Nothing Special   »   [go: up one dir, main page]

JP2005069795A - Predetermined part registration method of dimension measuring apparatus - Google Patents

Predetermined part registration method of dimension measuring apparatus Download PDF

Info

Publication number
JP2005069795A
JP2005069795A JP2003298240A JP2003298240A JP2005069795A JP 2005069795 A JP2005069795 A JP 2005069795A JP 2003298240 A JP2003298240 A JP 2003298240A JP 2003298240 A JP2003298240 A JP 2003298240A JP 2005069795 A JP2005069795 A JP 2005069795A
Authority
JP
Japan
Prior art keywords
measurement
window
dimension
measuring apparatus
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003298240A
Other languages
Japanese (ja)
Other versions
JP4401126B2 (en
Inventor
Takahiro Shimizu
高博 清水
Shogo Kosuge
正吾 小菅
Shigenobu Otsuka
重信 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003298240A priority Critical patent/JP4401126B2/en
Publication of JP2005069795A publication Critical patent/JP2005069795A/en
Application granted granted Critical
Publication of JP4401126B2 publication Critical patent/JP4401126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a predetermined part registration method of a dimension measuring apparatus capable of registering a predetermined part of a measuring object by simple operation. <P>SOLUTION: The dimension measuring apparatus photographs the measuring object via an optical microscope, and measures the dimensions of a predetermined part of the measuring object from the obtained video signal. At at least two spots of the predetermined part of the measuring object, measuring windows are set respectively, and a measuring reference window having a predetermined relation with respect to the measuring windows is set. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、TVカメラ等の二次元センサを用いて非接触で対象物の寸法を測定する装置の改良に関するものである。   The present invention relates to an improvement in an apparatus for measuring a dimension of an object in a non-contact manner using a two-dimensional sensor such as a TV camera.

半導体や液晶表示装置等の微細な配線パターン等の線幅を測定する微小寸法測定方法として微小寸法測定装置(例えば、特許文献1参照)が知られている。この微小寸法測定装置は、図7に示すように被測定物701、例えば、半導体素子の表面を光学顕微鏡702でTVカメラの撮像部703に投影する。投影された被測定物701の表面の空間像は、TVカメラ703の撮像部で撮像され、寸法測定演算処理装置704で被測定物701の所望部分の寸法を電気的に測定し、TVモニタ705に被測定物701の画像と寸法測定値を表示するものがある。なお、706は、操作用のマウスを示す。   As a minute dimension measuring method for measuring a line width of a minute wiring pattern or the like such as a semiconductor or a liquid crystal display device, a minute dimension measuring apparatus (see, for example, Patent Document 1) is known. As shown in FIG. 7, this minute dimension measuring apparatus projects the surface of an object to be measured 701, for example, a semiconductor element, onto an imaging unit 703 of a TV camera using an optical microscope 702. The projected spatial image of the surface of the object 701 to be measured is picked up by the image pickup unit of the TV camera 703, and the dimensions of the desired part of the object 701 to be measured are electrically measured by the dimension measurement processing unit 704, and the TV monitor 705 is used. There is one that displays an image of the object to be measured 701 and a dimension measurement value. Reference numeral 706 denotes a mouse for operation.

ここで、上記の微小寸法測定装置を使用して被測定物701の配線パターン等の線幅を測定する方法について図8を用いて説明する。まず、図8(a)は、TVカメラ703で撮影された被測定物701の表面のモニタ画像801を示す。802は、モニタ画像801を走査する水平走査線を示し、803は、被測定物701の表面の例えば、配線パターンを示している。また、配線パターン803は、光の反射率が高く、明るく、その周囲は、反射率が低く、暗くなっている状態を示している。以下の図においても同様とする。Liは、i番目の水平走査線を示し、このi番目の水平走査線上の輝度分布を図8(b)に示している。即ち、図8(b)は、輝度−画素特性を示し、横軸は、モニタ画像801の横方向の画素数N、縦軸は、輝度レベルを示す。   Here, a method for measuring the line width of the wiring pattern or the like of the device under test 701 using the above-described minute dimension measuring apparatus will be described with reference to FIG. First, FIG. 8A shows a monitor image 801 of the surface of the measurement object 701 taken by the TV camera 703. Reference numeral 802 denotes a horizontal scanning line for scanning the monitor image 801, and reference numeral 803 denotes, for example, a wiring pattern on the surface of the measured object 701. In addition, the wiring pattern 803 has a high light reflectivity and is bright, and the periphery thereof has a low reflectivity and a dark state. The same applies to the following drawings. Li represents the i-th horizontal scanning line, and the luminance distribution on the i-th horizontal scanning line is shown in FIG. That is, FIG. 8B shows luminance-pixel characteristics, the horizontal axis indicates the number of pixels N in the horizontal direction of the monitor image 801, and the vertical axis indicates the luminance level.

配線パターン803の測定原理としては、上記輝度−画素特性より寸法を求める。即ち、図8(b)の輝度分布曲線804における最大輝度レベル805を100%とし、最小輝度レベル806を0%とし、50%の輝度レベル807に相当するa番目の画素とb番目の画素間の位置差Nabを求める。次に、この位置差Nabに、この時の光学顕微鏡702の測定倍率とTVカメラ703から被測定物701までの被写体距離により決まる係数kとから対応する被測定物の配線パターン803の寸法Xは、次の(1)式で求められる。   As a measurement principle of the wiring pattern 803, the dimension is obtained from the luminance-pixel characteristics. That is, the maximum luminance level 805 in the luminance distribution curve 804 in FIG. 8B is set to 100%, the minimum luminance level 806 is set to 0%, and the interval between the a-th pixel and the b-th pixel corresponding to the luminance level 807 of 50%. The position difference Nab is obtained. Next, the dimension X of the wiring pattern 803 of the object to be measured corresponding to the positional difference Nab from the measurement magnification of the optical microscope 702 at this time and the coefficient k determined by the object distance from the TV camera 703 to the object to be measured 701 is The following equation (1) is obtained.

X=k×Nab・・・・・・・・・・・・・・・・・・・・(1)
このような原理を用いて被測定物701の配線パターン803を測定する方法を説明する。図8(c)に示すように、まず、測定基準窓808(その中心の座標軸を(0,0)とする。)と左側測定窓809(その中心の座標軸を(Lx,Ly)とする。)および右側測定窓810(その中心の座標軸を(Rx,Ry)とする。)を登録する方法を説明する。なお、窓とは、図8(c)で示されている矩形状の範囲を意味する。以下の図においても同様である。図8(c)に示すように、先ず、既知の基準となる被測定物701の配線パターン803をTVモニタ705上に撮像し、画像を見ながら測定基準窓808をマウス706でドラッグし、測定基準窓808を選択し、その測定基準窓範囲内の画像をパターンマッチング画像として登録する。次に、左側測定窓809および右側測定窓810をマウス706でそれぞれドラッグして選択し、これを測定範囲として登録する。なお、測定基準窓808と左側測定窓809および右側測定窓810は、既知の基準となる被測定物で前もって定められた位置として登録される。
X = k x Nab (1)
A method for measuring the wiring pattern 803 of the DUT 701 using such a principle will be described. As shown in FIG. 8C, first, a measurement reference window 808 (with its center coordinate axis being (0, 0)) and a left measurement window 809 (with its center coordinate axis being (Lx, Ly)). ) And the right measurement window 810 (the coordinate axis at the center is (Rx, Ry)) will be described. Note that the window means a rectangular range shown in FIG. The same applies to the following drawings. As shown in FIG. 8C, first, a wiring pattern 803 of an object 701 to be measured that is a known reference is imaged on a TV monitor 705, and a measurement reference window 808 is dragged with a mouse 706 while viewing the image, and measurement is performed. A reference window 808 is selected, and an image within the measurement reference window range is registered as a pattern matching image. Next, the left measurement window 809 and the right measurement window 810 are selected by dragging with the mouse 706 and registered as measurement ranges. Note that the measurement reference window 808, the left measurement window 809, and the right measurement window 810 are registered as predetermined positions with the measurement object that is a known reference.

次に、未知の被測定物701に置換え、未知の被測定物の配線パターンをTVモニタ705上に撮像し、上述した登録されている測定基準窓808と一致する場所を検出する。この検出方法は、従来周知のパターンマッチング法が使用されるので、詳細な説明は、省略する。このパターンマッチング法で未知の被測定物701の配線パターン803から測定基準窓808を検出し、これを基準にして既に登録してある左側測定窓809、右側測定窓810を決定する。そして左側測定窓809内で左側輪郭を、また、右側測定窓810内で右側輪郭を検出する。   Next, the unknown object to be measured 701 is replaced, and the wiring pattern of the unknown object to be measured is imaged on the TV monitor 705 to detect a location that coincides with the registered measurement reference window 808 described above. Since this detection method uses a conventionally well-known pattern matching method, detailed description thereof is omitted. By this pattern matching method, the measurement reference window 808 is detected from the wiring pattern 803 of the unknown object 701 to be measured, and the left measurement window 809 and the right measurement window 810 that have already been registered are determined based on this. Then, the left contour is detected in the left measurement window 809 and the right contour is detected in the right measurement window 810.

この時のそれぞれの位置関係を次のように登録する。即ち、測定基準窓808の中心位置を(0,0)座標とし、次に左側測定窓809の中心位置を(Lx,Ly)座標、右側測定窓810の中心位置を(Rx,Ry)座標とし登録する。また、測定基準窓808の幅をKWx,KWyとし、次に左側測定窓809の幅をLWx,LWy、右側測定窓810の幅をRWx、RWyとし登録することにより未知の被測定物701の配線パターン803の所定の位置の寸法を計測することが可能である。   Each positional relationship at this time is registered as follows. That is, the center position of the measurement reference window 808 is set to (0, 0) coordinates, the center position of the left measurement window 809 is set to (Lx, Ly) coordinates, and the center position of the right measurement window 810 is set to (Rx, Ry) coordinates. register. Further, by registering the width of the measurement reference window 808 as KWx and KWy, and then registering the width of the left measurement window 809 as LWx and LWy and the width of the right measurement window 810 as RWx and RWy, the wiring of the unknown object 701 is measured. It is possible to measure the dimension of a predetermined position of the pattern 803.

ここで、図9、10、11を用いて更に詳細に寸法測定の方法を説明する。まず、図9は、TVモニタ705のモニタ画像801に表示された被測定物701の配線パターン803の輝度−画素特性を示しており、そして左側測定窓809および右側測定窓810の範囲内に最大輝度および最小輝度がある場合を説明する図である。寸法測定は、まず右側測定窓810の処理としてRx−(RWx/2)からRx+(RWx/2)の間で、最大輝度100%と最低輝度0%の輝度レベルから50%の輝度レベルを決定する。その50%の輝度レベルを有する画素位置bを寸法測定演算処理装置704で演算し、算出する。次に左側測定窓809の処理としてLx−(LWx/2)からLx+(LWx/2)の間で最大輝度100%と最低輝度0%の輝度レベルから50%の輝度レベルを決定し、上述と同様にその50%の輝度レベルを有する画素位置aを寸法測定演算処理装置704で演算し、算出する。これら画素位置aとbの差(画素間の位置差Nab)を求め、この位置差Nabに、この時の光学顕微鏡702の測定倍率とTVカメラ703から被測定物701までの被写体距離により決まる係数kとから上述した式(1)により被測定物701の配線パターン803の所定の寸法値Xを求めることができる。   Here, the method of measuring dimensions will be described in more detail with reference to FIGS. First, FIG. 9 shows the luminance-pixel characteristics of the wiring pattern 803 of the device under test 701 displayed on the monitor image 801 of the TV monitor 705, and the maximum is within the range of the left measurement window 809 and the right measurement window 810. It is a figure explaining the case where there exists a brightness | luminance and minimum brightness | luminance. In the dimension measurement, as a process of the right measurement window 810, a luminance level of 50% is determined from a luminance level of 100% maximum luminance and 0% minimum luminance between Rx− (RWx / 2) and Rx + (RWx / 2). To do. The pixel position b having the luminance level of 50% is calculated by the dimension measurement calculation processing device 704. Next, as the processing of the left measurement window 809, a luminance level of 50% is determined from the luminance level of 100% maximum luminance and 0% minimum luminance between Lx− (LWx / 2) and Lx + (LWx / 2). Similarly, the pixel position a having a luminance level of 50% is calculated by the dimension measurement calculation processing device 704. A difference between these pixel positions a and b (position difference Nab between pixels) is obtained, and this position difference Nab is a coefficient determined by the measurement magnification of the optical microscope 702 and the object distance from the TV camera 703 to the object 701 to be measured. The predetermined dimension value X of the wiring pattern 803 of the object 701 to be measured can be obtained from the above equation (1) from k.

また、図10は、図9と同様にTVモニタ705のモニタ画像801に表示された被測定物701の配線パターン803の輝度−画素特性を示しているが、左側測定窓809および右側測定窓810のいずれか一方の範囲内に最大輝度がない場合、例えば、図10では、左側測定窓809の範囲内に最大輝度がない場合は、左側測定窓809の幅LWxを自動的に広げ、最大輝度位置811を求め、最大輝度100%と最低輝度0%の輝度レベルから50%の輝度レベルを求めている。   10 shows the luminance-pixel characteristics of the wiring pattern 803 of the device under test 701 displayed on the monitor image 801 of the TV monitor 705 as in FIG. 9, but the left measurement window 809 and the right measurement window 810 are shown. If there is no maximum luminance within one of the ranges, for example, in FIG. 10, if there is no maximum luminance within the range of the left measurement window 809, the width LWx of the left measurement window 809 is automatically increased to maximize the luminance. A position 811 is obtained, and a luminance level of 50% is obtained from a luminance level of 100% maximum luminance and 0% minimum luminance.

同様に図11では、左側測定窓809および右側測定窓810のいずれの範囲内にも最大輝度がない場合、左側測定窓809および右側測定窓810の幅LWxおよびRWxを自動的に広げ、最大輝度位置811を求め、最大輝度100%と最低輝度0%の輝度レベルから50%の輝度レベルを求めている。この方法により被測定物701の配線パターン803の所定の寸法値Xを求めることができる。なお、図10および11は、説明の都合上、輝度レベルの低い部分をNabで示してあり、図9とは異なっている。   Similarly, in FIG. 11, when there is no maximum brightness within the range of either the left measurement window 809 or the right measurement window 810, the widths LWx and RWx of the left measurement window 809 and the right measurement window 810 are automatically expanded to obtain the maximum brightness. A position 811 is obtained, and a luminance level of 50% is obtained from a luminance level of 100% maximum luminance and 0% minimum luminance. By this method, the predetermined dimension value X of the wiring pattern 803 of the device under test 701 can be obtained. In FIGS. 10 and 11, for the sake of explanation, a portion with a low luminance level is indicated by Nab, which is different from FIG.

特公平6−103168号公報Japanese Examined Patent Publication No. 6-103168

従来技術では、測定範囲内またはその周辺に最大輝度位置または最小輝度位置があることを前提にその位置を登録し、演算で所定の部位の寸法を求めている。この場合、最大輝度あるいは最小輝度のいずれかの位置が測定範囲からはみ出ている場合、測定範囲をどこにさだめたら良いか作業者が迷うし、範囲を確定できない要素が測定結果の不安定さに繋がる。また、画像を見ながら測定基準窓、左側測定窓、右側測定窓を登録する等の作業が必要で操作に時間がかかると言う問題もある。   In the prior art, the position is registered on the assumption that there is a maximum luminance position or a minimum luminance position in or around the measurement range, and the size of a predetermined part is obtained by calculation. In this case, if the position of either the maximum brightness or the minimum brightness is outside the measurement range, the operator will be wondering where to put the measurement range, and elements that cannot determine the range will lead to instability of the measurement results. . In addition, there is a problem that it takes time to perform operations such as registering the measurement reference window, the left measurement window, and the right measurement window while viewing the image.

本発明の目的は、簡単な操作で被測定物の所定部位を登録することのできる寸法測定装置の所定部位登録方法を提供することである。   An object of the present invention is to provide a predetermined part registration method for a dimension measuring apparatus capable of registering a predetermined part of an object to be measured with a simple operation.

本発明の寸法測定装置の所定部位登録方法は、被測定物を光学顕微鏡を介して撮像し、得られた映像信号から上記被測定物の所定の部位の寸法を測定する寸法測定装置において、上記被測定物の所定の部位の少なくとも2箇所にそれぞれ測定窓を設定し、上記測定窓との間に所定の関係を持たせた測定基準窓を設定することにより構成される。   The predetermined part registration method of the dimension measuring apparatus of the present invention is the dimension measuring apparatus for imaging the object to be measured through an optical microscope and measuring the dimension of the predetermined part of the object to be measured from the obtained video signal. It is configured by setting measurement windows in at least two predetermined portions of the object to be measured, and setting a measurement reference window having a predetermined relationship with the measurement windows.

本発明の寸法測定装置の所定部位登録方法において、上記測定窓は、上記被測定物の所定の部位の輝度分布特性曲線の微分曲線に基づいて設定される。   In the predetermined part registration method of the dimension measuring apparatus of the present invention, the measurement window is set based on a differential curve of a luminance distribution characteristic curve of a predetermined part of the measurement object.

本発明の寸法測定装置の所定部位登録方法において、上記測定基準窓は、上記測定窓と上記被測定物の所定の部位の上記輝度分布特性曲線とは異なる方向の輝度分布特性曲線の微分曲線に基づいて設定される。   In the predetermined part registration method of the dimension measuring apparatus of the present invention, the measurement reference window is a differential curve of a luminance distribution characteristic curve in a direction different from the luminance distribution characteristic curve of the measurement window and the predetermined part of the object to be measured. Set based on.

本発明の寸法測定装置の所定部位登録方法は、測定位置を自動認識し、輝度の極大位置および極小位置を決定し、これを最大最小位置としたことにより登録者の判断誤差がなくなる。また、画像を見ながら左右の測定位置を指定するだけで登録でき操作が短縮される。   The predetermined part registration method of the dimension measuring apparatus of the present invention automatically recognizes the measurement position, determines the maximum position and the minimum position of the brightness, and eliminates the determination error of the registrant by setting these as the maximum and minimum positions. In addition, registration can be performed simply by designating the left and right measurement positions while viewing the image, thereby shortening the operation.

具体的には、画像を見ながら左側測定位置、右側測定位置を指定後、画像処理により左側測定窓、右側測定窓の範囲を決定し、基準パターンの測定基準窓を決定する方法を採用することで登録作業を2回のマウス指示作業で行うことができ、寸法測定の操作の短縮化が計れる。   Specifically, the left measurement position and the right measurement position are specified while viewing the image, the range of the left measurement window and the right measurement window is determined by image processing, and the measurement reference window for the reference pattern is determined. Thus, the registration work can be performed with two mouse instruction operations, and the operation of dimension measurement can be shortened.

図1は、本発明の一実施例を説明するためのフローチャートである。なお、本発明に使用する寸法測定装置の一実施例を図6に示す。図6において、図7と同じものには同じ符号が付されている。601は、被測定物を搭載するXYステージ、602は、XYステージ601の駆動部を示す。この微小寸法測定装置は、被測定物701、例えば、半導体素子の表面を光学顕微鏡702でTVカメラ703の撮像部に投影する。投影された被測定物701の表面の空間像は、TVカメラ703の撮像部で撮像され、映像信号に変換されて寸法測定演算処理装置704に供給される。寸法測定演算処理装置704では、この映像信号を処理し、被測定物701の所望部分の寸法を電気的に演算し、TVモニタ705に被測定物701の画像と寸法測定値が表示される。   FIG. 1 is a flowchart for explaining an embodiment of the present invention. An example of the dimension measuring apparatus used in the present invention is shown in FIG. In FIG. 6, the same components as those in FIG. Reference numeral 601 denotes an XY stage on which an object to be measured is mounted, and 602 denotes a drive unit of the XY stage 601. This minute dimension measuring apparatus projects the surface of an object to be measured 701, for example, a semiconductor element, onto an imaging unit of a TV camera 703 with an optical microscope 702. The projected aerial image of the surface of the measured object 701 is picked up by the image pickup unit of the TV camera 703, converted into a video signal, and supplied to the dimension measurement calculation processing device 704. The dimension measurement arithmetic processing unit 704 processes this video signal, electrically calculates the dimension of a desired portion of the object 701 to be measured, and displays an image of the object 701 and a dimension measurement value on the TV monitor 705.

上記微小寸法測定装置を用いた本発明の所定部位登録方法について図1を用いて説明する。先ずステップ101では、被測定物701を搭載されたXYステージ601を駆動して、例えば、線幅を測定する半導体素子の配線パターン112をTVモニタ705の画面にモニタ画像111として表示されるように調節する。   The predetermined part registration method of the present invention using the above-described minute dimension measuring apparatus will be described with reference to FIG. First, in step 101, the XY stage 601 on which the device under test 701 is mounted is driven so that, for example, the wiring pattern 112 of the semiconductor element for measuring the line width is displayed as the monitor image 111 on the screen of the TV monitor 705. Adjust.

ステップ102では、配線パターン112の右側位置をマウス706でクリックし、右側測定窓113のおおよその位置を指定する。   In step 102, the right position of the wiring pattern 112 is clicked with the mouse 706, and the approximate position of the right measurement window 113 is designated.

ステップ103では、自動エッジ検出範囲を決定する。この自動エッジ検出範囲の決定方法について、図2を用いて説明する。図2(a)は、右側測定窓113(図示せず)の近傍を示し、マウス706のクリック点P1上の走査線A−A’の輝度分布特性曲線201(図9の804に対応する。)を示している。曲線202は、輝度分布特性曲線201の微分曲線を示し、この曲線から極小値a、極小値aから左側へ傾斜がなだらかになるb点および極小値aから右側へ傾斜がなだらかになるc点を検出する。その結果、b点からc点までを右側測定窓113の幅RWxとする。なお、傾斜がなだらかになるb点およびc点は、所定の傾斜を持つ位置として設定することもできるし、また、前もって実験的に定めることもできる。また、右側測定窓113の幅RWyは、前もって適宜定めておく。   In step 103, an automatic edge detection range is determined. A method for determining the automatic edge detection range will be described with reference to FIG. 2A shows the vicinity of the right measurement window 113 (not shown) and corresponds to the luminance distribution characteristic curve 201 (804 in FIG. 9) of the scanning line AA ′ on the click point P1 of the mouse 706. FIG. ). A curve 202 shows a differential curve of the luminance distribution characteristic curve 201. From this curve, a minimum value a, a point b where the slope is gentle from the minimum value a to the left side, and a point c where the slope is gentle from the minimum value a to the right side are shown. To detect. As a result, the width RWx of the right measurement window 113 is set from the point b to the point c. It should be noted that the points b and c where the inclination becomes gentle can be set as positions having a predetermined inclination, or can be experimentally determined in advance. Further, the width RWy of the right measurement window 113 is appropriately determined in advance.

ステップ104では、配線パターン112の左側位置をマウス706でクリックし、左側測定窓114のおおよその位置を指定する。この時、Y方向は、右側測定窓113と同じにする。   In step 104, the left position of the wiring pattern 112 is clicked with the mouse 706, and the approximate position of the left measurement window 114 is designated. At this time, the Y direction is the same as that of the right measurement window 113.

ステップ105では、ステップ103と同様に自動エッジ検出範囲を決定する。即ち、図2(b)は、左側測定窓114(図示せず)の近傍を示し、マウス706のクリック点P2上の走査線B−B’の輝度分布特性曲線203(図9の804に対応する。)を示している。なお、走査線B−B’は、走査線A−A’と同じ走査線である。曲線204は、輝度分布特性曲線203の微分曲線を示し、この曲線から極大値a、極大値aから左側へ傾斜がなだらかになるb点および極大値aから右側へ傾斜がなだらかになるc点を検出する。その結果、b点からc点までを右側測定窓114の幅LWxとする。なお、傾斜がなだらかになるb点およびc点は、所定の傾斜を持つ位置として設定することもできるし、また、前もって実験的に定めることもできる。また、左側測定窓114の幅LWyは、前もって適宜定めておく。   In step 105, the automatic edge detection range is determined as in step 103. That is, FIG. 2B shows the vicinity of the left measurement window 114 (not shown), and corresponds to the luminance distribution characteristic curve 203 of the scanning line BB ′ on the click point P2 of the mouse 706 (corresponding to 804 in FIG. 9). ). Note that the scanning line B-B ′ is the same scanning line as the scanning line A-A ′. A curve 204 shows a differential curve of the luminance distribution characteristic curve 203. From this curve, a maximum value a, a point b where the slope is gentle from the maximum value a to the left side, and a point c where the slope is gentle from the maximum value a to the right side are shown. To detect. As a result, the width LWx of the right measurement window 114 is set from the point b to the point c. It should be noted that the points b and c where the inclination becomes gentle can be set as positions having a predetermined inclination, or can be experimentally determined in advance. In addition, the width LWy of the left measurement window 114 is appropriately determined in advance.

ステップ106は、自動基準位置窓115を決定する。この自動基準位置窓115の決定方法について図3を用いて説明する。図3において右側測定窓113のb点を通るY方向の直線A−A’上の輝度分布曲線301を得る。この輝度分布曲線301を得るには、
モニタ画像111の各走査線の各画素の輝度値の中から右側測定位置のb点を通る直線A−A’上に位置する各画素の輝度値を寸法測定演算処理装置704で求めて輝度分布曲線301を得る。
Step 106 determines an automatic reference position window 115. A method for determining the automatic reference position window 115 will be described with reference to FIG. In FIG. 3, a luminance distribution curve 301 is obtained on a straight line AA ′ in the Y direction passing through point b of the right measurement window 113. To obtain this luminance distribution curve 301,
Among the luminance values of each pixel of each scanning line of the monitor image 111, the luminance value of each pixel located on the straight line AA ′ passing through the point b of the right measurement position is obtained by the dimension measurement arithmetic processing unit 704, and the luminance distribution is obtained. A curve 301 is obtained.

次に、この輝度分布曲線301を微分し、微分曲線302を得る。そして微分曲線302上でR点(ステップ102で配線パターン112の右側位置をマウス706でクリックした位置に対応する。)よりピーク303側で変位点f、d、e点を探す。変位点f、d、e点を探すには、極大値d、極大値dから下側へ傾斜がなだらかになるf点および極大値dから上側へ傾斜がなだらかになるe点を検出する。なお、傾斜がなだらかになるf点およびe点は、所定の傾斜を持つ位置として設定することもできるし、また、前もって実験的に定めることもできる。   Next, the luminance distribution curve 301 is differentiated to obtain a derivative curve 302. Then, on the differential curve 302, the displacement points f, d, and e are searched on the peak 303 side from the point R (corresponding to the position where the right position of the wiring pattern 112 is clicked with the mouse 706 in step 102). In order to search for the displacement points f, d, and e, the maximum value d, the point f at which the slope gradually decreases from the maximum value d, and the point e at which the slope gradually decreases from the maximum value d are detected. Note that the points f and e where the inclination becomes gentle can be set as positions having a predetermined inclination, or can be experimentally determined in advance.

その結果、f点およびe点を通るX方向の直線E、Fおよびb点、c点を通るY方向の直線A―A’、B―B’で囲まれた範囲305を自動基準位置窓115とする。これによって自動基準位置窓115が決定される。なお、微分曲線302上でピーク303側で変位点がない場合は、ピーク304側で変位点g、h、i点を探し、上述と同様にg点およびi点を通るX方向の直線G、Iおよびb点、c点を通るY方向の直線A―A’、B―B’で囲まれた範囲306を自動基準位置窓(測定基準窓)115とする。   As a result, a range 305 surrounded by straight lines E, F and b in the X direction passing through the points f and e and straight lines AA ′ and BB ′ in the Y direction passing through the point c is set to the automatic reference position window 115. And As a result, the automatic reference position window 115 is determined. If there is no displacement point on the peak 303 side on the differential curve 302, the displacement points g, h, i are searched for on the peak 304 side, and the straight line G in the X direction passing through the g point and i point as described above. An automatic reference position window (measurement reference window) 115 is defined as a range 306 surrounded by straight lines AA ′ and BB ′ in the Y direction passing through points I, b, and c.

上記の方法で変位点が見つけられなかった場合には、右側測定窓113を右にシフトし、c点を通る直線B-B'上に直線A−A'を置き、同様に変位点を探す。   If a displacement point is not found by the above method, the right measurement window 113 is shifted to the right, a straight line AA ′ is placed on a straight line BB ′ passing through the point c, and the displacement point is similarly searched. .

このようにしても変位点がない場合は、右側測定窓113を左側測定窓114に置き換えて同様の検出をおこなう。その結果、変位点がない場合は、自動検出を断念し、マウスドラッグによる手動設定を行う。   If there is no displacement point in this way, the right detection window 113 is replaced with the left measurement window 114 and the same detection is performed. As a result, if there is no displacement point, the automatic detection is abandoned and manual setting is performed by dragging the mouse.

ステップ107は、修正と登録を行うステップである。図4(a)は、修正と登録のフローチャートを示す図である。上述したステップ101から106で自動的に求めたモニタ画像111上の測定基準窓115、右側測定窓113、左側測定窓114を確認し、修正が必要な場合には、ステップ401からステップ402に進み、図4(b)で示すようにマウスでそれぞれの位置を自由に設定し、登録ステップ403で登録する。自動設定で修正が必要でない場合は、そのまま登録ステップ403に進む。この登録ステップ403では、測定基準窓115の中心位置は、(0,0)座標とし、次に左側測定窓114の中心位置を(Lx,Ly)、右側測定窓113の中心位置を(Rx,Ry)とし登録する。また、同時に測定基準窓115の幅をKWx,KWyとし、左側測定窓114幅をLWx,LWy、右側測定窓113の幅をRWx,RWyとし登録する。   Step 107 is a step for performing correction and registration. FIG. 4A shows a flowchart of correction and registration. The measurement reference window 115, the right measurement window 113, and the left measurement window 114 on the monitor image 111 automatically obtained in steps 101 to 106 described above are checked, and if correction is necessary, the process proceeds from step 401 to step 402. As shown in FIG. 4B, each position is freely set with a mouse and registered in a registration step 403. If correction is not necessary for automatic setting, the process proceeds to registration step 403 as it is. In this registration step 403, the center position of the measurement reference window 115 is set to (0, 0) coordinates, then the center position of the left measurement window 114 is (Lx, Ly), and the center position of the right measurement window 113 is (Rx, Ly). Ry) and register. At the same time, the width of the measurement reference window 115 is registered as KWx and KWy, the width of the left measurement window 114 is registered as LWx and LWy, and the width of the right measurement window 113 is registered as RWx and RWy.

ステップ108では、図5で示すように登録された測定基準窓115、右側測定窓113、左側測定窓114を用いて例えば、配線パターン112の線幅測定を実行する。即ち、
(1)マウスで測定開始ボタンを押す。
(2)モニタ画像111内に測定すべき被測定物、例えば、半導体の配線パターンの一部の光学顕微鏡像が表示される。表示された配線パターンの像から測定基準窓115内の例えば、例えば、配線パターンの中で相関性の一番高い場所をパターンマッチング等の手法で自動認識し、測定基準窓115の中心位置の(0,0)座標を検出する。
(3)寸法測定は、前述したように右側測定窓113の処理としてRx−(RWx/2)からRx+(RWx/2)の間で、最大輝度レベル100%と最低輝度レベル0%の輝度レベルから50%の輝度レベルを有する画素位置bを検出する。次にLx−(LWx/2)からLx+(LWx/2)の間で最大輝度レベル100%と最低輝度レベル0%の輝度レベルから50%の輝度レベルを有する画素位置aを検出し、寸法Nabを得る。結果として(1)式から配線パターン112の線幅Xが測定される。
In step 108, for example, line width measurement of the wiring pattern 112 is performed using the registered measurement reference window 115, right measurement window 113, and left measurement window 114 as shown in FIG. That is,
(1) Press the measurement start button with the mouse.
(2) An optical microscope image of a part to be measured, for example, a semiconductor wiring pattern, is displayed in the monitor image 111. From the displayed wiring pattern image, for example, for example, a location having the highest correlation among the wiring patterns in the measurement reference window 115 is automatically recognized by a method such as pattern matching, and the center position of the measurement reference window 115 ( (0,0) coordinates are detected.
(3) As described above, the dimension measurement is performed as a process of the right measurement window 113 between Rx− (RWx / 2) and Rx + (RWx / 2), and the luminance level of the maximum luminance level 100% and the minimum luminance level 0%. To a pixel position b having a luminance level of 50%. Next, a pixel position a having a luminance level of 50% from the luminance level of the maximum luminance level 100% and the minimum luminance level 0% between Lx− (LWx / 2) and Lx + (LWx / 2) is detected, and the dimension Nab Get. As a result, the line width X of the wiring pattern 112 is measured from the equation (1).

以上、本発明について詳細に説明したが、本発明は、ここに記載された寸法測定装置の所定部位登録方法の実施例に限定されるものではなく、上記以外の寸法測定装置や寸法測定方法に広く適応することが出来ることは、言うまでも無い。また、測定窓として2つの測定窓を用いて説明したが、必要に応じて2つ以上の測定窓を設定することもできる。   As described above, the present invention has been described in detail. However, the present invention is not limited to the embodiment of the predetermined part registration method of the dimension measuring apparatus described here, and other dimension measuring apparatuses and dimension measuring methods other than those described above. Needless to say, it can be widely applied. Further, although two measurement windows have been described as measurement windows, two or more measurement windows can be set as necessary.

本発明の一実施例の動作を説明するフローチャートを示す図である。It is a figure which shows the flowchart explaining operation | movement of one Example of this invention. 本発明の測定窓の設定の原理を説明するための図である。It is a figure for demonstrating the principle of the setting of the measurement window of this invention. 本発明の測定基準窓の設定の原理を説明するための図である。It is a figure for demonstrating the principle of the setting of the measurement reference | standard window of this invention. 本発明の修正、登録について説明するための図である。It is a figure for demonstrating correction and registration of this invention. 本発明を被測定物の一部の光線幅測定に適応した図である。It is the figure which applied this invention to the light-width measurement of a part of to-be-measured object. 本発明の一実施例を示すブロック図である。It is a block diagram which shows one Example of this invention. 従来の寸法測定装置の一例を示すブロック図である。It is a block diagram which shows an example of the conventional dimension measuring apparatus. 従来の寸法測定装置の基本原理を説明するための図である。It is a figure for demonstrating the basic principle of the conventional dimension measuring apparatus. 従来の寸法測定装置の詳細な測定原理を説明するための図である。It is a figure for demonstrating the detailed measurement principle of the conventional dimension measuring apparatus. 従来の寸法測定装置の詳細な測定原理を説明するための図である。It is a figure for demonstrating the detailed measurement principle of the conventional dimension measuring apparatus. 従来の寸法測定装置の詳細な測定原理を説明するための図である。It is a figure for demonstrating the detailed measurement principle of the conventional dimension measuring apparatus.

符号の説明Explanation of symbols

111:モニタ画像、112:配線パターン、113:右側測定窓、114:左側測定窓、115:測定基準窓、301:輝度分布曲線、302:微分曲線、303、304:ピーク、601:XYステージ、602:XY駆動部、701:被測定物、702:光学顕微鏡、703:TVカメラ、704:寸法測定演算処理装置、705:TVモニタ、706:マウス。   111: monitor image, 112: wiring pattern, 113: right measurement window, 114: left measurement window, 115: measurement reference window, 301: luminance distribution curve, 302: differential curve, 303, 304: peak, 601: XY stage, 602: XY drive unit, 701: object to be measured, 702: optical microscope, 703: TV camera, 704: dimension measurement processing unit, 705: TV monitor, 706: mouse.

Claims (1)

被測定物を光学顕微鏡を介して撮像し、得られた映像信号から上記被測定物の所定の部位の寸法を測定する寸法測定装置において、上記被測定物の所定の部位の少なくとも2箇所にそれぞれ測定窓を設定し、上記測定窓との間に所定の関係を持たせた測定基準窓を設定することを特徴とする寸法測定装置の所定部位登録方法。
In a dimension measuring apparatus that measures an object to be measured through an optical microscope and measures a dimension of a predetermined part of the object to be measured from an obtained video signal, at least two of the predetermined parts of the object to be measured are respectively provided A method for registering a predetermined part of a dimension measuring apparatus, comprising: setting a measurement window and setting a measurement reference window having a predetermined relationship with the measurement window.
JP2003298240A 2003-08-22 2003-08-22 Method for registering predetermined part of dimension measuring device Expired - Lifetime JP4401126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298240A JP4401126B2 (en) 2003-08-22 2003-08-22 Method for registering predetermined part of dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298240A JP4401126B2 (en) 2003-08-22 2003-08-22 Method for registering predetermined part of dimension measuring device

Publications (2)

Publication Number Publication Date
JP2005069795A true JP2005069795A (en) 2005-03-17
JP4401126B2 JP4401126B2 (en) 2010-01-20

Family

ID=34403792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298240A Expired - Lifetime JP4401126B2 (en) 2003-08-22 2003-08-22 Method for registering predetermined part of dimension measuring device

Country Status (1)

Country Link
JP (1) JP4401126B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041083A1 (en) * 2007-09-25 2009-04-02 Hitachi Kokusai Electric Inc. Micro-dimension measuring method and measuring device
JP2009300125A (en) * 2008-06-10 2009-12-24 Keyence Corp Image measuring device, image measuring method, and computer program
JP2009300124A (en) * 2008-06-10 2009-12-24 Keyence Corp Image measuring device, image measuring method, and computer program
JP2010169584A (en) * 2009-01-23 2010-08-05 Keyence Corp Image measuring device and computer program
JP2011106947A (en) * 2009-11-17 2011-06-02 Hitachi High-Technologies Corp Edge detection method, length measurement method, charged particle beam apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041083A1 (en) * 2007-09-25 2009-04-02 Hitachi Kokusai Electric Inc. Micro-dimension measuring method and measuring device
JP2009079915A (en) * 2007-09-25 2009-04-16 Hitachi Kokusai Electric Inc Method and device for measuring micro-dimension
JP2009300125A (en) * 2008-06-10 2009-12-24 Keyence Corp Image measuring device, image measuring method, and computer program
JP2009300124A (en) * 2008-06-10 2009-12-24 Keyence Corp Image measuring device, image measuring method, and computer program
JP2010169584A (en) * 2009-01-23 2010-08-05 Keyence Corp Image measuring device and computer program
JP2011106947A (en) * 2009-11-17 2011-06-02 Hitachi High-Technologies Corp Edge detection method, length measurement method, charged particle beam apparatus

Also Published As

Publication number Publication date
JP4401126B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
KR100499764B1 (en) Method and system of measuring an object in a digital
US20090128648A1 (en) Image processing device and image processing method for performing three dimensional measurements
KR20100053442A (en) Defect inspection device and defect inspection method
US9122048B2 (en) Image processing apparatus and image processing program
TW419933B (en) Method and apparatus for measuring position errors based on positioning marks, and a machining apparatus for correcting positions based on the results of measuring position errors based on positioning marks
JP2006276454A (en) Image correcting method and pattern defect inspecting method using same
JP2002267416A (en) Surface defect inspecting device
EP3531817B1 (en) Substrate inspection device and substrate inspection method using same
JP2005195361A (en) Measuring method for line-and-space pattern using scanning electron microscope
JP2006208084A (en) Inspection device for irregularities in cyclic pattern
JP2004251781A (en) Defect inspection method by image recognition
JP4401126B2 (en) Method for registering predetermined part of dimension measuring device
US5638167A (en) Method of measuring the light amount of a display picture element, display screen inspecting method and display screen inspecting apparatus
JP2009058459A (en) Profile measuring system
US6868354B2 (en) Method of detecting a pattern and an apparatus thereof
JP2009079915A (en) Method and device for measuring micro-dimension
JP2009058377A (en) Inspection apparatus
JP4313162B2 (en) Alignment mark detection method and inspection apparatus
JP3123275B2 (en) Inspection data creation method for electronic parts shortage inspection
JP3552381B2 (en) Image measuring machine
TW504564B (en) Image processing method and device
JP7156795B2 (en) Inspection device adjustment method and inspection device
US20180210186A1 (en) Image processing apparatus, image processing system, microscope system, image processing method and computer-readable recording medium
JP2006032521A (en) Mark identifying device
JP2008045887A (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4401126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term