Nothing Special   »   [go: up one dir, main page]

JP2005074088A - Ultrasonic treating instrument - Google Patents

Ultrasonic treating instrument Download PDF

Info

Publication number
JP2005074088A
JP2005074088A JP2003310371A JP2003310371A JP2005074088A JP 2005074088 A JP2005074088 A JP 2005074088A JP 2003310371 A JP2003310371 A JP 2003310371A JP 2003310371 A JP2003310371 A JP 2003310371A JP 2005074088 A JP2005074088 A JP 2005074088A
Authority
JP
Japan
Prior art keywords
vibration
ultrasonic
treatment
region
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003310371A
Other languages
Japanese (ja)
Inventor
Hideto Yoshimine
英人 吉嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003310371A priority Critical patent/JP2005074088A/en
Publication of JP2005074088A publication Critical patent/JP2005074088A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Surgical Instruments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic treating instrument capable of effectively preventing transverse vibration generated at a treating part while preventing diameter enlargement. <P>SOLUTION: This ultrasonic treating instrument 1 is provided with an ultrasonic vibrator unit 3 for generating ultrasonic vibration, and an elongate vibration transmission member 5 with the proximal end connected to the vibrator unit 3 and with the distal end formed with the treating part of asymmetric shape with respect to a center axis. The ultrasonic vibration generated by the vibrator unit 3 is transmitted from the proximal end to the distal end of the vibration transmission member 5. The treating part 30 is provided with an adjusting hole 34 for suppressing transverse vibration by adjusting the generated amount of torque generated when the ultrasonic vibration is transmitted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超音波振動を用いて生体組織に外科的処置を行なう超音波処置具に関する。   The present invention relates to an ultrasonic treatment instrument for performing a surgical treatment on a living tissue using ultrasonic vibration.

特許文献1には外科的処置に用いられる超音波処置具が開示されている。この超音波処置具は、プローブ(振動伝達部材)の後端で超音波振動させ、超音波振動をプローブの先端部の処置部に伝達する。処置部は、プローブの基端部側が円柱ロッド状に形成されているのに対し、2つの平行平面を有するように形成されている。処置部はプローブの先端部側から基端部側に向かって処置部とバランス部とを順次備えている。処置部を側面から見ると上側が切り欠かれた直角三角形状に形成されている。このため、処置部の重心はプローブの中心軸よりも下側にある。バランス部は、処置部の近位端と振動節との間に設けられている。このバランス部は、処置部で重心がプローブの中心軸よりも下げられたことによるバランスを取るため、カットアウトを備えている。このようにして、プローブを超音波振動させたときにバランスを取ってプローブに横振動が発生することを防止することができる。
米国特許出願公開第2002/0077644明細書
Patent Document 1 discloses an ultrasonic treatment tool used for a surgical procedure. This ultrasonic treatment tool is ultrasonically vibrated at the rear end of the probe (vibration transmitting member) and transmits the ultrasonic vibration to the treatment portion at the distal end of the probe. The treatment portion is formed to have two parallel planes, whereas the proximal end side of the probe is formed in a cylindrical rod shape. The treatment portion is sequentially provided with a treatment portion and a balance portion from the distal end side to the proximal end portion side of the probe. When the treatment portion is viewed from the side, it is formed in a right triangle shape with the upper side cut out. For this reason, the center of gravity of the treatment portion is below the center axis of the probe. The balance part is provided between the proximal end of the treatment part and the vibration node. The balance portion has a cutout in order to maintain a balance when the center of gravity is lowered from the center axis of the probe in the treatment portion. In this way, when the probe is vibrated ultrasonically, a balance can be obtained and lateral vibration can be prevented from occurring in the probe.
US Patent Application Publication No. 2002/0077644

しかし、上述した特許文献1に開示された超音波処置具は、処置部の重心に対してバランスを取るために、場合によってはバランス部の外側を張り出すように突出させる必要がある。このため、超音波処置具の小径化に支障をきたすおそれがある。また、バランス部は、処置部の近位端と振動の節部との間に設けられているため、処置部の大きさによってはバランス部を形成するために十分なスペースを確保することができないおそれがある。   However, the ultrasonic treatment tool disclosed in Patent Document 1 described above needs to protrude so as to project the outside of the balance portion in some cases in order to balance the center of gravity of the treatment portion. For this reason, there is a possibility that the diameter of the ultrasonic treatment instrument may be hindered. In addition, since the balance portion is provided between the proximal end of the treatment portion and the vibration node portion, a sufficient space for forming the balance portion cannot be secured depending on the size of the treatment portion. There is a fear.

この発明は、このような課題を解決するためになされたもので、その目的は、大径化を防止しながら処置部で発生する横振動を効果的に防止することが可能な超音波処置具を提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to provide an ultrasonic treatment instrument capable of effectively preventing lateral vibration generated in a treatment section while preventing an increase in diameter. Is to provide.

上記課題を解決するために、この発明の超音波処置具は、超音波振動を発生させる超音波振動発生手段と、基端部が前記超音波発生手段に連結され、先端部に中心軸に対して非対称形状の処置部が形成された細長い振動伝達部材とを具備し、前記超音波振動発生手段で発生させた超音波振動を前記振動伝達部材の基端部から先端の前記処置部に伝達する。そして、この超音波処置具は、前記振動伝達部材の非対称形状部に超音波振動が伝達されたときに生じるトルクの発生量を調整して横振動を抑制するトルク発生量調整孔を前記振動伝達部材に設けたことを第1の特徴とする。
超音波処置具は、このような構成を有するから、振動伝達部材の外周面を凹凸状に形成する必要がないので、振動伝達部材の大径化が防止される。また、振動伝達部材の先端部に非対称形状部があることによって生じるトルクの発生量を抑えるようにトルク発生量調整孔を設けたことによって横振動が効果的に防止される。
In order to solve the above problems, an ultrasonic treatment instrument of the present invention includes an ultrasonic vibration generating means for generating ultrasonic vibration, a base end portion connected to the ultrasonic generating means, and a distal end portion with respect to a central axis. An ultrasonic vibration generated by the ultrasonic vibration generating means is transmitted from the base end portion of the vibration transmitting member to the treatment portion at the distal end. . And this ultrasonic treatment tool adjusts the generation amount of torque generated when ultrasonic vibration is transmitted to the asymmetrical shape portion of the vibration transmission member, and transmits the vibration to the torque generation amount adjustment hole for suppressing lateral vibration. The first feature is that the member is provided.
Since the ultrasonic treatment instrument has such a configuration, it is not necessary to form the outer peripheral surface of the vibration transmitting member in a concave-convex shape, so that the diameter of the vibration transmitting member is prevented from being increased. Further, the lateral vibration is effectively prevented by providing the torque generation amount adjusting hole so as to suppress the amount of torque generated due to the presence of the asymmetrical portion at the tip of the vibration transmitting member.

また、超音波処置具は、超音波振動を発生させる超音波振動発生手段と、先端部に中心軸に対して円周状以外の外周面形状を有する処置部を備え、基端部で前記超音波発生手段に連結され、前記超音波振動発生手段で発生させた超音波振動を基端部から前記処置部に向けて伝達するとともに、前記基端部から前記処置部に向けて超音波振動が伝達されることによって生じるトルク量を調整するトルク発生量調整孔を有する振動伝達部材とを備えていることを第2の特徴とする。
超音波処置具は、このような構成を有するから、振動伝達部材の外周面を凹凸状に形成する必要がないので、振動伝達部材の大径化が防止される。また、振動伝達部材の先端部に円周状以外の非対称形状を有する処置部があることによって生じるトルクの発生量を抑えるようにトルク発生量調整孔を設けたことによって横振動が効果的に防止される。
The ultrasonic treatment instrument includes ultrasonic vibration generating means for generating ultrasonic vibration, and a treatment portion having an outer peripheral surface shape other than a circumferential shape with respect to a central axis at a distal end portion, and the supersonic treatment device at the proximal end portion. The ultrasonic vibration generated by the ultrasonic vibration generating means is transmitted from the base end portion to the treatment portion, and the ultrasonic vibration is transmitted from the base end portion to the treatment portion. A second feature is that a vibration transmission member having a torque generation amount adjustment hole for adjusting the amount of torque generated by transmission is provided.
Since the ultrasonic treatment instrument has such a configuration, it is not necessary to form the outer peripheral surface of the vibration transmitting member in a concave-convex shape, so that the diameter of the vibration transmitting member is prevented from being increased. Moreover, lateral vibration is effectively prevented by providing a torque generation amount adjustment hole so as to suppress the amount of torque generated due to the presence of a treatment portion having an asymmetric shape other than the circumferential shape at the tip of the vibration transmitting member. Is done.

また、前記孔は、前記処置部に設けられていることを第3の特徴とする。
このような構成を有するので、処置部に生じるトルクに対して反対側に働くトルクを生じさせる孔を設けて振動伝達部材に生じるトルクを効果的に低く抑えることができる。
A third feature is that the hole is provided in the treatment portion.
Since it has such a structure, the hole which produces the torque which acts on the opposite side with respect to the torque which arises in a treatment part can be provided, and the torque which arises in a vibration transmission member can be suppressed effectively low.

さらに、前記孔が設けられている領域の重心は、前記振動伝達部材の中心軸上に配置されていることを第4の特徴とする。
このような構成を有するので、振動伝達部材のバランスを崩すことが防止される。
Furthermore, the fourth feature is that the center of gravity of the region in which the hole is provided is arranged on the central axis of the vibration transmitting member.
With such a configuration, it is possible to prevent the vibration transmitting member from being out of balance.

さらに、前記孔は、前記振動伝達部材の中心軸に対して直交する方向に貫通するように設けられ、前記トルク発生量調整孔と前記振動伝達部材の外周面との間の少なくとも一方の領域の断面積は、前記中心軸に沿った方向に変化するように設けられていることを第5の特徴とする。
このような構成を有するので、前記孔と前記振動伝達部材の外周面との間の少なくとも一方の、中心軸方向に沿った断面積の変化によって超音波振動による延び量が変化する。このため、孔の形状を選択することによって、前記孔と前記振動伝達部材の外周面との間の一方と他方とを互いに異なる断面積を有するようにすると、結果として、トルクをかけたい方向を選択することができる。
Further, the hole is provided so as to penetrate in a direction orthogonal to the central axis of the vibration transmission member, and at least one region between the torque generation amount adjustment hole and the outer peripheral surface of the vibration transmission member. A fifth feature is that the cross-sectional area is provided so as to change in a direction along the central axis.
Since it has such a structure, the extension amount by ultrasonic vibration changes with the change of the cross-sectional area along the central-axis direction of at least one between the said hole and the outer peripheral surface of the said vibration transmission member. For this reason, if the shape of the hole is selected so that one and the other between the hole and the outer peripheral surface of the vibration transmitting member have different cross-sectional areas, the direction in which the torque is to be applied is consequently obtained. You can choose.

この発明によれば、大径化を防止しながら処置部で発生する横振動を効果的に防止することが可能な超音波処置具を提供することができる。   According to the present invention, it is possible to provide an ultrasonic treatment instrument capable of effectively preventing lateral vibration generated in the treatment portion while preventing an increase in diameter.

以下、図面を参照しながらこの発明を実施するための最良の形態(以下、実施の形態という)について説明する。まず、第1の実施の形態について図1を用いて説明する。
図1(A)に示すように、超音波処置具1は、超音波振動子ユニット3と、この振動子ユニット3で発生した超音波振動を伝達する振動伝達部材(プローブ)5と、この振動伝達部材5のほぼ全周を覆うシース7とを備えている。
The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described below with reference to the drawings. First, a first embodiment will be described with reference to FIG.
As shown in FIG. 1A, an ultrasonic treatment instrument 1 includes an ultrasonic transducer unit 3, a vibration transmission member (probe) 5 that transmits ultrasonic vibration generated by the transducer unit 3, and the vibration. And a sheath 7 covering substantially the entire circumference of the transmission member 5.

振動子ユニット3の円筒状のケーシング3aの外周面には、シース7の後述する固定部7bに対して着脱可能な着脱部が形成されている。この着脱部には、例えばCリングやOリングなどが配設されている。この実施の形態では、着脱部には、Cリング3bが配設されている。   On the outer peripheral surface of the cylindrical casing 3 a of the transducer unit 3, an attaching / detaching portion that can be attached to and detached from a fixing portion 7 b to be described later of the sheath 7 is formed. For example, a C-ring or an O-ring is disposed in the detachable portion. In this embodiment, a C-ring 3b is disposed in the attaching / detaching portion.

振動子ユニット3のケーシング3aには、超音波振動を発生するボルト締めランジュバン型超音波振動子(図示せず)が内蔵されている。この超音波振動子には、ケーシング3aの内部から外部に一部が露出した超音波振動子の出力端9が設けられている。この出力端9からは軸回りに雄ネジが切られた雄ネジ部が振動伝達部材5の先端部方向に突出されている。この雄ネジ部は、振動伝達部材5の基端部の後述する雌ネジ部に螺合されている。このため、超音波振動子と振動伝達部材5との間は、着脱可能に固定されている。   The casing 3a of the vibrator unit 3 includes a bolted Langevin type ultrasonic vibrator (not shown) that generates ultrasonic vibration. This ultrasonic vibrator is provided with an output end 9 of the ultrasonic vibrator, a part of which is exposed to the outside from the inside of the casing 3a. From the output end 9, a male screw portion having a male screw cut around its axis protrudes in the direction of the distal end portion of the vibration transmitting member 5. The male screw portion is screwed into a female screw portion, which will be described later, of the base end portion of the vibration transmitting member 5. Therefore, the ultrasonic transducer and the vibration transmission member 5 are detachably fixed.

この超音波振動子は、コード11を介して図示しない駆動電源装置に電気的に接続されている。このため、駆動電源装置が駆動され、超音波振動子に電気エネルギーが与えられると、超音波振動子が圧電効果を生じて超音波振動する。   This ultrasonic transducer is electrically connected to a drive power supply device (not shown) via a cord 11. Therefore, when the drive power supply device is driven and electric energy is applied to the ultrasonic transducer, the ultrasonic transducer generates a piezoelectric effect and vibrates ultrasonically.

振動伝達部材5の基端部(後述するテーパー部15)には、上述した雄ネジ部が螺合される雌ネジ部(図示せず)が形成されている。このため、振動子ユニット3の超音波振動子の出力端9から突出された軸部の雄ネジ部と、振動伝達部材5の雌ネジ部とが螺合されている。振動伝達部材5の基端部と出力端9の一端面とは、互いに当接(密着)されて接合部(当接面)13が形成されている。すなわち、振動子ユニット3の超音波振動子と、振動伝達部材5とは、強固に固定されている。勿論、超音波振動子の出力端9と、振動伝達部材5とは、取り外し可能(分離可能)である。   The base end portion (taper portion 15 described later) of the vibration transmitting member 5 is formed with a female screw portion (not shown) to which the male screw portion described above is screwed. For this reason, the male threaded portion of the shaft protruding from the output end 9 of the ultrasonic transducer of the transducer unit 3 and the female threaded portion of the vibration transmitting member 5 are screwed together. The base end portion of the vibration transmitting member 5 and the one end surface of the output end 9 are in contact (contact) with each other to form a joint portion (contact surface) 13. That is, the ultrasonic transducer of the transducer unit 3 and the vibration transmission member 5 are firmly fixed. Of course, the output end 9 of the ultrasonic transducer and the vibration transmitting member 5 are detachable (separable).

この振動伝達部材5の基端部には、先端部側に向かうにつれて小径となるテーパー部15が形成されている。このテーパー部15は、超音波振動子に発生させた超音波振動を生体組織を処置するために必要な振幅まで拡大する。振動伝達部材5の基端部と先端部との間は、横断面が円形状の同一径に形成された軸部20として形成されている。この軸部20の外周面には、リング状の支持部材22が装着されている。この支持部材22は、超音波振動が伝達されるときの振動の節部24となる軸部20の外周面に装着されている。   A taper portion 15 having a smaller diameter toward the distal end side is formed at the base end portion of the vibration transmitting member 5. The tapered portion 15 expands the ultrasonic vibration generated in the ultrasonic vibrator to an amplitude necessary for treating the living tissue. Between the base end portion and the tip end portion of the vibration transmitting member 5, a shaft portion 20 having a circular cross section with the same diameter is formed. A ring-shaped support member 22 is mounted on the outer peripheral surface of the shaft portion 20. The support member 22 is attached to the outer peripheral surface of the shaft portion 20 that becomes the vibration node portion 24 when ultrasonic vibration is transmitted.

振動伝達部材5の先端部は、生体組織を焼灼したり、切開したり、剥離させたりする処置部30として形成されている。なお、振動伝達部材5は、生体適合性を有するとともに振動伝達性が高い剛性を有する部材として、例えばチタン合金材で形成されている。   The distal end portion of the vibration transmitting member 5 is formed as a treatment portion 30 that cauterizes, incises, or peels off living tissue. The vibration transmission member 5 is formed of, for example, a titanium alloy material as a member having biocompatibility and rigidity having high vibration transmission properties.

図1(B)に示すように、振動伝達部材5の処置部30は、軸部20に対して上下方向が異なる形状(非対称)に形成されている。この処置部30の縦断面は、軸部20の中心軸32に対して非対称の三角形状に形成されている。この処置部30は、上端面30aと、斜面(処置面)30bとによって挟まれる鋭角を備えている。そして、この処置部30には、第1の貫通孔34が形成されている。第1の貫通孔34は、縦断面が略三角形状に形成されている。第1の貫通孔34は、処置面30bに平行な面と、軸部20の中心軸に対して直交する面と、上端面30aと処置面30bとの間の斜面とによって形成されている。処置面30bに平行な面は、処置面30bに近接した位置に配置されている。軸部20の中心軸に対して直交する面は、処置部30の軸部20に近接した位置に配置されている。   As shown in FIG. 1B, the treatment portion 30 of the vibration transmitting member 5 is formed in a shape (asymmetric) in which the vertical direction is different from the shaft portion 20. The longitudinal section of the treatment portion 30 is formed in an asymmetric triangle shape with respect to the central axis 32 of the shaft portion 20. The treatment section 30 has an acute angle sandwiched between an upper end surface 30a and an inclined surface (treatment surface) 30b. The treatment portion 30 is formed with a first through hole 34. The first through-hole 34 has a substantially triangular cross section. The first through hole 34 is formed by a surface parallel to the treatment surface 30b, a surface orthogonal to the central axis of the shaft portion 20, and a slope between the upper end surface 30a and the treatment surface 30b. The surface parallel to the treatment surface 30b is disposed at a position close to the treatment surface 30b. A surface orthogonal to the central axis of the shaft portion 20 is disposed at a position close to the shaft portion 20 of the treatment portion 30.

また、図1(C)に示すように、処置部30を上方から見ると、円柱状の軸部20に対して所定の位置までテーパー状に薄肉に形成され、その先端側は1対の面が互いに平行となるように形成されている。このため、上端面30aおよび斜面30bは、長方形状に形成されている。貫通孔34の縦断面は、1対の面の一方の面から他方の面にかけて同一の形状を有する。   Further, as shown in FIG. 1C, when the treatment portion 30 is viewed from above, the cylindrical shaft portion 20 is tapered and thinned to a predetermined position, and the tip side is a pair of surfaces. Are formed in parallel to each other. For this reason, the upper end surface 30a and the inclined surface 30b are formed in a rectangular shape. The longitudinal section of the through hole 34 has the same shape from one surface of the pair of surfaces to the other surface.

なお、図1(B)中に示す符号Aないし符号Cは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Aは、貫通孔34の基端面に沿った面を示す。符号Bは、貫通孔34の先端部に沿った面を示す。符号Cは、処置部30の先端部に沿った面を示す。貫通孔34によって、処置部30は、処置部30の基端部から先端部に向かうにつれて面A,B間で中心軸32に対して直交する断面積が変化する領域ABaと、中心軸32に対して直交する断面積が一定となる領域ABbとを備えている。   In addition, the code | symbol A thru | or code | symbol C shown in FIG. 1 (B) show the surface orthogonal to the longitudinal direction axis | shaft (center axis 32) of the vibration transmission member 5, respectively. Reference symbol A indicates a surface along the base end surface of the through hole 34. Reference numeral B denotes a surface along the tip of the through hole 34. Reference symbol C indicates a surface along the distal end portion of the treatment portion 30. Due to the through-hole 34, the treatment portion 30 is formed in a region ABa where the cross-sectional area perpendicular to the central axis 32 changes between the surfaces A and B from the proximal end portion to the distal end portion of the treatment portion 30, and the central axis 32. And a region ABb having a constant cross-sectional area perpendicular to the region ABb.

図1(A)に示すように、シース7は、振動伝達部材5を覆うシース挿入部7aと、振動子ユニット3に着脱可能に固定される固定部7bとを備えている。固定部7bには、上述した着脱部に配設されたCリング3bを受ける凹状の着脱部受部7cが形成されている。振動伝達部材5とシース挿入部7aとは、同一の軸上に配置されている。すなわち、振動伝達部材5の中心軸と、シース7の中心軸とは、符号32で示す中心軸で一致する。   As shown in FIG. 1A, the sheath 7 includes a sheath insertion portion 7 a that covers the vibration transmission member 5 and a fixing portion 7 b that is detachably fixed to the transducer unit 3. The fixing part 7b is formed with a concave attaching / detaching part receiving part 7c for receiving the C-ring 3b disposed in the attaching / detaching part described above. The vibration transmission member 5 and the sheath insertion portion 7a are disposed on the same axis. That is, the central axis of the vibration transmitting member 5 and the central axis of the sheath 7 coincide with each other at the central axis indicated by reference numeral 32.

次に、このような超音波処置具1の作用について説明する。
駆動電源装置からコード11を介して超音波振動子に電気エネルギーを供給すると、振動子ユニット3のケーシング3aに内蔵された超音波振動子が圧電効果により超音波振動する。この超音波振動は、振動伝達部材5の基端部(テーパー部15)から軸部20を通して先端部(処置部30)に向かって伝達される。このとき、振動伝達部材5の基端部のテーパー部(ホーン部)15によって、超音波振動が拡大されて処置部30に向けて伝達される。なお、この振動伝達部材5の軸部20に伝達された振動の節部24の外周面には、支持部材22が配設されている。この実施の形態に係わる超音波処置具1では、図1(B)に示すように、処置部30の基端部側に振動の節部24がある。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
When electric energy is supplied from the drive power supply device to the ultrasonic vibrator via the cord 11, the ultrasonic vibrator built in the casing 3a of the vibrator unit 3 is ultrasonically vibrated by the piezoelectric effect. This ultrasonic vibration is transmitted from the proximal end portion (tapered portion 15) of the vibration transmitting member 5 through the shaft portion 20 toward the distal end portion (the treatment portion 30). At this time, the ultrasonic vibration is magnified and transmitted toward the treatment portion 30 by the tapered portion (horn portion) 15 at the base end portion of the vibration transmitting member 5. A support member 22 is disposed on the outer peripheral surface of the vibration node 24 transmitted to the shaft portion 20 of the vibration transmitting member 5. In the ultrasonic treatment instrument 1 according to this embodiment, as shown in FIG. 1B, a vibration node 24 is provided on the proximal end side of the treatment section 30.

処置部30(図1(B)中の面A,C間の領域AC間)は、長手方向軸32の上下方向が非対称である。このため、振動伝達部材5の超音波振動時には、処置部30の非対称性により延び方向(振動方向)にトルクT1が発生し、縮み方向にトルク−T1が発生する。   In the treatment section 30 (between the areas AC between the surfaces A and C in FIG. 1B), the vertical direction of the longitudinal axis 32 is asymmetric. For this reason, during the ultrasonic vibration of the vibration transmitting member 5, the torque T1 is generated in the extending direction (vibrating direction) due to the asymmetry of the treatment section 30, and the torque -T1 is generated in the contracting direction.

振動伝達部材5の超音波振動時には、断面積が大から小に変化する面A,B間の領域ABaで延びδaが発生する。断面積が一定である面A,B間の領域ABbで延びδbが発生する。面Aにおいては、領域ABa,ABbの振幅は同一であるが、領域ABaでは、面Bに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域ABbでは断面積が変化しないので、領域ABaの延びδaの方が領域ABbの延びδbよりも大きくなる(δa>δb)。このため、面A,B間には、トルクT1に対して反対方向にトルクT2が発生する。ここで、面A,B間における縦弾性係数をE、断面二次モーメントをI、振動伝達部材5の幅をWとすると、トルクT2は、
T2=EI(δa−δb)/W
として近似的に表される。
At the time of ultrasonic vibration of the vibration transmitting member 5, δa is generated in the region ABa between the surfaces A and B whose cross-sectional area changes from large to small. Δb is generated extending in a region ABb between surfaces A and B having a constant cross-sectional area. In the plane A, the amplitudes of the areas ABa and ABb are the same, but in the area ABa, the cross-sectional area changes from large to small as the plane B is approached, and the amplitude is expanded. On the other hand, since the cross-sectional area does not change in the region ABb, the extension δa of the region ABa is larger than the extension δb of the region ABb (δa> δb). For this reason, a torque T2 is generated between the surfaces A and B in the opposite direction to the torque T1. Here, when the longitudinal elastic modulus between the surfaces A and B is E, the cross-sectional secondary moment is I, and the width of the vibration transmission member 5 is W, the torque T2 is
T2 = EI (δa−δb) / W
As approximately.

このため、振動伝達部材5の超音波振動時に処置部30付近で発生するトルクは、T1−T2として表される。このとき、発生するトルク(=T1−T2)がキャンセルされる(ゼロとなる)ように、すなわち、トルクT1,T2のそれぞれの絶対値が一致するように貫通孔34を形成し、領域ABa,ABbを形成する。そうすると、処置部30にトルクがかからなくなる、もしくは、トルク量を極めて小さくすることができるので、処置部30に生じる意図しない横振動が抑制される。   For this reason, the torque generated in the vicinity of the treatment section 30 during the ultrasonic vibration of the vibration transmitting member 5 is expressed as T1-T2. At this time, the through hole 34 is formed so that the generated torque (= T1−T2) is canceled (becomes zero), that is, the absolute values of the torques T1 and T2 coincide with each other, and the region ABa, ABb is formed. As a result, no torque is applied to the treatment section 30 or the torque amount can be made extremely small, so that unintended lateral vibration generated in the treatment section 30 is suppressed.

また、処置部30に貫通孔34を設けることによって、処置部30自体の質量が小さくなる。このため、慣性力(トルク)の発生が抑制され、すなわち、処置部30の非対称性の影響が小さくなる。そうすると、処置部30に発生するトルク自体も小さくなる。   Further, by providing the treatment portion 30 with the through hole 34, the mass of the treatment portion 30 itself is reduced. For this reason, generation | occurrence | production of an inertia force (torque) is suppressed, ie, the influence of the asymmetry of the treatment part 30 becomes small. If it does so, the torque itself which generate | occur | produces in the treatment part 30 will also become small.

そして、振動伝達部材5を振動させ、処置部30に発生するトルクを抑えた状態で処置部30の処置面30bを生体組織に当接させる。すると、生体組織が切開されたり、焼灼されたりする。また、超音波処置具1全体を動かして組織を剥離させるための動作を行なえる。   Then, the vibration transmitting member 5 is vibrated, and the treatment surface 30b of the treatment unit 30 is brought into contact with the living tissue in a state where torque generated in the treatment unit 30 is suppressed. Then, the living tissue is incised or cauterized. Moreover, the operation | movement for moving the ultrasonic treatment tool 1 whole and exfoliating a tissue can be performed.

以上説明したように、この実施の形態によれば、以下のことが言える。
振動伝達部材5の先端の処置部30に発生するトルクT1を抑えるように貫通孔34を形成してトルクT1に対して反対方向のトルクT2を発生させ、かつ、トルクT1,T2の絶対値が一致するように貫通孔34を形成することによって、振動伝達部材5の先端部が非対称であることに起因する横振動を抑制することができる。
As described above, according to this embodiment, the following can be said.
The through hole 34 is formed so as to suppress the torque T1 generated in the treatment portion 30 at the tip of the vibration transmitting member 5 to generate a torque T2 in the opposite direction to the torque T1, and the absolute values of the torques T1 and T2 are By forming the through holes 34 so as to coincide with each other, it is possible to suppress the lateral vibration caused by the asymmetrical tip of the vibration transmitting member 5.

また、トルクの発生を抑えるために振動伝達部材5の外周面を凹ませたり、突出させたりする必要がないので、振動伝達部材5の大径化を防止することができる。すなわち、振動伝達部材5の加工は、貫通孔34を形成することだけで済ませることができる。このため、特に、振動伝達部材5の外周面を突出させる場合、すなわち一部を突出させるためにその突出部の周りを削ったりする加工に比べて加工性を大きく向上させることができる。   Moreover, since it is not necessary to dent or protrude the outer peripheral surface of the vibration transmission member 5 in order to suppress the generation of torque, it is possible to prevent the vibration transmission member 5 from increasing in diameter. That is, the processing of the vibration transmitting member 5 can be completed only by forming the through hole 34. For this reason, in particular, when the outer peripheral surface of the vibration transmitting member 5 is projected, that is, the workability can be greatly improved compared to the process of cutting around the projecting portion in order to project a part thereof.

また、横振動を防止することによって、超音波処置具1の耐久性が増し、安定的に生体組織に対して処置を行なうことができる。   Further, by preventing lateral vibration, the durability of the ultrasonic treatment instrument 1 is increased, and treatment can be stably performed on living tissue.

したがって、この実施の形態によれば、振動伝達部材5の大径化を防止しながら処置部30に発生する横振動を効果的に防止することができる。   Therefore, according to this embodiment, it is possible to effectively prevent the lateral vibration generated in the treatment portion 30 while preventing the vibration transmitting member 5 from increasing in diameter.

次に、第2の実施の形態について図2を用いて説明する。この実施の形態は第1の実施の形態の変形例であって、第1の実施の形態で説明した部材と同一の部材には同一の符号を付し、詳しい説明を省略する。   Next, a second embodiment will be described with reference to FIG. This embodiment is a modification of the first embodiment. The same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に示すように、この実施の形態に係わる超音波処置具1の処置部30には、第2の貫通孔40が形成されている。第2の貫通孔40は、縦断面が略四角形状に形成されている。第2の貫通孔40は、処置面30bに平行な面と、軸部20の中心軸に対して直交する面と、上端面30aと処置面30bとの間の屈曲した2つの斜面とによって形成されている。軸部20の中心軸に対して直交する面は、処置部30の軸部20に近接した位置に配設されている。この実施の形態では、後述する領域DE,EFは、処置部30の上端面30aに対する角度が角度αから角度βに変化する。この実施の形態では、領域DEの角度αは、領域EFの角度βよりも大きく形成されている。   As shown in FIG. 2, a second through hole 40 is formed in the treatment portion 30 of the ultrasonic treatment instrument 1 according to this embodiment. The second through hole 40 is formed in a substantially rectangular shape in vertical section. The second through-hole 40 is formed by a surface parallel to the treatment surface 30b, a surface orthogonal to the central axis of the shaft portion 20, and two bent inclined surfaces between the upper end surface 30a and the treatment surface 30b. Has been. A surface orthogonal to the central axis of the shaft portion 20 is disposed at a position close to the shaft portion 20 of the treatment portion 30. In this embodiment, in areas DE and EF, which will be described later, the angle with respect to the upper end surface 30a of the treatment section 30 changes from the angle α to the angle β. In this embodiment, the angle α of the region DE is formed larger than the angle β of the region EF.

図2に示す符号Dないし符号Fは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Dは、貫通孔40の基端面に沿った面を示す。符号Eは、貫通孔40の角度が角度αから角度βに変化する位置の面を示す。符号Fは、貫通孔40の先端部に沿った面を示す。貫通孔40によって、処置部30は、処置部30の基端部から先端部に向かうにつれて面D,F間で断面積が大から小に変化する領域DE,EFと、断面積が一定となる領域DFとを備えている。   Reference numerals D to F shown in FIG. 2 indicate planes orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5, respectively. Reference symbol D indicates a surface along the base end surface of the through hole 40. Reference symbol E indicates a surface at a position where the angle of the through hole 40 changes from the angle α to the angle β. Reference symbol F indicates a surface along the tip of the through hole 40. Due to the through-hole 40, the treatment section 30 has a constant cross-sectional area and regions DE and EF in which the cross-sectional area changes from large to small between the surfaces D and F from the proximal end portion to the distal end portion of the treatment section 30. And a region DF.

なお、この実施の形態に係わる超音波処置具1では、処置部30の基端部側に振動の節部24がある。   In the ultrasonic treatment instrument 1 according to this embodiment, the vibration node portion 24 is provided on the proximal end side of the treatment portion 30.

次に、このような超音波処置具1の作用について説明する。
処置部30(図2中の面D,C間)は、振動伝達部材5の超音波振動時には、長手方向軸32に対する処置部30が非対称性を有する。このため、延び方向(振動方向)にトルクT3が発生し、縮み方向にトルク−T3が発生する。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
In the treatment portion 30 (between the surfaces D and C in FIG. 2), the treatment portion 30 is asymmetric with respect to the longitudinal axis 32 when the vibration transmitting member 5 is subjected to ultrasonic vibration. For this reason, torque T3 is generated in the extending direction (vibrating direction), and torque -T3 is generated in the contracting direction.

振動伝達部材5の超音波振動時には、断面積が大から小に変化する面D,F間の領域DEで延びδcが発生し、領域EFで延びδdが発生する。断面積が一定である面D,F間の領域DFで延びδe,δfが発生する。   When the vibration transmitting member 5 is vibrated ultrasonically, δc is generated in the region DE between the surfaces D and F where the cross-sectional area changes from large to small, and δd is generated in the region EF. Δe and δf are generated in the region DF between the surfaces D and F having a constant cross-sectional area.

面Dにおいては、領域DE,DFの振幅は同一であるが、領域DEでは、面Eに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域DFでは断面積が変化しないので、領域DEの延びδcの方が領域DFの延びδeよりも大きくなる(δc>δe)。   In the plane D, the amplitudes of the areas DE and DF are the same, but in the area DE, as the plane E is approached, the cross-sectional area changes from large to small and the amplitude is enlarged. On the other hand, since the cross-sectional area does not change in the region DF, the extension δc of the region DE is larger than the extension δe of the region DF (δc> δe).

また、面Eにおいては、領域EFの振幅は、面Dにおける領域DEよりも大きいので、領域DFの振幅よりも大きい。そして、領域EFでは、面Fに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域DFでは断面積が変化しないので、領域EFの延びδdの方が領域DFの延びδfよりも大きくなる(δd>δf)。なお、延びδe,δfは同一である(δe=δf)。   In the plane E, the amplitude of the region EF is larger than that of the region DE in the plane D, and therefore larger than the amplitude of the region DF. In the region EF, as the surface F is approached, the cross-sectional area changes from large to small and the amplitude is expanded. On the other hand, since the cross-sectional area does not change in the region DF, the extension δd of the region EF is larger than the extension δf of the region DF (δd> δf). The extensions δe and δf are the same (δe = δf).

したがって、領域DE,EFは、面Dから面Fに向かうにつれて断面積が大から小に変化して振幅が拡大されるので、領域DEおよび領域EFの延びδc,δdの方が領域DFの延びδe,δfよりも大きくなる。また、領域EFの延びδdの方が領域DEの延びδcよりも大きくなる(δd>δc>δe=δf)。そうすると、面D,F間には、トルクT3に対して反対方向にトルクT4,T5が発生する。   Therefore, the areas DE and EF have a cross-sectional area that changes from large to small and increases in amplitude from the surface D to the surface F, so that the extension δc and δd of the region DE and the region EF extends the region DF. It becomes larger than δe and δf. Further, the extension δd of the region EF is larger than the extension δc of the region DE (δd> δc> δe = δf). Then, torques T4 and T5 are generated between the surfaces D and F in the opposite direction to the torque T3.

このため、振動伝達部材5の超音波振動時に処置部30付近で発生するトルクは、T3−(T4+T5)として表される。このとき、発生するトルク(=T3−(T4+T5))がキャンセルされる(ゼロとなる)ように、すなわち、トルクT3と、トルクT4,T5を合わせたトルクとの絶対値が一致するように貫通孔40を形成し、領域DE,EF,DFを形成する。そうすると、処置部30にトルクがかからなくなる、もしくは、トルク量を極めて小さくすることができるので、処置部30に生じる意図しない横振動が抑制される。   For this reason, the torque generated in the vicinity of the treatment unit 30 during the ultrasonic vibration of the vibration transmitting member 5 is represented as T3- (T4 + T5). At this time, the generated torque (= T3− (T4 + T5)) is canceled (becomes zero), that is, the torque T3 and the total torque of the torques T4 and T5 are matched so that the absolute values match. A hole 40 is formed, and regions DE, EF, and DF are formed. As a result, no torque is applied to the treatment section 30 or the torque amount can be made extremely small, so that unintended lateral vibration generated in the treatment section 30 is suppressed.

なお、この実施の形態では、それぞれ貫通孔40の処置部30の上端面30aに対する角度である、領域DEの角度αを、領域EFの角度βよりも大きく形成したものとして説明した。その他、領域EFの角度βよりも領域DEの角度αを小さくしても良い(α>β、β>αのどちらでも良い)。   In this embodiment, the angle α of the region DE, which is the angle of the through hole 40 with respect to the upper end surface 30a of the treatment portion 30, is described as being formed larger than the angle β of the region EF. In addition, the angle α of the region DE may be smaller than the angle β of the region EF (either α> β or β> α may be used).

次に、第3の実施の形態について図3を用いて説明する。この実施の形態は、第1の実施の形態の変形例であって、第1の実施の形態で説明した部材と同一の部材には同一の符号を付し、詳しい説明を省略する。   Next, a third embodiment will be described with reference to FIG. This embodiment is a modification of the first embodiment. The same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3に示すように、この実施の形態に係わる超音波処置具1の処置部30には、第3および第4の貫通孔42,44が形成されている。第3の貫通孔42は、縦断面が略平行四辺形状に形成されている。第3の貫通孔42は、斜面30bに平行な2つの斜面と、中心軸32に直交する2つの面とによって形成されている。   As shown in FIG. 3, third and fourth through holes 42 and 44 are formed in the treatment portion 30 of the ultrasonic treatment instrument 1 according to this embodiment. The third through hole 42 is formed in a substantially parallelogram shape in longitudinal section. The third through hole 42 is formed by two slopes parallel to the slope 30 b and two faces orthogonal to the central axis 32.

第4の貫通孔44は、縦断面が略三角形状に形成されている。第3の貫通孔42は、処置面30bに平行な面と、軸部20の中心軸に対して直交する面と、上端面30aと処置面30bとの間の斜面とによって形成されている。軸部20の中心軸に対して直交する面は、処置部30の軸部20に近接した位置に配設されている。   The fourth through-hole 44 has a longitudinal section that is substantially triangular. The third through hole 42 is formed by a surface parallel to the treatment surface 30b, a surface orthogonal to the central axis of the shaft portion 20, and an inclined surface between the upper end surface 30a and the treatment surface 30b. A surface orthogonal to the central axis of the shaft portion 20 is disposed at a position close to the shaft portion 20 of the treatment portion 30.

これらの貫通孔42,44は、処置部30の基端部から先端部に向かう方向に沿って並設されている。この実施の形態では、後述する領域GHa,IJaは、処置部30の上端面に対する角度が角度αから角度βに変化する。この実施の形態では、領域GHaの角度αは、領域IJaの角度βよりも大きく形成されている。   These through holes 42 and 44 are arranged side by side along the direction from the proximal end portion of the treatment portion 30 toward the distal end portion. In this embodiment, in the regions GHa and IJa described later, the angle with respect to the upper end surface of the treatment unit 30 changes from the angle α to the angle β. In this embodiment, the angle α of the region GHa is formed larger than the angle β of the region IJa.

図3に示す符号Gないし符号Jは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Gは、貫通孔42の基端面に沿った面を示す。符号Hは、貫通孔42の先端部に沿った面を示す。貫通孔42によって、処置部30は、処置部30の基端部から先端部に向かうにつれて面G,H間で断面積が大から小に変化する領域GHaと、断面積が一定となる領域GHbとを備えている。符号Iは、貫通孔44の基端面に沿った面を示す。符号Jは、貫通孔44の先端部に沿った面を示す。貫通孔44によって、処置部30は、処置部30の基端部から先端部に向かうにつれて面I,J間で断面積が大から小に変化する領域IJaと、断面積が一定となる領域IJbとを備えている。   Reference numerals G to J shown in FIG. 3 indicate planes orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5, respectively. Reference numeral G denotes a surface along the base end surface of the through hole 42. Reference numeral H denotes a surface along the tip of the through hole 42. Due to the through-hole 42, the treatment section 30 has a region GHa in which the cross-sectional area changes from large to small between the surfaces G and H as it goes from the proximal end portion to the distal end portion of the treatment portion 30, and a region GHb in which the cross-sectional area is constant. And. Reference numeral I denotes a surface along the base end surface of the through hole 44. A symbol J indicates a surface along the tip of the through hole 44. Due to the through-hole 44, the treatment section 30 has a region IJa in which the cross-sectional area changes from large to small between the surfaces I and J from the base end portion to the distal end portion of the treatment portion 30, and a region IJb in which the cross-sectional area is constant. And.

なお、この実施の形態に係わる超音波処置具1では、処置部30の基端部側に振動の節部24がある。   In the ultrasonic treatment instrument 1 according to this embodiment, the vibration node portion 24 is provided on the proximal end side of the treatment portion 30.

次に、このような超音波処置具1の作用について説明する。
処置部30(図3中の面G,C間)は、振動伝達部材5の超音波振動時には、長手方向軸32に対する非対称性を有する。このため、延び方向(振動方向)にトルクT6が発生し、縮み方向にトルク−T6が発生する。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
The treatment portion 30 (between surfaces G and C in FIG. 3) has asymmetry with respect to the longitudinal axis 32 when the vibration transmitting member 5 is subjected to ultrasonic vibration. For this reason, torque T6 is generated in the extending direction (vibration direction), and torque -T6 is generated in the contracting direction.

振動伝達部材5の超音波振動時には、断面積が大から小に変化する面G,H間の領域GHaで延びδgが発生し、領域IJaで延びδhが発生する。断面積が一定の面G,H間の領域GHbで延びδiが発生し、領域IJbで延びδjが発生する。   During ultrasonic vibration of the vibration transmitting member 5, δg is generated in the region GHa between the surfaces G and H where the cross-sectional area changes from large to small, and δh is generated in the region IJa. An extension δi occurs in the region GHb between the faces G and H having a constant cross-sectional area, and an extension δj occurs in the region IJb.

面Gにおいては、領域GHa,GHbの振幅は同一であるが、領域GHaでは、面Hに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域GHbでは断面積が変化しないので、領域GHaの延びδgの方が領域GHbの延びδiよりも大きくなる(δg>δi)。   In the plane G, the amplitudes of the regions GHa and GHb are the same, but in the region GHa, the cross-sectional area changes from large to small as the plane H is approached, and the amplitude is expanded. On the other hand, since the cross-sectional area does not change in the region GHb, the extension δg of the region GHa is larger than the extension δi of the region GHb (δg> δi).

また、面Iにおいては、領域IJaの振幅は、面Gにおける領域GHaよりも大きいので、領域IJbの振幅よりも大きい。そして、領域IJaでは、面Jに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域IJbでは断面積が変化しないので、領域IJaの延びδhの方が領域IJbの延びδjよりも大きくなる(δh>δj)。なお、領域GHb,IJbの断面積が同一なので、延びδi,δjは同一である(δi=δj)。   In the plane I, the amplitude of the region IJa is larger than the amplitude of the region GHa in the plane G, and thus is larger than the amplitude of the region IJb. In the region IJa, the cross-sectional area changes from large to small as the surface J is approached, and the amplitude is enlarged. On the other hand, since the cross-sectional area does not change in the region IJb, the extension δh of the region IJa is larger than the extension δj of the region IJb (δh> δj). Since the sectional areas of the regions GHb and IJb are the same, the extensions δi and δj are the same (δi = δj).

したがって、領域GHa,IJaは、面Gから面H、面Iから面Jに向かうにつれて断面積が大から小に変化して振幅が拡大されるので、領域GHa,IJaの延びδg,δhの方が領域GHb,IJbの延びδi,δjよりも大きくなる。また、領域IJaの延びδhの方が領域GHaの延びδgよりも大きくなる(δh>δg>δi=δj)。そうすると、面G,J間には、トルクT3に対して反対方向にトルクT7,T8が発生する。   Accordingly, in the regions GHa and IJa, the cross-sectional area is changed from large to small and the amplitude is enlarged from the surface G to the surface H and from the surface I to the surface J, so that the extension δg and δh of the regions GHa and IJa is increased. Becomes larger than the extensions δi and δj of the regions GHb and IJb. Further, the extension δh of the region IJa is larger than the extension δg of the region GHa (δh> δg> δi = δj). Then, torques T7 and T8 are generated between the surfaces G and J in the opposite direction to the torque T3.

このため、振動伝達部材5の超音波振動時に処置部30付近で発生するトルクは、T6−(T7+T8)として表される。このとき、発生するトルク(=T6−(T7+T8))がキャンセルされる(ゼロとなる)ように、すなわち、トルクT6と、トルクT7,T8を合わせたトルクとの絶対値が一致するように貫通孔42,44を形成し、領域GHa,GHb,IJa,IJbを形成する。そうすると、処置部30にトルクがかからなくなる、もしくは、トルク量を極めて小さくすることができるので、処置部30に生じる意図しない横振動が抑制される。   For this reason, the torque generated in the vicinity of the treatment unit 30 during the ultrasonic vibration of the vibration transmitting member 5 is expressed as T6- (T7 + T8). At this time, the generated torque (= T6− (T7 + T8)) is canceled (becomes zero), that is, the torque T6 and the combined torque of the torques T7 and T8 are passed through so that the absolute values match. Holes 42 and 44 are formed, and regions GHa, GHb, IJa, and IJb are formed. As a result, no torque is applied to the treatment section 30 or the torque amount can be made extremely small, so that unintended lateral vibration generated in the treatment section 30 is suppressed.

次に、第4の実施の形態について図4を用いて説明する。この実施の形態は、第1の実施の形態の変形例であって、第1の実施の形態で説明した部材と同一の部材には同一の符号を付し、詳しい説明を省略する。   Next, a fourth embodiment will be described with reference to FIG. This embodiment is a modification of the first embodiment. The same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に示すように、この実施の形態に係わる超音波処置具1の処置部30には、第5および第6の貫通孔46,48が形成されている。これらの貫通孔46,48は、処置部30の上下方向に並設されている。第5の貫通孔46は、第6の貫通孔48よりも上側に形成されている。第5の貫通孔46は、縦断面が略長方形状に形成されている。この貫通孔46は、軸部20の軸方向に対して傾けられている。この傾きは、上端面30aと、処置面30bとの間の角度である。第6の貫通孔48は、縦断面が略三角形状に形成されている。第6の貫通孔48は、処置面30bに平行な面と、軸部20の中心軸に対して直交する面と、上端面30aと処置面30bとの間の斜面とによって形成されている。この斜面は、第5の貫通孔46の傾きよりも処置面の傾きに近いものである。処置面30bに平行な面は、処置面30bに近接した位置に配設されている。軸部20の中心軸に対して直交する面は、処置部30の軸部20に近接した位置に配設されている。   As shown in FIG. 4, fifth and sixth through holes 46 and 48 are formed in the treatment portion 30 of the ultrasonic treatment instrument 1 according to this embodiment. These through holes 46 and 48 are juxtaposed in the vertical direction of the treatment section 30. The fifth through hole 46 is formed above the sixth through hole 48. The fifth through hole 46 is formed in a substantially rectangular shape in longitudinal section. The through hole 46 is inclined with respect to the axial direction of the shaft portion 20. This inclination is an angle between the upper end surface 30a and the treatment surface 30b. The sixth through-hole 48 is formed in a substantially triangular shape in longitudinal section. The sixth through hole 48 is formed by a surface parallel to the treatment surface 30b, a surface orthogonal to the central axis of the shaft portion 20, and an inclined surface between the upper end surface 30a and the treatment surface 30b. This inclined surface is closer to the inclination of the treatment surface than the inclination of the fifth through hole 46. The surface parallel to the treatment surface 30b is disposed at a position close to the treatment surface 30b. A surface orthogonal to the central axis of the shaft portion 20 is disposed at a position close to the shaft portion 20 of the treatment portion 30.

図4に示す符号Kおよび符号Lは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Kは、貫通孔46,48の基端面に沿った面を示す。符号Lは、貫通孔46,48の先端部に沿った面を示す。貫通孔46と処置部30の上端面30aとの間によって、処置部30は、処置部30の基端部から先端部に向かうにつれて面K,L間で断面積が大から小に変化する領域KLaを備えている。貫通孔46の下端面と貫通孔48の上端面30aとの間によって、処置部30は、処置部30の基端部から先端部に向かうにつれて面K,L間で断面積が大から小に変化する領域KLbを備えている。貫通孔48と処置部30の処置面30bとの間によって、処置部30は、処置部30の基端部から先端部に向かうにつれて面K,L間で断面積が一定となる領域KLcを備えている。   Reference numerals K and L shown in FIG. 4 indicate surfaces orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5, respectively. A symbol K indicates a surface along the base end surface of the through holes 46 and 48. Reference symbol L indicates a surface along the tip of the through holes 46 and 48. A region where the cross-sectional area of the treatment portion 30 changes from the base end portion of the treatment portion 30 to the distal end portion between the surfaces K and L depending on the space between the through hole 46 and the upper end surface 30a of the treatment portion 30. KLa is provided. Between the lower end surface of the through-hole 46 and the upper end surface 30a of the through-hole 48, the treatment section 30 has a cross-sectional area between the surfaces K and L that increases from small to large as it goes from the proximal end portion to the distal end portion of the treatment portion 30. A changing region KLb is provided. Depending on the space between the through hole 48 and the treatment surface 30b of the treatment portion 30, the treatment portion 30 includes a region KLc having a constant cross-sectional area between the surfaces K and L from the proximal end portion to the distal end portion of the treatment portion 30. ing.

なお、この実施の形態に係わる超音波処置具1では、処置部30の基端部側に振動の節部24がある。   In the ultrasonic treatment instrument 1 according to this embodiment, the vibration node portion 24 is provided on the proximal end side of the treatment portion 30.

次に、このような超音波処置具1の作用について説明する。
処置部30(図4中の面K,C間)は、振動伝達部材5の超音波振動時には、長手方向軸32に対する処置部30の非対称性を有する。このため、延び方向(振動方向)にトルクT9が発生し、縮み方向にトルク−T9が発生する。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
The treatment portion 30 (between the surfaces K and C in FIG. 4) has asymmetry of the treatment portion 30 with respect to the longitudinal axis 32 when the vibration transmitting member 5 is vibrated ultrasonically. For this reason, torque T9 is generated in the extending direction (vibration direction), and torque -T9 is generated in the contracting direction.

振動伝達部材5の超音波振動時には、断面積が大から小に変化する面K,L間の領域KLaで延びδkが発生する。断面積が大から小に変化する面K,L間の領域KLbで延びδmが発生する。断面積が一定である面K,L間の領域KLcで延びδnが発生する。   At the time of ultrasonic vibration of the vibration transmitting member 5, δk is generated extending in the region KLa between the surfaces K and L where the cross-sectional area changes from large to small. Δm is generated in the region KLb between the surfaces K and L where the cross-sectional area changes from large to small. Δn is generated extending in a region KLc between the surfaces K and L having a constant cross-sectional area.

面Kにおいては、領域KLa,KLb,KLcの振幅は同一であるが、領域KLa,KLbでは、面Lに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域KLcでは断面積が変化しないので、領域KLa,KLbの延びδk,δmの方が領域KLcの延びδnよりも大きくなる。   In the plane K, the amplitudes of the regions KLa, KLb, and KLc are the same, but in the regions KLa and KLb, as the plane L is approached, the cross-sectional area changes from large to small and the amplitude is expanded. On the other hand, since the cross-sectional area does not change in the region KLc, the extensions δk and δm of the regions KLa and KLb are larger than the extension δn of the region KLc.

また、領域KLaの面Kでの面積に基づく面Lでの面積の減少の割合は、領域KLbの面Kでの面積に基づく面Lでの面積の減少の割合よりも大きい。このため、領域KLaの延びδkの方が領域KLbの延びδmよりも大きくなる(δk>δm>δn)。そうすると、面K,L間には、トルクT9に対して反対方向にトルクT10,T11が発生する。   Further, the rate of area decrease on the surface L based on the area of the region KLa on the surface K is larger than the rate of area decrease on the surface L based on the area of the region KLb on the surface K. For this reason, the extension δk of the region KLa is larger than the extension δm of the region KLb (δk> δm> δn). Then, torques T10 and T11 are generated between the surfaces K and L in the opposite direction to the torque T9.

このため、振動伝達部材5の超音波振動時に処置部30付近で発生するトルクは、T9−(T10+T11)として表される。このとき、発生するトルク(=T9−(T10+T11))がキャンセルされる(ゼロとなる)ように、すなわち、トルクT9と、トルクT10,T11を合わせたトルクとの絶対値が一致するように貫通孔46,48を形成し、領域KLa,KLb,KLcを形成する。そうすると、処置部30にトルクがかからなくなる、もしくは、トルク量を極めて小さくすることができるので、処置部30に生じる意図しない横振動が抑制される。   For this reason, the torque generated in the vicinity of the treatment unit 30 during the ultrasonic vibration of the vibration transmitting member 5 is expressed as T9− (T10 + T11). At this time, the generated torque (= T9− (T10 + T11)) is canceled (becomes zero), that is, the torque T9 and the combined torque of the torques T10 and T11 are passed through so that the absolute values match. Holes 46 and 48 are formed, and regions KLa, KLb, and KLc are formed. As a result, no torque is applied to the treatment section 30 or the torque amount can be made extremely small, so that unintended lateral vibration generated in the treatment section 30 is suppressed.

次に、第5の実施の形態について図5を用いて説明する。この実施の形態は第1の実施の形態の変形例であって、第1の実施の形態で説明した部材と同一の部材には同一の符号を付し、詳しい説明を省略する。   Next, a fifth embodiment will be described with reference to FIG. This embodiment is a modification of the first embodiment. The same members as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図5に示すように、この実施の形態に係わる超音波処置具1の処置部30には、第1の貫通孔34が形成されている。振動伝達部材5の軸部20には、第7の貫通孔50が形成されている。第7の貫通孔50は、縦断面が略三角形状に形成されている。第7の貫通孔50は、例えば処置面30bに平行な面と、軸部20の中心軸に対して直交する面と、上端面30aに平行な面とによって形成されている。また、上端面30aに平行な面は、上端面30aから離隔した位置に配設されている。軸部20の中心軸に対して直交する面は、処置部30の処置部30に近接した位置に配設されている。   As shown in FIG. 5, a first through hole 34 is formed in the treatment portion 30 of the ultrasonic treatment instrument 1 according to this embodiment. A seventh through hole 50 is formed in the shaft portion 20 of the vibration transmitting member 5. The seventh through hole 50 has a vertical cross section formed in a substantially triangular shape. The seventh through hole 50 is formed by, for example, a surface parallel to the treatment surface 30b, a surface orthogonal to the central axis of the shaft portion 20, and a surface parallel to the upper end surface 30a. Further, the surface parallel to the upper end surface 30a is disposed at a position separated from the upper end surface 30a. A surface orthogonal to the central axis of the shaft portion 20 is disposed at a position close to the treatment portion 30 of the treatment portion 30.

図5に示す符号Mおよび符号Nは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Mは、貫通孔50の基端部に沿った面を示す。符号Nは、貫通孔50の先端面に沿った面を示す。貫通孔50によって、軸部20は、軸部20の基端部から先端部に向かうにつれて面M,N間で断面積が大から小に変化する領域MNaと、断面積が一定となる領域MNbとを備えている。   Reference numerals M and N shown in FIG. 5 indicate surfaces orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5, respectively. A symbol M indicates a surface along the base end portion of the through hole 50. A symbol N indicates a surface along the front end surface of the through hole 50. Due to the through-hole 50, the shaft portion 20 has a region MNa in which the cross-sectional area changes from large to small between the surfaces M and N as it goes from the base end portion to the tip end portion of the shaft portion 20, and a region MNb in which the cross-sectional area becomes constant. And.

なお、処置部30の基端部側に振動の節部24があり、この節部24は、第7の貫通孔50よりも処置部30に近接する側にある。すなわち、この実施の形態に係わる超音波処置具1では、第1および第7の貫通孔34,50の間に振動の節部24がある。   In addition, there is a vibration node 24 on the proximal end side of the treatment portion 30, and this node 24 is closer to the treatment portion 30 than the seventh through hole 50. That is, in the ultrasonic treatment instrument 1 according to this embodiment, the vibration node 24 is provided between the first and seventh through holes 34 and 50.

次に、このような超音波処置具1の作用について説明する。
処置部30(図5中の面A,C間)は、振動伝達部材5の超音波振動時には、長手方向軸32に対する処置部30の非対称性を有する。このため、延び方向(振動方向)にトルクT12が発生し、縮み方向にトルク−T12が発生する。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
The treatment section 30 (between surfaces A and C in FIG. 5) has asymmetry of the treatment section 30 with respect to the longitudinal axis 32 when the vibration transmitting member 5 is vibrated ultrasonically. For this reason, torque T12 is generated in the extending direction (vibration direction), and torque -T12 is generated in the contracting direction.

振動伝達部材5の超音波振動時には、断面積が大から小に変化する面A,B間の領域ABaで延びδaが発生する。断面積が一定である面A,B間の領域ABbで延びδbが発生する。領域ABaは、断面積が大から小に変化して振幅が拡大されるので、領域ABaの延びδaの方が領域ABbの延びδbよりも大きくなる(δa>δb)。このため、面A,B間には、トルクT12に対して反対方向にトルクT13が発生する。   At the time of ultrasonic vibration of the vibration transmitting member 5, δa is generated in the region ABa between the surfaces A and B where the cross-sectional area changes from large to small. Δb is generated extending in a region ABb between surfaces A and B having a constant cross-sectional area. In the region ABa, the cross-sectional area is changed from large to small and the amplitude is expanded, so that the extension δa of the region ABa is larger than the extension δb of the region ABb (δa> δb). Therefore, a torque T13 is generated between the surfaces A and B in the opposite direction to the torque T12.

また、振動伝達部材5の超音波振動時には、断面積が大から小に変化する面M,N間の領域MNaで延びδpが発生する。断面積が一定である面M,N間の領域MNbで延びδqが発生する。   Further, during the ultrasonic vibration of the vibration transmitting member 5, δp is generated in the region MNa between the surfaces M and N where the cross-sectional area changes from large to small. Δq is generated extending in a region MNb between the surfaces M and N having a constant cross-sectional area.

面Mにおいては、領域MNa,MNbの振幅は同一であるが、領域MNaでは、面Nに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域MNbでは断面積が変化しないので、領域MNaの延びδpの方が領域MNbの延びδqよりも大きくなる(δp>δq)。そうすると、面M,N間には、トルクT12に対して反対方向にトルクT14が発生する。   In the surface M, the amplitudes of the regions MNa and MNb are the same, but in the region MNa, the cross-sectional area changes from large to small as the surface N is approached, and the amplitude is expanded. On the other hand, since the cross-sectional area does not change in the region MNb, the extension δp of the region MNa is larger than the extension δq of the region MNb (δp> δq). Then, a torque T14 is generated between the surfaces M and N in the opposite direction to the torque T12.

このため、振動伝達部材5の超音波振動時に振動伝達部材5に発生するトルクは、T12−(T13+T14)として表される。このとき、発生するトルク(=T12−(T13+T14))がキャンセルされる(ゼロとなる)ように、すなわち、トルクT12と、トルクT13,T14を合わせたトルクとの絶対値が一致するように貫通孔34,50を形成し、領域ABa,ABb,MNa,MNbを形成する。そうすると、振動伝達部材5にトルクがかからなくなる、もしくは、トルク量を極めて小さくすることができるので、振動伝達部材5に意図しない横振動の発生が抑制される。振動伝達部材5にトルクがかからなくなる、もしくは、トルク量を極めて小さくすることができることによって、処置部30にトルクがかからなくなる、もしくは、トルク量を極めて小さくすることができるといえるので、処置部30に意図しない横振動の発生が抑制される。   For this reason, the torque generated in the vibration transmission member 5 during the ultrasonic vibration of the vibration transmission member 5 is expressed as T12− (T13 + T14). At this time, the generated torque (= T12− (T13 + T14)) is canceled (becomes zero), that is, the torque T12 and the combined torque of the torques T13 and T14 are passed through so that the absolute values match. Holes 34 and 50 are formed, and regions ABa, ABb, MNa, and MNb are formed. As a result, no torque is applied to the vibration transmission member 5 or the amount of torque can be made extremely small, so that the occurrence of unintended lateral vibration in the vibration transmission member 5 is suppressed. Since torque is not applied to the vibration transmission member 5 or the torque amount can be made extremely small, it can be said that no torque is applied to the treatment unit 30 or the torque amount can be made extremely small. The occurrence of unintended lateral vibration in the portion 30 is suppressed.

次に、第6の実施の形態について図6を用いて説明する。この実施の形態に係わる超音波処置具1の構成は、第1の実施の形態で説明した超音波処置具1とほぼ同一である。この実施の形態では、超音波振動時に超音波処置具1の振動伝達部材5に加えられるトルク量を調節するための貫通孔について、5つの例を挙げて説明する。この実施の形態に係わる超音波処置具1の軸部20には、それぞれ1つの第8ないし第12の貫通孔52,54,56,58,60が形成されている。   Next, a sixth embodiment will be described with reference to FIG. The configuration of the ultrasonic treatment instrument 1 according to this embodiment is substantially the same as that of the ultrasonic treatment instrument 1 described in the first embodiment. In this embodiment, five examples will be described with reference to a through hole for adjusting the amount of torque applied to the vibration transmitting member 5 of the ultrasonic treatment instrument 1 during ultrasonic vibration. One to eighth through twelfth through holes 52, 54, 56, 58, and 60 are formed in the shaft portion 20 of the ultrasonic treatment instrument 1 according to this embodiment.

図6(A)に示すように、振動伝達部材5の中心軸32に対して上下方向に対称的な軸部20には、第8の貫通孔52が形成されている。第8の貫通孔52は、縦断面が略三角形状に形成されている。第8の貫通孔52は、上端面30aに平行な面と、軸部20の中心軸32に対して直交する面と、軸部20の基端部側から先端部側に向かって上側から下側に斜めの傾きを有する面とによって形成されている。上端面30aに平行な面は、上端面30aから離隔した位置に配設されている。軸部20の中心軸32に対して直交する面は、処置部30に離隔した位置に配設されている。   As shown in FIG. 6A, an eighth through hole 52 is formed in the shaft portion 20 that is symmetrical in the vertical direction with respect to the central shaft 32 of the vibration transmitting member 5. The eighth through hole 52 has a longitudinal section formed in a substantially triangular shape. The eighth through hole 52 includes a surface parallel to the upper end surface 30a, a surface orthogonal to the central axis 32 of the shaft portion 20, and a lower side from the upper side toward the distal end portion side of the shaft portion 20. And a surface having an oblique inclination on the side. The surface parallel to the upper end surface 30a is disposed at a position separated from the upper end surface 30a. A surface orthogonal to the central axis 32 of the shaft portion 20 is disposed at a position separated from the treatment portion 30.

図6(A)に示す符号Pおよび符号Qは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Pは、貫通孔52の基端面に沿った面を示す。符号Qは、貫通孔52の先端部に沿った面を示す。貫通孔52によって、軸部20は、軸部20の基端部から先端部に向かうにつれて面P,Q間で断面積が小から大に変化する領域PQaと、断面積が一定となる領域PQbとを備えている。   Reference sign P and reference sign Q shown in FIG. 6A indicate planes orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5, respectively. Reference symbol P denotes a surface along the base end surface of the through hole 52. Reference sign Q indicates a surface along the tip of the through hole 52. Due to the through hole 52, the shaft portion 20 has a region PQa in which the cross-sectional area changes from small to large between the surfaces P and Q from the base end portion to the tip end portion of the shaft portion 20, and a region PQb in which the cross-sectional area is constant. And.

なお、貫通孔52の基端部側に振動の節部24がある。   The vibration node 24 is provided on the base end side of the through hole 52.

次に、このような超音波処置具1の作用について説明する。
振動伝達部材5の超音波振動時には、振動の節部24に対して遠ざかる振動の腹の方向に向かって断面積が小から大に変化する面P,Q間の領域PQaで延びδ11が発生する。断面積が一定である面P,Q間の領域PQbで延びδ12が発生する。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
At the time of ultrasonic vibration of the vibration transmitting member 5, δ11 is generated extending in a region PQa between the planes P and Q where the cross-sectional area changes from small to large toward the antinode of the vibration away from the vibration node 24. . Δ12 is generated extending in a region PQb between the surfaces P and Q having a constant cross-sectional area.

面Pにおいては、領域PQa,PQbの振幅は同一であるが、領域PQaでは、面Qに近づくにつれて断面積が小から大に変化して振幅が縮小される。一方、領域PQbでは断面積が変化しないので、領域PQaの延びδ11の方が領域PQbの延びδ12よりも小さくなる(δ11<δ12)。このため、面P,Q間には、第1の実施の形態で説明したトルクT1に対して同じ方向のトルクT15が発生する。   In the plane P, the amplitudes of the regions PQa and PQb are the same, but in the region PQa, the cross-sectional area changes from small to large as the plane Q is approached, and the amplitude is reduced. On the other hand, since the cross-sectional area does not change in the region PQb, the extension δ11 of the region PQa is smaller than the extension δ12 of the region PQb (δ11 <δ12). For this reason, a torque T15 in the same direction as the torque T1 described in the first embodiment is generated between the surfaces P and Q.

トルクT15によって、処置部30や軸部20の他の位置に形成した貫通孔によって生じるトルクを調整することができる。   Torque T15 can adjust the torque generated by the through holes formed at other positions of the treatment section 30 and the shaft section 20.

図6(B)に示すように、振動伝達部材5の中心軸32に対して上下方向に対称的な軸部20には、第9の貫通孔54が形成されている。第9の貫通孔54は、縦断面が略三角形状に形成されている。第9の貫通孔54は、上端面30aに平行な面と、軸部20の中心軸32に対して直交する面と、軸部20の基端部側から先端部側に向かって下側から上側に斜めの傾きを有する面とによって形成されている。上端面30aに平行な面は、上端面30aから離隔した位置に配設されている。軸部20の中心軸32に対して直交する面は、処置部30に近接した位置に配設されている。   As shown in FIG. 6B, a ninth through hole 54 is formed in the shaft portion 20 that is symmetrical in the vertical direction with respect to the central shaft 32 of the vibration transmitting member 5. The ninth through-hole 54 has a longitudinal section that is substantially triangular. The ninth through hole 54 includes a surface parallel to the upper end surface 30a, a surface orthogonal to the central axis 32 of the shaft portion 20, and a lower side from the proximal end side to the distal end portion side of the shaft portion 20. And a surface having an oblique inclination on the upper side. The surface parallel to the upper end surface 30a is disposed at a position separated from the upper end surface 30a. A surface orthogonal to the central axis 32 of the shaft portion 20 is disposed at a position close to the treatment portion 30.

図6(B)に示す符号Rおよび符号Sは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Rは、貫通孔54の基端部に沿った面を示す。符号Sは、貫通孔54の先端面に沿った面を示す。貫通孔54によって、軸部20は、軸部20の基端部から先端部に向かうにつれて面R,S間で断面積が大から小に変化する領域RSaと、断面積が一定となる領域RSbとを備えている。   Reference sign R and reference sign S shown in FIG. 6B indicate surfaces orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5. The symbol R indicates a surface along the base end portion of the through hole 54. Reference numeral S denotes a surface along the tip surface of the through hole 54. Due to the through hole 54, the shaft portion 20 has a region RSa in which the cross-sectional area changes from large to small between the surfaces R and S as it goes from the base end portion to the tip portion of the shaft portion 20, and a region RSb in which the cross-sectional area becomes constant. And.

なお、貫通孔54の基端部側に振動の節部24がある。   The vibration node 24 is provided on the base end side of the through hole 54.

次に、このような超音波処置具1の作用について説明する。
振動伝達部材5の超音波振動時には、振動の節部24に対して遠ざかる振動の腹の方向に向かって断面積が小から大に変化する面R,S間の領域RSaで延びδ21が発生する。断面積が一定である面R,S間の領域RSbで延びδ22が発生する。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
During ultrasonic vibration of the vibration transmitting member 5, δ 21 is generated extending in the region RSa between the surfaces R and S where the cross-sectional area changes from small to large in the antinode direction of the vibration away from the vibration node 24. . Δ22 is generated extending in the region RSb between the surfaces R and S having a constant cross-sectional area.

面Rにおいては、領域RSa,RSbの振幅は同一であるが、領域RSaでは、面Sに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域RSbでは断面積が変化しないので、領域RSaの延びδ21の方が領域RSbの延びδ22よりも大きくなる(δ21>δ22)。このため、面R,S間には、第1の実施の形態で説明したトルクT1に対して反対方向のトルクT16が発生する。   In the surface R, the amplitudes of the regions RSa and RSb are the same, but in the region RSa, the cross-sectional area changes from large to small as the surface S is approached, and the amplitude is enlarged. On the other hand, since the cross-sectional area does not change in the region RSb, the extension δ21 of the region RSa is larger than the extension δ22 of the region RSb (δ21> δ22). For this reason, a torque T16 in the opposite direction to the torque T1 described in the first embodiment is generated between the surfaces R and S.

トルクT16によって、処置部30や軸部20の他の位置に形成した貫通孔によって生じるトルクを調整することができる。   Torque T16 can adjust the torque generated by the through holes formed at other positions of the treatment section 30 and the shaft section 20.

図6(C)に示すように、振動伝達部材5の中心軸32に対して上下方向に対称的な軸部20には、第10の貫通孔56が形成されている。第10の貫通孔56は、図6(A)に示す第8の貫通孔52と同じ形状を有する。   As shown in FIG. 6C, a tenth through hole 56 is formed in the shaft portion 20 that is symmetrical in the vertical direction with respect to the central shaft 32 of the vibration transmitting member 5. The tenth through hole 56 has the same shape as the eighth through hole 52 shown in FIG.

図6(C)に示す符号Uおよび符号Vは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Uは、貫通孔56の基端面に沿った面を示す。符号Vは、貫通孔56の先端部に沿った面を示す。貫通孔56によって、軸部20は、軸部20の基端部から先端部に向かうにつれて面U,V間で断面積が小から大に変化する領域UVa1,UVa2と、断面積が一定となる領域UVb1,UVb2とを備えている。   Reference sign U and reference sign V shown in FIG. 6C indicate surfaces orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5. Reference symbol U denotes a surface along the base end surface of the through hole 56. Reference sign V indicates a surface along the tip of the through hole 56. Due to the through hole 56, the shaft portion 20 has a constant cross-sectional area and regions UVa1 and UVa2 in which the cross-sectional area changes from small to large between the surfaces U and V from the base end portion to the tip end portion of the shaft portion 20. Regions UVb1 and UVb2 are provided.

なお、振動の節部24は、軸部20の中心軸上かつ、面U,V間の面にある。すなわち、振動の節部24は、貫通孔56の内部にある。   The vibration node 24 is on the central axis of the shaft 20 and between the surfaces U and V. That is, the vibration node 24 is inside the through hole 56.

次に、このような超音波処置具1の作用について説明する。   Next, the operation of such an ultrasonic treatment tool 1 will be described.

振動伝達部材5の超音波振動時には、振動の節部24に対して遠ざかる方向に向かって断面積が小から大に変化する面U,V間の領域UVa1で延び−δ31が発生する。この延びの符号−は、振動の節部24が面U,V間の中央の面上にあり、領域UVa1が振動の節部24よりも軸部20の基端部側にあることによる。また、面U,V間の領域UVa2で延び+δ32が発生する。この延びの符号+は、振動の節部24が面U,Vの中央の面上にあり、領域UVa2が振動の節部24よりも軸部20の先端部側にあることによる。   At the time of ultrasonic vibration of the vibration transmitting member 5, -δ31 is generated in the region UVa1 between the surfaces U and V where the cross-sectional area changes from small to large in the direction away from the vibration node 24. The sign of this extension is that the vibration node 24 is on the center plane between the surfaces U and V, and the region UVa1 is closer to the base end side of the shaft portion 20 than the vibration node 24. Further, + δ32 is generated in the region UVa2 between the surfaces U and V. The sign + of this extension is due to the fact that the vibration node 24 is on the center surface of the surfaces U and V, and the region UVa2 is closer to the tip of the shaft portion 20 than the vibration node 24.

断面積が一定である面U,V間の領域UVb1で延び−δ33が発生する。この延びの符号−は、振動の節部24が面U,Vの中央の面上にあり、領域UVb1が振動の節部24よりも軸部20の基端部側にあることによる。また、面U,V間の領域UVb2で延び+δ34が発生する。この延びの符号+は、振動の節部24が面U,Vの中央の面上にあり、領域UVb2が振動の節部24よりも軸部20の先端部側にあることによる。   -Δ33 is generated extending in the region UVb1 between the surfaces U and V having a constant cross-sectional area. The sign of this extension is that the vibration node 24 is on the center surface of the surfaces U and V, and the region UVb1 is closer to the base end side of the shaft portion 20 than the vibration node 24. Further, + δ34 extends in the region UVb2 between the surfaces U and V. The sign + of this extension is due to the fact that the vibration node 24 is on the center surface of the surfaces U and V, and the region UVb2 is closer to the tip of the shaft portion 20 than the vibration node 24.

すなわち、振動の節部24を有する面においては、領域UVa1,UVb1の振幅は同一であるが、領域UVa1では、面Uに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域UVb1では断面積が変化しないので、領域UVa1の延び−δ31の絶対値は、領域UVb1の延び−δ33の絶対値よりも大きくなる(|δ31|>|δ33|)。   That is, in the surface having the vibration node 24, the amplitudes of the regions UVa1 and UVb1 are the same, but in the region UVa1, the cross-sectional area changes from large to small as the surface U is approached, and the amplitude is expanded. On the other hand, since the cross-sectional area does not change in the region UVb1, the absolute value of the extension −δ31 of the region UVa1 is larger than the absolute value of the extension −δ33 of the region UVb1 (| δ31 |> | δ33 |).

振動の節部24を有する面においては、領域UVa2,UVb2の振幅は同一であるが、領域UVa2では、面Vに近づくにつれて断面積が小から大に変化して振幅が縮小される。一方、領域UVb2では断面積が変化しないので、領域UVa2の延びδ32の絶対値は、領域UVb2の延びδ34の絶対値よりも小さくなる(|δ32|<|δ34|)。   In the surface having the vibration node 24, the amplitudes of the regions UVa2 and UVb2 are the same, but in the region UVa2, the cross-sectional area changes from small to large as the surface V is approached, and the amplitude is reduced. On the other hand, since the cross-sectional area does not change in the region UVb2, the absolute value of the extension δ32 of the region UVa2 is smaller than the absolute value of the extension δ34 of the region UVb2 (| δ32 | <| δ34 |).

なお、領域UVb1,UVb2の断面積は、同一であるので、延び−δ33,+δ34の絶対値は、同一である(|δ33|=|δ34|)。   Since the sectional areas of the regions UVb1 and UVb2 are the same, the absolute values of the extensions −δ33 and + δ34 are the same (| δ33 | = | δ34 |).

このため、領域UVa1の延び−δ31、領域UVa2の延び+δ32、領域UVb1,UVb2の延び+δ34(−δ33)の絶対値の大きさを比較すると、領域UVa1の延びδ31が最も大きく、次に領域UVb1,UVb2の延びδ34が大きく、領域UVa2の延びδ32が最も小さくなる(|δ31|>|δ33|=|δ34|>|δ32|)。   Therefore, comparing the magnitudes of the absolute values of the extension −δ31 of the region UVa1, the extension + δ32 of the region UVa2, and the extension + δ34 (−δ33) of the regions UVb1 and UVb2, the extension δ31 of the region UVa1 is the largest, and then the region UVb1 , UVb2 has the largest extension δ34, and the region UVa2 has the smallest extension δ32 (| δ31 |> | δ33 | = | δ34 |> | δ32 |).

そうすると、面U,V間には、第1の実施の形態で説明したトルクT1に対して反対方向のトルクT18が発生する。   Then, a torque T18 in a direction opposite to the torque T1 described in the first embodiment is generated between the surfaces U and V.

トルクT18によって、処置部30や軸部20の他の位置に形成した貫通孔によって生じるトルクを調整することができる。   Torque T18 can adjust the torque generated by the through holes formed at other positions of the treatment portion 30 and the shaft portion 20.

図6(D)に示すように、振動伝達部材5の中心軸32に対して上下方向に対称的な軸部20には、第11の貫通孔58が形成されている。第11の貫通孔58は、縦断面が略長円形状に形成されている。この貫通孔58は、軸部20の中心軸32に対して傾けられている。この貫通孔58は、軸部20の基端部側から先端部側に向かって上側から下側に斜めの傾きを有する1対の平行な面を有する。   As shown in FIG. 6D, an eleventh through hole 58 is formed in the shaft portion 20 that is symmetrical in the vertical direction with respect to the central shaft 32 of the vibration transmitting member 5. The eleventh through-hole 58 has a substantially elliptical longitudinal section. The through hole 58 is inclined with respect to the central axis 32 of the shaft portion 20. The through hole 58 has a pair of parallel surfaces having an oblique inclination from the upper side to the lower side from the proximal end side to the distal end side of the shaft portion 20.

図6(D)に示す符号Wおよび符号Xは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Wは、貫通孔58の基端部近傍に沿った面を示す。符号Xは、貫通孔58の先端部近傍に沿った面を示す。貫通孔58によって、軸部20は、軸部20の基端部から先端部に向かうにつれて面W,X間で断面積が小から大に変化する領域WXaと、断面積が大から小に変化する領域WXbとを備えている。   Reference sign W and reference sign X shown in FIG. 6D indicate surfaces orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5. A symbol W indicates a surface along the vicinity of the base end portion of the through hole 58. A symbol X indicates a surface along the vicinity of the tip of the through hole 58. Due to the through hole 58, the shaft portion 20 changes from the base end portion of the shaft portion 20 toward the tip portion, a region WXa where the cross-sectional area changes from small to large between the surfaces W and X, and the cross-sectional area changes from large to small. Region WXb to be used.

なお、貫通孔58の基端部側に振動の節部24がある。   The vibration node 24 is provided on the base end side of the through hole 58.

次に、このような超音波処置具1の作用について説明する。
振動伝達部材5の超音波振動時には、振動の節部24に対して遠ざかる振動の腹の方向に向かって断面積が小から大に変化する面W,X間の領域WXaで延びδ41が発生する。断面積が大から小に変化する面W,X間の領域WXbで延びδ42が発生する。
Next, the operation of such an ultrasonic treatment tool 1 will be described.
At the time of ultrasonic vibration of the vibration transmitting member 5, a δ 41 is generated extending in a region WXa between the surfaces W and X in which the cross-sectional area changes from small to large toward the antinode of the vibration away from the vibration node 24. . Δ42 is generated in the region WXb between the surfaces W and X where the cross-sectional area changes from large to small.

面Wにおいては、領域WXa,WXbの振幅は同一であるが、領域WXaでは、面Xに近づくにつれて断面積が小から大に変化して振幅が縮小される。一方、領域WXbでは断面積が大から小に変化して振幅が拡大される。このため、領域WXaの延びδ41の方が領域WXbの延びδ42よりも小さくなる(δ41<δ42)。そうすると、面W,X間には、第1の実施の形態で説明したトルクT1に対して反対方向のトルクT18が発生する。   In the surface W, the amplitudes of the regions WXa and WXb are the same, but in the region WXa, the cross-sectional area changes from small to large as the surface X is approached, and the amplitude is reduced. On the other hand, in the region WXb, the cross-sectional area changes from large to small, and the amplitude is expanded. For this reason, the extension δ41 of the region WXa is smaller than the extension δ42 of the region WXb (δ41 <δ42). Then, a torque T18 in the opposite direction to the torque T1 described in the first embodiment is generated between the surfaces W and X.

トルクT18によって、処置部30や軸部20の他の位置に形成した貫通孔によって生じるトルクを調整することができる。   Torque T18 can adjust the torque generated by the through holes formed at other positions of the treatment portion 30 and the shaft portion 20.

図6(E)に示すように、振動伝達部材5の中心軸32に対して上下方向に対称的な軸部20には、第12の貫通孔60が形成されている。第12の貫通孔60は、図6(D)に示す第11の貫通孔58と同じ形状を有する。   As shown in FIG. 6E, a twelfth through hole 60 is formed in the shaft portion 20 that is symmetrical in the vertical direction with respect to the central shaft 32 of the vibration transmitting member 5. The twelfth through hole 60 has the same shape as the eleventh through hole 58 shown in FIG.

図6(E)に示す符号Yおよび符号Zは、それぞれ振動伝達部材5の長手方向軸(中心軸32)に対して直交する面を示す。符号Yは、貫通孔60の基端部近傍に沿った面を示す。符号Zは、貫通孔60の先端部近傍に沿った面を示す。貫通孔60によって、軸部20は、軸部20の基端部から先端部に向かうにつれて面Y,Z間で断面積が小から大に変化する領域YZa1,YZa2と、断面積が大から小に変化する領域YZb1,YZb2とを備えている。   Reference sign Y and reference sign Z shown in FIG. 6 (E) indicate surfaces orthogonal to the longitudinal axis (center axis 32) of the vibration transmitting member 5, respectively. Reference Y indicates a surface along the vicinity of the base end portion of the through hole 60. Reference sign Z indicates a surface along the vicinity of the tip of the through hole 60. Due to the through-hole 60, the shaft portion 20 has regions YZa1 and YZa2 in which the cross-sectional area changes from small to large between the surfaces Y and Z from the base end portion to the tip end portion of the shaft portion 20, and the cross-sectional area increases from small to large. Regions YZb1 and YZb2 that change into two.

なお、振動の節部24は、軸部20の中心軸上かつ、面Y,Zの間の面にある。すなわち、振動の節部24は、貫通孔60の内部にある。   The vibration node 24 is on the central axis of the shaft 20 and between the surfaces Y and Z. That is, the vibration node 24 is inside the through hole 60.

次に、このような超音波処置具1の作用について説明する。   Next, the operation of such an ultrasonic treatment tool 1 will be described.

振動伝達部材5の超音波振動時には、振動の節部24に対して遠ざかる方向に向かって断面積が小から大に変化する面Y,Z間の領域YZa1で延び−δ51が発生する。この延びの符号−は、振動の節部24が面Y,Zの中央の面上にあり、領域YZa1が振動の節部24よりも軸部20の基端部側にあることによる。また、面Y,Z間の領域YZa2で延び+δ52が発生する。この延びの符号+は、振動の節部24が面Y,Zの中央の面上にあり、領域YZa2が振動の節部24よりも軸部20の先端部側にあることによる。   At the time of ultrasonic vibration of the vibration transmitting member 5, -δ51 is generated extending in the region YZa1 between the planes Y and Z where the cross-sectional area changes from small to large in the direction away from the vibration node 24. The sign of this extension is that the vibration node 24 is on the center surface of the surfaces Y and Z, and the region YZa1 is closer to the proximal end portion of the shaft portion 20 than the vibration node 24. Further, + δ52 is generated extending in the region YZa2 between the surfaces Y and Z. The sign + of this extension is due to the fact that the vibration node 24 is on the center surface of the surfaces Y and Z, and the region YZa2 is closer to the tip of the shaft portion 20 than the vibration node 24.

断面積が大から小に変化する面Y,Z間の領域YZb1で延び−δ53が発生する。この延びの符号−は、振動の節部24が面Y,Zの中央の面上にあり、領域YZb1が振動の節部24よりも軸部20の基端部側にあることによる。また、面Y,Z間の領域YZb2で延び+δ54が発生する。この延びの符号+は、振動の節部24が面Y,Zの中央の面上にあり、領域YZb2が振動の節部24よりも軸部20の先端部側にあることによる。   -Δ53 occurs in the region YZb1 between the surfaces Y and Z where the cross-sectional area changes from large to small. The sign of this extension is that the vibration node 24 is on the center surface of the surfaces Y and Z, and the region YZb1 is closer to the base end side of the shaft portion 20 than the vibration node 24. Further, + δ54 is generated in the region YZb2 between the surfaces Y and Z. The sign + of this extension is due to the fact that the vibration node 24 is on the center surface of the surfaces Y and Z, and the region YZb2 is closer to the tip of the shaft portion 20 than the vibration node 24.

すなわち、振動の節部24を有する面においては、領域YZa1,YZb2の振幅は同一であるが、領域YZa1では、面Yに近づくにつれて断面積が大から小に変化して振幅が拡大される。一方、領域YZb1では、断面積が小から大に変化して振幅が縮小されるので、領域YZa1の延び−δ51の絶対値は、領域YZb1の延び−δ53の絶対値よりも大きくなる(|δ51|>|δ53|)。   That is, in the surface having the vibration node 24, the amplitudes of the regions YZa1 and YZb2 are the same, but in the region YZa1, the cross-sectional area changes from large to small as the surface Y is approached, and the amplitude is expanded. On the other hand, in the region YZb1, since the sectional area is changed from small to large and the amplitude is reduced, the absolute value of the extension −δ51 of the region YZa1 is larger than the absolute value of the extension −δ53 of the region YZb1 (| δ51). |> | Δ53 |).

振動の節部24を有する面においては、領域YZa2,YZb2の振幅は同一であるが、領域YZa2では、面Zに近づくにつれて断面積が小から大に変化して振幅が縮小される。一方、領域YZb2では、断面積が大から小に変化して振幅が拡大される。このため、領域YZa2の延びδ52の絶対値は、領域YZb2の延びδ54の絶対値よりも小さくなる(|δ52|<|δ54|)。   In the surface having the vibration node 24, the amplitudes of the regions YZa2 and YZb2 are the same, but in the region YZa2, the cross-sectional area changes from small to large as the surface Z is approached, and the amplitude is reduced. On the other hand, in the region YZb2, the cross-sectional area changes from large to small and the amplitude is expanded. For this reason, the absolute value of the extension δ52 of the region YZa2 is smaller than the absolute value of the extension δ54 of the region YZb2 (| δ52 | <| δ54 |).

なお、領域YZa1,YZb2の断面積は、同一であるので、延び−δ51,+δ54の絶対値は、同一である(|δ51|=|δ54|)。また、領域YZa2,YZb1の断面積は、同一であるので、延び+δ52,−δ53の絶対値は、同一である(|δ52|=|δ53|)。   Since the cross-sectional areas of the regions YZa1 and YZb2 are the same, the absolute values of the extensions −δ51 and + δ54 are the same (| δ51 | = | δ54 |). Since the cross-sectional areas of the regions YZa2 and YZb1 are the same, the absolute values of the extensions + δ52 and −δ53 are the same (| δ52 | = | δ53 |).

このため、領域YZa1の延び−δ51、領域YZa2の延び+δ52、領域YZb1の延び−δ53および領域YZb2の延び+δ54の絶対値の大きさを比較すると、領域YZa1,YZb2の延び−δ51,+δ54の絶対値が、領域YZa2,YZb1の延び+δ52,−δ53の絶対値よりも大きくなる(|δ51|=|δ54|>|δ52|=|δ53|)。   Therefore, when the magnitudes of the absolute values of the extension −δ51 of the region YZa1, the extension + δ52 of the region YZa2, the extension −δ53 of the region YZb1 and the extension + δ54 of the region YZb2 are compared, the absolute values of the extensions −δ51 and + δ54 of the regions YZa1 and YZb2 are compared. The value becomes larger than the absolute values of the extensions + δ52 and −δ53 of the regions YZa2 and YZb1 (| δ51 | = | δ54 |> | δ52 | = | δ53 |).

そうすると、面Y,Z間には、第1の実施の形態で説明したトルクT1と同一方向のトルクT19が発生する。   Then, a torque T19 in the same direction as the torque T1 described in the first embodiment is generated between the surfaces Y and Z.

トルクT19によって、処置部30や軸部20の他の位置に形成した貫通孔によって生じるトルクを調整することができる。   Torque T19 can adjust the torque generated by the through holes formed at other positions of the treatment section 30 and the shaft section 20.

なお、上述した第1ないし第6の実施の形態では、処置部30の形状を三角形として説明したが、中心軸に対して上下が非対称であれば、この形状に限ることはない。   In the first to sixth embodiments described above, the shape of the treatment portion 30 has been described as a triangle. However, the shape is not limited to this shape as long as the top and bottom are asymmetric with respect to the central axis.

これまで、いくつかの実施の形態について図面を参照しながら具体的に説明したが、この発明は、上述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で行なわれる全ての実施態様を含む。   Although several embodiments have been specifically described so far with reference to the drawings, the present invention is not limited to the above-described embodiments, and all the embodiments performed without departing from the scope of the invention are not limited thereto. Including embodiments.

上記説明によれば、下記の事項の発明が得られる。また、各項の組み合わせも可能である。   According to the above description, the following matters can be obtained. Combinations of the terms are also possible.

[付記]
(付記項1) 超音波振動を用いて外科的処置を行なう超音波処置具において、
超音波振動を発生する超音波振動発生手段と、
被検体に処置するための処置部を備え、前記処置部に前記超音波振動を伝達可能に前記超音波振動発生手段と接続する振動伝達部材と、
前記超音波振動により発生する前記振動伝達部材の曲げ応力を変更するために、前記振動伝達部材に設けられた少なくとも1つの孔部と
を有することを特徴とする超音波処置具。
[Appendix]
(Additional Item 1) In an ultrasonic treatment instrument that performs a surgical treatment using ultrasonic vibration,
Ultrasonic vibration generating means for generating ultrasonic vibration;
A vibration transmission member that includes a treatment unit for treating a subject, and that is connected to the ultrasonic vibration generation unit so as to be able to transmit the ultrasonic vibration to the treatment unit;
An ultrasonic treatment instrument comprising: at least one hole provided in the vibration transmission member for changing a bending stress of the vibration transmission member generated by the ultrasonic vibration.

(付記項2) 超音波振動により外科的処置を行なう超音波処置具において、
超音波振動を処置を行なう末端まで伝達する振動伝達部材と、
前記振動伝達部材が非対称な形状を有する処置部と、
少なくとも1つ以上の孔と
を有し、前記孔が設けられた領域において前記孔により分けられた振動伝達部材の長手軸に略平行な部分の振動方向の変位が異なる大きさを有するように構成されていることを特徴とする。
(Additional Item 2) In an ultrasonic treatment instrument for performing surgical treatment by ultrasonic vibration,
A vibration transmitting member that transmits ultrasonic vibration to a terminal for treatment;
A treatment portion in which the vibration transmitting member has an asymmetric shape;
At least one hole, and in a region where the hole is provided, the displacement in the vibration direction of the portion substantially parallel to the longitudinal axis of the vibration transmitting member divided by the hole is different. It is characterized by being.

(付記項3) 前記孔が処置部に設けられていることを特徴とする付記項1もしくは付記項2に記載の超音波処置具。     (Additional Item 3) The ultrasonic treatment instrument according to Additional Item 1 or Additional Item 2, wherein the hole is provided in the treatment portion.

(付記項4) 前記孔が設けられている領域の重心が前記振動伝達部材の長手軸上にあることを特徴とする付記項1もしくは付記項2に記載の超音波処置具。     (Additional Item 4) The ultrasonic treatment instrument according to Additional Item 1 or Additional Item 2, wherein the center of gravity of the region in which the hole is provided is on the longitudinal axis of the vibration transmitting member.

第1の実施の形態に係わる超音波処置具を示し、(A)は、全体的な構成を示す部分断面図、(B)は、処置部の縦断面図、(C)は、(B)に示す符号1C方向から処置部を見た処置部の上面図。The ultrasonic treatment tool concerning a 1st embodiment is shown, (A) is a fragmentary sectional view showing the whole composition, (B) is a longitudinal section of a treatment part, (C) is (B). The top view of the treatment part which looked at the treatment part from the code | symbol 1C direction shown in FIG. 第2の実施の形態に係わる超音波処置具における処置部の縦断面図。The longitudinal cross-sectional view of the treatment part in the ultrasonic treatment tool concerning 2nd Embodiment. 第3の実施の形態に係わる超音波処置具における処置部の縦断面図。The longitudinal cross-sectional view of the treatment part in the ultrasonic treatment tool concerning 3rd Embodiment. 第4の実施の形態に係わる超音波処置具における処置部の縦断面図。The longitudinal cross-sectional view of the treatment part in the ultrasonic treatment tool concerning 4th Embodiment. 第5の実施の形態に係わる超音波処置具における処置部および軸部の縦断面図。The longitudinal cross-sectional view of the treatment part and axial part in the ultrasonic treatment tool concerning 5th Embodiment. (A)ないし(E)は、第6の実施の形態に係わる超音波処置具における軸部に設けた貫通孔と振動の節部との位置関係を示す概略的な縦断面図。(A) thru | or (E) is a schematic longitudinal cross-sectional view which shows the positional relationship of the through-hole provided in the axial part in the ultrasonic treatment tool concerning 6th Embodiment, and the node part of a vibration.

符号の説明Explanation of symbols

A,B,C…面、AC,ABa,ABb…領域、T1,T2…トルク、1…超音波処置具、3…超音波振動子ユニット、5…振動伝達部材、9…コード、11…出力端、13…接合部、15…テーパー部、20…軸部、22…支持部材、24…節部、30…処置部、30a…上端面、30b…処置面、32…中心軸、34…貫通孔   A, B, C ... surface, AC, ABa, ABb ... area, T1, T2 ... torque, 1 ... ultrasonic treatment tool, 3 ... ultrasonic transducer unit, 5 ... vibration transmission member, 9 ... code, 11 ... output End, 13 ... Joint portion, 15 ... Tapered portion, 20 ... Shaft portion, 22 ... Support member, 24 ... Node portion, 30 ... Treatment portion, 30a ... Upper end surface, 30b ... Treatment surface, 32 ... Central axis, 34 ... Penetration Hole

Claims (5)

超音波振動を発生させる超音波振動発生手段と、
基端部が前記超音波振動発生手段に連結され、先端部に中心軸に対して非対称形状の処置部が形成された細長い振動伝達部材とを具備し、
前記超音波振動発生手段で発生させた超音波振動を前記振動伝達部材の基端部から先端の前記処置部に伝達する超音波処置具において、
前記処置部に超音波振動が伝達されたときに生じるトルクの発生量を調整して横振動を抑制するトルク発生量調整孔を前記振動伝達部材に設けたことを特徴とする超音波処置具。
Ultrasonic vibration generating means for generating ultrasonic vibration;
A proximal end portion coupled to the ultrasonic vibration generating means, and an elongated vibration transmitting member having a treatment portion asymmetrically formed with respect to the central axis at the distal end portion,
In the ultrasonic treatment instrument that transmits the ultrasonic vibration generated by the ultrasonic vibration generating means from the proximal end portion of the vibration transmitting member to the treatment portion at the distal end,
An ultrasonic treatment tool, wherein a torque generation amount adjustment hole for adjusting a generation amount of torque generated when ultrasonic vibration is transmitted to the treatment portion and suppressing lateral vibration is provided in the vibration transmission member.
超音波振動を発生させる超音波振動発生手段と、
先端部に中心軸に対して円周状以外の外周面形状を有する処置部を備え、基端部で前記超音波発生手段に連結され、前記超音波振動発生手段で発生させた超音波振動を基端部から前記処置部に向けて伝達する振動伝達部材と、
前記振動伝達部材に設けられ、前記基端部から前記処置部に向けて超音波振動が伝達されることによって生じるトルク量を調整するトルク発生量調整孔と
を具備することを特徴とする超音波処置具。
Ultrasonic vibration generating means for generating ultrasonic vibration;
The distal end portion is provided with a treatment portion having an outer peripheral surface shape other than the circumferential shape with respect to the central axis, and is connected to the ultrasonic wave generating means at the base end portion, and generates ultrasonic vibration generated by the ultrasonic vibration generating means. A vibration transmitting member that transmits the proximal end portion toward the treatment portion;
An ultrasonic wave characterized by comprising: a torque generation amount adjustment hole provided in the vibration transmission member, for adjusting an amount of torque generated when ultrasonic vibration is transmitted from the base end portion toward the treatment portion. Treatment tool.
前記トルク発生量調整孔は、前記振動伝達部材の処置部に設けられていることを特徴とする請求項1もしくは請求項2に記載の超音波処置具。   The ultrasonic treatment device according to claim 1, wherein the torque generation amount adjustment hole is provided in a treatment portion of the vibration transmission member. 前記トルク発生量調整孔が設けられている領域の重心は、前記振動伝達部材の中心軸上に配置されていることを特徴とする請求項1ないし請求項3のいずれか1に記載の超音波処置具。   The ultrasonic wave according to any one of claims 1 to 3, wherein a center of gravity of a region where the torque generation amount adjusting hole is provided is disposed on a central axis of the vibration transmitting member. Treatment tool. 前記トルク発生量調整孔は、前記振動伝達部材の中心軸に対して直交する方向に貫通するように設けられ、前記トルク発生量調整孔と前記振動伝達部材の外周面との間の少なくとも一方の領域の断面積は、前記中心軸に沿った方向に変化するように設けられていることを特徴とする請求項1ないし請求項4のいずれか1に記載の超音波処置具。   The torque generation amount adjustment hole is provided so as to penetrate in a direction orthogonal to the central axis of the vibration transmission member, and at least one between the torque generation amount adjustment hole and the outer peripheral surface of the vibration transmission member The ultrasonic treatment device according to any one of claims 1 to 4, wherein a cross-sectional area of the region is provided so as to change in a direction along the central axis.
JP2003310371A 2003-09-02 2003-09-02 Ultrasonic treating instrument Withdrawn JP2005074088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003310371A JP2005074088A (en) 2003-09-02 2003-09-02 Ultrasonic treating instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003310371A JP2005074088A (en) 2003-09-02 2003-09-02 Ultrasonic treating instrument

Publications (1)

Publication Number Publication Date
JP2005074088A true JP2005074088A (en) 2005-03-24

Family

ID=34412262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003310371A Withdrawn JP2005074088A (en) 2003-09-02 2003-09-02 Ultrasonic treating instrument

Country Status (1)

Country Link
JP (1) JP2005074088A (en)

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522034A (en) * 2007-03-22 2010-07-01 エシコン・エンド−サージェリィ・インコーポレイテッド Ultrasonic surgical instrument blade
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8546999B2 (en) 2009-06-24 2013-10-01 Ethicon Endo-Surgery, Inc. Housing arrangements for ultrasonic surgical instruments
US8546996B2 (en) 2008-08-06 2013-10-01 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8591536B2 (en) 2007-11-30 2013-11-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US8704425B2 (en) 2008-08-06 2014-04-22 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8773001B2 (en) 2009-07-15 2014-07-08 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US9050124B2 (en) 2007-03-22 2015-06-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9107689B2 (en) 2010-02-11 2015-08-18 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
JP2016526434A (en) * 2013-06-28 2016-09-05 ミソニクス インコーポレイテッド Ultrasonic instrument and manufacturing method thereof
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode

Cited By (285)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US11998229B2 (en) 2005-10-14 2024-06-04 Cilag Gmbh International Ultrasonic device for cutting and coagulating
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US12042168B2 (en) 2006-01-20 2024-07-23 Cilag Gmbh International Ultrasound medical instrument having a medical ultrasonic blade
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US9987033B2 (en) 2007-03-22 2018-06-05 Ethicon Llc Ultrasonic surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
JP2010522034A (en) * 2007-03-22 2010-07-01 エシコン・エンド−サージェリィ・インコーポレイテッド Ultrasonic surgical instrument blade
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9050124B2 (en) 2007-03-22 2015-06-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US9642644B2 (en) 2007-07-27 2017-05-09 Ethicon Endo-Surgery, Llc Surgical instruments
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US9707004B2 (en) 2007-07-27 2017-07-18 Ethicon Llc Surgical instruments
US9913656B2 (en) 2007-07-27 2018-03-13 Ethicon Llc Ultrasonic surgical instruments
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US10398466B2 (en) 2007-07-27 2019-09-03 Ethicon Llc Ultrasonic end effectors with increased active length
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US10420579B2 (en) 2007-07-31 2019-09-24 Ethicon Llc Surgical instruments
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US9486236B2 (en) 2007-10-05 2016-11-08 Ethicon Endo-Surgery, Llc Ergonomic surgical instruments
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US10245065B2 (en) 2007-11-30 2019-04-02 Ethicon Llc Ultrasonic surgical blades
US10045794B2 (en) 2007-11-30 2018-08-14 Ethicon Llc Ultrasonic surgical blades
US9339289B2 (en) 2007-11-30 2016-05-17 Ehticon Endo-Surgery, LLC Ultrasonic surgical instrument blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US10265094B2 (en) 2007-11-30 2019-04-23 Ethicon Llc Ultrasonic surgical blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US10433865B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US8591536B2 (en) 2007-11-30 2013-11-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10463887B2 (en) 2007-11-30 2019-11-05 Ethicon Llc Ultrasonic surgical blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US10022568B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US8546996B2 (en) 2008-08-06 2013-10-01 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9072539B2 (en) 2008-08-06 2015-07-07 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US10022567B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US8779648B2 (en) 2008-08-06 2014-07-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8749116B2 (en) 2008-08-06 2014-06-10 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US9795808B2 (en) 2008-08-06 2017-10-24 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US8704425B2 (en) 2008-08-06 2014-04-22 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US8754570B2 (en) 2009-06-24 2014-06-17 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments comprising transducer arrangements
US8546999B2 (en) 2009-06-24 2013-10-01 Ethicon Endo-Surgery, Inc. Housing arrangements for ultrasonic surgical instruments
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US8773001B2 (en) 2009-07-15 2014-07-08 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9060775B2 (en) 2009-10-09 2015-06-23 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9060776B2 (en) 2009-10-09 2015-06-23 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8956349B2 (en) 2009-10-09 2015-02-17 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US10265117B2 (en) 2009-10-09 2019-04-23 Ethicon Llc Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US10263171B2 (en) 2009-10-09 2019-04-16 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US10117667B2 (en) 2010-02-11 2018-11-06 Ethicon Llc Control systems for ultrasonically powered surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US9107689B2 (en) 2010-02-11 2015-08-18 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9925003B2 (en) 2012-02-10 2018-03-27 Ethicon Endo-Surgery, Llc Robotically controlled surgical instrument
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700343B2 (en) 2012-04-09 2017-07-11 Ethicon Endo-Surgery, Llc Devices and techniques for cutting and coagulating tissue
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US10398497B2 (en) 2012-06-29 2019-09-03 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US9737326B2 (en) 2012-06-29 2017-08-22 Ethicon Endo-Surgery, Llc Haptic feedback devices for surgical robot
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US9713507B2 (en) 2012-06-29 2017-07-25 Ethicon Endo-Surgery, Llc Closed feedback control for electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US9795405B2 (en) 2012-10-22 2017-10-24 Ethicon Llc Surgical instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9743947B2 (en) 2013-03-15 2017-08-29 Ethicon Endo-Surgery, Llc End effector with a clamp arm assembly and blade
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
EP3013261B1 (en) * 2013-06-28 2022-03-23 Misonix Incorporated Ultrasonic instrument
JP2016526434A (en) * 2013-06-28 2016-09-05 ミソニクス インコーポレイテッド Ultrasonic instrument and manufacturing method thereof
US10398463B2 (en) 2013-06-28 2019-09-03 Misonix Incorporated Ultrasonic instrument and method for manufacturing same
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US12114914B2 (en) 2016-08-05 2024-10-15 Cilag Gmbh International Methods and systems for advanced harmonic energy
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
USD1049376S1 (en) 2016-08-16 2024-10-29 Cilag Gmbh International Surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US11925378B2 (en) 2016-08-25 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11998230B2 (en) 2016-11-29 2024-06-04 Cilag Gmbh International End effector control and calibration
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11986234B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Surgical system communication pathways
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms

Similar Documents

Publication Publication Date Title
JP2005074088A (en) Ultrasonic treating instrument
JP6648205B2 (en) Micromachined ultrasonic scalpel with embedded piezoelectric actuator
AU731135B2 (en) Methods and devices for joining transmission components
CA2480773C (en) High efficiency medical transducer with ergonomic shape and method of manufacture
JP2008119250A (en) Handpiece for ultrasonic surgical instrument, and horn
JP6001214B1 (en) Ultrasonic probe
JPWO2010047395A1 (en) Ultrasonic treatment device and ultrasonic surgical system
JPH02286149A (en) Surgery operating device
JP2010525839A (en) Ultrasonic frequency resonance dipole for medical use
JP2005152098A (en) Ultrasonic handpiece and ultrasonic horn used for the same
JP2006340837A (en) Ultrasonic surgical instrument
US11864777B2 (en) Ultrasonic system
EP3593770A1 (en) Transducer assemblies formed of non-metal materials or a combination of materials
CN109792580B (en) Ultrasonic transducer and method for manufacturing ultrasonic transducer
EP4101416A1 (en) Ultrasonic probe and treatment system
JP3745037B2 (en) Ultrasonic trocar
CA2247149C (en) Methods and devices for joining transmission components
WO2018061199A1 (en) Ultrasonic transducer and method for producing ultrasonic transducer
JP2003033363A (en) Ultrasonic operation apparatus
BR112019003643B1 (en) ULTRASONIC SURGICAL INSTRUMENT

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107