Nothing Special   »   [go: up one dir, main page]

JP2005075683A - Carbon dioxide recovery unit - Google Patents

Carbon dioxide recovery unit Download PDF

Info

Publication number
JP2005075683A
JP2005075683A JP2003307972A JP2003307972A JP2005075683A JP 2005075683 A JP2005075683 A JP 2005075683A JP 2003307972 A JP2003307972 A JP 2003307972A JP 2003307972 A JP2003307972 A JP 2003307972A JP 2005075683 A JP2005075683 A JP 2005075683A
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorber
regenerator
absorbent
boiler body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003307972A
Other languages
Japanese (ja)
Inventor
Katsuya Yamashita
勝也 山下
Takao Nakagaki
隆雄 中垣
Masafumi Fukuda
雅文 福田
Masanori Kato
雅礼 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003307972A priority Critical patent/JP2005075683A/en
Publication of JP2005075683A publication Critical patent/JP2005075683A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chimneys And Flues (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon dioxide recovery unit which recovers much carbon dioxide contained in combustion gas. <P>SOLUTION: This carbon dioxide recovery unit is set in a boiler itself 27, and comprises a carbon dioxide absorber 34 which accommodates an absorber which absorbs carbon dioxide from the combustion gas formed in a combustion room 18, a carbon dioxide discharging part 36 which is accommodated in a regenerator 35 which discharges the absorbed carbon dioxide by heating the absorber which absorbed the carbon dioxide, a carbon dioxide heater 33 which supplies a heating medium to the carbon dioxide discharging part 36 and is accommodated in the boiler itself 27, and a means 41 which returns the absorber which discharged carbon dioxide at the carbon dioxide discharging part 36 to the carbon dioxide absorber 34. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ボイラ等の燃焼装置から排出される排ガス中に含まれる二酸化炭素(CO)を効果的に回収する二酸化炭素回収装置に関する。 The present invention relates to a carbon dioxide recovery device that effectively recovers carbon dioxide (CO 2 ) contained in exhaust gas discharged from a combustion device such as a boiler.

従来、加熱炉や燃焼炉等の燃焼装置は、燃料に空気を加えて燃焼ガスを生成し、生成した燃焼ガスで燃焼室を高温化させた後、その排ガスを大気に放出させている。排ガスを大気に多量に排出させるものとして、例えば、火力発電プラントに適用するボイラプラントがある。   Conventionally, a combustion apparatus such as a heating furnace or a combustion furnace generates air by adding air to fuel, raises the temperature of the combustion chamber with the generated combustion gas, and then releases the exhaust gas to the atmosphere. For example, there is a boiler plant that is applied to a thermal power plant as one that discharges a large amount of exhaust gas to the atmosphere.

この火力発電プラントに適用するボイラプラントは、図6に示すように、燃焼ガス16の流れに沿って順に、燃焼室1、放射形の第1過熱器2、第2過熱器3、第1再熱器4、第3過熱器5、第2再熱器6、節炭器7を収容するボイラ本体8と、このボイラ本体8に順次連接する空気予熱器9、脱硝器10、電気集塵器11、脱硫器12、煙突13を備え、燃焼室1に供給される燃料14と空気予熱器9を介して供給される空気15とで燃焼ガス16を生成し、生成された温度1200℃程度の燃焼ガス16の熱で放射形の第1過熱器2、第2過熱器3、第1再熱器4、第3過熱器5、第2再熱器6、節炭器7のそれぞれの内部を通る飽和水または飽和蒸気を加熱および過熱して蒸気(過熱蒸気)等にし、飽和水等を蒸気等にした温度350℃〜400℃程度の燃焼ガス16を空気予熱器9に供給し、ここで燃焼ガス16を生成する空気15を予熱させ、空気15を予熱させた燃焼ガス16を順次脱硝器10、電気集塵器11、脱硫器12に供給し、脱硫器12で窒素酸化物(NOx)を除去し、電気集塵器11で飛灰等の不純物を除去し、脱硫器12で硫黄酸化物(SOx)を除去し、煙突13から温度120℃〜150℃の排ガスとして大気に放出させていた。   As shown in FIG. 6, the boiler plant applied to this thermal power plant is composed of the combustion chamber 1, the radial first superheater 2, the second superheater 3, the first reheater in order along the flow of the combustion gas 16. A boiler body 8 that houses the heater 4, the third superheater 5, the second reheater 6, and the economizer 7, an air preheater 9 that is sequentially connected to the boiler body 8, a denitrator 10, and an electric dust collector 11, a desulfurizer 12 and a chimney 13, and a combustion gas 16 is generated by the fuel 14 supplied to the combustion chamber 1 and the air 15 supplied via the air preheater 9, and the generated temperature is about 1200 ° C. The inside of each of the radial first superheater 2, second superheater 3, first reheater 4, third superheater 5, second reheater 6, and economizer 7 by the heat of the combustion gas 16. Saturated water or saturated steam passing through is heated and superheated to form steam (superheated steam), etc., and saturated water etc. is converted to steam, etc. 350 Combustion gas 16 of about ˜400 ° C. is supplied to the air preheater 9, where the air 15 that generates the combustion gas 16 is preheated, and the combustion gas 16 preheated with the air 15 is sequentially removed from the denitration device 10 and the electric dust collector. 11. Supply to desulfurizer 12, remove nitrogen oxide (NOx) with desulfurizer 12, remove impurities such as fly ash with electrostatic precipitator 11, and remove sulfur oxide (SOx) with desulfurizer 12. The exhaust gas was discharged from the chimney 13 to the atmosphere as an exhaust gas having a temperature of 120 ° C to 150 ° C.

このような構成を備えるボイラプラントにおいて、ボイラ本体8から出る排ガスが毎時数百トンにも及ぶ多量になっているが故に、排ガス中に含まれる二酸化炭素によって地球温暖化を招く虞が生じ、このため、ボイラプラントの分野でも、二酸化炭素の排出削減、回収等の技術開発が行われている。   In the boiler plant having such a configuration, since the exhaust gas emitted from the boiler body 8 is a large amount of several hundred tons per hour, carbon dioxide contained in the exhaust gas may cause global warming. For this reason, technological developments such as reduction and recovery of carbon dioxide emissions are being carried out in the field of boiler plants.

二酸化炭素を回収する手法には、例えば、化学吸収法、物理吸着法、および膜分離法等がある。   Examples of methods for recovering carbon dioxide include chemical absorption methods, physical adsorption methods, and membrane separation methods.

化学吸収法は、温度40℃〜50℃で二酸化炭素を吸収し、温度100℃〜120℃で放出するアミン吸収液の持つ性質を巧みに利用したものである。物理吸着法は、圧力を加えると二酸化炭素を吸着し、減圧すると脱着するゼオライトの持つ性質を利用したものである。また、膜分離法は、多孔質中空糸膜を用いて二酸化炭素を膜分離するものである。   The chemical absorption method skillfully utilizes the properties of an amine absorbing solution that absorbs carbon dioxide at a temperature of 40 ° C. to 50 ° C. and releases it at a temperature of 100 ° C. to 120 ° C. The physical adsorption method uses the property of zeolite that adsorbs carbon dioxide when pressure is applied and desorbs when pressure is reduced. In the membrane separation method, carbon dioxide is subjected to membrane separation using a porous hollow fiber membrane.

ボイラプラントの分野では、上述の手法を選択して使い分け、二酸化炭素の回収を行っていた。   In the field of boiler plants, carbon dioxide is recovered by selecting and using the above methods.

なお、二酸化炭素の回収には、例えば、特開平5−26409号公報(特許文献1)、特開平6−17667号公報(特許文献2)、特開平8−155262号公報(特許文献3)、特開2002−79052号公報(特許文献4)が開示されている。
特開平5−26409号公報 特開平6−17667号公報 特開平8−155262号公報 特開2002−79052号公報
For the recovery of carbon dioxide, for example, JP-A-5-26409 (Patent Document 1), JP-A-6-17667 (Patent Document 2), JP-A-8-155262 (Patent Document 3), Japanese Patent Laid-Open No. 2002-79052 (Patent Document 4) is disclosed.
Japanese Patent Laid-Open No. 5-26409 JP-A-6-17667 JP-A-8-155262 JP 2002-79052 A

上述の二酸化炭素回収法を使用する場合、それぞれの手法には、幾つかの問題点が含まれていた。   When using the carbon dioxide recovery method described above, each method has some problems.

すなわち、アミン吸収液を利用する手法は、二酸化炭素の吸収率が高く、低温で作動させることができるので、最も有望視されてきたが、アミン吸収液自身が毒性を持つとともに液体であるため、排ガス中に僅かながら蒸発し、公害の要因になる等の問題を抱えていた。このため、何らかの対策が必要とされていた。   That is, the method using an amine absorbing liquid has been considered most promising because it has a high carbon dioxide absorption rate and can be operated at a low temperature, but the amine absorbing liquid itself is toxic and liquid, There were problems such as slight evaporation in the exhaust gas, causing pollution. For this reason, some measures were required.

一方、ゼオライト等の物理吸着法は、その材質にも依存するが、概ね二酸化炭素の吸収量が少なく、ボイラプラントのように多量の排ガスを処理する場合、抜本的な改善策を必要としていた。   On the other hand, although the physical adsorption method of zeolite or the like depends on the material, the amount of carbon dioxide absorption is generally small, and a drastic improvement measure is required when a large amount of exhaust gas is treated like a boiler plant.

また、膜分離法は、多孔質中空糸膜を用いるので、コスト高になるとともに、膜分離法自身が分子の大きさに基づいて分離するため、排ガスに含まれる窒素分子と二酸化炭素分子の大きさは同程度であり、両者の分離が難しく、回収された二酸化炭素の純度が低い等の問題を抱えていた。   In addition, since the membrane separation method uses a porous hollow fiber membrane, the cost is high, and the membrane separation method itself separates based on the size of the molecule, so that the size of nitrogen molecules and carbon dioxide molecules contained in the exhaust gas is increased. However, it was difficult to separate the two, and the purity of the recovered carbon dioxide was low.

このように、従来から使用されている二酸化炭素回収法には、幾つかの問題点が含まれており、より効果的な回収法の実現が求められていた。   As described above, the carbon dioxide recovery methods that have been used conventionally include several problems, and the realization of a more effective recovery method has been demanded.

近時、リチウムシリケート(LiSO)を粒子に含ませた吸収材を用いて二酸化炭素を吸収する技術が提案されており、その成果が期待されている。 Recently, a technique for absorbing carbon dioxide using an absorbent containing particles of lithium silicate (Li 4 SO 4 ) has been proposed, and the results are expected.

本発明は、リチウムシリケート(LiSO)の持つ属性を巧みに利用したもので、リチウムシリケートを粒子に含ませてペレットに構成した吸収材にし、この吸収材を用いてより多量の二酸化炭素を吸収させて回収する二酸化炭素回収装置を提供することを目的とする。 The present invention skillfully utilizes the attributes of lithium silicate (Li 4 SO 4 ), and is made into an absorbent material in which lithium silicate is contained in particles to form a pellet, and a larger amount of carbon dioxide is produced using this absorbent material. It aims at providing the carbon dioxide recovery device which absorbs and collects.

本発明者は、二酸化炭素の回収にあたり、鋭意研究を重ねた結果、リチウムの複合酸化物(化合物)であるリチウムシリケート(LiSO)を粒子に含ませたペレット状の固体の吸収材にしておけば、吸収温度になると二酸化炭素を選択的に吸収し、その吸収温度よりも高い温度(再生温度)になると二酸化炭素を再生(放出)する性質を持ち、自身の体積の400倍以上の二酸化炭素を吸収できることを見出した。 As a result of intensive research on the recovery of carbon dioxide, the present inventor made a pellet-like solid absorbent containing lithium silicate (Li 4 SO 4 ), which is a lithium composite oxide (compound). If it reaches, the carbon dioxide is selectively absorbed at the absorption temperature, and the carbon dioxide is regenerated (released) at a temperature higher than the absorption temperature (regeneration temperature), and more than 400 times its own volume. It was found that carbon dioxide can be absorbed.

なお、リチウムの複合酸化物の吸収温度は、大気圧で、約550℃〜約650℃であり、再生温度は、大気圧付近で約750℃〜約850℃である。   The absorption temperature of the lithium composite oxide is about 550 ° C. to about 650 ° C. at atmospheric pressure, and the regeneration temperature is about 750 ° C. to about 850 ° C. near atmospheric pressure.

本発明者は、リチウム化合物が二酸化炭素を多量に吸収する点に着目し、試行錯誤を繰り返して発明を完成させたものである。   The inventor has paid attention to the fact that the lithium compound absorbs a large amount of carbon dioxide, and has completed the invention by repeating trial and error.

すなわち、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項1に記載したように、ボイラ本体内に設置され、燃焼室から生成された燃焼ガスのうち、二酸化炭素を吸収する吸収材を収容する二酸化炭素吸収器と、二酸化炭素を吸収した吸収材を加熱させ、吸収した二酸化炭素を放出させる再生装置に収容された二酸化炭素放出部と、この二酸化炭素放出部に加熱媒体を供給する前記ボイラ本体に収容する二酸化炭素加熱器と、前記二酸化炭素放出部で二酸化炭素を放出させた吸収材を前記二酸化炭素吸収器に戻す手段とを備えたものである。   That is, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is installed in the boiler body and is carbon dioxide among the combustion gases generated from the combustion chamber as described in claim 1. A carbon dioxide absorber that contains an absorbent that absorbs carbon dioxide, a carbon dioxide release section that is housed in a regenerator that heats the absorbent that has absorbed carbon dioxide and releases the absorbed carbon dioxide, and a carbon dioxide release section A carbon dioxide heater accommodated in the boiler body for supplying a heating medium, and a means for returning the absorbent material from which carbon dioxide has been released by the carbon dioxide releasing section to the carbon dioxide absorber.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項2に記載したように、二酸化炭素吸収器は、燃焼ガス温度が350℃〜650℃の範囲の領域内のボイラ本体に設置したものである。   Further, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is configured such that the carbon dioxide absorber has a combustion gas temperature in a range of 350 ° C. to 650 ° C. Installed in the boiler body.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項3に記載したように、二酸化炭素吸収器は、ボイラ本体内に収容された脱硫器と第2再熱器との間に設置したものである。   Moreover, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention includes a desulfurizer and a second reheat which are accommodated in the boiler body, as described in claim 3. It is installed between the containers.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項4に記載したように、二酸化炭素吸収器は、ボイラ本体内に収容された電気集塵器および脱硫器のうち、いずれか一方の下流側に設置したものである。   Moreover, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention includes an electric dust collector and a desulfurizer accommodated in a boiler body, as described in claim 4. Of these, one is installed on the downstream side.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項5に記載したように、二酸化炭素吸収器は、ロータで駆動されるベルトコンベアと、このベルトコンベアに固設する筒体とで構成したものである。   In order to achieve the above-described object, the carbon dioxide recovery device according to the present invention includes a belt conveyor driven by a rotor and a belt conveyor driven by a rotor. It is comprised with the cylinder to install.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項6に記載したように、筒体は、頭部を開口させた金網および多孔板のうち、いずれか一方を選択して構成したものである。   Moreover, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is any one of a wire mesh and a perforated plate having an open head as described in claim 6. Is selected and configured.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項7に記載したように、二酸化炭素吸収器は、再生装置の二酸化炭素放出部を介して二酸化炭素を循環させる第1二酸化炭素循環系を備え、この第1二酸化炭素循環系を循環する二酸化炭素により前記再生装置の二酸化炭素放出部に供給する吸収材に移動力を与える構成にしたものである。   Further, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention circulates carbon dioxide through the carbon dioxide discharge part of the regenerator as described in claim 7. The first carbon dioxide circulation system is provided, and a moving force is applied to the absorbent supplied to the carbon dioxide discharge portion of the regenerator by the carbon dioxide circulating in the first carbon dioxide circulation system.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項8に記載したように、二酸化炭素吸収器は、再生装置の冷却器を介して窒素を循環させる窒素循環系を備え、この窒素循環系を循環する窒素により前記再生装置の二酸化炭素放出部から戻る吸収材に移動力を与える構成にしたものである。   Moreover, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention has a nitrogen circulation in which the carbon dioxide absorber circulates nitrogen through the cooler of the regenerator. And a moving force is applied to the absorbent that returns from the carbon dioxide releasing portion of the regenerator by the nitrogen circulating in the nitrogen circulation system.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項9に記載したように、吸収材は、リチウムシリケートを粒子に含ませたペレット状で構成したものである。   Moreover, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is configured in a pellet form in which lithium silicate is contained in particles as described in claim 9. .

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項10に記載したように、二酸化炭素加熱器は、燃焼ガス温度が800℃以上の領域内のボイラ本体に設置したものである。   Further, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention provides a carbon dioxide heater to a boiler body in a region where the combustion gas temperature is 800 ° C. or higher. It is installed.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項11に記載したように、二酸化炭素加熱器は、ボイラ本体内に収容する第2過熱器と第1再熱器との間に設置したものである。   In order to achieve the above object, the carbon dioxide recovery device according to the present invention includes a second superheater housed in the boiler body and a first reheater as described in claim 11. It is installed between the heaters.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項12に記載したように、二酸化炭素加熱器は、再生装置を介して加熱用二酸化炭素を循環させる第2二酸化炭素循環系を備えたものである。   Further, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is the second device in which the carbon dioxide heater circulates the heating carbon dioxide through the regenerator as described in claim 12. It has a carbon dioxide circulation system.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項13に記載したように、二酸化炭素放出部は、竪形の筒体として構成し、この筒体の入口側に設けられた二酸化炭素を抜き出す二酸化炭素抜出し管と、中間に設けられ、高温の加熱媒体を流す通路と、この通路に臨んで設けられ、支持格子で支持された網部とを備えたものである。   Moreover, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is configured such that the carbon dioxide release portion is configured as a bowl-shaped cylinder, and an inlet of the cylinder is provided. A carbon dioxide extraction pipe for extracting carbon dioxide provided on the side, a passage provided in the middle for flowing a high-temperature heating medium, and a net portion provided facing the passage and supported by a support grid It is.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項14に記載したように、網部は、通路の入口と出口とのそれぞれに設けたものである。   Moreover, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is provided with a mesh part at each of the entrance and the exit of the passage as described in claim 14.

また、本発明に係る二酸化炭素回収装置は、上述の目的を達成するために、請求項15に記載したように、再生装置は、二酸化炭素放出部の下流側に設けられ、この二酸化炭素放出部に収容させた吸収材から放出される二酸化炭素を冷却する冷却器を備えたものである。   Further, in order to achieve the above-mentioned object, the carbon dioxide recovery device according to the present invention is provided on the downstream side of the carbon dioxide emission unit as described in claim 15, and the carbon dioxide emission unit. It is provided with a cooler that cools carbon dioxide released from the absorbent housed in the container.

本発明に係る二酸化炭素回収装置は、ボイラ本体内に、温度が350℃〜650℃の領域に吸収材を収容する二酸化炭素吸収器を設置し、ボイラ本体と別置に設置した再生装置に二酸化炭素放出部を収容し、この二酸化炭素放出部に上述二酸化炭素吸収器で、二酸化炭素を吸収していた吸収材を移動させ、ボイラ本体内に設けた二酸化炭素加熱器からの熱源で上述二酸化炭素放出部を温度650℃〜750℃に加熱し、吸収材で今迄吸収していた二酸化炭素を放出させる構成にしたので、排ガス中に含まれる二酸化炭素を無駄なく、より多量に処理して回収することができる。   In the carbon dioxide recovery device according to the present invention, a carbon dioxide absorber that accommodates an absorbent in a region of 350 ° C. to 650 ° C. is installed in the boiler body, and the carbon dioxide absorber is installed in a regenerator installed separately from the boiler body. The carbon discharge part is accommodated, the absorbent that has absorbed carbon dioxide is moved to the carbon dioxide release part by the carbon dioxide absorber, and the carbon dioxide is supplied by the heat source from the carbon dioxide heater provided in the boiler body. The discharge part is heated to a temperature of 650 ° C to 750 ° C, and the carbon dioxide that has been absorbed by the absorbent material is released so that the carbon dioxide contained in the exhaust gas can be processed and recovered in large quantities without waste. can do.

以下、本発明に係る二酸化炭素回収装置の実施形態を図面および図面に付した符号を引用して説明する。   Hereinafter, embodiments of a carbon dioxide recovery device according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.

図1は、本発明に係る二酸化炭素回収装置を一例として火力発電プラントに組み込まれるボイラプラントに適用する第1実施形態を示す概略系統図である。   FIG. 1 is a schematic system diagram showing a first embodiment in which a carbon dioxide recovery device according to the present invention is applied to a boiler plant incorporated in a thermal power plant as an example.

火力発電プラントに組み込まれるボイラプラントは、燃焼ガス17の流れに沿って順に、燃焼室18、放射形の第1過熱器19、第2過熱器20、第1再熱器21、第3過熱器22、電気集塵器23、脱硫器24、第2再熱器25、節炭器26を収容するボイラ本体27と、このボイラ本体27に順次連接する空気予熱器28、脱硝器29、煙突30を備え、燃焼室18に供給される石炭等の燃料31と空気予熱器28を介して供給される空気32とで燃焼ガス17を生成し、生成された温度1200℃程度の燃焼ガス17の熱で放射形の第1過熱器19、第2過熱器20、第1再熱器21、第3過熱器22、第2再熱器25、節炭器26のそれぞれの内部を通る飽和水または飽和蒸気を加熱および過熱して蒸気(過熱蒸気)等にするとともに、電気集塵器23で燃焼ガス17に含まれる飛灰等の不純物を除去し、さらに脱硫器24で硫黄酸化物(SOx)を除去する一方、節炭器26を出た温度350℃〜400℃の燃焼ガス17を空気予熱器28に供給し、空気予熱器28で燃焼ガス17を生成する空気32を予熱させ、空気を予熱させた燃焼ガス17を脱硝器29に供給し、ここで窒素酸化物(NOx)を除去した後、煙突30から温度120℃〜150℃の排ガスとして大気に放出させている。   The boiler plant incorporated in the thermal power plant includes a combustion chamber 18, a radial first superheater 19, a second superheater 20, a first reheater 21, and a third superheater in order along the flow of the combustion gas 17. 22, an electric dust collector 23, a desulfurizer 24, a second reheater 25, a boiler main body 27 that houses a economizer 26, an air preheater 28 that is successively connected to the boiler main body 27, a denitrator 29, and a chimney 30 The combustion gas 17 is generated by the fuel 31 such as coal supplied to the combustion chamber 18 and the air 32 supplied via the air preheater 28, and the generated heat of the combustion gas 17 having a temperature of about 1200 ° C. Saturated water or saturation passing through each of the radial first superheater 19, second superheater 20, first reheater 21, third superheater 22, second reheater 25, and economizer 26. Steam is heated and superheated to form steam (superheated steam), etc. Further, impurities such as fly ash contained in the combustion gas 17 are removed by the electric dust collector 23, and sulfur oxides (SOx) are removed by the desulfurizer 24, while the temperature from the economizer 26 is 350 ° C. to 400 ° C. The combustion gas 17 at 0 ° C. is supplied to the air preheater 28, the air 32 for generating the combustion gas 17 is preheated by the air preheater 28, and the combustion gas 17 preheated with air is supplied to the denitrifier 29, where nitrogen After the oxide (NOx) is removed, it is discharged from the chimney 30 to the atmosphere as exhaust gas having a temperature of 120 ° C. to 150 ° C.

このような構成を備えた火力発電プラントに適用するボイラプラントにおいて、本実施形態は、ボイラ本体27における燃焼ガス17の温度800℃以上の領域、例えば第2過熱器20と第1再熱器21との間に設置した二酸化炭素加熱器33と、燃焼ガス17の温度350℃〜650℃程度の領域、例えば電気集塵器23または脱硫器24と第2再熱器25との間に設置した二酸化炭素吸収器34とを設けたものである。   In the boiler plant applied to the thermal power plant having such a configuration, the present embodiment is a region where the temperature of the combustion gas 17 in the boiler body 27 is 800 ° C. or higher, for example, the second superheater 20 and the first reheater 21. And a carbon dioxide heater 33 installed between and a region where the temperature of the combustion gas 17 is about 350 ° C. to 650 ° C., for example, between the electrostatic precipitator 23 or the desulfurizer 24 and the second reheater 25. A carbon dioxide absorber 34 is provided.

二酸化炭素加熱器33および二酸化炭素吸収器34は、ともにボイラ本体27と別置きに設置する再生装置35に接続させている。   Both the carbon dioxide heater 33 and the carbon dioxide absorber 34 are connected to a regenerator 35 installed separately from the boiler body 27.

再生装置35は、例えば筒状の胴体で構成され、胴体内に、二酸化炭素吸収器34から供給され、吸収材で吸収した二酸化炭素を高温下で放出させる二酸化炭素放出部36と、この二酸化炭素放出部36から放出された二酸化炭素を冷却させる冷却器37とを収容している。   The regenerator 35 is formed of, for example, a cylindrical body, and a carbon dioxide release unit 36 that releases carbon dioxide supplied from the carbon dioxide absorber 34 and absorbed by the absorbent material at a high temperature into the body, and the carbon dioxide. A cooler 37 for cooling the carbon dioxide released from the discharge unit 36 is accommodated.

また、二酸化炭素吸収器34は、再生装置35の冷却器37との間に、途中に他の冷却器38を設けた窒素タンク39、搬送用窒素ブロア40を介装させた窒素循環系41を備えている。この窒素循環系41は、再生装置35の二酸化炭素放出部36で二酸化炭素を放出した吸収材を二酸化炭素吸収器34に戻す際、循環中の窒素で吸収材の表面をシールし他の二酸化炭素を吸収させないようにするとともに、吸収材が二酸化炭素吸収器34に円滑に戻れるように押圧力(移動力)を与えている。   Further, the carbon dioxide absorber 34 has a nitrogen circulation system 41 interposing a nitrogen tank 39 provided with another cooler 38 in the middle and a nitrogen blower 40 for transportation between the cooler 37 of the regenerator 35. I have. The nitrogen circulation system 41 seals the surface of the absorbent with the circulating nitrogen when returning the absorbent that has released carbon dioxide from the carbon dioxide release section 36 of the regenerator 35 to the carbon dioxide absorber 34, and other carbon dioxide. And a pressing force (moving force) is applied so that the absorbent can smoothly return to the carbon dioxide absorber 34.

また、再生装置35における二酸化炭素放出部36は、途中に搬送用二酸化炭素ブロア42、冷却器43を設けた二酸化炭素タンク44を介装させた第1二酸化炭素循環系45を備えている。この第1二酸化炭素循環系45は、ボイラ本体27に設けた二酸化炭素吸収器34で二酸化炭素を吸収した吸収材を再生装置35の二酸化炭素放出部36に移動させる際、二酸化炭素タンク44からの二酸化炭素を吸収材に与え、吸収材が円滑に移動できるようにしている。   Further, the carbon dioxide releasing part 36 in the regenerator 35 includes a first carbon dioxide circulation system 45 interposing a carbon dioxide tank 44 provided with a transfer carbon dioxide blower 42 and a cooler 43 in the middle. The first carbon dioxide circulation system 45 is supplied from the carbon dioxide tank 44 when moving the absorbent that has absorbed carbon dioxide by the carbon dioxide absorber 34 provided in the boiler body 27 to the carbon dioxide discharge section 36 of the regenerator 35. Carbon dioxide is given to the absorbent so that the absorbent can move smoothly.

また、再生装置35は、二酸化炭素放出部36で吸収材から二酸化炭素を放出させ、冷却器37で冷却させた二酸化炭素の一部をブロア46を介してボイラ本体27の二酸化炭素加熱器33に供給して加熱し、高温化させた二酸化炭素を二酸化炭素放出部36に加熱源として与える第2二酸化炭素循環系47を備えている。   In addition, the regenerator 35 releases carbon dioxide from the absorbent material by the carbon dioxide release section 36, and a part of the carbon dioxide cooled by the cooler 37 is transferred to the carbon dioxide heater 33 of the boiler body 27 through the blower 46. A second carbon dioxide circulation system 47 is provided for supplying the heated and heated carbon dioxide to the carbon dioxide releasing section 36 as a heating source.

次に、本実施形態に係る二酸化炭素回収装置の作用を説明する。   Next, the operation of the carbon dioxide recovery device according to this embodiment will be described.

ボイラ本体27の燃焼室18で生成された燃焼ガス17は、温度800℃以上で二酸化炭素加熱器33を加熱させ、再生装置35からブロア46を介して供給される加熱用二酸化炭素を温度750℃〜850℃に高温化させ、高温化させた加熱用二酸化炭素を第2二酸化炭素循環系47を介して再生装置35の二酸化炭素放出部36に加熱源として与えて加熱させ、この加熱に伴って吸収材で吸収された二酸化炭素を放出させている。   The combustion gas 17 generated in the combustion chamber 18 of the boiler body 27 heats the carbon dioxide heater 33 at a temperature of 800 ° C. or higher, and the heating carbon dioxide supplied from the regenerator 35 via the blower 46 has a temperature of 750 ° C. The carbon dioxide for heating heated to 850 ° C. is heated as a heating source to the carbon dioxide discharge part 36 of the regenerator 35 through the second carbon dioxide circulation system 47. Carbon dioxide absorbed by the absorbent material is released.

他方、二酸化炭素加熱器33を出た燃焼ガス17は、電気集塵器23で飛灰等の不純物を除去させ、脱硫器24で硫黄酸化物(SOx)を除去させた後、二酸化炭素吸収器34に温度350℃〜500℃の範囲で供給され、ここでリチウムシリケート(LiSO)を粒子に含む粒子をペレットにした吸収材で二酸化炭素を吸収させる。 On the other hand, the combustion gas 17 exiting the carbon dioxide heater 33 is made to remove impurities such as fly ash by the electric dust collector 23 and sulfur oxide (SOx) by the desulfurizer 24, and then the carbon dioxide absorber. 34 is supplied at a temperature in the range of 350 ° C. to 500 ° C., and carbon dioxide is absorbed by an absorbent formed by pelletizing particles containing lithium silicate (Li 4 SO 4 ).

二酸化炭素を吸収した吸収材は、第1二酸化炭素循環系45における搬送用二酸化炭素プロア42からの二酸化炭素による力を借りて再生装置35の二酸化炭素放出部36に移動、供給され、ここで第2二酸化炭素循環系47から温度800度以上の高温化された二酸化炭素が加熱源として与えられ、その際、吸収していた二酸化炭素を放出させる。   The absorbent that has absorbed the carbon dioxide is moved and supplied to the carbon dioxide discharge section 36 of the regenerator 35 with the help of carbon dioxide from the carbon dioxide pro for transportation 42 in the first carbon dioxide circulation system 45. (2) High-temperature carbon dioxide having a temperature of 800 ° C. or more is given as a heating source from the carbon dioxide circulation system 47, and the absorbed carbon dioxide is released at that time.

二酸化炭素放出部36で吸収材から放出させた再生用の二酸化炭素は、窒素循環系41における冷却器38で冷却され、窒素タンク39から搬送用窒素ブロア40を介して供給される窒素を冷媒源とする冷却器37で冷却される。   The regeneration carbon dioxide released from the absorbent by the carbon dioxide release part 36 is cooled by the cooler 38 in the nitrogen circulation system 41, and the nitrogen supplied from the nitrogen tank 39 through the transfer nitrogen blower 40 is used as a refrigerant source. It cools with the cooler 37.

冷却器37で冷却された再生用の二酸化炭素は、過剰な場合、ブロア52で調整して他の機器に供給される。残りの再生用の二酸化炭素は、常に一定量に維持させてボイラ本体27に収容する二酸化炭素加熱器33に供給される。   When the carbon dioxide for regeneration cooled by the cooler 37 is excessive, it is adjusted by the blower 52 and supplied to other devices. The remaining carbon dioxide for regeneration is supplied to a carbon dioxide heater 33 that is maintained at a constant amount and is accommodated in the boiler body 27.

また、冷却器37で冷媒として使用された窒素は、窒素循環系41を介して二酸化炭素吸収器34に循環中、二酸化炭素放出部36で二酸化炭素を放出して二酸化炭素吸収器34に戻る吸収材の表面をシールするとともに、吸収材の移動促進力として利用される。   Further, the nitrogen used as the refrigerant in the cooler 37 is absorbed into the carbon dioxide absorber 34 through the nitrogen circulation system 41, and the carbon dioxide is released at the carbon dioxide release unit 36 and returned to the carbon dioxide absorber 34. While sealing the surface of the material, it is used as a moving acceleration force of the absorbent material.

このように、本実施形態は、ボイラ本体27の高温部に二酸化炭素加熱器33を収容し、ボイラ本体27の比較的低温部に二酸化炭素吸収器34を収容し、二酸化炭素加熱器33および二酸化炭素吸収器34のそれぞれを、ボイラ本体27と別置きに設置した再生装置35に第2二酸化炭素循環系47、第1二酸化炭素循環系45、窒素循環系41のそれぞれを介して接続させ、二酸化炭素吸収器34においてもリチウムシリケート(LiSO)を粒子に含ませたペレットに構成した吸収材で燃焼ガスに含まれる二酸化炭素を吸収させ、二酸化炭素を吸収させた吸収材を再生装置35の二酸化炭素放出部36で二酸化炭素加熱器33からの二酸化炭素を加熱源として加熱させ、その際に吸収していた二酸化炭素を放出させ、二酸化炭素を放出した吸収材を再び二酸化炭素吸収器34に戻して二酸化炭素を吸収させる構成にしたので、二酸化炭素を無駄なく、より多量に処理して回収することができる。 As described above, in the present embodiment, the carbon dioxide heater 33 is accommodated in the high temperature portion of the boiler body 27, and the carbon dioxide absorber 34 is accommodated in the relatively low temperature portion of the boiler body 27. Each of the carbon absorbers 34 is connected to a regenerator 35 installed separately from the boiler body 27 via the second carbon dioxide circulation system 47, the first carbon dioxide circulation system 45, and the nitrogen circulation system 41, respectively. Also in the carbon absorber 34, carbon dioxide contained in the combustion gas is absorbed by an absorbent material configured in pellets containing lithium silicate (Li 4 SO 4 ) in the particles, and the absorbent material that has absorbed the carbon dioxide is used as the regenerator 35. The carbon dioxide emission part 36 of the carbon dioxide is heated by using carbon dioxide from the carbon dioxide heater 33 as a heating source, and the carbon dioxide absorbed at that time is released. Since the absorbent that has released the gas is returned to the carbon dioxide absorber 34 to absorb carbon dioxide, carbon dioxide can be processed and recovered in a larger amount without waste.

図3は、ボイラ本体に組み込まれた二酸化炭素吸収器の実施形態を示す概念図である。   Drawing 3 is a key map showing an embodiment of a carbon dioxide absorber built in a boiler body.

この二酸化炭素吸収器34は、ボイラ本体27の温度350℃〜650℃範囲の領域、例えば、図1で示した電気集塵器23または脱硫器24と第2再熱器25との間の流路48に横断し移動床として設置され、ロータ49で回転駆動されるベルトコンベア50と、このベルトコンベア50に固設され、メッシュの細かい金網および微細な孔を穿設した多孔板のうち、いずれか一方を選択するとともに、頭部を開口させ、リチウムを粒子に含ませたペレットに構成した吸収材を収容させた筒体51とで構成されている。   The carbon dioxide absorber 34 is a region of the boiler body 27 in the temperature range of 350 ° C. to 650 ° C., for example, a flow between the electrostatic precipitator 23 or the desulfurizer 24 and the second reheater 25 shown in FIG. One of a belt conveyor 50 that is installed as a moving floor across the road 48 and is driven to rotate by a rotor 49, and a perforated plate that is fixed to the belt conveyor 50 and has a fine mesh wire and fine holes. In addition to selecting one of them, the head is opened, and a cylindrical body 51 containing an absorbent material formed in a pellet containing lithium is contained.

このような構成を備えた二酸化炭素吸収器34において、図1に示した窒素循環系41から窒素とともに再生装置35の二酸化炭素放出部36に供給された二酸化炭素を放出させた吸収材は、入口53でベルトコンベア50に固設する筒体51に順次投入され、ロータ49によって駆動されるベルトコンベア50がボイラ本体27の流路48を横断して移動する間に燃焼ガス17に含まれている二酸化炭素を吸収する。   In the carbon dioxide absorber 34 having such a configuration, the absorbent that has released the carbon dioxide supplied to the carbon dioxide release part 36 of the regenerator 35 together with nitrogen from the nitrogen circulation system 41 shown in FIG. 53, the belt conveyor 50 is sequentially inserted into the cylinder 51 fixed to the belt conveyor 50, and is included in the combustion gas 17 while the belt conveyor 50 driven by the rotor 49 moves across the flow path 48 of the boiler body 27. Absorbs carbon dioxide.

二酸化炭素を吸収した吸収材は、出口54で放出され、図1に示した第1二酸化炭素循環系47を介して二酸化炭素タンク44から供給される二酸化炭素とともに再生装置35の二酸化炭素放出部36に移動し、ここで吸収した二酸化炭素を高温の下で放出する。   The absorbent that has absorbed the carbon dioxide is released at the outlet 54, and together with the carbon dioxide supplied from the carbon dioxide tank 44 via the first carbon dioxide circulation system 47 shown in FIG. The carbon dioxide absorbed here is released under high temperature.

このように、本実施形態は、移動床としてのベルトコンベア50に固設する筒体51に吸収材を収容し、筒体51に収容した吸収材がボイラ本体27の流路48を横断して通過する際に燃焼ガス17に含まれている二酸化炭素を次々に吸収させる構成にしたので、より多量の二酸化炭素を吸収材に吸収させることができる。   As described above, in this embodiment, the absorbent material is accommodated in the cylinder 51 fixed to the belt conveyor 50 as the moving floor, and the absorbent material accommodated in the cylinder 51 crosses the flow path 48 of the boiler body 27. Since carbon dioxide contained in the combustion gas 17 is absorbed one after another when passing, a larger amount of carbon dioxide can be absorbed by the absorbent.

図4および図5は、ボイラ本体に収容する二酸化炭素吸収器に接続する再生装置のうち、二酸化炭素放出部の実施形態を示す概念図である。   FIG. 4 and FIG. 5 are conceptual diagrams showing an embodiment of a carbon dioxide releasing part in a regenerator connected to a carbon dioxide absorber housed in a boiler body.

なお、図4は、二酸化炭素放出部の正面図であり、図5は、図4のA−A矢視方向から見た二酸化炭素放出部の側断面図である。   4 is a front view of the carbon dioxide releasing part, and FIG. 5 is a side sectional view of the carbon dioxide releasing part as seen from the direction of arrows AA in FIG.

この二酸化炭素放出部36は、例えば堅形の筒体55として構成され、入口56と出口57との中間に、図1で示した二酸化炭素加熱器33から第2二酸化炭素循環系47を介して供給され、温度800以上に加熱された加熱用二酸化炭素が流れる通路58と、この通路58に交差し、支持格子59で支持された網部60と、入口56側に設けられ、吸収材とともに供給された加熱用二酸化炭素を抜き出して図1に示した第1二酸化炭素系45に戻す二酸化炭素抜出し管61とを備えている。   The carbon dioxide release part 36 is configured as, for example, a rigid cylindrical body 55, and is interposed between the inlet 56 and the outlet 57 via the second carbon dioxide circulation system 47 from the carbon dioxide heater 33 shown in FIG. A path 58 through which heated carbon dioxide heated to a temperature of 800 or higher flows, a mesh section 60 that intersects the path 58 and supported by the support grid 59, and the inlet 56 side is supplied together with the absorbent. A carbon dioxide extraction pipe 61 for extracting the heated carbon dioxide and returning it to the first carbon dioxide system 45 shown in FIG. 1 is provided.

また、網部60、例えばメッシュの細かい金網は、通路58の入口側と出口側とのそれぞれに設け、加熱用二酸化炭素に含まれる異物を流入させないようにしている。   Moreover, the mesh part 60, for example, a fine metal mesh, is provided on each of the inlet side and the outlet side of the passage 58 so as to prevent the foreign matter contained in the heating carbon dioxide from flowing in.

このような構成を備えた二酸化炭素放出部36において、図1に示した二酸化炭素吸収器34から第1二酸化炭素循環系45を介して二酸化炭素放出部36の入口56に供給された吸収材および加熱用二酸化炭素は、筒体55の出口54側に向って流下、沈降する際に、加熱用二酸化炭素が二酸化炭素抜出し管61を介して第1二酸化炭素循環系45に抜き出される。   In the carbon dioxide releasing part 36 having such a configuration, the absorbent supplied to the inlet 56 of the carbon dioxide releasing part 36 from the carbon dioxide absorber 34 shown in FIG. When the heating carbon dioxide flows down toward the outlet 54 side of the cylindrical body 55 and settles, the heating carbon dioxide is extracted to the first carbon dioxide circulation system 45 through the carbon dioxide extraction pipe 61.

残った吸収材は、筒体55の中間に設けた通路58に至ると、図1で示した二酸化炭素加熱器33から第2二酸化炭素循環系47、網部60を介して供給される加熱用二酸化炭素を加熱源として加熱される。加熱された吸収材は、今迄、吸収していた二酸化炭素を放出する。そして、吸収材から放出された二酸化炭素は、加熱用二酸化炭素とともに図1に示した冷却器37に供給される。また、二酸化炭素を放出した吸収材は、出口57から図1に示した窒素循環系41を介して二酸化炭素吸収器34に戻される。   When the remaining absorbent reaches the passage 58 provided in the middle of the cylinder 55, the absorbent for heating supplied from the carbon dioxide heater 33 shown in FIG. 1 through the second carbon dioxide circulation system 47 and the mesh part 60. Heated using carbon dioxide as a heating source. The heated absorbent releases the carbon dioxide it has absorbed. Then, the carbon dioxide released from the absorbent is supplied to the cooler 37 shown in FIG. 1 together with the heating carbon dioxide. Further, the absorbent that has released carbon dioxide is returned from the outlet 57 to the carbon dioxide absorber 34 through the nitrogen circulation system 41 shown in FIG.

このように、本実施形態は、ボイラ本体27の二酸化炭素吸収器34で二酸化炭素を吸収させた吸収材を再生装置35の二酸化炭素放出部36に供給し、ここで高温の下、吸収した二酸化炭素を放出させる構成にしたので、より多量の二酸化炭素を処理することができる。   As described above, in the present embodiment, the absorbent that has absorbed carbon dioxide by the carbon dioxide absorber 34 of the boiler body 27 is supplied to the carbon dioxide release part 36 of the regenerator 35, where it is absorbed at a high temperature. Since it is configured to release carbon, a larger amount of carbon dioxide can be processed.

図2は、本発明に係る二酸化炭素回収装置の第2実施形態を示す系統図である。   FIG. 2 is a system diagram showing a second embodiment of the carbon dioxide recovery device according to the present invention.

なお、図1に示した構成要素と同一構成要素には、同一符号を付す。   In addition, the same code | symbol is attached | subjected to the same component as the component shown in FIG.

本実施形態に係る二酸化炭素回収装置は、再生装置35の二酸化炭素放出部36で温度800℃以の範囲で加熱させた吸収材を、二酸化炭素の吸収能力が最も高い温度350℃〜650℃まで減温させるために、ボイラ本体27で燃焼ガス17の流れに沿って順に収容された第1過熱器19、第2過熱器20、二酸化炭素加熱器33、第1再熱器31、第3過熱器22、第2再熱器25、節炭器26、電気集塵器23、脱硫器24のうち、脱硫器24の下流側に二酸化炭素吸収器34を設置したものである。   In the carbon dioxide recovery device according to the present embodiment, the absorbent heated by the carbon dioxide release part 36 of the regenerator 35 in a temperature range of 800 ° C. or lower, to a temperature of 350 ° C. to 650 ° C. having the highest carbon dioxide absorption capability. In order to reduce the temperature, the first superheater 19, the second superheater 20, the carbon dioxide heater 33, the first reheater 31, and the third superheater accommodated in order along the flow of the combustion gas 17 in the boiler body 27. Among the unit 22, the second reheater 25, the economizer 26, the electrostatic precipitator 23, and the desulfurizer 24, a carbon dioxide absorber 34 is installed on the downstream side of the desulfurizer 24.

なお、他の構成要素は、図1で示した構成要素と同一なので、重複説明を省略する。   The other constituent elements are the same as those shown in FIG.

このように、本実施形態は、再生装置35の二酸化炭素放出部36で高温化された吸収材を二酸化炭素吸収器34に戻す際、吸収材が二酸化炭素を最も多量に吸収する温度範囲になるよう、電気集塵器23、脱硫器24の下流側に二酸化炭素吸収器34を設置したので、燃焼ガス17に含まれる飛灰や硫黄酸化物(SOx)を吸収することもなく、二酸化炭素のみをより多く吸収することができる。   As described above, in the present embodiment, when the absorbent material that has been heated by the carbon dioxide release unit 36 of the regenerator 35 is returned to the carbon dioxide absorber 34, the absorbent material has a temperature range that absorbs the largest amount of carbon dioxide. As described above, since the carbon dioxide absorber 34 is installed on the downstream side of the electrostatic precipitator 23 and the desulfurizer 24, only carbon dioxide is absorbed without absorbing fly ash and sulfur oxide (SOx) contained in the combustion gas 17. Can absorb more.

本発明に係る二酸化炭素回収装置の第1実施形態を示す概略系統図。1 is a schematic system diagram showing a first embodiment of a carbon dioxide recovery device according to the present invention. 本発明に係る二酸化炭素回収装置の第2実施形態を示す概略系統図。The schematic system diagram which shows 2nd Embodiment of the carbon dioxide recovery apparatus which concerns on this invention. 本発明に係る二酸化炭素回収装置に適用するボイラに組み込まれた二酸化炭素吸収器の実施形態を示す概念図。The conceptual diagram which shows embodiment of the carbon dioxide absorber incorporated in the boiler applied to the carbon dioxide recovery apparatus which concerns on this invention. 本発明に係る二酸化炭素回収装置に適用するボイラに組み込まれた二酸化炭素吸収器に接続する再生装置のうち、二酸化炭素放出部の実施形態を示す概念図。The conceptual diagram which shows embodiment of a carbon dioxide discharge | release part among the reproduction | regeneration apparatuses connected to the carbon dioxide absorber incorporated in the boiler applied to the carbon dioxide recovery apparatus which concerns on this invention. 図4のA−A矢視方向から見た二酸化炭素放出部の側断面図。The sectional side view of the carbon dioxide emission part seen from the AA arrow direction of FIG. 従来のボイラを示す概略系統図。The schematic system diagram which shows the conventional boiler.

符号の説明Explanation of symbols

1 燃焼室
2 第1過熱器
3 第2過熱器
4 第1再熱器
5 第3過熱器
6 第2再熱器
7 節炭器
8 ボイラ本体
9 空気予熱器
10 脱硝器
11 電気集塵器
12 脱硫器
13 煙突
14 燃料
15 空気
16,17 燃焼ガス
18 燃焼室
19 第1過熱器
20 第2過熱器
21 第1再熱器
22 第3過熱器
23 電気集塵器
24 脱硫器
25 第2再熱器
26 節炭器
27 ボイラ本体
28 空気予熱器
29 脱硝器
30 煙突
31 燃料
32 空気
33 二酸化炭素加熱器
34 二酸化炭素吸収器
35 再生装置
36 二酸化炭素放出部
37,38 冷却器
39 窒素タンク
40 搬送用窒素ブロア
41 窒素循環系
42 搬送用二酸化炭素ブロア
43 冷却器
44 二酸化炭素タンク
45 第1二酸化炭素循環系
46 ブロア
47 第2二酸化炭素循環系
48 流路
49 ロータ
50 ベルトコンベア
51 筒体
52 ブロア
53 入口
54 出口
55 筒体
56 入口
57 出口
58 通路
59 支持格子
60 網部
61 二酸化炭素抜出し管
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 1st superheater 3 2nd superheater 4 1st reheater 5 3rd superheater 6 2nd reheater 7 Carbon-saving device 8 Boiler main body 9 Air preheater 10 Denitrator 11 Electric dust collector 12 Desulfurizer 13 Chimney 14 Fuel 15 Air 16, 17 Combustion gas 18 Combustion chamber 19 First superheater 20 Second superheater 21 First reheater 22 Third superheater 23 Electric dust collector 24 Desulfurizer 25 Second reheat Unit 26 Carbon-saving unit 27 Boiler main body 28 Air preheater 29 Denitration unit 30 Chimney 31 Fuel 32 Air 33 Carbon dioxide heater 34 Carbon dioxide absorber 35 Regeneration device 36 Carbon dioxide discharge part 37, 38 Cooler 39 Nitrogen tank 40 For transportation Nitrogen blower 41 Nitrogen circulation system 42 Carbon dioxide blower for conveyance 43 Cooler 44 Carbon dioxide tank 45 First carbon dioxide circulation system 46 Blower 47 Second carbon dioxide circulation system 48 Channel 49 Rotor 50 Beltcon A 51 cylindrical body 52 blower 53 inlet 54 outlet 55 cylinder body 56 inlet 57 outlet 58 passage 59 support grid 60 mesh part 61 carbon withdrawing pipe

Claims (15)

ボイラ本体内に設置され、燃焼室から生成された燃焼ガスのうち、二酸化炭素を吸収する吸収材を収容する二酸化炭素吸収器と、二酸化炭素を吸収した吸収材を加熱させ、吸収した二酸化炭素を放出させる再生装置に収容された二酸化炭素放出部と、この二酸化炭素放出部に加熱媒体を供給する前記ボイラ本体に収容する二酸化炭素加熱器と、前記二酸化炭素放出部で二酸化炭素を放出させた吸収材を前記二酸化炭素吸収器に戻す手段とを備えたことを特徴とする二酸化炭素回収装置。 Of the combustion gas generated in the boiler body and generated from the combustion chamber, the carbon dioxide absorber that houses the absorbent that absorbs carbon dioxide and the absorbent that absorbs carbon dioxide are heated to absorb the absorbed carbon dioxide. A carbon dioxide release part housed in a regenerator to be released, a carbon dioxide heater housed in the boiler body that supplies a heating medium to the carbon dioxide release part, and an absorption in which carbon dioxide is released by the carbon dioxide release part And a means for returning the material to the carbon dioxide absorber. 二酸化炭素吸収器は、燃焼ガス温度が350℃〜650℃の範囲の領域内のボイラ本体に設置したことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide absorber according to claim 1, wherein the carbon dioxide absorber is installed in a boiler body in a region where the combustion gas temperature is in the range of 350C to 650C. 二酸化炭素吸収器は、ボイラ本体内に収容された脱硫器と第2再熱器との間に設置したことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide absorber according to claim 1, wherein the carbon dioxide absorber is installed between a desulfurizer and a second reheater accommodated in the boiler body. 二酸化炭素吸収器は、ボイラ本体内に収容された電気集塵器および脱硫器のうち、いずれか一方の下流側に設置したことを特徴とする請求項1記載の二酸化炭素回収装置。 2. The carbon dioxide recovery device according to claim 1, wherein the carbon dioxide absorber is installed on the downstream side of one of the electrostatic precipitator and the desulfurizer accommodated in the boiler body. 二酸化炭素吸収器は、ロータで駆動されるベルトコンベアと、このベルトコンベアに固設する筒体とで構成したことを特徴とする請求項1記載の二酸化炭素回収装置。 2. The carbon dioxide recovery apparatus according to claim 1, wherein the carbon dioxide absorber comprises a belt conveyor driven by a rotor and a cylindrical body fixed to the belt conveyor. 筒体は、頭部を開口させた金網および多孔板のうち、いずれか一方を選択して構成したことを特徴とする請求項5記載の二酸化炭素回収装置。 6. The carbon dioxide recovery apparatus according to claim 5, wherein the cylindrical body is configured by selecting one of a wire mesh having a head open and a perforated plate. 二酸化炭素吸収器は、再生装置の二酸化炭素放出部を介して二酸化炭素を循環させる第1二酸化炭素循環系を備え、この第1二酸化炭素循環系を循環する二酸化炭素により前記再生装置の二酸化炭素放出部に供給する吸収材に移動力を与える構成にしたことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide absorber includes a first carbon dioxide circulation system that circulates carbon dioxide through a carbon dioxide emission part of the regenerator, and the carbon dioxide released from the regenerator by the carbon dioxide that circulates through the first carbon dioxide circulatory system. The carbon dioxide recovery apparatus according to claim 1, wherein a moving force is applied to the absorbent supplied to the section. 二酸化炭素吸収器は、再生装置の冷却器を介して窒素を循環させる窒素循環系を備え、この窒素循環系を循環する窒素により前記再生装置の二酸化炭素放出部から戻る吸収材に移動力を与える構成にしたことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide absorber includes a nitrogen circulation system that circulates nitrogen through the cooler of the regenerator, and applies a moving force to the absorbent that returns from the carbon dioxide discharge portion of the regenerator by the nitrogen that circulates through the nitrogen circulation system. The carbon dioxide recovery device according to claim 1, wherein the carbon dioxide recovery device is configured. 吸収材は、リチウムシリケートを粒子に含ませたペレット状で構成したことを特徴とする請求項1,7または8記載の二酸化炭素回収装置。 9. The carbon dioxide recovery apparatus according to claim 1, 7 or 8, wherein the absorbent material is configured in a pellet form in which lithium silicate is contained in particles. 二酸化炭素加熱器は、燃焼ガス温度が800℃以上の領域内のボイラ本体に設置したことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide recovery device according to claim 1, wherein the carbon dioxide heater is installed in a boiler body in a region where the combustion gas temperature is 800 ° C or higher. 二酸化炭素加熱器は、ボイラ本体内に収容する第2過熱器と第1再熱器との間に設置したことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide recovery device according to claim 1, wherein the carbon dioxide heater is installed between a second superheater and a first reheater housed in the boiler body. 二酸化炭素加熱器は、再生装置を介して加熱用二酸化炭素を循環させる第2二酸化炭素循環系を備えたことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide recovery apparatus according to claim 1, wherein the carbon dioxide heater includes a second carbon dioxide circulation system for circulating the heating carbon dioxide through the regenerator. 二酸化炭素放出部は、竪形の筒体として構成し、この筒体の入口側に設けられた二酸化炭素を抜き出す二酸化炭素抜出し管と、中間に設けられ、高温の加熱媒体を流す通路と、この通路に臨んで設けられ、支持格子で支持された網部とを備えたことを特徴とする請求項1記載の二酸化炭素回収装置。 The carbon dioxide releasing part is configured as a bowl-shaped cylinder, a carbon dioxide extraction pipe for extracting carbon dioxide provided on the inlet side of the cylinder, a passage provided in the middle for flowing a high-temperature heating medium, The carbon dioxide recovery apparatus according to claim 1, further comprising: a net portion provided facing the passage and supported by a support grid. 網部は、通路の入口と出口とのそれぞれに設けたことを特徴とする請求項13記載の二酸化炭素回収装置。 The carbon dioxide recovery apparatus according to claim 13, wherein the net part is provided at each of an inlet and an outlet of the passage. 再生装置は、二酸化炭素放出部の下流側に設けられ、この二酸化炭素放出部に収容させた吸収材から放出される二酸化炭素を冷却する冷却器を備えたことを特徴とする請求項1記載の二酸化炭素回収装置。 The regenerator is provided with a cooler that is provided on the downstream side of the carbon dioxide emission part and cools the carbon dioxide emitted from the absorbent accommodated in the carbon dioxide emission part. Carbon dioxide recovery device.
JP2003307972A 2003-08-29 2003-08-29 Carbon dioxide recovery unit Pending JP2005075683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307972A JP2005075683A (en) 2003-08-29 2003-08-29 Carbon dioxide recovery unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307972A JP2005075683A (en) 2003-08-29 2003-08-29 Carbon dioxide recovery unit

Publications (1)

Publication Number Publication Date
JP2005075683A true JP2005075683A (en) 2005-03-24

Family

ID=34410574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307972A Pending JP2005075683A (en) 2003-08-29 2003-08-29 Carbon dioxide recovery unit

Country Status (1)

Country Link
JP (1) JP2005075683A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085078A (en) * 2008-09-04 2010-04-15 Toshiba Corp Carbon-dioxide-recovery-type steam power generation system
JP2012117765A (en) * 2010-12-01 2012-06-21 Mitsubishi Heavy Ind Ltd Foreign matter removing device and boiler
JP2012217959A (en) * 2011-04-12 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> Carbon dioxide separator
JP2012245510A (en) * 2011-05-31 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> Separation system of carbon dioxide
WO2014175478A1 (en) * 2013-04-24 2014-10-30 한국에너지기술연구원 Apparatus for separating and collecting co2 having deoxidation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085078A (en) * 2008-09-04 2010-04-15 Toshiba Corp Carbon-dioxide-recovery-type steam power generation system
JP2012117765A (en) * 2010-12-01 2012-06-21 Mitsubishi Heavy Ind Ltd Foreign matter removing device and boiler
JP2012217959A (en) * 2011-04-12 2012-11-12 Nippon Telegr & Teleph Corp <Ntt> Carbon dioxide separator
JP2012245510A (en) * 2011-05-31 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> Separation system of carbon dioxide
WO2014175478A1 (en) * 2013-04-24 2014-10-30 한국에너지기술연구원 Apparatus for separating and collecting co2 having deoxidation apparatus

Similar Documents

Publication Publication Date Title
EP2568130B1 (en) Heat recovery system of the boiler with CO2 capture system
KR100869665B1 (en) Ultra cleaning of combustion gas including the removal of co2
EP1759756B1 (en) System and method for recovering CO2
JP6072055B2 (en) Exhaust gas treatment system and method
EP2561919B1 (en) Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
WO2011152552A1 (en) Exhaust gas treatment system and method
KR20090039779A (en) Co2 capture using solar thermal energy
JP5525992B2 (en) Thermal power plant with carbon dioxide absorber
JP2015068345A (en) Method of exhaust gas treatment for gas turbine system and exhaust gas treatment assembly
JP2002079052A (en) Method and system for recovering carbon dioxide
CN105080265A (en) Industrial tail gas recovery and recycle major cycle technology
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP2005075683A (en) Carbon dioxide recovery unit
WO2010110939A1 (en) Gas stream processing
KR100534543B1 (en) Oxygen enrichment system using temperature swing adsorption with combustion waste heat
KR102608674B1 (en) CO2 capture system in flue gas of ship including regeneration of CO2 adsorbent using waste heat of flue gas and method for colleting the same
JP2024021604A (en) Carbon dioxide recovery system
CN113368666A (en) Energy-saving carbon dioxide capture equipment for flue gas treatment and implementation method thereof
Pilař et al. Research and development of CO2 Capture and Storage Technologies in Fossil Fuel Power Plants
JP2007069075A (en) Method and system for separation of carbon dioxide
JP2006035059A (en) System and method for recovering carbon dioxide in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721