, a lithium source, a manganese source, and a nickel source are mixed and fired. It can also be synthesized by a sol-gel method as disclosed in Patent Document 1.

リチウム源としては、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウムなどが挙げられる。また、マンガン源としては、例えば、二酸化マンガン、酸化マンガン、水酸化マンガン、炭酸マンガン、硝酸マンガン、硫酸マンガン、シュウ酸マンガンなどが挙げられ、それらの中でも二酸化マンガンが特に好ましい。さらに、ニッケル源としては、例えば硝酸ニッケル、炭酸ニッケル、酸化ニッケルなどを挙げることができる。   Examples of the lithium source include lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, and lithium oxalate. Lithium phosphate, lithium pyruvate, lithium sulfate, lithium oxide and the like. Examples of the manganese source include manganese dioxide, manganese oxide, manganese hydroxide, manganese carbonate, manganese nitrate, manganese sulfate, and manganese oxalate. Among these, manganese dioxide is particularly preferable. Furthermore, examples of the nickel source include nickel nitrate, nickel carbonate, and nickel oxide.

また、本発明の正極活物質は、Ni、Mnの2つの遷移金属元素から構成されるが、発明の意図するところを変えずに、正極活物質が、Al、Ti、Fe、Nb、MoやW等の他の金属元素を含んで構成されてもよい。   Further, the positive electrode active material of the present invention is composed of two transition metal elements, Ni and Mn, but without changing the intention of the invention, the positive electrode active material is made of Al, Ti, Fe, Nb, Mo or the like. Other metal elements such as W may be included.

本発明の非水電解質二次電池に用いる負極材料としては、リチウムイオンを挿入・脱離することが可能な物質が用いられる。リチウムイオンを挿入・脱離することが可能な物質としては、黒鉛、非晶質炭素等の炭素材料、酸化物、窒化物、およびリチウム合金が例示される。リチウム合金としては例えばリチウムとアルミニウム、亜鉛、ビスマス、カドミウム、アンチモン、シリコン、鉛、錫等との合金を用いることができる。また、酸化物、窒化物およびリチウム合金は、種々の炭素材料と混合あるいは坦持させて用いることができる。   As the negative electrode material used in the nonaqueous electrolyte secondary battery of the present invention, a substance capable of inserting / extracting lithium ions is used. Examples of the substance capable of inserting / extracting lithium ions include carbon materials such as graphite and amorphous carbon, oxides, nitrides, and lithium alloys. As the lithium alloy, for example, an alloy of lithium and aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, or the like can be used. In addition, oxides, nitrides, and lithium alloys can be used by being mixed with or supported on various carbon materials.

本発明の非水電解質電池に用いるセパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリフッ化ビニリデンなどからなる微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものであっても良い。   As the separator used in the nonaqueous electrolyte battery of the present invention, a microporous membrane made of a polyolefin resin such as polyethylene or polypropylene, polyvinylidene fluoride, or the like is used, and a plurality of microporous membranes having different materials, weight average molecular weights and porosity May be laminated, or those microporous membranes may contain appropriate amounts of various plasticizers, antioxidants, flame retardants and other additives.

本発明の非水電解質電池に用いる電解質の有機溶媒には、請求項1に記載のカーボネート類の混合溶媒に、ラクトン類、硫黄化合物、リン酸エステル系化合物、スルホラン系炭化水素類、ホスファゼン誘導体等を混合して用いることができる。
また、本発明に用いる電解質の溶質としては、特に制限はなく、種々の溶質を適宜使用できる。例えば、LiClO、LiBF、LiAsF、LiPF、LiCF(CF、LiCF(CF、LiCF(CF、LiCF(CF、LiCF(CF)、LiCF(C、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CCO)、LiI、LiAlCl、LiBCなどを単独でまたは2種以上を混合して使用することができる。
Examples of the organic solvent for the electrolyte used in the nonaqueous electrolyte battery of the present invention include a mixed solvent of carbonates according to claim 1, lactones, sulfur compounds, phosphate ester compounds, sulfolane hydrocarbons, phosphazene derivatives, and the like. Can be mixed and used.
Moreover, there is no restriction | limiting in particular as a solute of the electrolyte used for this invention, A various solute can be used suitably. For example, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF (CF 3 ) 5 , LiCF 2 (CF 3 ) 4 , LiCF 3 (CF 3 ) 3 , LiCF 4 (CF 3 ) 2 , LiCF 5 (CF 3 ), LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (C 2 F 5 CO) 2 , LiI, LiAlCl 4 , LiBC 4 O 8 or the like can be used alone or in admixture of two or more.

また、上記電解質には固体またはゲル状のイオン伝導性電解質を用いることもできる。この場合、非水電解質電池の構成としては、正極、負極およびセパレータと有機または無機の固体電解質と上記非水電解液との組み合わせ、または正極、負極およびセパレータとしての有機または無機の固体電解質膜と上記非水電解液との組み合わせがあげられる。イオン伝導性電解質としては、ポリエチレンオキシド、ポリプロピレンオキサイド、ポリアクリロニトリルまたはポリエチレングリコールおよびこれらの誘導体などが挙げられる。   In addition, a solid or gel ion conductive electrolyte may be used as the electrolyte. In this case, the configuration of the nonaqueous electrolyte battery includes a combination of a positive electrode, a negative electrode, and a separator, an organic or inorganic solid electrolyte and the above nonaqueous electrolyte, or an organic or inorganic solid electrolyte membrane as the positive electrode, the negative electrode, and the separator. A combination with the non-aqueous electrolytic solution is mentioned. Examples of the ion conductive electrolyte include polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyethylene glycol, and derivatives thereof.

以下に本発明の実施例を示すが、これに限定されるものではない。   Although the Example of this invention is shown below, it is not limited to this.

はじめに、5V級正極活物質であるリチウム・ニッケル・マンガン複合酸化物を固相法により合成した。出発物質には水酸化リチウム一水和物、種々の性状の電解二酸化マンガン、硝酸ニッケルを用いた。これらの出発物質をそれぞれモル比でLi:Mn:Ni=1:1.5:0.5になるように秤量し、混合した後、空気中500℃で仮焼した。その後、酸素中700℃で20時間焼成することで本発明の正極活物質を得た。   First, a lithium / nickel / manganese composite oxide, which is a 5V class positive electrode active material, was synthesized by a solid phase method. As starting materials, lithium hydroxide monohydrate, various types of electrolytic manganese dioxide, and nickel nitrate were used. These starting materials were weighed so as to have a molar ratio of Li: Mn: Ni = 1: 1.5: 0.5, mixed, and calcined at 500 ° C. in air. Then, the positive electrode active material of this invention was obtained by baking at 700 degreeC in oxygen for 20 hours.

試料の同定には、粉末X線回折測定、イオンクロマトグラフおよび原子吸光分析を用いた。その結果、得られた試料はすべてLiNi0.5Mn1.5を基本組成とするリチウム・ニッケル・マンガン複合酸化物であることを確認した。 For sample identification, powder X-ray diffraction measurement, ion chromatography and atomic absorption analysis were used. As a result, it was confirmed that all the obtained samples were lithium / nickel / manganese composite oxides having a basic composition of LiNi 0.5 Mn 1.5 O 4 .

つぎに、リチウム・ニッケル・マンガン複合酸化物を正極活物質に用いた正極板を作製した。リチウム・ニッケル・マンガン複合酸化物90質量%に、導電剤としてアセチレンブラック4質量%と、結着剤としてポリフッ化ビニリデン(PVdF)6質量%、さらに溶剤であるN−メチル−2ピロリドンを加えて湿式混合してスラリー状にした。このスラリー状の塗液を、厚さ15μmのアルミニウム箔両面に塗布し、120℃で乾燥後、プレスして正極板を得た。   Next, a positive electrode plate using a lithium / nickel / manganese composite oxide as a positive electrode active material was produced. To 90% by mass of lithium / nickel / manganese composite oxide, 4% by mass of acetylene black as a conductive agent, 6% by mass of polyvinylidene fluoride (PVdF) as a binder, and N-methyl-2-pyrrolidone as a solvent were added. Wet mixed to form a slurry. This slurry-like coating solution was applied to both sides of an aluminum foil having a thickness of 15 μm, dried at 120 ° C., and pressed to obtain a positive electrode plate.

つぎに負極板を作製した。黒鉛50wt%、PVdF5wt%、NMP45wt%を混合してペーストとし、このペーストを集電体としての厚さ10μmの銅箔に塗布し、130℃で乾燥後、プレスして負極板を得た。   Next, a negative electrode plate was produced. Graphite 50 wt%, PVdF 5 wt%, and NMP 45 wt% were mixed to form a paste. This paste was applied to a 10 μm thick copper foil as a current collector, dried at 130 ° C., and pressed to obtain a negative electrode plate.

つぎに、これらの正・負極板と厚さ25μmのポリプロピレン微多孔質セパレータとを用いて、巻回型発電要素とし、この巻回型発電要素を角型電池ケースに入れ、高さ48mm、幅30mm、厚さが4.2mm、公称容量600mAhの角型非水電解質二次電池を作製した。   Next, using these positive and negative electrode plates and a polypropylene microporous separator having a thickness of 25 μm, a wound type power generation element is formed. The wound type power generation element is placed in a rectangular battery case, and has a height of 48 mm, a width of A square nonaqueous electrolyte secondary battery having a thickness of 30 mm, a thickness of 4.2 mm, and a nominal capacity of 600 mAh was produced.

作製した角型電池を用いて、非水電解質の検討をおこなった。具体的には、種々の非水電解液を角型電池に2.17g注液したのち、注液口を封じて、試験用角型非水電解質二次電池を作製した。   The non-aqueous electrolyte was examined using the produced square battery. Specifically, after injecting 2.17 g of various nonaqueous electrolytes into the prismatic battery, the inlet was sealed to prepare a test prismatic nonaqueous electrolyte secondary battery.

つぎに、これらの非水電解質二次電池について、25℃において、充放電サイクル試験を行った。充電条件は次のとおりである。1CmA(=600mA)の定電流で4.8Vまで充電し、さらに4.8Vで定電圧充電をおこない、総充電時間が3時間になったところで充電を終了した。放電条件は、1CmAの定電流で3.4Vまでの放電をおこなった。   Next, a charge / discharge cycle test was performed at 25 ° C. for these nonaqueous electrolyte secondary batteries. The charging conditions are as follows. The battery was charged to 4.8 V with a constant current of 1 CmA (= 600 mA), further charged at a constant voltage of 4.8 V, and the charging was terminated when the total charging time was 3 hours. The discharge condition was a discharge of up to 3.4 V with a constant current of 1 CmA.

ここで、本発明に用いるフッ素化環状カーボネートとしては、化3(FEC−1)および化4(FEC−2)で表されるフッ素化エチレンカーボネート、および化5(FPC)で表されるフッ素化プロピレンカーボネートを使用した。またフッ素化鎖状カーボネートとしては、化6(FEMC−1)および化7(FEMC−2)で表されるフッ素化エチルメチルカーボネート、および化8(FDEC)で表されるフッ素化ジエチルカーボネートを使用した。なお、以下の実施例および比較例のすべての場合において、溶質にはLiPFを用い、混合溶媒に1.0mol/dmの濃度で溶解させた。 Here, as the fluorinated cyclic carbonate used in the present invention, fluorinated ethylene carbonate represented by Chemical Formula 3 (FEC-1) and Chemical Formula 4 (FEC-2), and fluorinated represented by Chemical Formula 5 (FPC). Propylene carbonate was used. As the fluorinated chain carbonate, fluorinated ethyl methyl carbonate represented by Chemical Formula 6 (FEMC-1) and Chemical Formula 7 (FEMC-2) and fluorinated diethyl carbonate represented by Chemical Formula 8 (FDEC) are used. did. In all cases of the following Examples and Comparative Examples, LiPF 6 was used as a solute and dissolved in a mixed solvent at a concentration of 1.0 mol / dm 3 .

Figure 2005078820
Figure 2005078820

Figure 2005078820
Figure 2005078820

Figure 2005078820
Figure 2005078820

Figure 2005078820
Figure 2005078820

Figure 2005078820
Figure 2005078820

Figure 2005078820
Figure 2005078820

[実施例1〜6および比較例1]
非水電解液として、化3、化4で表されるフッ素化環状カーボネート、または化6、化7で表されるフッ素化鎖状カーボネートの少なくとも1種以上を含む電解液を用い、環状カーボネートと鎖状カーボネートとの混合比を4:6(体積比)とした実施例1〜6の角型非水電解質二次電池を作製した。また、比較例1の電池には、ECとEMCの混合溶媒(体積比4:6)を用いている。作製した電池の非水溶媒の組成および初期放電容量、100サイクル後の放電容量、初期放電容量に対する100サイクル後の容量維持率を表1に示した。
[Examples 1 to 6 and Comparative Example 1]
As the non-aqueous electrolyte, an electrolyte containing at least one of a fluorinated cyclic carbonate represented by Chemical Formula 3 or Chemical Formula 4 or a fluorinated chain carbonate represented by Chemical Formula 6 or Chemical Formula 7 is used. The square nonaqueous electrolyte secondary battery of Examples 1-6 which made the mixing ratio with a chain carbonate 4: 6 (volume ratio) was produced. The battery of Comparative Example 1 uses a mixed solvent of EC and EMC (volume ratio 4: 6). Table 1 shows the composition of the nonaqueous solvent and the initial discharge capacity, the discharge capacity after 100 cycles, and the capacity retention rate after 100 cycles with respect to the initial discharge capacity of the produced battery.

Figure 2005078820
Figure 2005078820

[実施例7〜11および比較例2]
非水電解液として、化3で表されるフッ素化環状カーボネート、または化6、化8で表されるフッ素化鎖状カーボネートの少なくとも1種以上を含む電解液を用い、環状カーボネートと第1の鎖状カーボネートと第2の鎖状カーボネートとの混合比を4:3:3(体積比)とした実施例7〜11の角型非水電解質二次電池を作製した。また、比較例2の電池には、ECとEMCとDECの混合溶媒(体積比4:3:3)を用いている。作製した電池の非水溶媒の組成および初期放電容量、100サイクル後の放電容量、初期放電容量に対する100サイクル後の容量維持率を表2に示した。
[Examples 7 to 11 and Comparative Example 2]
As the non-aqueous electrolyte, an electrolyte containing at least one of a fluorinated cyclic carbonate represented by Chemical Formula 3 or a fluorinated chain carbonate represented by Chemical Formula 6 and Chemical Formula 8 is used. Square type nonaqueous electrolyte secondary batteries of Examples 7 to 11 in which the mixing ratio of the chain carbonate and the second chain carbonate was 4: 3: 3 (volume ratio) were produced. The battery of Comparative Example 2 uses a mixed solvent of EC, EMC, and DEC (volume ratio 4: 3: 3). Table 2 shows the composition of the non-aqueous solvent and the initial discharge capacity, the discharge capacity after 100 cycles, and the capacity retention rate after 100 cycles with respect to the initial discharge capacity.

Figure 2005078820
Figure 2005078820

[実施例12〜16および比較例3]
非水電解液として、化3、化5で表されるフッ素化環状カーボネート、または化8で表されるフッ素化鎖状カーボネートの少なくとも1種以上を含む電解液を用い、第1の環状カーボネートと第2の環状カーボネートと鎖状カーボネートとの混合比を2:2:6(体積比)とした実施例12〜16の角型非水電解質二次電池を作製した。また、比較例3の電池には、ECとPCとDECの混合溶媒(体積比2:2:6)を用いている。作製した電池の非水溶媒の組成および初期放電容量、100サイクル後の放電容量、初期放電容量に対する100サイクル後の容量維持率を表3に示した。
[Examples 12 to 16 and Comparative Example 3]
As the nonaqueous electrolytic solution, an electrolytic solution containing at least one of a fluorinated cyclic carbonate represented by Chemical Formula 3 or Chemical Formula 5 or a fluorinated chain carbonate represented by Chemical Formula 8 is used, and the first cyclic carbonate and Square type nonaqueous electrolyte secondary batteries of Examples 12 to 16 in which the mixing ratio of the second cyclic carbonate and the chain carbonate was 2: 2: 6 (volume ratio) were produced. The battery of Comparative Example 3 uses a mixed solvent of EC, PC, and DEC (volume ratio 2: 2: 6). Table 3 shows the composition of the non-aqueous solvent and the initial discharge capacity, the discharge capacity after 100 cycles, and the capacity retention rate after 100 cycles with respect to the initial discharge capacity.

Figure 2005078820
Figure 2005078820

[実施例17〜22および比較例4]
非水電解液として、化3、化4で表されるフッ素化環状カーボネート、または化6、化7で表されるフッ素化鎖状カーボネートの少なくとも1種以上を含む電解液を用い、環状カーボネートと鎖状カーボネートとの混合比を2:8(体積比)とした実施例17〜22の角型非水電解質二次電池を作製した。また、比較例4の電池には、ECとEMCの混合溶媒(体積比2:8)を用いている。作製した電池の非水溶媒の組成および初期放電容量、100サイクル後の放電容量、初期放電容量に対する100サイクル後の容量維持率を表4に示した。
[Examples 17 to 22 and Comparative Example 4]
As the non-aqueous electrolyte, an electrolyte containing at least one of a fluorinated cyclic carbonate represented by Chemical Formula 3 or Chemical Formula 4 or a fluorinated chain carbonate represented by Chemical Formula 6 or Chemical Formula 7 is used. Square type non-aqueous electrolyte secondary batteries of Examples 17 to 22 having a mixing ratio with the chain carbonate of 2: 8 (volume ratio) were produced. The battery of Comparative Example 4 uses a mixed solvent of EC and EMC (volume ratio 2: 8). Table 4 shows the composition of the non-aqueous solvent and the initial discharge capacity, the discharge capacity after 100 cycles, and the capacity retention rate after 100 cycles with respect to the initial discharge capacity.

Figure 2005078820
Figure 2005078820

[実施例23〜27および比較例5]
非水電解液として、化3、化5で表されるフッ素化環状カーボネート、または化8で表されるフッ素化鎖状カーボネートの少なくとも1種以上を含む電解液を用い、第1の環状カーボネートと第2の環状カーボネートと鎖状カーボネートとの混合比を1:4:5(体積比)とした実施例23〜27の角型非水電解質二次電池を作製した。また、比較例5の電池には、ECとPCとDECの混合溶媒(体積比1:4:5)を用いている。作製した電池の非水溶媒の組成および初期放電容量、100サイクル後の放電容量、初期放電容量に対する100サイクル後の容量維持率を表5に示した。
[Examples 23 to 27 and Comparative Example 5]
As the nonaqueous electrolytic solution, an electrolytic solution containing at least one of a fluorinated cyclic carbonate represented by Chemical Formula 3 or Chemical Formula 5 or a fluorinated chain carbonate represented by Chemical Formula 8 is used, and the first cyclic carbonate and Square type nonaqueous electrolyte secondary batteries of Examples 23 to 27 in which the mixing ratio of the second cyclic carbonate and the chain carbonate was 1: 4: 5 (volume ratio) were produced. The battery of Comparative Example 5 uses a mixed solvent of EC, PC, and DEC (volume ratio 1: 4: 5). Table 5 shows the composition of the nonaqueous solvent and the initial discharge capacity, the discharge capacity after 100 cycles, and the capacity retention rate after 100 cycles with respect to the initial discharge capacity of the produced battery.

Figure 2005078820
Figure 2005078820

表1〜表5に示すように、実施例1〜27の本発明電池は、比較例1〜5の電池と比べて、100サイクル後の放電容量維持率が80%以上まで改善された。   As shown in Tables 1 to 5, the batteries of the present invention of Examples 1 to 27 improved the discharge capacity retention after 100 cycles to 80% or more as compared with the batteries of Comparative Examples 1 to 5.

LiNi0.5Mn1.5の放電特性を示す図。Shows the discharge characteristics of LiNi 0.5 Mn 1.5 O 4.

Claims (1)

正極活物質が一般式LiNiMn2−y4−δ(但し、0<x<1.1、0.45<y<0.55、0≦δ<0.4)で表されるリチウム・ニッケル・マンガン複合酸化物である非水電解質二次電池において、非水電解質が環状カーボネートと鎖状カーボネートとを含み、前記環状カーボネートまたは鎖状カーボネートの少なくとも1種がフッ素元素を含むことを特徴とする非水電解質電池。
The positive electrode active material is represented by the general formula Li x Ni y Mn 2-y O 4-δ (where 0 <x <1.1, 0.45 <y <0.55, 0 ≦ δ <0.4). In a non-aqueous electrolyte secondary battery that is a lithium-nickel-manganese composite oxide, the non-aqueous electrolyte includes a cyclic carbonate and a chain carbonate, and at least one of the cyclic carbonate or the chain carbonate includes a fluorine element. A non-aqueous electrolyte battery.
JP2003304387A 2003-08-28 2003-08-28 Non-aqueous electrolyte secondary battery Pending JP2005078820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304387A JP2005078820A (en) 2003-08-28 2003-08-28 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304387A JP2005078820A (en) 2003-08-28 2003-08-28 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005078820A true JP2005078820A (en) 2005-03-24

Family

ID=34408093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304387A Pending JP2005078820A (en) 2003-08-28 2003-08-28 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005078820A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294403A (en) * 2005-04-11 2006-10-26 Sony Corp Battery
JP2006338892A (en) * 2005-05-31 2006-12-14 Sony Corp Battery
WO2007043526A1 (en) * 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007250415A (en) * 2006-03-17 2007-09-27 Mitsui Chemicals Inc Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2008084772A (en) * 2006-09-28 2008-04-10 Fdk Corp Lithium secondary battery
JP2008123714A (en) * 2006-11-08 2008-05-29 Sony Corp Electrolytic solution and battery
JP2009123424A (en) * 2007-11-13 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery
EP2108209A1 (en) * 2006-12-20 2009-10-14 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
WO2010014387A2 (en) * 2008-07-29 2010-02-04 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
KR100989309B1 (en) 2005-06-23 2010-10-22 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
JP2012064376A (en) * 2010-09-15 2012-03-29 Hitachi Maxell Energy Ltd Lithium secondary battery
JP2012160435A (en) * 2011-01-12 2012-08-23 Toyota Motor Corp Lithium ion secondary battery
WO2013033595A1 (en) * 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Lithium ion battery
JP2013508330A (en) * 2009-10-21 2013-03-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing fluorinated ethylene carbonate
WO2013100081A1 (en) * 2011-12-28 2013-07-04 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP2014086221A (en) * 2012-10-22 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2014097618A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Nonaqueous solvent for electricity storage devices, nonaqueous electrolyte solution, electricity storage device using nonaqueous electrolyte solution, and lithium secondary battery
CN103959544A (en) * 2011-09-02 2014-07-30 纳幕尔杜邦公司 Fluorinated electrolyte compositions
WO2014177704A1 (en) * 2013-05-02 2014-11-06 Solvay Fluor Gmbh Fluorinated carbonates as solvent for lithium sulfonimide-based electrolytes
JP2014211962A (en) * 2013-04-17 2014-11-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2015079767A (en) * 2006-06-02 2015-04-23 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte battery
CN104577197A (en) * 2013-10-29 2015-04-29 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
JP2015191737A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
CN114421012A (en) * 2022-01-25 2022-04-29 河北松辰医药科技有限公司 Lithium battery electrolyte additive and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JPH10177814A (en) * 1996-08-07 1998-06-30 Mitsui Chem Inc Ion conductive high molecular gel electrolyte and solid battery including high molecular gel electrolyte
JPH10247519A (en) * 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Lithium secondary battery
JPH11195429A (en) * 1998-01-05 1999-07-21 Hitachi Ltd Nonaqueous electrolytic solution secondary battery
JPH11307120A (en) * 1998-04-23 1999-11-05 Mitsui Chem Inc Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2002373702A (en) * 2001-06-18 2002-12-26 Asahi Denka Kogyo Kk Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2003086245A (en) * 2001-09-12 2003-03-20 Yuasa Corp Nonaqueous electrolyte battery
JP2003100342A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
JP2004014270A (en) * 2002-06-06 2004-01-15 Nec Corp Rechargeable battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177814A (en) * 1996-08-07 1998-06-30 Mitsui Chem Inc Ion conductive high molecular gel electrolyte and solid battery including high molecular gel electrolyte
JPH10116630A (en) * 1996-10-15 1998-05-06 Toray Ind Inc Non-aqueous electrolyte secondary battery
JPH10247519A (en) * 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Lithium secondary battery
JPH11195429A (en) * 1998-01-05 1999-07-21 Hitachi Ltd Nonaqueous electrolytic solution secondary battery
JPH11307120A (en) * 1998-04-23 1999-11-05 Mitsui Chem Inc Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2002373702A (en) * 2001-06-18 2002-12-26 Asahi Denka Kogyo Kk Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2003086245A (en) * 2001-09-12 2003-03-20 Yuasa Corp Nonaqueous electrolyte battery
JP2003100342A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
JP2004014270A (en) * 2002-06-06 2004-01-15 Nec Corp Rechargeable battery

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294403A (en) * 2005-04-11 2006-10-26 Sony Corp Battery
JP2006338892A (en) * 2005-05-31 2006-12-14 Sony Corp Battery
KR100989309B1 (en) 2005-06-23 2010-10-22 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
WO2007043526A1 (en) * 2005-10-12 2007-04-19 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution and lithium secondary battery using same
JP5243035B2 (en) * 2005-10-12 2013-07-24 三井化学株式会社 Lithium secondary battery
KR101067076B1 (en) * 2005-10-12 2011-09-22 미쓰이 가가쿠 가부시키가이샤 Nonaqueous electrolyte solution and lithium secondary battery using same
JP2007250415A (en) * 2006-03-17 2007-09-27 Mitsui Chemicals Inc Nonaqueous electrolyte solution and lithium secondary battery using the same
US9231276B2 (en) 2006-06-02 2016-01-05 Mitsubishi Chemical Corporation Nonaqueous electrolytic solutions and nonaqueous-electrolyte batteries
JP2015079767A (en) * 2006-06-02 2015-04-23 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous electrolyte battery
JP2008084772A (en) * 2006-09-28 2008-04-10 Fdk Corp Lithium secondary battery
JP2008123714A (en) * 2006-11-08 2008-05-29 Sony Corp Electrolytic solution and battery
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
US9406977B2 (en) 2006-12-20 2016-08-02 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
EP2108209A1 (en) * 2006-12-20 2009-10-14 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
EP2108209A4 (en) * 2006-12-20 2012-05-30 3M Innovative Properties Co Fluorinated compounds for use in lithium battery electrolytes
EP2637245A1 (en) * 2006-12-20 2013-09-11 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
JP2009123424A (en) * 2007-11-13 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery
US9647298B2 (en) 2007-11-13 2017-05-09 Sony Corporation Nonaqueous electrolyte battery and electrical apparatus
US9831532B2 (en) 2007-11-13 2017-11-28 Sony Corporation Nonaqueous electrolyte secondary battery
US10707539B2 (en) 2007-11-13 2020-07-07 Murata Manufacturing Co., Ltd. Battery
US8609286B2 (en) 2007-11-13 2013-12-17 Sony Corporation Nonaqueous electrolyte secondary battery
WO2010014387A3 (en) * 2008-07-29 2010-05-06 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
WO2010014387A2 (en) * 2008-07-29 2010-02-04 3M Innovative Properties Company Electrolyte composition, lithium-containing electrochemical cell, battery pack, and device including the same
JP2013508330A (en) * 2009-10-21 2013-03-07 ゾルファイ フルーオル ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing fluorinated ethylene carbonate
JP2012064376A (en) * 2010-09-15 2012-03-29 Hitachi Maxell Energy Ltd Lithium secondary battery
JP2012160435A (en) * 2011-01-12 2012-08-23 Toyota Motor Corp Lithium ion secondary battery
CN103765659A (en) * 2011-09-02 2014-04-30 纳幕尔杜邦公司 Lithium ion battery
JP2014525667A (en) * 2011-09-02 2014-09-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Lithium ion battery
KR101938921B1 (en) 2011-09-02 2019-01-15 솔베이(소시에떼아노님) Lithium ion battery
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
WO2013033595A1 (en) * 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Lithium ion battery
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
CN103959544A (en) * 2011-09-02 2014-07-30 纳幕尔杜邦公司 Fluorinated electrolyte compositions
WO2013100081A1 (en) * 2011-12-28 2013-07-04 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR102208587B1 (en) * 2011-12-28 2021-01-28 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR102206695B1 (en) * 2011-12-28 2021-01-25 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JPWO2013100081A1 (en) * 2011-12-28 2015-05-11 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN104025366A (en) * 2011-12-28 2014-09-03 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20190058708A (en) * 2011-12-28 2019-05-29 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
KR20140116078A (en) * 2011-12-28 2014-10-01 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
JP2014086221A (en) * 2012-10-22 2014-05-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2014097618A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Nonaqueous solvent for electricity storage devices, nonaqueous electrolyte solution, electricity storage device using nonaqueous electrolyte solution, and lithium secondary battery
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
US10916805B2 (en) 2013-04-04 2021-02-09 Solvay Sa Nonaqueous electrolyte compositions
US10224570B2 (en) 2013-04-17 2019-03-05 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
JP2014211962A (en) * 2013-04-17 2014-11-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN105144457A (en) * 2013-04-17 2015-12-09 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
WO2014177704A1 (en) * 2013-05-02 2014-11-06 Solvay Fluor Gmbh Fluorinated carbonates as solvent for lithium sulfonimide-based electrolytes
CN104577197B (en) * 2013-10-29 2018-04-27 松下电器产业株式会社 Rechargeable nonaqueous electrolytic battery
CN104577197A (en) * 2013-10-29 2015-04-29 松下电器产业株式会社 Non-aqueous electrolyte secondary battery
US9337513B2 (en) 2013-10-29 2016-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2015191737A (en) * 2014-03-27 2015-11-02 ダイキン工業株式会社 Electrolyte and electrochemical device
CN114421012A (en) * 2022-01-25 2022-04-29 河北松辰医药科技有限公司 Lithium battery electrolyte additive and preparation method thereof

Similar Documents

Publication Publication Date Title
US9979050B2 (en) Fluorinated electrolyte compositions
JP2005078820A (en) Non-aqueous electrolyte secondary battery
KR101574044B1 (en) Non-aqueous electrolyte secondary cell and method for manufacturing same
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
CN111048831B (en) Electrolyte for secondary battery and lithium secondary battery comprising same
JP4779651B2 (en) Non-aqueous electrolyte and lithium secondary battery
KR20120089197A (en) Electrolyte for electrochemical device and the electrochemical device thereof
JPWO2010058717A1 (en) Nonaqueous electrolyte and lithium battery using the same
KR20160081395A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
JP4632017B2 (en) Nonaqueous electrolyte secondary battery
KR20010068820A (en) New electrolytes and lithium ion battery using the same
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP4573098B2 (en) Nonaqueous electrolyte secondary battery
JP2010135190A (en) Lithium ion secondary battery
CN112886054A (en) Lithium-rich manganese-based lithium ion battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3563268B2 (en) Lithium secondary battery
CN114447434A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2011034698A (en) Nonaqueous electrolyte solution, and lithium secondary battery using nonaqueous electrolyte solution
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
KR100708210B1 (en) Nonaqueous electrolyte for secondary battery
WO2013069790A1 (en) Non-aqueous electrolyte secondary cell
WO2013069793A1 (en) Non-aqueous electrolyte secondary cell
WO2013069791A1 (en) Non-aqueous electrolyte secondary cell
KR100810680B1 (en) Nonaqueous electrolyte for secondary battery and Li secondary battery thereby

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824