Nothing Special   »   [go: up one dir, main page]

JP2005069120A - Fuel pressure detection device of internal combustion engine - Google Patents

Fuel pressure detection device of internal combustion engine Download PDF

Info

Publication number
JP2005069120A
JP2005069120A JP2003300774A JP2003300774A JP2005069120A JP 2005069120 A JP2005069120 A JP 2005069120A JP 2003300774 A JP2003300774 A JP 2003300774A JP 2003300774 A JP2003300774 A JP 2003300774A JP 2005069120 A JP2005069120 A JP 2005069120A
Authority
JP
Japan
Prior art keywords
fuel pressure
pressure
fuel
low
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300774A
Other languages
Japanese (ja)
Other versions
JP4375534B2 (en
Inventor
Taiji Isobe
大治 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003300774A priority Critical patent/JP4375534B2/en
Priority to DE200410039047 priority patent/DE102004039047A1/en
Publication of JP2005069120A publication Critical patent/JP2005069120A/en
Application granted granted Critical
Publication of JP4375534B2 publication Critical patent/JP4375534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the correction accuracy of detected fuel pressure in a fuel pressure sensor. <P>SOLUTION: The learning timing is set to the point of time a predetermined amount of time required from the on-operation of an ignition switch (starting of a low pressure pump 12) until the fuel pressure on the delivery side of a high pressure pump 14 (the actual fuel pressure) rises to a target delivery pressure of the low pressure pump 12 (the preset pressure of a fuel pressure regulator 15) elapses. In this learning timing, the detected fuel pressure of a fuel pressure sensor 32 is input to an ECU 36 to calculate a deviation between the target delivery pressure of the low pressure pump 12 and the detected fuel pressure of the fuel pressure sensor 32, and the deviation is stored as a detected error learning value of the fuel pressure sensor 32 in a memory of the ECU 36. After that, the value obtained by adding the detected error learning value to the detected fuel pressure of the fuel pressure sensor 32 is used as the final detected fuel pressure to calculate a fuel pressure correction coefficient K, and the base injection quantity is corrected by the fuel pressure correction efficient K to obtain the final fuel injection quantity. This learning correction is performed only in a low pressure region where the detection accuracy of the fuel pressure sensor 32 is bad. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低圧ポンプから吐出される燃料を高圧ポンプで加圧して燃料噴射弁に圧送する高圧燃料供給システムにおいて、高圧ポンプの吐出側の燃圧を検出する燃圧センサを備えた内燃機関の燃圧検出装置に関するものである。   The present invention relates to a fuel pressure detection of an internal combustion engine having a fuel pressure sensor for detecting a fuel pressure on a discharge side of a high pressure pump in a high pressure fuel supply system in which fuel discharged from a low pressure pump is pressurized by a high pressure pump and pumped to a fuel injection valve. It relates to the device.

気筒内に燃料を直接噴射する筒内噴射エンジンでは、燃焼性を確保するために、噴射圧力を高圧にして噴射燃料の微粒化を促進させる必要がある。そのため、筒内噴射エンジンでは、燃料タンクから電動式の低圧ポンプで汲み上げた燃料を、エンジンのカム軸で駆動される機械式の高圧ポンプで高圧に加圧して燃料噴射弁へ圧送するようにしている。このような高圧燃料供給システムでは、高圧ポンプから燃料噴射弁へ吐出する燃料の圧力を燃圧センサで検出し、その検出燃圧に基づいて燃料噴射弁の燃料噴射量(燃料噴射時間)を補正するようにしている。従って、燃圧センサの検出精度が悪いと、燃料噴射量の補正精度が悪くなるという関係がある。   In a cylinder injection engine that directly injects fuel into a cylinder, in order to ensure combustibility, it is necessary to increase the injection pressure to promote atomization of the injected fuel. Therefore, in the cylinder injection engine, the fuel pumped up from the fuel tank by the electric low-pressure pump is pressurized to a high pressure by a mechanical high-pressure pump driven by the cam shaft of the engine and sent to the fuel injection valve. Yes. In such a high-pressure fuel supply system, the pressure of the fuel discharged from the high-pressure pump to the fuel injection valve is detected by a fuel pressure sensor, and the fuel injection amount (fuel injection time) of the fuel injection valve is corrected based on the detected fuel pressure. I have to. Therefore, when the detection accuracy of the fuel pressure sensor is poor, the correction accuracy of the fuel injection amount is deteriorated.

そこで、特許文献1(特開2000−249017号公報)に示すように、燃圧センサの検出燃圧を校正する技術が提案されている。このものでは、電動式の低圧ポンプの吐出圧力が最高圧力(4バール)になったときの燃圧センサの出力電圧(検出燃圧)と機械式の高圧ポンプの吐出圧力が最高圧力(120バール)になったときの燃圧センサの出力電圧(検出燃圧)とを結ぶ直線を校正線として求め、この校正線に基づいて燃圧センサの出力電圧を検出燃圧に変換するようにしている。
特開2000−249017号公報(段落[0042]、図3等)
Therefore, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2000-249017), a technique for calibrating the detected fuel pressure of the fuel pressure sensor has been proposed. In this case, the output voltage of the fuel pressure sensor (detected fuel pressure) when the discharge pressure of the electric low-pressure pump reaches the maximum pressure (4 bar) and the discharge pressure of the mechanical high-pressure pump reach the maximum pressure (120 bar). A straight line connecting the output voltage (detected fuel pressure) of the fuel pressure sensor at this time is obtained as a calibration line, and the output voltage of the fuel pressure sensor is converted to the detected fuel pressure based on this calibration line.
JP 2000-249017 A (paragraph [0042], FIG. 3 etc.)

上記特許文献1では、電動式の低圧ポンプの吐出圧力が最高圧力(4バール)になったときの燃圧センサの出力電圧(検出燃圧)と機械式の高圧ポンプの吐出圧力が最高圧力(120バール)になったときの燃圧センサの出力電圧(検出燃圧)とを結ぶ直線を校正線として求めるようにしているが、電動式の低圧ポンプの最高吐出圧力は、電源となるバッテリ電圧や燃料温度の変化等に応じて変動するため、低圧ポンプの最高吐出圧力を基準にして燃圧センサの検出特性を補正(校正)したのでは、バッテリ電圧や燃料温度の変化等による低圧ポンプの最高吐出圧力の変動分の検出誤差が生じてしまい、燃圧センサの検出燃圧の補正精度が悪いという欠点がある。   In Patent Document 1, the output voltage (detected fuel pressure) of the fuel pressure sensor when the discharge pressure of the electric low-pressure pump reaches the maximum pressure (4 bar) and the discharge pressure of the mechanical high-pressure pump are the maximum pressure (120 bar). ), The straight line connecting the output voltage of the fuel pressure sensor (detected fuel pressure) is calculated as the calibration line. However, the maximum discharge pressure of the electric low-pressure pump is determined by the battery voltage and fuel temperature as the power source. As the fuel pressure sensor detection characteristics are corrected (calibrated) based on the maximum discharge pressure of the low-pressure pump, the fluctuation of the maximum discharge pressure of the low-pressure pump due to changes in battery voltage and fuel temperature. Detection error occurs, and the correction accuracy of the detected fuel pressure of the fuel pressure sensor is poor.

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、燃圧センサの検出燃圧の補正精度を向上できる内燃機関の燃圧検出装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, an object of the present invention is to provide a fuel pressure detection device for an internal combustion engine that can improve the correction accuracy of the detected fuel pressure of the fuel pressure sensor.

上記目的を達成するために、請求項1に係る発明は、低圧ポンプの吐出圧を目標吐出圧に調整しながら燃料を高圧ポンプに送るようにしたシステムにおいて、所定の学習実行条件が成立したときに、学習手段により低圧ポンプの目標吐出圧と燃圧センサの検出燃圧との偏差に基づいて燃圧センサの検出誤差を学習し、この学習値に基づいて燃圧センサの検出燃圧を検出燃圧補正手段により補正するようにしたものである。この場合、燃圧センサの検出誤差の学習に用いる基準値(低圧ポンプの目標吐出圧)は、バッテリ電圧や燃料温度が変化しても変化しないため、低圧ポンプの目標吐出圧を基準にして燃圧センサの検出誤差を学習すれば、バッテリ電圧や燃料温度の変化の影響を受けずに燃圧センサの検出誤差を精度良く学習することができ、燃圧センサの検出燃圧の補正精度を向上することができる。   In order to achieve the above object, the invention according to claim 1 is a system in which fuel is sent to a high pressure pump while adjusting a discharge pressure of the low pressure pump to a target discharge pressure, when a predetermined learning execution condition is satisfied. In addition, the learning means learns the detection error of the fuel pressure sensor based on the deviation between the target discharge pressure of the low pressure pump and the detected fuel pressure of the fuel pressure sensor, and the detected fuel pressure of the fuel pressure sensor is corrected by the detected fuel pressure correction means based on this learned value. It is what you do. In this case, the reference value (target discharge pressure of the low-pressure pump) used for learning the detection error of the fuel pressure sensor does not change even when the battery voltage or the fuel temperature changes, so the fuel pressure sensor is based on the target discharge pressure of the low-pressure pump. If this detection error is learned, the detection error of the fuel pressure sensor can be learned with high accuracy without being affected by changes in the battery voltage and the fuel temperature, and the correction accuracy of the detected fuel pressure of the fuel pressure sensor can be improved.

一般に、高圧ポンプの吐出側の燃圧を検出する燃圧センサの検出特性は、内燃機関の運転中に通常使用する高燃圧領域で検出精度が高くなるように設計されているため、低燃圧領域で検出精度が悪くなる傾向がある。   In general, the detection characteristics of the fuel pressure sensor that detects the fuel pressure on the discharge side of the high-pressure pump are designed so that the detection accuracy is high in the high fuel pressure region normally used during operation of the internal combustion engine. There is a tendency for accuracy to deteriorate.

このような燃圧センサの検出特性を考慮して、請求項2のように、燃圧センサの検出燃圧が所定値以下の低燃圧領域で燃圧センサの検出誤差を学習するようにすると良い。このようにすれば、燃圧センサの検出誤差が大きくなる低燃圧領域(換言すれば燃圧センサの検出誤差を学習しやすい領域)で、燃圧センサの検出誤差を精度良く学習することができる。   In consideration of such detection characteristics of the fuel pressure sensor, it is preferable to learn the detection error of the fuel pressure sensor in a low fuel pressure region where the fuel pressure detected by the fuel pressure sensor is not more than a predetermined value. In this way, the detection error of the fuel pressure sensor can be accurately learned in a low fuel pressure region where the detection error of the fuel pressure sensor becomes large (in other words, a region where it is easy to learn the detection error of the fuel pressure sensor).

また、請求項3のように、低圧ポンプの目標吐出圧と高圧ポンプの吐出側の燃圧(実燃圧)との偏差δ1(=目標吐出圧−実燃圧)を推定できる状態になったときに燃圧センサの検出誤差を学習するようにすると良い。このようにすれば、低圧ポンプの目標吐出圧と燃圧センサの検出燃圧との偏差δ2(=目標吐出圧−検出燃圧)を検出することで、燃圧センサの検出誤差(=検出燃圧−実燃圧=δ1−δ2)を精度良く学習することができる。   Further, as in claim 3, when the deviation δ1 (= target discharge pressure−actual fuel pressure) between the target discharge pressure of the low pressure pump and the fuel pressure (actual fuel pressure) on the discharge side of the high pressure pump can be estimated, the fuel pressure It is preferable to learn the detection error of the sensor. In this way, by detecting the deviation δ2 (= target discharge pressure−detected fuel pressure) between the target discharge pressure of the low pressure pump and the detected fuel pressure of the fuel pressure sensor, the detection error of the fuel pressure sensor (= detected fuel pressure−actual fuel pressure = [delta] 1- [delta] 2) can be learned with high accuracy.

例えば、請求項4のように、低圧ポンプが起動されてから高圧ポンプの吐出側の燃圧(実燃圧)が低圧ポンプの目標吐出圧まで上昇して両者の偏差δ1が0(実燃圧=目標吐出圧)になったと推定できる状態になったときに燃圧センサの検出誤差を学習するようにすると良い。このようにすれば、簡単な処理で燃圧センサの検出誤差を精度良く学習することができる。   For example, the fuel pressure (actual fuel pressure) on the discharge side of the high-pressure pump rises to the target discharge pressure of the low-pressure pump after the low-pressure pump is started, and the deviation δ1 between them is 0 (actual fuel pressure = target discharge). It is preferable to learn the detection error of the fuel pressure sensor when it can be estimated that the pressure has reached. In this way, the detection error of the fuel pressure sensor can be learned with high accuracy by a simple process.

より具体的には、請求項5のように、低圧ポンプが起動されてから高圧ポンプの吐出側の燃圧(実燃圧)が低圧ポンプの目標吐出圧まで上昇するのに要する所定時間が経過したときに、燃圧センサの検出誤差を学習するようにすると良い。このように、低圧ポンプ起動後の経過時間で学習タイミングを判断すれば、学習タイミングを簡単に判断することができる。   More specifically, when a predetermined time elapses after the low-pressure pump is started and the fuel pressure (actual fuel pressure) on the discharge side of the high-pressure pump rises to the target discharge pressure of the low-pressure pump, as in claim 5 Furthermore, it is preferable to learn the detection error of the fuel pressure sensor. Thus, if the learning timing is determined from the elapsed time after the low-pressure pump is started, the learning timing can be easily determined.

また、請求項6のように、燃圧に影響を及ぼす特定の運転パラメータの領域毎に燃圧センサの検出誤差を学習するようにしても良い。このようにすれば、特定の運転パラメータの変化によって燃圧センサの検出誤差が変化する場合でも、燃圧センサの検出誤差を精度良く学習補正することができる。   Further, the detection error of the fuel pressure sensor may be learned for each specific operating parameter region that affects the fuel pressure. In this way, even when the detection error of the fuel pressure sensor changes due to a change in a specific operating parameter, the detection error of the fuel pressure sensor can be learned and corrected with high accuracy.

例えば、燃料温度によって燃圧センサの検出誤差が変化する傾向があるので、燃料温度又はこれと相関関係のある何等かの温度を検出する温度検出手段を備えたシステムでは、請求項7のように、温度検出手段で検出した温度の領域毎に前記燃圧センサの検出誤差を学習するようにしても良い。このようにすれば、燃料温度の影響を受けずに燃圧センサの検出誤差を精度良く学習補正することができる。   For example, since the detection error of the fuel pressure sensor tends to change depending on the fuel temperature, in a system including temperature detection means for detecting the fuel temperature or any temperature correlated therewith, as in claim 7, You may make it learn the detection error of the said fuel pressure sensor for every area | region of the temperature detected by the temperature detection means. In this way, the detection error of the fuel pressure sensor can be learned and corrected with high accuracy without being affected by the fuel temperature.

また、請求項8のように、内燃機関の停止時間が短く、高圧ポンプの吐出側の残留燃圧が抜け切らない状態で低圧ポンプが起動されたときには、燃圧センサの検出誤差を学習しないようにすると良い。高圧ポンプの吐出側の残留燃圧が抜け切らない状態で低圧ポンプが起動されたときには、起動初期の低圧ポンプの吐出圧が不明であり、その後の低圧ポンプの吐出圧の上昇具合を推定できないため、高圧ポンプの吐出側の燃圧(実燃圧)が低圧ポンプの目標吐出圧まで上昇するタイミングを精度良く推定できない。このような場合は、燃圧センサの検出誤差を学習しないようにすれば、高圧ポンプの吐出側の残留燃圧に起因する誤学習や学習精度低下を未然に防止することができる。   Further, as in claim 8, when the low pressure pump is started in a state where the stop time of the internal combustion engine is short and the residual fuel pressure on the discharge side of the high pressure pump is not completely discharged, the detection error of the fuel pressure sensor is not learned. good. When the low-pressure pump is started in a state where the residual fuel pressure on the discharge side of the high-pressure pump is not completely removed, the discharge pressure of the low-pressure pump at the beginning of the start-up is unknown, and the increase in the discharge pressure of the subsequent low-pressure pump cannot be estimated. The timing at which the fuel pressure (actual fuel pressure) on the discharge side of the high-pressure pump rises to the target discharge pressure of the low-pressure pump cannot be accurately estimated. In such a case, if the detection error of the fuel pressure sensor is not learned, it is possible to prevent erroneous learning and learning accuracy deterioration due to the residual fuel pressure on the discharge side of the high-pressure pump.

低圧ポンプの吐出圧を目標吐出圧に調整する低圧ポンプ吐出圧調整手段として、燃圧レギュレータを用いるシステムでは、請求項9のように、低圧ポンプの目標吐出圧として、燃圧レギュレータの設定圧力を用いるようにすると良い。   In the system using the fuel pressure regulator as the low pressure pump discharge pressure adjusting means for adjusting the discharge pressure of the low pressure pump to the target discharge pressure, the set pressure of the fuel pressure regulator is used as the target discharge pressure of the low pressure pump. It is good to do.

また、低圧ポンプの吐出圧を目標値にフィードバック制御するシステムでは、請求項10のように、低圧ポンプの目標吐出圧として、フィードバック制御の目標値を用いるようにすると良い。燃圧レギュレータの設定圧力、フィードバック制御の目標値のいずれを用いても、バッテリ電圧や燃料温度の変化の影響を受けずに燃圧センサの検出誤差を精度良く学習することができる。   Further, in a system that feedback-controls the discharge pressure of the low-pressure pump to the target value, the target value of the feedback control may be used as the target discharge pressure of the low-pressure pump. Regardless of whether the set pressure of the fuel pressure regulator or the target value of feedback control is used, the detection error of the fuel pressure sensor can be accurately learned without being affected by changes in the battery voltage or fuel temperature.

本発明は、全ての燃圧領域で学習手段の学習値に基づいて燃圧センサの検出燃圧を補正するようにしても良いが、一般に、燃圧センサの検出特性は、内燃機関の運転中に通常使用する高燃圧領域で検出精度が高くなるように設計されているため、請求項11のように、燃圧センサの検出燃圧が所定値以下の低燃圧領域(燃圧センサの検出誤差が無視できない低燃圧領域)でのみ学習手段の学習値に基づいて燃圧センサの検出燃圧を補正するようにすると良い。このようにすれば、内燃機関の運転中に通常使用する高燃圧領域(燃圧センサの検出精度が高い領域)では、本来的に不要な学習補正を行わずに済み、車載コンピュータの演算負荷を軽減することができる。   In the present invention, the detected fuel pressure of the fuel pressure sensor may be corrected based on the learning value of the learning means in all fuel pressure regions, but in general, the detection characteristic of the fuel pressure sensor is normally used during operation of the internal combustion engine. Since the detection accuracy is designed to be high in the high fuel pressure region, the low fuel pressure region in which the fuel pressure detected by the fuel pressure sensor is equal to or lower than a predetermined value (the low fuel pressure region where the detection error of the fuel pressure sensor cannot be ignored) is provided. It is preferable to correct the detected fuel pressure of the fuel pressure sensor based only on the learning value of the learning means. In this way, in the high fuel pressure region that is normally used during operation of the internal combustion engine (the region where the detection accuracy of the fuel pressure sensor is high), it is not necessary to perform inherently unnecessary learning correction, reducing the computational load on the in-vehicle computer. can do.

この場合、請求項12のように、補正後の検出燃圧の上限を低燃圧領域(補正あり領域)と高燃圧領域(補正なし領域)との境界の燃圧(所定値)で制限するようにすると良い。このようにすれば、低燃圧領域(補正あり領域)と高燃圧領域(補正なし領域)との境界で補正後の検出燃圧が不連続になることを防止できる。   In this case, as in claim 12, the upper limit of the corrected detected fuel pressure is limited by the fuel pressure (predetermined value) at the boundary between the low fuel pressure region (corrected region) and the high fuel pressure region (non-corrected region). good. By doing so, it is possible to prevent the detected fuel pressure after correction from becoming discontinuous at the boundary between the low fuel pressure region (region with correction) and the high fuel pressure region (region without correction).

また、請求項13のように、補正後の検出燃圧を用いて燃料噴射弁の燃料噴射量を噴射量補正手段により補正するようにすると良い。このようにすれば、燃圧センサの検出精度が低下する始動時の低燃圧領域でも、燃料噴射量を精度良く補正することができ、始動性を向上させることができる。   Further, as in claim 13, it is preferable to correct the fuel injection amount of the fuel injection valve by the injection amount correction means using the corrected detected fuel pressure. In this way, the fuel injection amount can be corrected with high accuracy even in the low fuel pressure region at the start when the detection accuracy of the fuel pressure sensor is reduced, and the startability can be improved.

以下、本発明の一実施例を図面に基づいて説明する。まず、図1に基づいて筒内噴射エンジン(内燃機関)の高圧燃料供給システムの構成を説明する。燃料を貯溜する燃料タンク11内には、燃料を汲み上げる電動式の低圧ポンプ12が配置されている。この低圧ポンプ12は、バッテリ(図示せず)を電源とする電動モータ(図示せず)によって駆動される。この低圧ポンプ12から吐出される燃料は、低圧側燃料配管13を通して機械式の高圧ポンプ14に供給される。低圧側燃料配管13の途中には、燃圧レギュレータ15(低圧ポンプ吐出圧調整手段)が設けられ、この燃圧レギュレータ15によって低圧ポンプ12の吐出圧(高圧ポンプ14への燃料供給圧力)が目標吐出圧(例えば0.4MPa)に調圧され、その目標吐出圧を越える燃料の余剰分は燃料戻し管16により燃料タンク11内に戻される。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, the configuration of a high pressure fuel supply system for a direct injection engine (internal combustion engine) will be described with reference to FIG. An electric low-pressure pump 12 that pumps up the fuel is disposed in the fuel tank 11 that stores the fuel. The low-pressure pump 12 is driven by an electric motor (not shown) that uses a battery (not shown) as a power source. The fuel discharged from the low-pressure pump 12 is supplied to a mechanical high-pressure pump 14 through a low-pressure side fuel pipe 13. A fuel pressure regulator 15 (low pressure pump discharge pressure adjusting means) is provided in the middle of the low pressure side fuel pipe 13, and the discharge pressure of the low pressure pump 12 (fuel supply pressure to the high pressure pump 14) is set to the target discharge pressure by the fuel pressure regulator 15. The surplus of the fuel that is adjusted to (for example, 0.4 MPa) and exceeds the target discharge pressure is returned into the fuel tank 11 by the fuel return pipe 16.

図2に示すように、高圧ポンプ14は、円筒状のポンプ室18内でプランジャ19を往復運動させて燃料を吸入/吐出するプランジャポンプであり、プランジャ19は、エンジンのカム軸20に嵌着されたカム21の回転運動によって駆動される。これにより、図3に示すように、クランク角に応じてプランジャ19のリフト量が周期的に変化する。   As shown in FIG. 2, the high-pressure pump 14 is a plunger pump that sucks / discharges fuel by reciprocating a plunger 19 in a cylindrical pump chamber 18, and the plunger 19 is fitted to a cam shaft 20 of the engine. It is driven by the rotational movement of the cam 21. Thereby, as shown in FIG. 3, the lift amount of the plunger 19 changes periodically according to the crank angle.

また、図2に示すように、ポンプ室18の吸入口23側には、流量制御弁22が設けられている。この流量制御弁22は、常開型の電磁弁であり、吸入口23を開閉する弁体26と、弁体26を開弁方向に付勢するスプリング27と、弁体26を閉弁方向に電磁駆動するノレノイド28とから構成されている。ソレノイド28に駆動電流が通電されていないときには、スプリング27の付勢力により弁体26が開弁されて吸入口23が開放される。一方、ソレノイド28に駆動電流が通電されると、ソレノイド28の電磁駆動力により弁体26がスプリング27の付勢力に抗して閉弁されて吸入口23が閉塞される。   As shown in FIG. 2, a flow control valve 22 is provided on the suction port 23 side of the pump chamber 18. This flow control valve 22 is a normally-open electromagnetic valve, and a valve body 26 that opens and closes the suction port 23, a spring 27 that urges the valve body 26 in the valve opening direction, and a valve body 26 in the valve closing direction. It is composed of a norenoid 28 that is electromagnetically driven. When the drive current is not supplied to the solenoid 28, the valve element 26 is opened by the biasing force of the spring 27, and the suction port 23 is opened. On the other hand, when a drive current is applied to the solenoid 28, the valve body 26 is closed against the biasing force of the spring 27 by the electromagnetic driving force of the solenoid 28 and the suction port 23 is closed.

高圧ポンプ14の吸入行程(プランジャ19が上死点から下死点に移動する行程)で、流量制御弁22が開弁されてポンプ室18内に燃料が吸入され、吐出行程(プランジャ19が下死点から上死点に移動する行程)で、流量制御弁22の閉弁開始時期を制御することで、燃料吐出量を調節して高圧ポンプ14の吐出燃料圧力(以下「高圧側燃圧」という)を制御する。   In the suction stroke of the high-pressure pump 14 (stroke in which the plunger 19 moves from the top dead center to the bottom dead center), the flow control valve 22 is opened, fuel is sucked into the pump chamber 18, and the discharge stroke (plunger 19 is lowered). By controlling the valve closing start timing of the flow rate control valve 22 in the process of moving from the dead center to the top dead center, the fuel discharge amount is adjusted, and the discharge fuel pressure of the high-pressure pump 14 (hereinafter referred to as “high-pressure side fuel pressure”). ) To control.

例えば、高圧側燃圧を上昇させるときには、流量制御弁22の閉弁開始時期を例えば図3の実線から点線のタイミングに早めて、吐出行程終了までの閉弁期間(有効ストローク)を長くして燃料吐出量を増加させ、反対に、高圧側燃圧を低下させるときには、流量制御弁22の閉弁開始時期を例えば図3の点線から実線のタイミングに遅らせて、吐出行程終了までの閉弁期間(有効ストローク)を短くして燃料吐出量を減少させる。この時、吐出行程のうちの流量制御弁22が開弁している期間は、燃料が低圧側に逆流し、ポンピング作用により大きな脈動が発生するため、後述するパルセーションダンパ34で脈動を吸収するようになっている。   For example, when increasing the high-pressure side fuel pressure, the closing timing of the flow rate control valve 22 is advanced from, for example, the timing of the solid line to the dotted line in FIG. 3 to increase the valve closing period (effective stroke) until the end of the discharge stroke. When the discharge amount is increased and, conversely, when the high-pressure side fuel pressure is decreased, the closing timing of the flow control valve 22 is delayed from the dotted line to the solid line, for example, in FIG. Stroke) is shortened to reduce fuel discharge. At this time, during the period in which the flow rate control valve 22 is open in the discharge stroke, the fuel flows backward to the low pressure side and a large pulsation is generated by the pumping action, so the pulsation damper 34 described later absorbs the pulsation. It is like that.

一方、高圧ポンプ14の吐出口24側には、吐出した燃料の逆流を防止する逆止弁25が設けられている。図1に示すように、高圧ポンプ14から吐出された燃料は、高圧側燃料配管29を通してデリバリパイプ30に圧送され、このデリバリパイプ30から各気筒の燃料噴射弁31に高圧の燃料が分配される。デリバリパイプ30には、高圧側燃圧を検出する燃圧センサ32が設けられている。この燃圧センサ32には、燃料温度を検出する燃料温度センサ33(温度検出手段)が内蔵されている。尚、燃料温度センサ33は燃圧センサ32とは別の位置に設けても良いことは言うまでもない。   On the other hand, a check valve 25 for preventing the backflow of discharged fuel is provided on the discharge port 24 side of the high-pressure pump 14. As shown in FIG. 1, the fuel discharged from the high-pressure pump 14 is pumped to the delivery pipe 30 through the high-pressure side fuel pipe 29, and high-pressure fuel is distributed from the delivery pipe 30 to the fuel injection valve 31 of each cylinder. . The delivery pipe 30 is provided with a fuel pressure sensor 32 that detects the high-pressure side fuel pressure. The fuel pressure sensor 32 incorporates a fuel temperature sensor 33 (temperature detection means) that detects the fuel temperature. Needless to say, the fuel temperature sensor 33 may be provided at a position different from the fuel pressure sensor 32.

また、高圧ポンプ14の吸入口23と低圧側燃料配管13との連結部分には、高圧ポンプ14の吸入口23側の燃圧(以下「低圧側燃圧」という)の脈動を低減するパルセーションダンパ34が接続されている。このパルセーションダンパ34は、ダイヤフラム(図示せず)を内蔵し、このダイヤフラムが低圧側燃圧の脈動を吸収して、低圧側燃圧を安定させるようにしている。   A pulsation damper 34 for reducing the pulsation of fuel pressure on the suction port 23 side of the high-pressure pump 14 (hereinafter referred to as “low-pressure side fuel pressure”) is connected to the connection portion between the suction port 23 of the high-pressure pump 14 and the low-pressure side fuel pipe 13. Is connected. The pulsation damper 34 has a built-in diaphragm (not shown) that absorbs the pulsation of the low-pressure side fuel pressure and stabilizes the low-pressure side fuel pressure.

図10に示すように、エンジン運転中は、高圧ポンプ14の吐出側の燃圧が高圧(例えば9MPa付近)に保たれるが、エンジン停止後は、高圧ポンプ14の吐出側の燃圧が高圧ポンプ14内部の隙間から徐々に抜けていき、数時間程度で大気圧付近まで低下する。従って、その後、エンジンを始動する場合は、高圧ポンプ14の吐出側の燃圧を大気圧付近から高圧(例えば9MPa付近)に昇圧することになるが、始動時にエンジン回転数がある程度上昇するまでは、高圧ポンプ14による素早い燃圧の昇圧は望めないため、流量制御弁22を全開に保持した状態で低圧ポンプ12の吐出圧をそのまま高圧ポンプ14内を通してデリバリパイプ30側へ伝達させて始動する。従って、始動時にエンジン回転数がある程度上昇するまでは、低圧ポンプ12の吐出圧(例えば0.4MPa)で燃料噴射制御が行われる。そして、エンジン回転数がある程度上昇して、高圧ポンプ14の吐出能力が要求噴射量を越えた時点で、流量制御弁22の閉弁/開弁の制御を開始して、高圧ポンプ14による燃料圧送を開始する。   As shown in FIG. 10, the fuel pressure on the discharge side of the high-pressure pump 14 is maintained at a high pressure (for example, around 9 MPa) during engine operation, but the fuel pressure on the discharge side of the high-pressure pump 14 remains high after the engine is stopped. It gradually escapes from the internal gap and drops to near atmospheric pressure in a few hours. Therefore, when starting the engine thereafter, the fuel pressure on the discharge side of the high-pressure pump 14 is increased from near atmospheric pressure to high pressure (for example, near 9 MPa), but until the engine speed rises to some extent at the time of starting, Since the fuel pressure cannot be quickly increased by the high-pressure pump 14, the discharge pressure of the low-pressure pump 12 is directly transmitted to the delivery pipe 30 through the high-pressure pump 14 while the flow rate control valve 22 is held fully open. Therefore, fuel injection control is performed with the discharge pressure (for example, 0.4 MPa) of the low-pressure pump 12 until the engine speed increases to some extent at the time of starting. When the engine speed rises to some extent and the discharge capacity of the high pressure pump 14 exceeds the required injection amount, the control of closing / opening the flow rate control valve 22 is started, and the fuel pressure feed by the high pressure pump 14 is started. To start.

前記燃圧センサ32と燃料温度センサ33の出力信号(検出燃圧)はECU36に入力される。このECU36は、マイクロコンピュータを主体として構成され、内蔵のROM(記憶媒体)に記憶された図7の検出誤差学習補正ルーチンを実行することで、所定の学習実行条件が成立したときに低圧ポンプ12の目標吐出圧と燃圧センサ32の検出燃圧との偏差に基づいて燃圧センサ32の検出誤差を学習し、その学習値に基づいて燃圧センサ32の検出燃圧を補正する。   Output signals (detected fuel pressure) of the fuel pressure sensor 32 and the fuel temperature sensor 33 are input to the ECU 36. The ECU 36 is mainly composed of a microcomputer, and executes the detection error learning correction routine shown in FIG. 7 stored in a built-in ROM (storage medium), whereby the low pressure pump 12 is set when a predetermined learning execution condition is satisfied. The detection error of the fuel pressure sensor 32 is learned on the basis of the deviation between the target discharge pressure and the detected fuel pressure of the fuel pressure sensor 32, and the detected fuel pressure of the fuel pressure sensor 32 is corrected based on the learned value.

ここで、燃圧センサ32の検出燃圧の学習補正方法を説明する。
一般に、図4に示すように、燃圧センサ32の検出特性は、リニア(直線)ではなく、二次曲線的であり、エンジン運転中に通常使用する高燃圧領域(例えば9MPa付近)で検出精度が高くなるように設計されている。
Here, the learning correction method of the detected fuel pressure of the fuel pressure sensor 32 will be described.
In general, as shown in FIG. 4, the detection characteristic of the fuel pressure sensor 32 is not linear (straight line) but a quadratic curve, and the detection accuracy is high in a high fuel pressure region (for example, around 9 MPa) normally used during engine operation. Designed to be high.

また、図5に示すように、燃圧センサ32の許容誤差は、最大検出値に対して±2%〜±4%程度であり、環境条件が厳しい極低温域では、±4%程度まで許容誤差が大きくなる。例えば、燃圧センサ32の最大検出値が20MPaであれば、許容誤差が最小(±2%)となる常温域(25℃雰囲気)でも、20MPa×0.02=0.4MPaの許容誤差が存在する。この燃圧センサ32を用いて、従来同様の始動時燃料噴射制御を行った場合、常温域でも、0.4MPa程度の実燃圧に対して±0.4MPaの誤差を含んだ検出燃圧で始動時燃料噴射量を補正することになり、補正精度が極めて悪くなる。   Further, as shown in FIG. 5, the allowable error of the fuel pressure sensor 32 is about ± 2% to ± 4% with respect to the maximum detected value, and the allowable error is up to about ± 4% in the extremely low temperature range where the environmental conditions are severe. Becomes larger. For example, if the maximum detected value of the fuel pressure sensor 32 is 20 MPa, an allowable error of 20 MPa × 0.02 = 0.4 MPa exists even in a normal temperature range (25 ° C. atmosphere) where the allowable error is minimum (± 2%). . When starting fuel injection control similar to the prior art is performed using this fuel pressure sensor 32, the starting fuel is detected at a detected fuel pressure that includes an error of ± 0.4 MPa with respect to the actual fuel pressure of about 0.4 MPa even in a normal temperature range. The injection amount is corrected, and the correction accuracy is extremely deteriorated.

本実施例では、図6に示す特性の燃圧補正係数マップを検索して、その時点の検出燃圧に対応する燃圧補正係数Kを求め、この燃圧補正係数Kをベース噴射量に掛け合わせて最終的な燃料噴射量を求めるようにしているが、従来のように、0.4MPaの実燃圧に対して、+0.4MPaの誤差を含んだ検出燃圧(0.8MPa)で燃圧補正係数Kを求めると、燃圧補正係数Kが本当は8.0であるのに、4.0となってしまい、本当に必要な燃料噴射量の1/2の燃料量しか噴射できなくなってしまい、着火不良が発生して始動性が悪化するという問題がある。このような問題は、燃圧センサ32の許容誤差が大きくなる低温域では、更に大きな問題となる。   In the present embodiment, a fuel pressure correction coefficient map having the characteristics shown in FIG. 6 is searched to obtain a fuel pressure correction coefficient K corresponding to the detected fuel pressure at that time, and this fuel pressure correction coefficient K is multiplied by the base injection amount to obtain a final result. However, when the fuel pressure correction coefficient K is obtained with the detected fuel pressure (0.8 MPa) including an error of +0.4 MPa with respect to the actual fuel pressure of 0.4 MPa as in the prior art. Although the fuel pressure correction coefficient K is actually 8.0, the fuel pressure correction coefficient K becomes 4.0, and only a fuel amount that is ½ of the required fuel injection amount can be injected. There is a problem that the sex gets worse. Such a problem becomes a larger problem in a low temperature range where the tolerance of the fuel pressure sensor 32 becomes large.

前述したように、エンジン始動時は、高圧ポンプ14による素早い燃圧の昇圧は望めないため、流量制御弁22を全開に保持した状態で低圧ポンプ12の吐出圧をそのまま高圧ポンプ14内を通してデリバリパイプ30側へ伝達させるようにしている。このような始動時の燃圧制御の特徴を考慮して、本実施例では、低圧ポンプ12の起動(イグニッションスイッチのオン操作)から高圧ポンプ14の吐出側の燃圧(実燃圧)が低圧ポンプ12の目標吐出圧(燃圧レギュレータ15の設定圧力)まで上昇するのに要する時間が経過した時点を学習タイミングに設定し、この学習タイミングで、燃圧センサ32の検出燃圧をECU36に読み込み、低圧ポンプ12の目標吐出圧と燃圧センサ32の検出燃圧との偏差を算出して、この偏差を燃圧センサ32の検出誤差学習値としてECU36のバックアップRAM等の書き換え可能な不揮発性メモリ(図示せず)に記憶する。この後は、燃圧センサ32の検出燃圧に検出誤差学習値を加算した値を最終的な検出燃圧として用いて燃圧補正係数Kを算出し、この燃圧補正係数Kをベース噴射量に掛け合わせて最終的な燃料噴射量を求める。   As described above, when the engine is started, it is not possible to quickly increase the fuel pressure by the high pressure pump 14, so that the delivery pressure of the discharge pressure of the low pressure pump 12 passes through the high pressure pump 14 with the flow rate control valve 22 held fully open. Is transmitted to the side. In consideration of the characteristics of the fuel pressure control at the time of starting, in this embodiment, the fuel pressure (actual fuel pressure) on the discharge side of the high pressure pump 14 from the start of the low pressure pump 12 (turning on the ignition switch) is The time when the time required to increase to the target discharge pressure (set pressure of the fuel pressure regulator 15) has elapsed is set as the learning timing, and at this learning timing, the detected fuel pressure of the fuel pressure sensor 32 is read into the ECU 36 and the target of the low-pressure pump 12 is read. A deviation between the discharge pressure and the detected fuel pressure of the fuel pressure sensor 32 is calculated, and this deviation is stored as a detected error learning value of the fuel pressure sensor 32 in a rewritable nonvolatile memory (not shown) such as a backup RAM of the ECU 36. Thereafter, the fuel pressure correction coefficient K is calculated using the value obtained by adding the detection error learning value to the detected fuel pressure of the fuel pressure sensor 32 as the final detected fuel pressure, and this fuel pressure correction coefficient K is multiplied by the base injection amount to obtain the final value. To determine the optimal fuel injection amount.

この場合、全ての燃圧領域で燃圧センサ32の検出誤差学習値を用いて燃圧センサ32の検出燃圧を補正するようにしても良いが、一般に、燃圧センサ32の検出特性は、エンジン運転中に通常使用する高燃圧領域で検出精度が高くなるように設計されているため、本実施例では、燃圧センサ32の検出誤差を無視できない低燃圧領域(例えば2MPa以下の領域)でのみ燃圧センサ32の検出誤差を学習補正するようにしている。   In this case, the detected fuel pressure of the fuel pressure sensor 32 may be corrected using the detection error learning value of the fuel pressure sensor 32 in all the fuel pressure regions, but in general, the detection characteristic of the fuel pressure sensor 32 is normal during engine operation. In this embodiment, the detection accuracy of the fuel pressure sensor 32 is detected only in a low fuel pressure region (for example, a region of 2 MPa or less) where the detection error of the fuel pressure sensor 32 cannot be ignored. The error is learned and corrected.

ところで、エンジン停止時間が短く、高圧ポンプ14の吐出側の残留燃圧が抜け切らない状態で低圧ポンプ12が起動されたときには、起動初期の低圧ポンプ12の吐出圧が不明であり、その後の低圧ポンプ12の吐出圧の上昇具合を推定できないため、高圧ポンプ14の吐出側の燃圧(実燃圧)が低圧ポンプ12の目標吐出圧まで上昇するタイミングを精度良く推定できない。そこで、本実施例では、ECU36は、イグニッションスイッチ(以下「IGスイッチ」と略記する)のオフ後にエンジン停止時間を計測し、このエンジン停止時間が所定時間以下(例えば2時間以下)で、高圧ポンプ14の吐出側の残留燃圧が抜け切らない状態で低圧ポンプ12が起動されたときには、高圧ポンプ14の吐出側の残留燃圧に起因する誤学習や学習精度低下を未然に防止するために、燃圧センサ32の検出誤差を学習しないようにしている。   By the way, when the low pressure pump 12 is started in a state where the engine stop time is short and the residual fuel pressure on the discharge side of the high pressure pump 14 is not exhausted, the discharge pressure of the low pressure pump 12 at the initial start is unknown, and the subsequent low pressure pump Therefore, the timing at which the fuel pressure (actual fuel pressure) on the discharge side of the high-pressure pump 14 rises to the target discharge pressure of the low-pressure pump 12 cannot be accurately estimated. Therefore, in the present embodiment, the ECU 36 measures the engine stop time after the ignition switch (hereinafter abbreviated as “IG switch”) is turned off, and the high-pressure pump is operated when the engine stop time is less than a predetermined time (for example, 2 hours or less). When the low-pressure pump 12 is activated in a state where the residual fuel pressure on the discharge side of 14 is not completely removed, a fuel pressure sensor is used to prevent erroneous learning and a decrease in learning accuracy due to the residual fuel pressure on the discharge side of the high-pressure pump 14. 32 detection errors are not learned.

また、燃料温度によって燃圧センサ32の検出誤差が変化する傾向があるので、本実施例では、燃料温度センサ33で検出した燃料温度の領域毎に燃圧センサ32の検出誤差を学習するようにしている。   In addition, since the detection error of the fuel pressure sensor 32 tends to change depending on the fuel temperature, in this embodiment, the detection error of the fuel pressure sensor 32 is learned for each region of the fuel temperature detected by the fuel temperature sensor 33. .

以上説明した燃圧センサ32の検出燃圧の学習補正は、ECU36により図7の検出誤差学習補正ルーチンに従って次のようにして実行される。本ルーチンは、IGスイッチのオン後に所定周期で繰り返し実行され、特許請求の範囲でいう学習手段として機能する。本ルーチンが起動されると、まずステップ101〜103で、3つの条件を全て満たすか否かで学習実行条件が成立しているか否かを次のようにして判定する。まず、ステップ101で、燃圧センサ32の検出燃圧HPが所定値(例えば2MPa)より低いか否かで、燃圧センサ32の検出誤差を無視できない低燃圧領域であるか否かを判定する。   The learning correction of the detected fuel pressure of the fuel pressure sensor 32 described above is executed by the ECU 36 according to the detection error learning correction routine of FIG. This routine is repeatedly executed at a predetermined cycle after the IG switch is turned on, and functions as learning means in the claims. When this routine is started, first, in steps 101 to 103, whether or not the learning execution condition is satisfied is determined by whether or not all three conditions are satisfied as follows. First, in step 101, it is determined whether or not the detected fuel pressure HP of the fuel pressure sensor 32 is lower than a predetermined value (for example, 2 MPa), which is a low fuel pressure region where the detection error of the fuel pressure sensor 32 cannot be ignored.

このステップ101で、燃圧センサ32の検出燃圧HPが所定値(例えば2MPa)より低いと判定された場合は、燃圧センサ32の検出誤差を無視できない低燃圧領域であると判断してステップ102に進み、始動前のエンジン停止時間CIGOFFが所定時間(例えば2時間)よりも長いか否かで、エンジン停止中に高圧ポンプ14の吐出側の残留燃圧が抜け切った状態になっているか否かを判定する。   If it is determined in step 101 that the detected fuel pressure HP of the fuel pressure sensor 32 is lower than a predetermined value (for example, 2 MPa), it is determined that the detection error of the fuel pressure sensor 32 cannot be ignored, and the process proceeds to step 102. It is determined whether the residual fuel pressure on the discharge side of the high-pressure pump 14 is completely released during the engine stop by determining whether the engine stop time CIGOFF before the start is longer than a predetermined time (for example, 2 hours). To do.

このステップ102で、始動前のエンジン停止時間CIGOFFが所定時間(例えば2時間)よりも長いと判定されれば、ステップ103に進み、IGスイッチのオン後の経過時間CIGON(低圧ポンプ12の起動後の経過時間)が、高圧ポンプ14の吐出側の燃圧(実燃圧)が低圧ポンプ12の目標吐出圧(燃圧レギュレータ15の設定圧力)まで上昇するのに要する所定時間CHPNTと一致している否かで、高圧ポンプ14の吐出側の燃圧(実燃圧)が低圧ポンプ12の目標吐出圧(燃圧レギュレータ15の設定圧力)に一致しているか否か(学習タイミングであるか否か)を判定する。ここで、所定時間CHPNTは、予め、実験データや設計データに基づいて一定の時間に設定しても良いが、低圧ポンプ12の電源となるバッテリ電圧や燃料温度に応じて低圧ポンプ12の吐出圧の上昇挙動が少し変化することを考慮して、所定時間CHPNTをバッテリ電圧や燃料温度に応じて変化させるようにしても良い。   If it is determined in step 102 that the engine stop time CIGOFF before the start is longer than a predetermined time (for example, 2 hours), the process proceeds to step 103 and the elapsed time CIGON after the IG switch is turned on (after the low pressure pump 12 is started) Whether the fuel pressure (actual fuel pressure) on the discharge side of the high-pressure pump 14 is equal to a predetermined time CHPNT required for the pressure to rise to the target discharge pressure (set pressure of the fuel pressure regulator 15) of the low-pressure pump 12 or not. Thus, it is determined whether or not the fuel pressure (actual fuel pressure) on the discharge side of the high-pressure pump 14 matches the target discharge pressure (set pressure of the fuel pressure regulator 15) of the low-pressure pump 12 (whether or not it is the learning timing). Here, the predetermined time CHPNT may be set in advance to a certain time based on experimental data or design data, but the discharge pressure of the low-pressure pump 12 depends on the battery voltage or the fuel temperature as the power source of the low-pressure pump 12. The predetermined time CHPNT may be changed according to the battery voltage or the fuel temperature in consideration of a slight change in the rising behavior of the battery.

以上説明した3つのステップ101〜103で全て「Yes」と判定された場合のみ、学習実行条件が成立するが、3つのステップ101〜103のいずれかで「No」と判定されれば、学習実行条件が不成立となる。   The learning execution condition is satisfied only when all of the three steps 101 to 103 described above are determined as “Yes”. However, if “No” is determined in any of the three steps 101 to 103, the learning execution is performed. The condition is not satisfied.

1つ目のステップ101で「No」と判定された場合、つまり、燃圧センサ32の検出燃圧HPが所定値(例えば2MPa)以上と判定されれば、燃圧センサ32の検出誤差を無視できる(検出燃圧HPの学習補正は不要である)と判断して、ステップ111に進み、燃圧センサ32の検出燃圧HPをそのまま最終的な検出燃圧CHPとして記憶する。   If it is determined “No” in the first step 101, that is, if the detected fuel pressure HP of the fuel pressure sensor 32 is determined to be a predetermined value (for example, 2 MPa) or more, the detection error of the fuel pressure sensor 32 can be ignored (detection). It is determined that learning correction of the fuel pressure HP is unnecessary), and the process proceeds to step 111, where the detected fuel pressure HP of the fuel pressure sensor 32 is stored as the final detected fuel pressure CHP as it is.

2つ目のステップ102で「No」と判定された場合、つまり、始動前のエンジン停止時間CIGOFFが所定時間(例えば2時間)より短い場合は、エンジン停止中に高圧ポンプ14の吐出側の残留燃圧が抜け切った状態になっていないと判断して、ステップ106〜108の処理を実行し、燃圧センサ32の検出誤差を学習せずに、前回の検出誤差学習値DHPを用いて燃圧センサ32の検出燃圧HPの補正のみを行う。具体的には、ステップ106で、燃料温度センサ33で検出した燃料温度を読み込んだ後、ステップ107に進み、ECU36の書き換え可能な不揮発性メモリに格納されている検出誤差学習値マップ(図8参照)を検索して現在の燃料温度に対応する検出誤差学習値DHPを読み込む。この後、ステップ108に進み、燃圧センサ32の検出燃圧HPに検出誤差学習値DHPを加算することで、検出誤差学習値DHPで補正した検出燃圧CHPを求める。   When it is determined as “No” in the second step 102, that is, when the engine stop time CIGOFF before the start is shorter than a predetermined time (for example, 2 hours), the remaining on the discharge side of the high-pressure pump 14 during the engine stop. It is determined that the fuel pressure is not completely removed, the processing of steps 106 to 108 is executed, and the detection error of the fuel pressure sensor 32 is not learned, and the fuel pressure sensor 32 using the previous detection error learning value DHP. Only the correction of the detected fuel pressure HP is performed. Specifically, after the fuel temperature detected by the fuel temperature sensor 33 is read in step 106, the process proceeds to step 107, and a detection error learning value map stored in a rewritable nonvolatile memory of the ECU 36 (see FIG. 8). ) And a detection error learning value DHP corresponding to the current fuel temperature is read. Thereafter, the process proceeds to step 108, and the detected fuel pressure CHP corrected by the detected error learned value DHP is obtained by adding the detected error learned value DHP to the detected fuel pressure HP of the fuel pressure sensor 32.

一方、3つ目のステップ103で「No」と判定された場合、つまり、IGスイッチのオン後の経過時間CIGON(低圧ポンプ12の起動後の経過時間)が所定時間CHPNTと一致していない場合は、高圧ポンプ14の吐出側の燃圧(実燃圧)が低圧ポンプ12の目標吐出圧に一致していない(学習タイミングでない)と判断して、ステップ106〜108の処理を実行し、上述した方法で、燃圧センサ32の検出誤差を学習せずに、前回の検出誤差学習値DHPを用いて燃圧センサ32の検出燃圧HPの補正のみを行う。   On the other hand, when it is determined as “No” in the third step 103, that is, the elapsed time CIGON after the IG switch is turned on (the elapsed time after the start of the low-pressure pump 12) does not coincide with the predetermined time CHPNT. Determines that the fuel pressure (actual fuel pressure) on the discharge side of the high-pressure pump 14 does not coincide with the target discharge pressure of the low-pressure pump 12 (not the learning timing), and executes the processing of steps 106 to 108. Thus, only the correction of the detected fuel pressure HP of the fuel pressure sensor 32 is performed using the previous detected error learning value DHP without learning the detection error of the fuel pressure sensor 32.

これに対して、3つのステップ101〜103で全て「Yes」と判定された場合は、学習タイミングと判断して、ステップ104に進み、低圧ポンプ12の目標吐出圧TFP(燃圧レギュレータ15の設定圧力)と燃圧センサ32の検出燃圧HPとの偏差DHP(=TFP−HP)を検出誤差学習値として算出する。この後、ステップ105に進み、ECU36の書き換え可能な不揮発性メモリに記憶されている検出誤差学習値マップ(図8参照)のうちの現在の燃料温度に対応する検出誤差学習値DHPを上記ステップ104で算出した最新の検出誤差学習値DHPに書き換える。この後、ステップ108に進み、燃圧センサ32の検出燃圧HPに現在の燃料温度に対応する検出誤差学習値DHPを加算することで、検出誤差学習値DHPで補正した検出燃圧CHPを求める。   On the other hand, if it is determined as “Yes” in the three steps 101 to 103, it is determined as the learning timing, and the process proceeds to step 104 where the target discharge pressure TFP of the low pressure pump 12 (the set pressure of the fuel pressure regulator 15) is determined. ) And the detected fuel pressure HP of the fuel pressure sensor 32 is calculated as a detected error learning value. Thereafter, the process proceeds to step 105, and the detection error learning value DHP corresponding to the current fuel temperature in the detection error learning value map (see FIG. 8) stored in the rewritable nonvolatile memory of the ECU 36 is set to the above step 104. The latest detection error learning value DHP calculated in step (1) is rewritten. Thereafter, the process proceeds to step 108, and the detected fuel pressure CHP corrected by the detected error learned value DHP is obtained by adding the detected error learned value DHP corresponding to the current fuel temperature to the detected fuel pressure HP of the fuel pressure sensor 32.

この後、ステップ109に進み、補正後の検出燃圧CHPが低燃圧領域(補正あり領域)と高燃圧領域(補正なし領域)との境界の燃圧(本実施例では2MPa)よりも低いか否かを判定し、補正後の検出燃圧CHPが境界の燃圧(2MPa)よりも低ければ、補正後の検出燃圧CHPをそのまま最終的な検出燃圧CHPとして用いるが、もし、補正後の検出燃圧CHPが境界の燃圧(2MPa)を越えていれば、ステップ110に進み、最終的な検出燃圧CHPを境界の燃圧(2MPa)に書き換える。これにより、補正後の検出燃圧CHPの上限を境界の燃圧(2MPa)で制限するガード処理を行う。以上説明したステップ108〜110の処理が特許請求の範囲でいう検出燃圧補正手段としての役割を果たす。   Thereafter, the process proceeds to step 109, and whether or not the corrected detected fuel pressure CHP is lower than the fuel pressure at the boundary between the low fuel pressure region (corrected region) and the high fuel pressure region (non-corrected region) (2 MPa in this embodiment). If the corrected detected fuel pressure CHP is lower than the boundary fuel pressure (2 MPa), the corrected detected fuel pressure CHP is used as it is as the final detected fuel pressure CHP, but if the corrected detected fuel pressure CHP is the boundary If the fuel pressure exceeds 2 MPa, the process proceeds to step 110, where the final detected fuel pressure CHP is rewritten to the boundary fuel pressure (2 MPa). Thereby, the guard process which restrict | limits the upper limit of the detection fuel pressure CHP after correction | amendment by the fuel pressure (2 Mpa) of a boundary is performed. The processing in steps 108 to 110 described above plays a role as detected fuel pressure correction means in the claims.

この後、ステップ112に進み、図6の燃圧補正係数マップを検索して、最終的な検出燃圧CHPに対応する燃圧補正係数Kを求めた後、ステップ113に進み、この燃圧補正係数Kをベース噴射量INJに掛け合わせて最終的な燃料噴射量FINJを求める。これにより、燃圧センサ32の検出精度が悪くなる低燃圧領域でも、最終的な燃料噴射量FINJの精度が確保され、精度の良い燃料噴射制御が可能となる。これらステップ112、113の処理が特許請求の範囲でいう噴射量補正手段としての役割を果たす。   Thereafter, the process proceeds to step 112, the fuel pressure correction coefficient map of FIG. 6 is searched to obtain the fuel pressure correction coefficient K corresponding to the final detected fuel pressure CHP, and then the process proceeds to step 113, where the fuel pressure correction coefficient K is used as a base. The final fuel injection amount FINJ is obtained by multiplying the injection amount INJ. Thereby, even in the low fuel pressure region where the detection accuracy of the fuel pressure sensor 32 is deteriorated, the accuracy of the final fuel injection amount FINJ is ensured, and accurate fuel injection control is possible. The processing of these steps 112 and 113 serves as an injection amount correction means in the claims.

以上説明した図7の検出誤差学習補正ルーチンを用いた制御例を図9及び図10のタイムチャートを用いて説明する。   A control example using the detection error learning correction routine of FIG. 7 described above will be described with reference to time charts of FIGS.

図9は、エンジン停止後の高圧側燃圧(高圧ポンプ14の吐出側の燃圧)の挙動と、その後のエンジン始動時の高圧側燃圧、検出燃圧HP、補正後の検出燃圧CHPの挙動を例示するタイムチャートである。エンジン運転中に、IGスイッチをオフすると、その時点t1 で、エンジン停止時間CIGOFFを計測するタイマが計時動作を開始する。エンジン停止中は、高圧側燃圧が高圧ポンプ14内部の隙間から徐々に抜けていき、2時間ほど経過すれば、高圧側燃圧が抜け切った状態(大気圧付近まで低下した状態)となる。本実施例では、エンジン停止時間CIGOFFが2時間以上であることが学習実行条件の1つとなる。   FIG. 9 illustrates the behavior of the high-pressure side fuel pressure (fuel pressure on the discharge side of the high-pressure pump 14) after the engine is stopped, and the behavior of the high-pressure side fuel pressure, the detected fuel pressure HP, and the corrected detected fuel pressure CHP when the engine is subsequently started. It is a time chart. When the IG switch is turned off during engine operation, a timer for measuring the engine stop time CIGOFF starts timing at the time t1. While the engine is stopped, the high-pressure side fuel pressure gradually escapes from the gap inside the high-pressure pump 14, and after about 2 hours, the high-pressure side fuel pressure is completely removed (a state where the pressure is reduced to near atmospheric pressure). In the present embodiment, one of the learning execution conditions is that the engine stop time CIGOFF is 2 hours or more.

その後、IGスイッチをオンすると、その時点t2 で、低圧ポンプ12が起動されると共に、IGスイッチのオン後の経過時間CIGON(低圧ポンプ12の起動後の経過時間)を計測するタイマが計時動作を開始する。図9の例では、始動前のエンジン停止時間CIGOFFが2時間以上であるため、学習実行条件の1つの条件が満たされるが、低圧ポンプ12の起動後に高圧側燃圧が大気圧付近から低圧ポンプ12の目標吐出圧TFP(燃圧レギュレータ15の設定圧力)まで上昇するのに、所定時間CHPNTを要する。従って、IGスイッチのオン後の経過時間CIGONが所定時間CHPNTに達するまでは、学習実行条件が不成立となり、燃圧センサ32の検出誤差を学習せずに、前回の検出誤差学習値DHPを用いて燃圧センサ32の検出燃圧HPの補正のみを行う。   Thereafter, when the IG switch is turned on, at the time t2, the low pressure pump 12 is activated, and a timer for measuring the elapsed time CIGON (the elapsed time after the activation of the low pressure pump 12) after the IG switch is turned on starts the timing operation. Start. In the example of FIG. 9, the engine stop time CIGOFF before the start is 2 hours or longer, so that one condition of the learning execution condition is satisfied. However, after the low-pressure pump 12 is started, the high-pressure side fuel pressure is changed from near atmospheric pressure to the low-pressure pump 12. It takes a predetermined time CHPNT to increase to the target discharge pressure TFP (the set pressure of the fuel pressure regulator 15). Accordingly, until the elapsed time CIGON after the IG switch is turned on reaches the predetermined time CHPNT, the learning execution condition is not satisfied, and the fuel pressure is detected by using the previous detection error learning value DHP without learning the detection error of the fuel pressure sensor 32. Only the detection fuel pressure HP of the sensor 32 is corrected.

その後、IGスイッチのオン後の経過時間CIGONが所定時間CHPNTに達した時点t3 で、学習実行条件が成立し、高圧側燃圧が低圧ポンプ12の目標吐出圧TFPに一致したと判断して、その時点t3 における低圧ポンプ12の目標吐出圧TFPと燃圧センサ32の検出燃圧HPとの偏差DHP(=TFP−HP)を検出誤差学習値として算出すると共に、燃圧センサ32の検出燃圧HPに検出誤差学習値DHPを加算することで、補正後の検出燃圧CHPを求める。   Thereafter, at the time t3 when the elapsed time CIGON after turning on the IG switch reaches the predetermined time CHPNT, it is determined that the learning execution condition is satisfied and the high-pressure side fuel pressure matches the target discharge pressure TFP of the low-pressure pump 12, A deviation DHP (= TFP−HP) between the target discharge pressure TFP of the low-pressure pump 12 and the detected fuel pressure HP of the fuel pressure sensor 32 at the time point t3 is calculated as a detected error learning value, and detected error learning is performed on the detected fuel pressure HP of the fuel pressure sensor 32. The corrected detected fuel pressure CHP is obtained by adding the value DHP.

IGスイッチのオン後の経過時間CIGONが所定時間CHPNTを越えると、再び、学習実行条件が不成立となり、燃圧センサ32の検出誤差を学習せずに、時刻t3 で算出された検出誤差学習値DHPを用いて燃圧センサ32の検出燃圧HPの補正のみを行う。この補正処理は、燃圧センサ32の検出燃圧HPが補正領域の上限燃圧である2MPaを越えるまで、所定周期で繰り返し実行される。   When the elapsed time CIGON after the IG switch is turned on exceeds the predetermined time CHPNT, the learning execution condition is again not satisfied, and the detection error learning value DHP calculated at time t3 is not learned without learning the detection error of the fuel pressure sensor 32. Only the detected fuel pressure HP of the fuel pressure sensor 32 is corrected. This correction process is repeatedly executed at a predetermined cycle until the detected fuel pressure HP of the fuel pressure sensor 32 exceeds 2 MPa, which is the upper limit fuel pressure in the correction region.

燃圧センサ32の検出燃圧HPが2MPaに近付くと、補正後の検出燃圧CHPが2MPaを越える場合(t4 〜t5 )があるため、補正後の検出燃圧CHPの上限を2MPaで制限するガード処理を行う。   When the detected fuel pressure HP of the fuel pressure sensor 32 approaches 2 MPa, the corrected detected fuel pressure CHP may exceed 2 MPa (t4 to t5), and thus a guard process for limiting the upper limit of the corrected detected fuel pressure CHP to 2 MPa is performed. .

その後、燃圧センサ32の検出燃圧HPが補正領域の上限燃圧である2MPaに到達した時点t5 で、燃圧センサ32の検出誤差を無視できる(検出燃圧HPの学習補正は不要である)と判断して、検出誤差学習値DHPによる検出燃圧HPの補正を終了し、燃圧センサ32の検出燃圧HPをそのまま最終的な検出燃圧CHPとして用いる。この場合、検出誤差学習値DHPによる検出燃圧HPの補正を行うt5 以前は、補正後の検出燃圧CHPの上限を2MPaでガード処理するため、燃圧センサ32の検出燃圧HPが2MPaに到達した時点t5 で、燃圧センサ32の検出燃圧HPをそのまま最終的な検出燃圧CHPとして用いても、その前後で最終的な検出燃圧CHPが不連続になることはない。   Thereafter, at time t5 when the detected fuel pressure HP of the fuel pressure sensor 32 reaches 2 MPa, which is the upper limit fuel pressure in the correction region, it is determined that the detection error of the fuel pressure sensor 32 can be ignored (the learning correction of the detected fuel pressure HP is unnecessary). Then, the correction of the detected fuel pressure HP by the detected error learning value DHP is finished, and the detected fuel pressure HP of the fuel pressure sensor 32 is used as it is as the final detected fuel pressure CHP. In this case, before the time t5 when the detected fuel pressure HP is corrected by the detected error learning value DHP, the upper limit of the corrected detected fuel pressure CHP is guarded at 2 MPa, so the time t5 when the detected fuel pressure HP of the fuel pressure sensor 32 reaches 2 MPa. Therefore, even if the detected fuel pressure HP of the fuel pressure sensor 32 is used as it is as the final detected fuel pressure CHP, the final detected fuel pressure CHP does not become discontinuous before and after that.

図10(a)、(b)は、それぞれ気温が−8℃、−25℃で始動する時の高圧側燃圧、エンジン回転速度、バッテリ電圧の挙動を例示するタイムチャートである。a点でスタータが起動されてエンジンのクランキングが開始されるが、クランキング時はエンジン回転数が低いため、高圧ポンプ14による素早い燃圧の上昇は望めない(高圧ポンプ14の吐出能力以上に始動時噴射量が要求されるためである)。そこで、始動時に、エンジン回転数がある程度上昇するまでは、流量制御弁22を全開に保持した状態で低圧ポンプ12の吐出圧をそのまま高圧ポンプ14内を通してデリバリパイプ30側へ伝達させて始動する。従って、始動時にエンジン回転数がある程度上昇するまでは、低圧ポンプ12の吐出圧(0.4MPa)で燃料噴射制御が行われる。   FIGS. 10A and 10B are time charts illustrating the behavior of the high-pressure side fuel pressure, the engine speed, and the battery voltage when starting at temperatures of −8 ° C. and −25 ° C., respectively. The starter is started at point a and cranking of the engine is started. However, since the engine speed is low at the time of cranking, a rapid increase in fuel pressure by the high pressure pump 14 cannot be expected (starting more than the discharge capacity of the high pressure pump 14). (This is because the required injection amount is required). Therefore, at the time of start-up, until the engine speed increases to some extent, the discharge pressure of the low-pressure pump 12 is directly transmitted to the delivery pipe 30 side through the high-pressure pump 14 while the flow rate control valve 22 is kept fully open. Therefore, fuel injection control is performed with the discharge pressure (0.4 MPa) of the low-pressure pump 12 until the engine speed increases to some extent at the start.

そして、エンジン回転数がある程度上昇して、高圧ポンプ14の吐出能力が要求噴射量を越えた時点(図10のb点)で、流量制御弁22の閉弁/開弁の制御を開始して、高圧ポンプ14による燃料圧送を開始する。これにより、高圧側燃圧が1MPa程度を越えたあたりから目標とする燃圧(図10では9MPa)まで急速に上昇する。高圧側燃圧が2MPa程度を越えるまでは、燃圧センサ32の検出誤差を無視できないため、学習補正が必要となる。   Then, when the engine speed rises to some extent and the discharge capacity of the high-pressure pump 14 exceeds the required injection amount (point b in FIG. 10), the control for closing / opening the flow control valve 22 is started. Then, fuel pumping by the high-pressure pump 14 is started. As a result, the fuel pressure rises rapidly from the point where the high-pressure side fuel pressure exceeds about 1 MPa to the target fuel pressure (9 MPa in FIG. 10). Since the detection error of the fuel pressure sensor 32 cannot be ignored until the high-pressure side fuel pressure exceeds about 2 MPa, learning correction is necessary.

高圧側燃圧が燃圧センサ32の検出誤差の学習補正が必要とする低燃圧領域を越えるのに要する時間は、気温が低くなると、長くなる。従って、気温が低くなるほど、燃圧センサ32の検出誤差の学習補正の重要性が高まる。   The time required for the high-pressure side fuel pressure to exceed the low fuel pressure region required for the learning correction of the detection error of the fuel pressure sensor 32 becomes longer as the temperature decreases. Therefore, the importance of learning correction of the detection error of the fuel pressure sensor 32 increases as the temperature decreases.

以上説明した本実施例によれば、低圧ポンプ12の起動(IGスイッチのオン操作)から高圧側燃圧が低圧ポンプ12の目標吐出圧まで上昇するのに要する所定時間が経過した時点を学習タイミングに設定し、この学習タイミングで、低圧ポンプ12の目標吐出圧と燃圧センサ32の検出燃圧との偏差を検出誤差学習値として算出し、燃圧センサ32の検出燃圧を検出誤差学習値で補正するようにしている。この場合、燃圧センサ32の検出誤差の学習に用いる基準値(低圧ポンプ12の目標吐出圧)は、バッテリ電圧や燃料温度が変化しても変化しないため、低圧ポンプ12の目標吐出圧を基準にして燃圧センサ32の検出誤差を学習すれば、バッテリ電圧や燃料温度の変化の影響を受けずに燃圧センサ32の検出誤差を精度良く学習することができ、燃圧センサ32の検出燃圧の補正精度を向上することができる。   According to the present embodiment described above, the learning timing is the time when the predetermined time required for the high-pressure side fuel pressure to rise to the target discharge pressure of the low-pressure pump 12 has elapsed since the start of the low-pressure pump 12 (IG switch on operation). The deviation between the target discharge pressure of the low-pressure pump 12 and the detected fuel pressure of the fuel pressure sensor 32 is calculated as a detection error learning value at this learning timing, and the detected fuel pressure of the fuel pressure sensor 32 is corrected with the detected error learning value. ing. In this case, the reference value (the target discharge pressure of the low-pressure pump 12) used for learning the detection error of the fuel pressure sensor 32 does not change even when the battery voltage or the fuel temperature changes, so the reference discharge pressure of the low-pressure pump 12 is used as a reference. If the detection error of the fuel pressure sensor 32 is learned, the detection error of the fuel pressure sensor 32 can be learned with high accuracy without being affected by changes in the battery voltage and the fuel temperature, and the correction accuracy of the detected fuel pressure of the fuel pressure sensor 32 can be increased. Can be improved.

しかも、本実施例では、燃料温度によって燃圧センサ32の検出誤差が変化するという特性を考慮して、燃料温度センサ33で検出した燃料温度の領域毎に燃圧センサ32の検出誤差を学習するようにしたので、学習精度を向上できる利点がある。この場合、燃料温度センサ33を備えていないシステムでは、燃料温度と相関関係のある何等かの温度(例えば冷却水温、エンジン油温等)を燃料温度の代用情報として用いるようにしても良い。   Moreover, in this embodiment, the detection error of the fuel pressure sensor 32 is learned for each region of the fuel temperature detected by the fuel temperature sensor 33 in consideration of the characteristic that the detection error of the fuel pressure sensor 32 changes depending on the fuel temperature. Therefore, there is an advantage that learning accuracy can be improved. In this case, in a system that does not include the fuel temperature sensor 33, any temperature correlated with the fuel temperature (for example, cooling water temperature, engine oil temperature, etc.) may be used as fuel temperature substitute information.

本発明は、燃料温度の他に、燃圧に影響を及ぼす特定の運転パラメータ(例えばバッテリ電圧等)の領域毎に燃圧センサ32の検出誤差を学習するようにしても良く、また、複数の運転パラメータ(例えば燃料温度とバッテリ電圧)の領域毎に燃圧センサ32の検出誤差を学習するようにしても良い。勿論、本発明は、領域毎の学習を行わず、全領域で共通の学習値を求めるようにしても良い。   In the present invention, in addition to the fuel temperature, the detection error of the fuel pressure sensor 32 may be learned for each region of a specific operating parameter (for example, battery voltage) that affects the fuel pressure. You may make it learn the detection error of the fuel pressure sensor 32 for every area | region (for example, fuel temperature and battery voltage). Of course, in the present invention, a learning value common to all regions may be obtained without performing learning for each region.

また、本実施例では、エンジン停止時間が短く、高圧ポンプ14の吐出側の残留燃圧が抜け切らない状態で低圧ポンプ12が起動されたときには、燃圧センサ32の検出誤差を学習しないようにしたので、高圧ポンプ14の吐出側の残留燃圧に起因する誤学習や学習精度低下を未然に防止することができる利点がある。   Further, in this embodiment, when the low-pressure pump 12 is started in a state where the engine stop time is short and the residual fuel pressure on the discharge side of the high-pressure pump 14 is not exhausted, the detection error of the fuel pressure sensor 32 is not learned. There is an advantage that it is possible to prevent erroneous learning and lowering of learning accuracy due to the residual fuel pressure on the discharge side of the high-pressure pump 14.

一般に、燃圧センサ32の検出特性は、エンジン運転中に通常使用する高燃圧領域で検出精度が高くなるように設計されているため、本実施例では、燃圧センサ32の検出誤差が無視できない2MPa以下の低燃圧領域でのみ検出誤差学習値に基づいて燃圧センサ32の検出燃圧を補正するようにしている。これにより、エンジン運転中に通常使用する高燃圧領域(燃圧センサ32の検出精度が高い領域)では、本来的に不要な学習補正を行わずに済み、ECU36の演算負荷を軽減することができる利点がある。   In general, the detection characteristic of the fuel pressure sensor 32 is designed so that the detection accuracy is high in a high fuel pressure region that is normally used during engine operation. Therefore, in this embodiment, the detection error of the fuel pressure sensor 32 cannot be ignored. The detected fuel pressure of the fuel pressure sensor 32 is corrected based on the detected error learning value only in the low fuel pressure region. Thereby, in the high fuel pressure region (region where the detection accuracy of the fuel pressure sensor 32 is normally used) normally used during engine operation, it is not necessary to perform essentially unnecessary learning correction, and the calculation load of the ECU 36 can be reduced. There is.

但し、高燃圧領域においても低燃圧領域と同様の検出誤差が生じる検出特性のシステムの場合は、全ての燃圧領域で検出誤差学習値に基づいて燃圧センサ32の検出燃圧を補正するようにしても良い。   However, in the case of a detection characteristic system in which the same detection error occurs in the high fuel pressure region as in the low fuel pressure region, the detected fuel pressure of the fuel pressure sensor 32 may be corrected based on the detection error learning value in all the fuel pressure regions. good.

また、本実施例では、補正後の検出燃圧の上限を低燃圧領域(補正あり領域)と高燃圧領域(補正なし領域)との境界の燃圧(2MPa)で制限するガード処理を行うようにしたので、低燃圧領域(補正あり領域)と高燃圧領域(補正なし領域)との境界(2MPa)で補正後の検出燃圧が不連続になることを防止できる利点がある。   Further, in the present embodiment, a guard process is performed to limit the upper limit of the detected fuel pressure after correction by the fuel pressure (2 MPa) at the boundary between the low fuel pressure region (region with correction) and the high fuel pressure region (region without correction). Therefore, there is an advantage that the corrected detected fuel pressure can be prevented from becoming discontinuous at the boundary (2 MPa) between the low fuel pressure region (region with correction) and the high fuel pressure region (region without correction).

本実施例では、低圧ポンプ12の目標吐出圧として燃圧レギュレータ15の設定圧力を用いるようにしたが、燃圧レギュレータ15を省略し、低圧ポンプ12の吐出圧を目標値にフィードバック制御するシステムでは、低圧ポンプ12の目標吐出圧として、フィードバック制御の目標値を用いるようにすれば良い。   In this embodiment, the set pressure of the fuel pressure regulator 15 is used as the target discharge pressure of the low pressure pump 12, but in a system in which the fuel pressure regulator 15 is omitted and the discharge pressure of the low pressure pump 12 is feedback controlled to the target value, A target value for feedback control may be used as the target discharge pressure of the pump 12.

また、本実施例では、始動時に高圧ポンプ14の吐出側の燃圧(高圧側燃圧)が低圧ポンプ12の目標吐出圧に到達したか否か(学習タイミングであるか否か)を、IGスイッチのオン後の経過時間CIGON(低圧ポンプ12の起動後の経過時間)に基づいて判定するようにしたが、例えば、IGスイッチのオン後の流量制御弁22の全開期間中(低圧ポンプ12が高圧側燃圧を上昇させない期間中)に、燃圧センサ32の検出燃圧の上昇カーブを監視し、燃圧センサ32の検出燃圧の上昇がほぼ終わって検出燃圧がほぼ一定になった時点で、高圧ポンプ14の吐出側の燃圧(高圧側燃圧)が低圧ポンプ12の目標吐出圧に到達したと推定するようにしても良い。   In this embodiment, whether or not the fuel pressure on the discharge side of the high-pressure pump 14 (high-pressure side fuel pressure) has reached the target discharge pressure of the low-pressure pump 12 at the start-up (whether or not it is the learning timing) is determined. The determination is made based on the elapsed time CIGON (the elapsed time after the start of the low pressure pump 12) after being turned on. For example, during the fully open period of the flow control valve 22 after the IG switch is turned on (the low pressure pump 12 is on the high pressure side). During the period in which the fuel pressure is not increased), the rising curve of the detected fuel pressure of the fuel pressure sensor 32 is monitored, and when the detected fuel pressure of the fuel pressure sensor 32 almost ends and the detected fuel pressure becomes substantially constant, the discharge of the high pressure pump 14 It may be estimated that the side fuel pressure (high pressure side fuel pressure) has reached the target discharge pressure of the low pressure pump 12.

また、本実施例では、1回の始動当たりの検出誤差の演算回数(学習回数)を1回のみとしたが、高圧ポンプ14の吐出側の燃圧(高圧側燃圧)が低圧ポンプ12の目標吐出圧に一致している期間中に、燃圧センサ32の検出誤差を複数回演算して、それらの平均値を検出誤差学習値とするようにしても良い。   Further, in the present embodiment, the number of times of detection error calculation per learning (learning frequency) is set to one time, but the fuel pressure on the discharge side of the high-pressure pump 14 (high-pressure side fuel pressure) is the target discharge of the low-pressure pump 12. During the period matching the pressure, the detection error of the fuel pressure sensor 32 may be calculated a plurality of times, and the average value thereof may be used as the detection error learning value.

また、本実施例では、低圧ポンプ12の目標吐出圧と高圧ポンプ14の吐出側の燃圧(実燃圧)との偏差δ1(=目標吐出圧−高圧側燃圧)が0になったと推定できる状態になったときに燃圧センサ32の検出誤差を学習するようにしたが、偏差δ1≠0の領域で、偏差δ1を推定できる状態になったときに燃圧センサ32の検出誤差を学習するようにしても良い。この場合、低圧ポンプ12の目標吐出圧と燃圧センサ32の検出燃圧との偏差δ2(=目標吐出圧−検出燃圧)を検出することで、燃圧センサ32の検出誤差(=検出燃圧−実燃圧=δ1−δ2)を精度良く学習することができる。   Further, in this embodiment, it is possible to estimate that the deviation δ1 (= target discharge pressure−high pressure side fuel pressure) between the target discharge pressure of the low pressure pump 12 and the fuel pressure (actual fuel pressure) on the discharge side of the high pressure pump 14 has become zero. However, the detection error of the fuel pressure sensor 32 is learned when the deviation δ1 can be estimated in the region where the deviation δ1 ≠ 0. good. In this case, by detecting a deviation δ2 (= target discharge pressure−detected fuel pressure) between the target discharge pressure of the low-pressure pump 12 and the detected fuel pressure of the fuel pressure sensor 32, the detection error of the fuel pressure sensor 32 (= detected fuel pressure−actual fuel pressure = [delta] 1- [delta] 2) can be learned with high accuracy.

本発明の一実施例における高圧燃料供給システムの概略構成を示す図である。It is a figure which shows schematic structure of the high pressure fuel supply system in one Example of this invention. 高圧ポンプの構成図である。It is a block diagram of a high pressure pump. 流量制御弁、高圧ポンプの挙動を示すタイムチャートである。It is a time chart which shows the behavior of a flow control valve and a high-pressure pump. 燃圧センサの検出特性を示す図である。It is a figure which shows the detection characteristic of a fuel pressure sensor. 燃圧センサの許容誤差を示す図である。It is a figure which shows the allowable error of a fuel pressure sensor. 燃圧補正係数マップを概念的に示す図である。It is a figure which shows notionally a fuel pressure correction coefficient map. 検出誤差学習補正ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a detection error learning correction routine. 検出誤差学習値マップを概念的に示す図である。It is a figure which shows a detection error learning value map notionally. エンジン停止後の高圧側燃圧(高圧ポンプの吐出側の燃圧)の挙動と、その後のエンジン始動時の高圧側燃圧、検出燃圧HP、補正後の検出燃圧CHPの挙動を例示するタイムチャートである。It is a time chart which illustrates the behavior of the high-pressure side fuel pressure (fuel pressure on the discharge side of the high-pressure pump) after the engine is stopped, and the behavior of the high-pressure side fuel pressure, the detected fuel pressure HP, and the corrected detected fuel pressure CHP after the engine start. (a)、(b)は、それぞれ気温が−8℃、−25℃で始動する時の高圧側燃圧、エンジン回転速度、バッテリ電圧の挙動を例示するタイムチャートである。(A), (b) is a time chart which illustrates the behavior of the high-pressure side fuel pressure, the engine speed, and the battery voltage when starting at temperatures of −8 ° C. and −25 ° C., respectively.

符号の説明Explanation of symbols

11…燃料タンク、12…低圧ポンプ、14…高圧ポンプ、15…燃圧レギュレータ(低圧ポンプ吐出圧調整手段)、18…ポンプ室、19…プランジャ、20…カム軸、21…カム、22…流量制御弁、23…吸入口、24…吐出口、25…逆止弁、26…弁体、27…スプリング、28…ノレノイド、31…燃料噴射弁、32…燃圧センサ、34…パルセーションダンパ、36…ECU(学習手段,検出燃圧補正手段,噴射量補正手段)   DESCRIPTION OF SYMBOLS 11 ... Fuel tank, 12 ... Low pressure pump, 14 ... High pressure pump, 15 ... Fuel pressure regulator (low pressure pump discharge pressure adjusting means), 18 ... Pump chamber, 19 ... Plunger, 20 ... Cam shaft, 21 ... Cam, 22 ... Flow control Valve, 23 ... Suction port, 24 ... Discharge port, 25 ... Check valve, 26 ... Valve body, 27 ... Spring, 28 ... Norenoid, 31 ... Fuel injection valve, 32 ... Fuel pressure sensor, 34 ... Pulsation damper, 36 ... ECU (learning means, detected fuel pressure correcting means, injection amount correcting means)

Claims (13)

燃料タンク内の燃料を汲み上げる低圧ポンプと、前記低圧ポンプの吐出圧を目標吐出圧に調整する低圧ポンプ吐出圧調整手段と、前記低圧ポンプから吐出される燃料を高圧に加圧して燃料噴射弁に圧送する高圧ポンプと、前記高圧ポンプの吐出側の燃圧を検出する燃圧センサとを備えた内燃機関において、
所定の学習実行条件が成立したときに前記低圧ポンプの目標吐出圧と前記燃圧センサの検出燃圧との偏差に基づいて前記燃圧センサの検出誤差を学習する学習手段と、
前記学習手段の学習値に基づいて前記燃圧センサの検出燃圧を補正する検出燃圧補正手段と
を備えていることを特徴とする内燃機関の燃圧検出装置。
A low pressure pump for pumping fuel in the fuel tank, a low pressure pump discharge pressure adjusting means for adjusting a discharge pressure of the low pressure pump to a target discharge pressure, and a fuel injection valve by pressurizing fuel discharged from the low pressure pump to a high pressure In an internal combustion engine comprising a high-pressure pump for pumping and a fuel pressure sensor for detecting a fuel pressure on the discharge side of the high-pressure pump,
Learning means for learning a detection error of the fuel pressure sensor based on a deviation between a target discharge pressure of the low pressure pump and a detected fuel pressure of the fuel pressure sensor when a predetermined learning execution condition is satisfied;
A fuel pressure detecting device for an internal combustion engine, comprising: a detected fuel pressure correcting means for correcting a detected fuel pressure of the fuel pressure sensor based on a learning value of the learning means.
前記学習手段は、前記燃圧センサの検出燃圧が所定値以下の低燃圧領域で前記燃圧センサの検出誤差を学習することを特徴とする請求項1に記載の内燃機関の燃圧検出装置。   The fuel pressure detection device for an internal combustion engine according to claim 1, wherein the learning means learns a detection error of the fuel pressure sensor in a low fuel pressure region where a fuel pressure detected by the fuel pressure sensor is a predetermined value or less. 前記学習手段は、前記低圧ポンプの目標吐出圧と前記高圧ポンプの吐出側の燃圧との偏差を推定できる状態になったときに前記燃圧センサの検出誤差を学習することを特徴とする請求項1又は2に記載の内燃機関の燃圧検出装置。   The learning means learns a detection error of the fuel pressure sensor when a deviation between a target discharge pressure of the low pressure pump and a fuel pressure on the discharge side of the high pressure pump can be estimated. Or the fuel pressure detection apparatus of the internal combustion engine of 2. 前記学習手段は、前記低圧ポンプが起動されてから前記高圧ポンプの吐出側の燃圧が前記低圧ポンプの目標吐出圧まで上昇したと推定できる状態になったときに前記燃圧センサの検出誤差を学習することを特徴とする請求項3に記載の内燃機関の燃圧検出装置。   The learning means learns the detection error of the fuel pressure sensor when it can be estimated that the fuel pressure on the discharge side of the high pressure pump has increased to the target discharge pressure of the low pressure pump after the low pressure pump is started. The fuel pressure detection device for an internal combustion engine according to claim 3. 前記学習手段は、前記低圧ポンプが起動されてから前記高圧ポンプの吐出側の燃圧が前記低圧ポンプの目標吐出圧まで上昇するのに要する所定時間が経過したときに前記燃圧センサの検出誤差を学習することを特徴とする請求項4に記載の内燃機関の燃圧検出装置。   The learning means learns a detection error of the fuel pressure sensor when a predetermined time required for the fuel pressure on the discharge side of the high pressure pump to rise to the target discharge pressure of the low pressure pump elapses after the low pressure pump is started. The fuel pressure detection device for an internal combustion engine according to claim 4, wherein 前記学習手段は、燃圧に影響を及ぼす特定の運転パラメータの領域毎に前記燃圧センサの検出誤差を学習することを特徴とする請求項1乃至3のいずれかに記載の内燃機関の燃圧検出装置。   The fuel pressure detection device for an internal combustion engine according to any one of claims 1 to 3, wherein the learning means learns a detection error of the fuel pressure sensor for each region of a specific operating parameter that affects the fuel pressure. 燃料温度又はこれと相関関係のある何等かの温度を検出する温度検出手段を備え、
前記学習手段は、前記温度検出手段で検出した温度の領域毎に前記燃圧センサの検出誤差を学習することを特徴とする請求項6に記載の内燃機関の燃圧検出装置。
Temperature detecting means for detecting the fuel temperature or any temperature correlated therewith,
The fuel pressure detection device for an internal combustion engine according to claim 6, wherein the learning means learns a detection error of the fuel pressure sensor for each temperature region detected by the temperature detection means.
前記学習手段は、内燃機関の停止時間が短く、前記高圧ポンプの吐出側の残留燃圧が抜け切らない状態で前記低圧ポンプが起動されたときには、前記燃圧センサの検出誤差を学習しないことを特徴とする請求項1乃至7のいずれかに記載の内燃機関の燃圧検出装置。   The learning means does not learn the detection error of the fuel pressure sensor when the low-pressure pump is started in a state where the stop time of the internal combustion engine is short and the residual fuel pressure on the discharge side of the high-pressure pump does not completely escape. The fuel pressure detection device for an internal combustion engine according to any one of claims 1 to 7. 前記低圧ポンプ吐出圧調整手段は、前記低圧ポンプの吐出圧を設定圧力以下に調整する燃圧レギュレータであり、
前記学習手段は、前記低圧ポンプの目標吐出圧として、前記燃圧レギュレータの設定圧力を用いることを特徴とする請求項1乃至8のいずれかに記載の内燃機関の燃圧検出装置。
The low-pressure pump discharge pressure adjusting means is a fuel pressure regulator that adjusts the discharge pressure of the low-pressure pump below a set pressure,
The fuel pressure detection device for an internal combustion engine according to any one of claims 1 to 8, wherein the learning means uses a set pressure of the fuel pressure regulator as a target discharge pressure of the low pressure pump.
前記低圧ポンプ吐出圧調整手段は、前記低圧ポンプの吐出圧を目標値にフィードバック制御するフィードバック制御手段であり、
前記学習手段は、前記低圧ポンプの目標吐出圧として、前記フィードバック制御の目標値を用いることを特徴とする請求項1乃至8のいずれかに記載の内燃機関の燃圧検出装置。
The low-pressure pump discharge pressure adjusting means is a feedback control means for feedback-controlling the discharge pressure of the low-pressure pump to a target value,
9. The fuel pressure detection apparatus for an internal combustion engine according to claim 1, wherein the learning unit uses a target value of the feedback control as a target discharge pressure of the low-pressure pump.
前記検出燃圧補正手段は、前記燃圧センサの検出燃圧が所定値以下の低燃圧領域でのみ前記学習手段の学習値に基づいて前記燃圧センサの検出燃圧を補正することを特徴とする請求項1乃至10のいずれかに記載の内燃機関の燃圧検出装置。   The detected fuel pressure correcting means corrects the detected fuel pressure of the fuel pressure sensor based on a learning value of the learning means only in a low fuel pressure region where the detected fuel pressure of the fuel pressure sensor is a predetermined value or less. The fuel pressure detection device for an internal combustion engine according to any one of claims 10 to 10. 前記検出燃圧補正手段は、補正後の検出燃圧の上限を前記所定値で制限することを特徴とする請求項11に記載の内燃機関の燃圧検出装置。   The fuel pressure detection device for an internal combustion engine according to claim 11, wherein the detected fuel pressure correction means limits the upper limit of the detected fuel pressure after correction by the predetermined value. 前記検出燃圧補正手段で補正された検出燃圧を用いて前記燃料噴射弁の燃料噴射量を補正する噴射量補正手段を備えていることを特徴とする請求項1乃至12のいずれかに記載の内燃機関の燃圧検出装置。   13. The internal combustion engine according to claim 1, further comprising an injection amount correction unit that corrects a fuel injection amount of the fuel injection valve using the detected fuel pressure corrected by the detected fuel pressure correction unit. Engine fuel pressure detector.
JP2003300774A 2003-08-26 2003-08-26 Fuel pressure detection device for internal combustion engine Expired - Lifetime JP4375534B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003300774A JP4375534B2 (en) 2003-08-26 2003-08-26 Fuel pressure detection device for internal combustion engine
DE200410039047 DE102004039047A1 (en) 2003-08-26 2004-08-11 Fuel pressure detection system of a combustion engine having a correction unit for correcting pressure based on a learn value of a learning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300774A JP4375534B2 (en) 2003-08-26 2003-08-26 Fuel pressure detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005069120A true JP2005069120A (en) 2005-03-17
JP4375534B2 JP4375534B2 (en) 2009-12-02

Family

ID=34213848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300774A Expired - Lifetime JP4375534B2 (en) 2003-08-26 2003-08-26 Fuel pressure detection device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4375534B2 (en)
DE (1) DE102004039047A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342733A (en) * 2005-06-09 2006-12-21 Toyota Motor Corp Control device of fuel pressure of internal combustion engine
JP2012092715A (en) * 2010-10-26 2012-05-17 Mitsubishi Electric Corp Fuel supply system
JP2013015026A (en) * 2011-06-30 2013-01-24 Toyota Motor Corp Device and method for controlling internal combustion engine
JP2014152677A (en) * 2013-02-07 2014-08-25 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine
KR101491286B1 (en) 2013-07-26 2015-02-06 현대자동차주식회사 Control method for learning deviation of fuel pressure sensor for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892458B1 (en) * 2005-10-25 2008-01-04 Renault Sas INTERNAL COMBUSTION ENGINE WITH VARIABLE COMPRESSION RATIO
US7765991B2 (en) 2006-08-09 2010-08-03 Ford Global Technologies, Llc Fuel delivery control for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342733A (en) * 2005-06-09 2006-12-21 Toyota Motor Corp Control device of fuel pressure of internal combustion engine
JP2012092715A (en) * 2010-10-26 2012-05-17 Mitsubishi Electric Corp Fuel supply system
US8683981B2 (en) 2010-10-26 2014-04-01 Mitsubishi Electric Corporation Fuel supply system
JP2013015026A (en) * 2011-06-30 2013-01-24 Toyota Motor Corp Device and method for controlling internal combustion engine
JP2014152677A (en) * 2013-02-07 2014-08-25 Hitachi Automotive Systems Ltd Fuel injection control device of internal combustion engine
KR101491286B1 (en) 2013-07-26 2015-02-06 현대자동차주식회사 Control method for learning deviation of fuel pressure sensor for vehicle

Also Published As

Publication number Publication date
JP4375534B2 (en) 2009-12-02
DE102004039047A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US7318421B2 (en) Startup controller for in-cylinder injection internal combustion engine
JP4042057B2 (en) Valve opening adjustment device and common rail fuel injection device
WO2011077951A1 (en) Fuel supply device for an internal combustion engine, and fuel supply control method
JP5617827B2 (en) Pump control device
JP5282878B2 (en) In-cylinder injection internal combustion engine control device
US20060266327A1 (en) Controller of in-cylinder injection engine
JP4349451B2 (en) Fuel injection control device and fuel injection system using the same
JP2009270520A (en) Fuel pressure controller and fuel pressure control system
JP4111123B2 (en) Common rail fuel injection system
US10161342B2 (en) Control device for high-pressure pump
JP2011163220A (en) Control device for fuel supply system
JP4375534B2 (en) Fuel pressure detection device for internal combustion engine
JP4569598B2 (en) Pressure reducing valve control device and fuel injection system using the same
JP2010196472A (en) Fuel supply control device for internal combustion engine
JP2003328835A (en) Fuel pressure sensor device for internal combustion engine control system
JP2010116835A (en) High-pressure pump control device for cylinder injection type internal combustion engine
JP5045640B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP4605182B2 (en) Pump control device and fuel injection system using the same
JP2009091963A (en) After-stop fuel pressure control device for cylinder injection internal combustion engine
JP4155168B2 (en) Common rail fuel injection system
JP2014231746A (en) Internal combustion engine fuel supply device
JP4707795B2 (en) Fuel pressure control device for internal combustion engine
JP4220992B2 (en) High pressure fuel pump control device for engine
JP4779483B2 (en) Fuel injection control device
JP4613920B2 (en) Fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 4375534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term