JP2005064045A - 光学装置、露光装置、並びにデバイス製造方法 - Google Patents
光学装置、露光装置、並びにデバイス製造方法 Download PDFInfo
- Publication number
- JP2005064045A JP2005064045A JP2003207497A JP2003207497A JP2005064045A JP 2005064045 A JP2005064045 A JP 2005064045A JP 2003207497 A JP2003207497 A JP 2003207497A JP 2003207497 A JP2003207497 A JP 2003207497A JP 2005064045 A JP2005064045 A JP 2005064045A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- space
- gas
- fluid
- optical member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
【課題】複数の空間の境界に光学部材が配置される場合において、その境界を介した気体等のリークを防止するとともに、光学的な性能の低下を抑制することができる光学装置を提供する。
【解決手段】エネルギービームILの光路上に形成され、かつ所定のガスが供給される空間11を備える光学装置10において、空間11と他の空間13との境界に配置される光学部材14と、光学部材14の周縁部14cに対向する対向面を有し、対向面と光学部材14の周縁部14cとの間に間隔を空けて設置される対向部材20と、光学部材14の周縁部14cと対向面との間に設けられて空間11と他の空間13とを隔てる流体25と、流体25を所定の位置に保持するための流れ止めを備えるようにした。
【選択図】 図1
【解決手段】エネルギービームILの光路上に形成され、かつ所定のガスが供給される空間11を備える光学装置10において、空間11と他の空間13との境界に配置される光学部材14と、光学部材14の周縁部14cに対向する対向面を有し、対向面と光学部材14の周縁部14cとの間に間隔を空けて設置される対向部材20と、光学部材14の周縁部14cと対向面との間に設けられて空間11と他の空間13とを隔てる流体25と、流体25を所定の位置に保持するための流れ止めを備えるようにした。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、エネルギービームの光路上に形成され、かつ所定のガスが供給される空間を備える光学装置に関し、特に、半導体素子、液晶表示素子、撮像素子(CCD等)、薄膜磁気ヘッド等の電子デバイスを製造するための露光装置、並びにデバイス製造方法に用いられる技術に関する。
【0002】
【従来の技術】
半導体素子や液晶表示素子等の電子デバイスをフォトリソグラフィ工程で製造する際に、パターンが形成されたマスクあるいはレチクル(以下、レチクルと称する)のパターン像を投影光学系を介して感光材(レジスト)が塗布された基板上の各投影(ショット)領域に投影する投影露光装置が使用されている。電子デバイスの回路は、上記投影露光装置で被露光基板上に回路パターンを露光することにより転写され、後処理によって形成される。
【0003】
近年、集積回路の高密度集積化、すなわち、回路パターンの微細化が進められている。そのため、投影露光装置における露光用照明ビーム(露光光)が短波長化される傾向にある。すなわち、これまで主流だった水銀ランプに代わって、KrFエキシマレーザ(波長:248nm)といった短波長の光源が用いられるようになり、さらに短波長のArFエキシマレーザ(193nm)を用いた露光装置の実用化も最終段階に入りつつある。また、さらなる高密度集積化をめざして、F2レーザ(157nm)を用いた露光装置の開発が進められている。
【0004】
波長約190nm以下のビームは真空紫外域に属し、これらのビームは、空気を透過しない。これは、空気中に含まれる酸素分子・水分子・二酸化炭素分子などの物質(以下、吸光物質と称する)によってビームのエネルギーが吸収されるからである。
【0005】
真空紫外域の露光光を用いた露光装置において、被露光基板上に露光光を十分な照度で到達させるには、露光光の光路上の空間から吸光物質を低減もしくは排除する必要がある。そのため、露光装置では、光路上の空間を筐体で囲い、露光光を透過する透過性のガスでその筐体内の空間を充填している場合が多い(例えば、特許文献1参照)。この場合、例えば全光路長を1000mmとすると、光路上の空間内の吸光物質濃度は、1ppm程度以下が実用的とされている。
【0006】
【特許文献1】
特開平6−260385号公報
【0007】
【発明が解決しようとする課題】
上記露光装置のように、光路上に所定のガスが供給される空間を備える光学装置では、シール構造の採用により気体等のリークが防止される。シール構造としては、Oリングなどのシール部材を変形させて隙間を塞ぐ技術が一般的である。
しかしながら、上記技術では、複数の空間の境界に光学部材が配置される場合において、シール部材を変形させるための力(もしくはその反力)によって光学部材が変形し、光学的な性能の低下を招くおそれがある。
【0008】
本発明は、上述した事情に鑑みてなされたものであり、複数の空間の境界に光学部材が配置される場合において、その境界を介した気体等のリークを防止するとともに、光学的な性能の低下を抑制することができる光学装置を提供することを目的とする。また、本発明の他の目的は、露光精度の向上を図ることができる露光装置を提供することにある。また、本発明の別の目的は、形成されるパターンの精度が向上したデバイスを提供することにある。
【0009】
【課題を解決するための手段】
本発明に係る光学装置等では、上記課題を解決するために以下の手段を採用した。
第1の発明は、エネルギービーム(IL)の光路上に形成され、かつ所定のガスが供給される空間(11)を備える光学装置(10,40,50)において、空間(11)と他の空間(13)との境界に配置される光学部材(14)と、光学部材の周縁部(14c,14d)に対向する対向面(20a,28a,42a,44a,52a,54a)を有し、対向面と光学部材の周縁部との間に間隔を空けて設置される対向部材(20,28,42,44,52,54)と、光学部材の周縁部と対向面との間に設けられて空間と他の空間とを隔てる流体(25,41,51)と、流体を所定の位置に保持するための流れ止め(60,70,80,90等)とを備えるようにした。この発明によれば、この光学装置では、光学部材の周縁部と支持部との間に隙間を形成した状態で光学部材が支持され、その光学部材の周縁部と支持部との間に流体層が設けられる。流体は、流れ止めによって所定の位置に保持されるので、複数の空間の境界を介した気体等のリークを防止することができる。また、流体層を用いたシール構造では、Oリングなどのシール部材を用いた構造に比べて、シールに伴って光学部材に作用する力が少ない。そのため、この光学装置では、複数の空間の境界に光学部材が配置される場合において、光学部材の変形が抑制される。また、流体層を用いたシール構造では、光学部材の姿勢に対する制約が小さく、光学部材の配置の調整が容易となる。なお、流体を所定の位置に保持するための流れ止めとして、流体自体の粘度や、流体と接する面に施した表面処理も利用される。
【0010】
また、対向部材が、光学部材を支持する支持部材(20,42,52)を有するものでは、既存の部材を用いることにより、装置の複雑化、大型化を抑えることができる。
また、流体(25,41,51)が、フッ素系グリースであるものでは、ケミカルクリーン度の向上が図られるとともに、粘度を調整することにより、流体が流れ出すことが防止できる。
また、流れ止め(60,70,80,90等)が、流体と接する部分が他の部分と異なる表面特性に処理されて形成されるものでは、流体層が接する部分の表面特性が他の部分と異なることにより、流体層の保持性やシール性を向上させることが可能となる。例えば、流体層が接する部分の流体層に対する濡れ性を向上させることにより、流体層の保持性やシール性を向上させることが可能となる。流体(25,41,51)は、光学部材及び対向部材の一方に形成された凹部(61,71,81)に溜められ、流れ止めは、光学部材及び対向部材の他方に形成された凸部(62,72,82)の少なくとも一部が、凹部に溜められた流体に浸されることによって構成されるものでは、簡単な構造により、流体の漏れを防止することができる。
対向部材が、光学部材を支持或いは押さえる座(53)を備え、座が流れ止めを兼ねるものでは、既存の部材を用いることにより、特別な装置や機構を用いることなく、装置の大型化等を抑えることができる。
【0011】
第2の発明は、露光装置(100)が、パターンが形成されたマスク(R)をエネルギービーム(IL)により照明する照明系(121)と、マスク(R)のパターンを基板(W)上に転写する投影光学系(PL)との少なくとも一方を、第1の発明に係る光学装置(10,40,50)で構成するようにした。この発明によれは、この露光装置では、光学装置における気体等のリークが防止されるとともに、光学的な性能の向上が図られることから、露光精度の向上が図られる。
【0012】
上記の露光装置において、例えば、光学部材は、投影光学系(PL)を構成する複数の光学素子のうち、基板(W)に対向する光学素子(351)であり、空間は、投影光学系内の空間(301)であり、他の空間は、光学素子と基板との間の空間(303)である。
この場合において、投影光学系内の空間(301)に第1のガスを供給する第1のガス供給機構(310)と、光学素子と基板との間の空間(303)に、第1のガスとは種類が異なる第2のガスを供給する第2のガス供給機構(311)とを有することにより、投影光学系内の空間と、光学素子と基板との間の空間とに互いに異なる種類のガスが供給されるとともに、それらの空間の境界を介した気体等のリークが防止される。
【0013】
また、上記の露光装置において、例えば、光学部材は、投影光学系(PL)を構成する複数の光学素子のうち、マスク(R)側に配置される光学素子(350)であり、空間は、投影光学系(PL)内の空間(301)であり、他の空間は、光学素子(350)とマスク(R)との間の空間(302)である。
この場合において、投影光学系内の空間(301)に第1のガスを供給する第1のガス供給機構(310)と、光学素子とマスクとの間の空間(302)に、第1のガスとは種類が異なる第2のガスを供給する第2のガス供給機構(311)とを有することにより、投影光学系内の空間と、光学素子とマスクとの間の空間とに互いに異なる種類のガスが供給されるとともに、それらの空間の境界を介した気体等のリークが防止される。
【0014】
第3の発明は、デバイス製造方法が、第2の発明に係る露光装置(100)を用いて、マスク(R)上に形成されたデバイスパターンを基板(W)上に転写するリソグラフィ工程を含むようにした。この発明によれば、露光精度の向上により、形成されるパターンの精度が向上したデバイスを提供することができる。
【0015】
【発明の実施の形態】
以下、本発明の光学装置の実施形態について図面を参照して説明する。
図1は、本発明に係る光学装置10の第1実施形態を模式的に示す図である。
光学装置10は、エネルギービームILの光路上に形成され、かつ所定のガスが供給される空間11を備える。この空間11は光学装置10を構成する筒状の筐体12の内部空間である。この空間11と外部空間13との境界には、光学部材14が配置されている。すなわち、筐体12には、エネルギービームILが通過する開口15が形成されており、その開口15を塞ぐように上記光学部材14が配置されている。また、光学部材14は、互いに平行な面を有する平行平板(平行平面板)からなり、光学的な有効領域を有する光学面14a,14bと、この光学面と同一面内の周縁面14c,14dと、側面14eとを含む。光学面14aと光学面14bとは互いに平行であり、周縁面14cと周縁面14dとも互いに平行である。
【0016】
図2に、流体を用いたシール構造を、部分的に拡大して示す。
光学装置10では、光学部材14と筐体12との間に設けられた流体によって空間11と外部空間13とが隔離される。図2において、筐体12の軸方向の端部には、光学部材14を支持する支持部20が設けられている。この支持部20は、光学部材14の一方の周縁面14cに対向する対向面20a及び側面14eに対向する対向面20bを有し、対向面20aと光学部材14の周縁面14cとの間及び対向面20bと光学部材14の側面14eとの間に、それぞれ間隔を空けた状態で光学部材14を支持している。
そして、光学部材14の周縁面14cと支持部20における対向面20aとの間に、全周にわたって流体層25が設けられている。
【0017】
図3は、図1に示すA−A矢視断面図である。支持部20は、光学部材14の周縁部における一方の周縁面14cに接触し、光学部材14の周縁部をほぼ等間隔(本例では、周方向に120°間隔)で支持する3つの座27を有している。
これらの座27は、支持部20における上記対向面20aから突出して形成されており、光学部材14との接触面積は小さい。
また、筐体12には、上記3つの座27のそれぞれに対応する位置に配置され、光学部材14の他方の周縁面14dに接触し、かつ光学部材14の周縁部を上記3つの座27とともに挟み込む中空円盤形のレンズ押さえ部材28が設けられている。
レンズ押さえ部材28は、光学部材14と接する部分(レンズ押圧部29)が突出して形成されており、光学部材14との接触面積は小さい。レンズ押さえ部材28のレンズ押圧部29は、光学部材14を挟んで上記座27と互いに向かい合う位置関係(両者が同一軸線L1上に位置する関係)になるように配置される。つまり、レンズ押圧部29は、対向面20a上の座27に対向するように、周方向に互いにほぼ等間隔(本例では、周方向に120°間隔)で配される。
そして、このレンズ押さえ部材28は、光学部材14の一方の周縁面14dに対向する対向面28aを有し、周縁面14dと対向面28aとの間に間隔を空けた状態で光学部材14を支持している。
なお、本実施形態では、レンズ押さえ部材28は、一の部材に3つの突出部(レンズ押圧部)を設けた構造としたが、これに限らず、例えば、それぞれに突出部が形成された3つのレンズ押さえ部材を設けた構造としてもよい。
なお、レンズ押圧部29を省略し、レンズ押さえ部材28が直接、光学部材14に接してもよい。更に、一旦、レンズ押圧部29を押して流体層25と光学部材14との密着度(密閉度)を高めておき、その後、レンズ押圧部29を解除してもよい。
【0018】
流体は、低蒸気圧で脱ガスが少ないものが好ましい。具体的には、フッ素系グリース(例えば、BARRIERTA(登録商標))が用いられる。そして、フッ素系グリースの粘度(或いは稠度)を高く調整することにより、一箇所に留まり、流れ出さないようにすることができる。すなわち、液体の粘度を流れ止めとして利用することにより、流体層25が所定の位置に保持される。
【0019】
上記構成の光学装置10では、光学部材14の周縁部と支持部20との間に設けられた流体層25によって、筐体12の内部空間11と外部空間13との境界における気体等のリークが防止される。つまり、流体を用いたシール構造では、流体層25が光学部材14及び支持部20のそれぞれに対して周縁部の周方向全体にわたって接触しており、流体層25が壁となって、内部空間11と外部空間13との間での気体の流れが確実に遮断される。
しかも、流体の経時的な劣化は少なく、シール性能の経時変化も極めて少ない。そのため、この光学装置10では、高いシール性能により、筐体12内を、所定のガスで高純度かつ安定的に満たすことが可能となる。
なお、筐体12の内部空間11と外部空間13との気圧差は、できるだけ小さくすることが望ましい。気圧差が大きいと、液体によるシール構造が破壊されて、気体がリークしてしまうからである。また、流体層25の粘度が変化しなように、温度及び湿度管理を行うことが望ましい。
【0020】
また、流体を用いたシール構造では、Oリングなどのシール部材を用いた構造に比べて、シールに伴って光学部材14に作用する力が少なくて済む。つまり、流体層25は、流体の粘性等によって保持されるために、その保持に伴って光学部材14に作用する力が小さい。そのため、この光学装置10では、保持に伴う光学部材14の変形が抑制され、光学的な性能の向上が図られる。しかも、流体を用いたシール構造では、Oリングに比べて、シール部材である流体と物体との間の摩擦抵抗が小さく、また、流体層25の形が容易に変化する。そのため、光学部材14の姿勢に対する制約が小さく、光学部材14の配置の調整が容易である。
【0021】
また、この光学装置10では、光学部材14の一方の周縁面14cに支持部20の3つの座27が接し、光学部材14の他方の周縁面14dに3つのレンズ押さえ部材28のレンズ押圧部29が接し、座27とレンズ押圧部29とは光学部材14を挟んで向かい合って配置される。そのため、レンズ押さえ部材28の押圧の力は、光学部材14を挟んで同一軸線L1上で押し合うように作用し、保持に伴う光学部材14内部での曲げモーメントの発生が抑制される。つまり、保持のための押圧力は、上記座27及びレンズ押圧部29が接する各位置において、それぞれ互いに打ち消し合う。したがって、この光学装置10では、光学部材14の歪みの発生が抑制され、光学的な性能の向上が図られる。
【0022】
また、この光学装置10では、光学部材14の周縁面14cと支持部20における対向面20aとの間に流体層25が配置されており、流体層25が配置される空間(間隔)は、座27によって規定されている。この場合、流体層25の厚みなど、流体層25の形状に変化が生じることが少なく、シール性能の低下が起こりにくい。
【0023】
ここで、光学部材14の周縁面14cのうち、流体層25に接する部分は他の部分と異なる表面特性に処理されるのが好ましい。これにより、流体層25の保持性やシール性を向上させることが可能となる。
例えば、図4に示すように、周縁面14c及び対向面20aの流体層25と接する部分を、流体に対して親液性を有するように表面処理してもよい。これにより、光学部材14に対する流体層25の濡れ性が向上し、流体層25の保持性やシール性が向上する。
また、光学部材14の周縁面14c及び対向面20aの他の部分を流体層25に対して撥液性に処理することにより、流体層25の保持性がさらに向上する。
すなわち、撥液性に処理した部分が流体の漏れを防止する流れ止めとして機能する。
なお、親液性等の表面処理としては、例えば、光学部材の表面に流体に対して親液性を示す膜を形成するとよい。
【0024】
図5は、本発明に係る光学装置の第2実施形態を示す図であり、流体を用いたシール構造を部分的に拡大して示している。なお、本例において、上述した実施形態と同一の機能を有するものは同一の符号を付し、その説明を省略または簡略化する。
図5において、光学装置40では、第1実施形態と同様に、光学部材14と筐体12との間が流体を用いてシールされている。本実施形態では、光学部材14と光学部材14を支持する支持部42とにより流れ止め60が形成され、流体からなる流体層41がその流れ止め60により、一定の位置に保持されている。
筐体12の軸方向の端部には、光学部材14を支持する支持部42が設けられている。この支持部42は、第1実施形態と同様に、光学部材14の周縁部における一方の周縁面14cに接触し、光学部材14の周縁部をほぼ等間隔(周方向に120°間隔)で支持する3つの座43を有している。
また、筐体12には、上記3つの座43のそれぞれに対応する位置に配置され、光学部材14の他方の周縁面14dに接触し、かつ光学部材14の周縁部を上記3つの座43とともに挟み込む中空円盤形のレンズ押さえ部材44を有している。レンズ押さえ部材44は、第1実施形態と同様に、光学部材14と接するレンズ押圧部29が突出して形成されている。
そして、支持部42は、光学部材14の一方の周縁面14cに対向する対向面42aと、光学部材14の側面14eに対向する対向面42bとを有し、対向面42aと光学部材14の上記周縁面14cとの間、及び対向面42bと光学部材14の上記側面14eとの間にそれぞれ間隔を空けた状態で光学部材14を支持している。同様に、レンズ押さえ部材44は、光学部材14の他方の周縁面14dに対向する対向面44aを有し、周縁面14dと対向面44aとの間に間隔を空けた状態で光学部材14を支持している。
また、支持部42の対向面42aには、その全周に凹部61が形成される。そして、光学部材14の一方の周縁面14cであって、上記凹部61に対応する位置に凸部62が全周に隙間なく形成されている。そして、流体は、支持部42に形成された凹部61に溜められ、光学部材14に形成された凸部62が、凹部61に溜められた流体に浸されるように構成されている。
すなわち、対向面42aに形成された凹部61が、流体からなる流体層41を一定の位置に保持する流れ止め60として機能する。そして、その流体層41に光学部材14に形成された凸部62が浸されることにより、光学部材14と筐体12との間がシールされる。
【0025】
図6は、他の流れ止め70を示す図である。上記例と異なり、支持部42の対向面42aに突起部73が全周に隙間なく設置される。これにより、突起部73と支持部42の対向面42bとにより、凹部71が形成される。そして、この凹部71に流体が溜められる。一方、光学部材14の一方の周縁面14cには、対向面42aの凸部71と干渉しないように、溝74が形成されるとともに、周縁面14cの端部には、凹部71に溜められた流体に浸るように、凸部72が全周に隙間なく形成される。
すなわち、突起部73と対向面42bとから形成される凹部71が、流体からなる流体層41を一定の位置に保持する流れ止め70として機能する。そして、その流体層41に光学部材14に形成された凸部72が浸されることにより、光学部材14と筐体12との間がシールされる。
【0026】
図7は、他の流れ止め80を示す図である。上記2例と異なり、光学部材14の一方の周縁面14dには、その全周に凹部81が形成される。また、レンズ押さえ部材44の対向面44aであって、上記凹部81に対応する位置に凸部82が全周に隙間なく形成されている。そして、流体は、光学部材14に形成された凹部81に溜められ、押さえ部材44に形成された凸部82が、凹部81に溜められた流体に浸されるように構成されている。
すなわち、光学部材14に形成された凹部81が、流体からなる流体層41を一定の位置に保持する流れ止め80として機能する。そして、その流体層41に押さえ部材44に形成された凸部82が浸されることにより、光学部材14と筐体12との間がシールされる。
なお、上記3例では、流体層25は、流れ止め60,70,80により、一定の位置に保持されるので、粘度の高低は問わないことは、言うまでもない。
また、凸部62,72,82及び突起部73は、それぞれ全周に渡って隙間なく形成される場合について説明したが、これに限るものではない。すなわち、流体の粘度、或いは表面張力が高い場合には、凸部62,72,82及び突起部73の一部に隙間が形成されている場合であっても、その隙間から流体が流れることがないので、光学部材14と筐体12との間がシールされるからである。
また、上記3例においても、光学部材14や凸部62,72,82及び突起部73の表面に、流体に対して親液性を有する表面処理を施すことにより、流体層41の保持性やシール性が向上する。
また、流体層25と接しない部分に対して撥液性に処理することにより、流体の保持性がさらに向上する。すなわち、撥液性に処理した部分が流れ止めとして機能することにより、流体の漏れを防止する能力が向上する。
なお、親液性処理と撥液性処理の両方を行う場合に限らず、親液性処理と撥液性処理のいずれか一方のみを行ってもよい。
【0027】
図8は、本発明に係る光学装置の第3実施形態を示す図であり、流体を用いたシール構造を部分的に拡大して示している。なお、本例において、上述した実施形態と同一の機能を有するものは同一の符号を付し、その説明を省略または簡略化する。
図8において、光学装置50では、第1及び第2実施形態と同様に、光学部材14と筐体12との間が流体を用いてシールされている。本実施形態では、支持部52に設けられる座53により流れ止め90が形成され、流体からなる流体層51がその流れ止め90により、一定の位置に保持されている。
筐体12の軸方向の端部には、光学部材14を支持する支持部52が設けられている。この支持部52は、光学部材14の周縁部における一方の周縁面14cに接触し、光学部材14の周縁部をほぼ等間隔(例えば、周方向に3°間隔等)で支持する複数の座53を有している。
また、筐体12には、上記複数の座53のそれぞれに対応する位置に配置され、光学部材14の他方の周縁面14dに接触し、かつ光学部材14の周縁部を上記複数の座53とともに挟み込む中空円盤形のレンズ押さえ部材54を有している。レンズ押さえ部材54は、第1及び第2実施形態と同様に、光学部材14と接するレンズ押圧部29が突出して形成されている。
そして、支持部52は、光学部材14の一方の周縁面14cに対向する対向面52aと、光学部材14の側面14eに対向する対向面52bとを有し、対向面52aと光学部材14の上記周縁面14cとの間、及び対向面52bと光学部材14の上記側面14eとの間にそれぞれ間隔を空けた状態で光学部材14を支持している。同様に、レンズ押さえ部材54は、光学部材14の他方の周縁面14dに対向する対向面54aを有し、周縁面14dと対向面54aとの間に間隔を空けた状態で光学部材14を支持している。
そして、流体は、複数の座53と支持部52の対向面52bとの間に溜められる。すなわち、複数の座53が、流体からなる流体層51を一定の位置に保持する流れ止め90を兼ねている。そして、その流体層51に光学部材14の周縁面14aが隙間なく接触する(浸る)ことにより、光学部材14と筐体12との間がシールされる。
なお、複数の座53の間から流体が漏れないようにするために、流体には、粘度の高いものを用いることが望ましい。言い換えれば、複数の座53の間から流体が漏れないように、座53の設置間隔を定めればよい。このため、座53の設置間隔は、上述した例のように、周方向に数度間隔で設置することが望ましい。そして、複数の座53に代えて、隙間のないリング形の座を用いてもよい。
また、本例においても、光学部材14や座53の表面に、流体に対して親液性を有する表面処理を施したりすることにより、流体層51の保持性やシール性が向上する。
【0028】
図9は、上述した光学装置10,40,50を露光装置100に適用した実施形態を示している。なお、図9ではXYZ直交座標系を採用している。XYZ直交座標系は、基板(感光性基板)としてのウエハWを保持するウエハステージWSに対して平行となるようにX軸及びY軸が設定され、Z軸がウエハステージWSに対して直交する方向に設定される。実際には、図中のXYZ直交座標系は、XY平面が水平面に平行な面に設定され、Z軸が鉛直方向に設定される。
本実施形態に係る露光装置100は、露光光源としてF2レーザ光源を使用している。また、マスク(投影原版)としてのレチクルR上の所定形状の照明領域に対して相対的に所定の方向へレチクルR及びウエハWを同期して走査することにより、ウエハW上の1つのショット領域に、レチクルRのパターン像を逐次的に転写するステップ・アンド・スキャン方式を採用している。このようなステップ・アンド・スキャン型の露光装置では、投影光学系の露光フィールドよりも広い基板(ウエハW)上の領域にレチクルRのパターンを露光できる。
【0029】
図9において、露光装置100は、レーザ光源120、このレーザ光源120からのエネルギービームとしての露光光ILによりレチクルRを照明する照明光学系121、レチクルRから射出される露光光ILをウエハW上に投射する投影光学系PL、及び装置全体を統括的に制御する不図示の主制御装置等を備えている。さらに、露光装置100は全体としてチャンバ(不図示)の内部に収納されている。
レーザ光源120は、発振波長157nmのパルス紫外光を出力するF2レーザを有する。また、レーザ光源120には、図示しない光源制御装置が併設されており、この光源制御装置は、主制御装置からの指示に応じて、射出されるパルス紫外光の発振中心波長及びスペクトル半値幅の制御、パルス発振のトリガ制御、レーザチャンバ内のガスの制御等を行う。
レーザ光源120からのパルスレーザ光(照明光)は、偏向ミラー130にて偏向されて、光アッテネータとしての可変減光器131に入射する。可変減光器131は、ウエハ上のフォトレジストに対する露光量を制御するために、減光率が段階的又は連続的に調整可能である。可変減光器131から射出される照明光は、光路偏向ミラー132にて偏向された後に、第1フライアイレンズ133、ズームレンズ134、振動ミラー135等を順に介して第2フライアイレンズ136に達する。第2フライアイレンズ136の射出側には、有効光源のサイズ・形状を所望に設定するための照明光学系開口絞り用の切り替えレボルバ137が配置されている。本実施形態では、照明光学系開口絞りでの光量損失を低減させるために、ズームレンズ134による第2フライアイレンズ136への光束の大きさを可変としている。
【0030】
照明光学系開口絞りの開口から射出した光束は、コンデンサレンズ群140を介して照明視野絞り(レチクルブラインド)141を照明する。なお、照明視野絞り141については、特開平4−196513号公報及びこれに対応する米国特許第5,473,410号公報に開示されている。
照明視野絞り141からの光は、偏向ミラー142,145、レンズ群143,144,146からなる照明視野絞り結像光学系(レチクルブラインド結像系)を介してレチクルR上に導かれ、レチクルR上には、照明視野絞り141の開口部の像である照明領域が形成される。レチクルR上の照明領域からの光は、投影光学系PLを介してウエハW上へ導かれ、ウエハW上には、レチクルRの照明領域内のパターンの縮小像が形成される。レチクルRを保持するレチクルステージRSはXY平面内で二次元的に移動可能であり、その位置座標は干渉計150によって計測されかつ位置制御される。また、ウエハWを保持するウエハステージWSもXY平面内で二次元的に移動可能であり、その位置座標は干渉計151によって計測されかつ位置制御される。これらにより、レチクルR及びウエハWを高精度に同期走査することが可能になる。なお、上述したレーザ光源120〜照明視野絞り結像光学系等により照明光学系121が構成される。
【0031】
本実施形態で使用するF2レーザ光(波長:157nm)のように、真空紫外域の光を露光光とする場合には、透過率の良好な光学硝材(光学素子)としては、蛍石(CaF2の結晶)、フッ素や水素等をドープした石英ガラス、及びフッ化マグネシウム(MgF2)等に限られる。この場合、投影光学系PLにおいて、屈折光学部材のみで構成して所望の結像特性(色収差特性等)を得るのは困難であることから、屈折光学部材と反射鏡とを組み合わせた反射屈折系を採用してもよい。
また、真空紫外域の光に対する吸光物質としては、酸素(O2)、水(水蒸気:H2O )、一酸化炭素(CO)、炭酸ガス(二酸化炭素:CO2)、有機物、及びハロゲン化物等がある。一方、真空紫外域の光が透過する気体(エネルギー吸収がほとんど無い物質)としては、窒素ガス(N2)、水素(H2)、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)、ラドン(Rn)よりなる希ガスがある。以降、この窒素ガス及び希ガスをまとめて「透過性ガス」と呼ぶことにする。本実施形態では、照明光路(レーザ光源120〜レチクルRへ至る光路)及び投影光路(レチクルR〜ウエハWへ至る光路)を外部雰囲気から遮断し、それらの光路を真空紫外域の光に対して吸収の少ない特性を有する透過性ガスとしての窒素、ヘリウム、アルゴン、ネオン、クリプトン、キセノン、ラドンなどのガス、またはそれらの混合ガスで満たしている。
具体的には、レーザ光源120から可変減光器131までの光路がケーシング160により外部雰囲気より遮断され、可変減光器131から照明視野絞り141までの光路がケーシング161により外部雰囲気より遮断され、照明視野絞り結像光学系がケーシング162により外部雰囲気から遮断され、それらの光路内に上記透過性ガスが充填されている。なお、ケーシング161とケーシング162はケーシング163により接続されている。また、投影光学系PL自体もその鏡筒169がケーシングとなっており、その内部光路に上記透過性ガスが充填されている。
【0032】
ケーシング164は、照明視野絞り結像光学系を納めたケーシング162と投影光学系PLとの間の空間を外部雰囲気から遮断しており、その内部にレチクルRを保持するレチクルステージRSが収納されている。このケーシング164には、レチクルRを搬入・搬出するための扉170が設けられており、この扉170の外側には、レチクルRを搬入・搬出時にケーシング164内の雰囲気が汚染されるのを防ぐためのガス置換室165が設けられている。このガス置換室165にも扉171が設けられており、複数種のレチクルを保管しているレチクルストッカ166との間のレチクルの受け渡しは扉171を介して行われる。
また、ケーシング167は、投影光学系PLとウエハWとの間の空間を外部雰囲気から遮断しており、その内部に、ウエハホルダ180を介してウエハWを保持するウエハステージWS、ウエハWの表面のZ方向の位置(フォーカス位置)や傾斜角を検出するための斜入射形式のオートフォーカスセンサ181、オフ・アクシス方式のアライメントセンサ182、ウエハステージWSを載置している定盤183等が収納されている。このケーシング167には、ウエハWを搬入・搬出するための扉172が設けられており、この扉172の外側にはケーシング167内部の雰囲気が汚染されるのを防ぐためのガス置換室168が設けられている。このガス置換室168には扉173が設けられており、装置内部へのウエハWの搬入、装置外部へのウエハWの搬出はこの扉173を介して行われる。
【0033】
各光路上の空間に充填される透過性ガス(パージガス)としては、窒素やヘリウムを用いることが好ましい。窒素は波長が150nm程度以下の光に対しては吸光物質として作用し、ヘリウムは波長100nm程度以下の光に対して透過性ガスとして使用することができる。ヘリウムは熱伝導率が窒素の約6倍であり、気圧変化に対する屈折率の変動量が窒素の約1/8であるため、特に高透過率と光学系の結像特性の安定性や冷却性とで優れている。なお、投影光学系PLの鏡筒について透過性ガスとしてヘリウムを用い、他の光路(例えばレーザ光源120〜レチクルRまでの照明光路など)については透過性ガスとして窒素を用いてもよい。
【0034】
ここで、ケーシング161,162,164,167のそれぞれには、給気弁200,201,202,203が設けられており、これらの給気弁200〜203は不図示のガス供給システムにおける給気管路に接続されている。また、ケーシング161,162,164,167のそれぞれには、排気弁210,211,212,213が設けられており、これらの排気弁210〜213は、それぞれガス供給システムにおける排気管路に接続されている。
同様に、ガス置換室165,168にも給気弁204,205及ぶ排気弁214,215が設けられ、投影光学系PLの鏡筒169にも給気弁206及び排気弁216が設けられ、これらはガス供給システムにおける給気管路あるいは排気管路に接続されている。
また、ガス置換室165,168においては、レチクル交換又はウエハ交時等の際にガス置換を行う必要がある。例えば、レチクル交換の際には、扉171を開いてレチクルストッカ166からレチクルをガス置換室165内に搬入し、扉171を閉めてガス置換室165内を透過性ガスで満たし、その後、扉170を開いて、レチクルをレチクルステージRS上に載置する。また、ウエハ交換の際には、扉173を開いてウエハをガス置換室168内に搬入し、この扉173を閉めてガス置換室168内を透過性ガスで満たす。その後、扉172を開いてウエハをウエハホルダ180上に載置する。なお、レチクル搬出、ウエハ搬出の場合はこの逆の手順である。また、ガス置換室165,168のガス置換の際には、ガス置換室内の雰囲気を減圧した後に、給気弁から透過性ガスを供給しても良い。
また、ケーシング164,167においては、ガス置換室165,168によるガス置換を行った気体が混入する可能性があり、このガス置換室165,168のガス中にはかなりの量の酸素などの吸光物質が混入している可能性が高い。そのため、ガス置換室165,168のガス置換と同じタイミングでガス置換を行うことが望ましい。また、ケーシング及びガス置換室においては、外部雰囲気の圧力よりも高い圧力の透過性ガスを充填しておくことが好ましい。
【0035】
図10は、上述した露光光の光路上の各空間に、パージガスとして上述した透過性ガスを供給するガス供給システム300の構成の一例を示している。図10では、透過性ガスの供給先として、前述した露光光ILの光路上の空間のうち、投影光学系PLにおける鏡筒169内部の空間301、レチクルステージRSを収納するケーシング164内部の空間302、及びウエハステージWSを収納するケーシング167内部の空間303を代表的に示している。本例では、空間301にはヘリウムガス(He)が供給され、空間302及び空間303には窒素ガス(N2)が供給される。なお、露光光の光路上の空間のうち、その他の空間にはヘリウムガス及び窒素ガスのいずれかが適宜供給される。
ガス供給システム300は、ヘリウムガス用の第1ガス供給機構310と、窒素ガス用の第2ガス供給機構311とを備える。第1ガス供給機構310及び第2ガス供給機構311はそれぞれ、ヘリウムガスもしくは窒素ガスを収容するガスボンベなどのガス供給源320,321、ガス供給源320,321から光路上の各空間にガスを供給するガス供給装置322,323,324、光路上の各空間からガスを含む気体を排出する排気装置325,326等を有している。なお、ガス供給システム300は、フィルタ、ガスの温度を制御するための温調装置、光路上の各空間内の吸光物質の濃度を計測する濃度計などを適宜備えるとよい。
ガス供給装置322,323,324は、ガス供給源320,321から送られるガスを例えば加圧することにより、そのガスを給気管路330,331,332を介して各空間301,302,303に供給する。なお、ガス供給源320,321から排出されるガスが十分に圧力を有している場合はガス供給装置を省くことも可能である。また、給気管路330,331,332に用いられる配管としては、洗浄されたステンレスなどの金属、あるいは洗浄された四フッ化エチレン、テトラフルオロエチレン−テレフルオロ(アルキルビニルエーテル)、またはテトラフルオロエチレン−ヘキサフルオロプロペン共重合体等の各種ポリマー等、ケミカルクリーンな素材のものが用いられ、配管継手としては、例えば禁油処理されたステンレスなどの金属製、あるいは各種ポリマー製のものが用いられる。
排気装置325,326は、例えば真空圧を発生させることにより、排気管路333,334,335を介して空間301,302,303内の気体を排出する。各空間301,302,303から排出した気体は、例えば装置外部の空間に排出される。なお、各空間301,302,303から排出した気体を、精製してパージガスとして再利用してもよい。ガスの再利用により、パージガス(本例ではヘリウムガス)の消費量を低減することができる。
【0036】
本例の露光装置100では、第1ガス供給機構310により、投影光学系PLの鏡筒169内部の空間301にヘリウムガス(He)が供給され、第2ガス供給機構311により、レチクルRが配置される空間302と、ウエハWが配置される空間303とに窒素ガス(N2)が供給される。すなわち、投影光学系PL内の空間302と、その空間302に隣接する空間303、304とで、互いに種類が異なるガスが供給される。
また、投影光学系PLを構成する複数の光学部材(光学素子)のうち、レチクルR側の最上段に配置される光学素子350、及びウエハW側の最下段に配置される光学素子351のそれぞれに対して、上述した流体を用いたシール構造が用いられている。すなわち、光学素子350は、投影光学系PLの内部の空間301とレチクルRが配置される空間302との境界に配置され、図1〜図3に示したシール構造を有する支持部355によって支持されている。また、光学素子351も同様に、投影光学系PLの内部の空間301とウエハWが配置される空間303との境界に配置され、図1〜図3に示した流体を用いたシール構造を有する支持部355によって支持されている。
本例の露光装置では、投影光学系PL内の空間301とレチクルRが配置される空間302との境界、及び投影光学系PL内の空間301とウエハWが配置される空間303との境界のそれぞれが、流体を用いてシールされていることから、それらの境界を介した気体等のリークが防止される。そのため、高いシール性能により、露光光の光路上の各空間301,302,303が、ヘリウムガスまたは窒素ガスに高純度かつ安定的に満たされる。また、シールに伴う光学素子350,351の変形が小さく、光学特性の向上が図られる。
ここで、光学素子350,351は、互いに平行な面を有する平行平板(平行平面板)からなる。また、光学素子350,351の姿勢や位置を調整することにより、露光光の局所的な収差(回転対称でないディストーションなど)を補正することが可能である。本例では、光学素子350,351の支持部355において、流体を用いたシール構造が用いられていることから、シール部材である流体と物体との間の摩擦抵抗が小さく、また、流体層の形が容易に変化する。そのため、光学素子350,351の姿勢に対する制約が小さく、光学素子350,351の位置や姿勢を容易に調整することができる。この点からも、光学特性の向上が図られる。
【0037】
このように本例の露光装置100によれば、露光光の光路上の空間における気体等のリークが防止されかつ、光学的な性能の向上が図られることから、露光精度の向上を図ることができる。
なお、上記例では、投影光学系PLにおける露光光の入口及び出口に配置される光学部材に対して、流体を用いたシール構造が用いられていたが、照明光学系121における各ケーシング(例えば、ケーシング161,162、図9参照)の露光光の入口または出口に配置される光学部材に対しても同様に、流体を用いたシール構造を用いてもよい。この場合にも、各ケーシング内の空間における気体等のリークが防止されるとともに、光学特性の向上が図られる。
【0038】
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0039】
例えば、流体を用いたシール構造によって支持する光学部材としては、平行平板に限らず、曲面レンズ、ビームスプリッタ、ダイクロイックミラーなど、光学装置に用いられる様々な光学部材が適用可能である。また、その支持構造は、上述した実施例で示した構造に限らず、光学部材の設置スペースや光学部材の特性や要求精度に応じて適宜決定される。
【0040】
また、光学部材と支持部との間に流体層を設ける際、光学部材の一面における流体層と接する部分に段差を設けてもよい。この技術は、光学的な有効領域を有する光学面が曲面である場合などに光学部材を確実に支持する上で有利である。
【0041】
また、上述したレンズ押さえ部材など、支持部における光学部材に接する部分の材質としては、ケミカルクリーン対策が施された樹脂あるいは金属部材が好ましく用いられる。また、インバー材など、熱歪みが生じにくい材質を用いることにより、熱の発生に伴う台座の変形を防ぎ、光学素子での歪みの発生や、光学素子の姿勢の乱れを抑制することができる。
【0042】
また、光路上から吸光物質を排除するには、予め構造材料表面からの脱ガス量を低減する処置を施しておくことが好ましい。例えば、(1)構造材料の表面積を小さくする、(2)構造材料表面を機械研磨、電解研磨、バル研磨、化学研磨、又はGBB(Glass Beads Blasting)といった方法によって研磨し、構造材料の表面粗さを低減しておく、(3)超音波洗浄、クリーンドライエア等の流体の吹き付け、真空加熱脱ガス(ベーキング)などの手法によって、構造材料表面を洗浄する、(4)炭化水素やハロゲン化物を含む電線被膜物質やシール部材(Oリング等)、接着剤等を光路空間に可能な限り設置しない、等の方法がある。
【0043】
また、照明系チャンバからウエハ操作部のカバーを構成する筐体(筒状体等も可)や、透過性ガスを供給する配管は、不純物ガス(脱ガス)の少ない材料、例えばステンレス鋼、チタン合金、セラミックス、四フッ化エチレン、テトラフルオロエチレン−テルフルオロ(アルキルビニルエーテル)、又はテトラフルオロエチレン−ヘキサフルオロプロペン共重合体等の各種ポリマーで形成することが望ましい。
【0044】
また、流体を用いたシール構造により隔てられる空間には、気体が供給される場合だけに限らない。例えば、投影光学系PLとウエハWの間に液体(水、フッ素系オイル等)を供給する場合であってもよい。この場合には、投影光学系PL内の気体が投影光学系PLとウエハWの間に漏れたり、逆に、投影光学系PLとウエハWの間の液体が投影光学系PL内に漏れたりすることが防止できる。
【0045】
また、各筐体内の駆動機構(レチクルブラインドやステージ等)などに電力を供給するケーブルなども、同様に上述した不純物ガス(脱ガス)の少ない材料で被覆することが望ましい。
【0046】
なお、本発明は走査露光型の投影露光装置のみならず、一括露光型(ステッパー型)の投影露光装置等にも適用できることは明らかである。これらに備えられる投影光学系は、反射屈折系のみならず、屈折系や反射系であってもよい。さらに、投影光学系の倍率は縮小倍率のみならず、等倍や拡大であってもよい。
【0047】
また、本発明はエネルギービームとして、ArFエキシマレーザ光(波長193nm)を使用する場合や、Kr2レーザ光(波長146nm)、Ar2レーザ光(波長126nm)、YAGレーザ等の高調波、又は半導体レーザの高調波等の波長が200nm〜100nm程度の真空紫外光にも適用できる。
【0048】
また、露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光装置や、薄膜磁気ヘッドを製造するための露光装置にも広く適当できる。
【0049】
また、ウエハステージやレチクルステージにリニアモータを用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもいい。また、ステージは、ガイドに沿って移動するタイプでもいいし、ガイドを設けないガイドレスタイプでもよい。
【0050】
また、ステージの駆動装置として平面モ−タを用いる場合、磁石ユニット(永久磁石)と電機子ユニットのいずれか一方をステージに接続し、磁石ユニットと電機子ユニットの他方をステージの移動面側(ベース)に設ければよい。
【0051】
また、ウエハステージの移動により発生する反力は、特開平8−166475号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。本発明は、このような構造を備えた露光装置においても適用可能である。
【0052】
また、レチクルステージの移動により発生する反力は、特開平8−330224号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。本発明は、このような構造を備えた露光装置においても適用可能である。
【0053】
以上のように、本願実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0054】
そして、上記のように露光が行われたウエハが、現像工程、パターン形成工程、ボンディング工程、パッケージング等を経ることによって、半導体素子等の電子デバイスが製造される。
【0055】
【発明の効果】
以上説明したように、本発明の光学装置によれば、複数の空間の境界に光学部材が配置される場合において、流体層を用いてシールを行うことにより、その境界を介した気体等のリークを防止するとともに、光学的な性能の向上を図ることができる。
また、本発明の露光装置によれば、光学装置における気体等のリークが防止されかつ、光学的な性能の向上が図られることから、露光精度の向上を図ることができる。
また、本発明のデバイス製造方法によれば、露光精度の向上により、形成されるパターンの精度が向上したデバイスを提供することができる。
【図面の簡単な説明】
【図1】光学装置の第1実施形態を示す模式図
【図2】流体を用いたシール構造の部分的拡大図
【図3】光学装置の断面図
【図4】光学部材等を表面処理した例を示す図
【図5】光学装置の第2実施形態を示す模式図
【図6】他の流れ止めを示す模式図
【図7】他の流れ止めを示す模式図
【図8】光学装置の第3実施形態を示す模式図
【図9】露光装置を示す模式図
【図10】ガス供給システムを示す模式図
【符号の説明】
10,40,50 光学装置
11,301 空間
13,302,303 空間(他の空間)
14 光学部材
14c,14d 周縁面(周縁部)
20,42,52 支持部(対向部材)
28,44,54 部材(対向部材)
20a,28a,42a,44a,52a,54a 対向面
25,41,51 流体層(流体)
53 座
60,70,80,90 流れ止め
61,71,81 溝(凹部)
62,72,82 凸部
100 露光装置
121 照明光学系
310,311 ガス供給機構
350,351 光学素子
IL エネルギービーム(露光光)
W ウエハ(基板)
R レチクル(ウエハ)
PL 投影光学系
【発明の属する技術分野】
本発明は、エネルギービームの光路上に形成され、かつ所定のガスが供給される空間を備える光学装置に関し、特に、半導体素子、液晶表示素子、撮像素子(CCD等)、薄膜磁気ヘッド等の電子デバイスを製造するための露光装置、並びにデバイス製造方法に用いられる技術に関する。
【0002】
【従来の技術】
半導体素子や液晶表示素子等の電子デバイスをフォトリソグラフィ工程で製造する際に、パターンが形成されたマスクあるいはレチクル(以下、レチクルと称する)のパターン像を投影光学系を介して感光材(レジスト)が塗布された基板上の各投影(ショット)領域に投影する投影露光装置が使用されている。電子デバイスの回路は、上記投影露光装置で被露光基板上に回路パターンを露光することにより転写され、後処理によって形成される。
【0003】
近年、集積回路の高密度集積化、すなわち、回路パターンの微細化が進められている。そのため、投影露光装置における露光用照明ビーム(露光光)が短波長化される傾向にある。すなわち、これまで主流だった水銀ランプに代わって、KrFエキシマレーザ(波長:248nm)といった短波長の光源が用いられるようになり、さらに短波長のArFエキシマレーザ(193nm)を用いた露光装置の実用化も最終段階に入りつつある。また、さらなる高密度集積化をめざして、F2レーザ(157nm)を用いた露光装置の開発が進められている。
【0004】
波長約190nm以下のビームは真空紫外域に属し、これらのビームは、空気を透過しない。これは、空気中に含まれる酸素分子・水分子・二酸化炭素分子などの物質(以下、吸光物質と称する)によってビームのエネルギーが吸収されるからである。
【0005】
真空紫外域の露光光を用いた露光装置において、被露光基板上に露光光を十分な照度で到達させるには、露光光の光路上の空間から吸光物質を低減もしくは排除する必要がある。そのため、露光装置では、光路上の空間を筐体で囲い、露光光を透過する透過性のガスでその筐体内の空間を充填している場合が多い(例えば、特許文献1参照)。この場合、例えば全光路長を1000mmとすると、光路上の空間内の吸光物質濃度は、1ppm程度以下が実用的とされている。
【0006】
【特許文献1】
特開平6−260385号公報
【0007】
【発明が解決しようとする課題】
上記露光装置のように、光路上に所定のガスが供給される空間を備える光学装置では、シール構造の採用により気体等のリークが防止される。シール構造としては、Oリングなどのシール部材を変形させて隙間を塞ぐ技術が一般的である。
しかしながら、上記技術では、複数の空間の境界に光学部材が配置される場合において、シール部材を変形させるための力(もしくはその反力)によって光学部材が変形し、光学的な性能の低下を招くおそれがある。
【0008】
本発明は、上述した事情に鑑みてなされたものであり、複数の空間の境界に光学部材が配置される場合において、その境界を介した気体等のリークを防止するとともに、光学的な性能の低下を抑制することができる光学装置を提供することを目的とする。また、本発明の他の目的は、露光精度の向上を図ることができる露光装置を提供することにある。また、本発明の別の目的は、形成されるパターンの精度が向上したデバイスを提供することにある。
【0009】
【課題を解決するための手段】
本発明に係る光学装置等では、上記課題を解決するために以下の手段を採用した。
第1の発明は、エネルギービーム(IL)の光路上に形成され、かつ所定のガスが供給される空間(11)を備える光学装置(10,40,50)において、空間(11)と他の空間(13)との境界に配置される光学部材(14)と、光学部材の周縁部(14c,14d)に対向する対向面(20a,28a,42a,44a,52a,54a)を有し、対向面と光学部材の周縁部との間に間隔を空けて設置される対向部材(20,28,42,44,52,54)と、光学部材の周縁部と対向面との間に設けられて空間と他の空間とを隔てる流体(25,41,51)と、流体を所定の位置に保持するための流れ止め(60,70,80,90等)とを備えるようにした。この発明によれば、この光学装置では、光学部材の周縁部と支持部との間に隙間を形成した状態で光学部材が支持され、その光学部材の周縁部と支持部との間に流体層が設けられる。流体は、流れ止めによって所定の位置に保持されるので、複数の空間の境界を介した気体等のリークを防止することができる。また、流体層を用いたシール構造では、Oリングなどのシール部材を用いた構造に比べて、シールに伴って光学部材に作用する力が少ない。そのため、この光学装置では、複数の空間の境界に光学部材が配置される場合において、光学部材の変形が抑制される。また、流体層を用いたシール構造では、光学部材の姿勢に対する制約が小さく、光学部材の配置の調整が容易となる。なお、流体を所定の位置に保持するための流れ止めとして、流体自体の粘度や、流体と接する面に施した表面処理も利用される。
【0010】
また、対向部材が、光学部材を支持する支持部材(20,42,52)を有するものでは、既存の部材を用いることにより、装置の複雑化、大型化を抑えることができる。
また、流体(25,41,51)が、フッ素系グリースであるものでは、ケミカルクリーン度の向上が図られるとともに、粘度を調整することにより、流体が流れ出すことが防止できる。
また、流れ止め(60,70,80,90等)が、流体と接する部分が他の部分と異なる表面特性に処理されて形成されるものでは、流体層が接する部分の表面特性が他の部分と異なることにより、流体層の保持性やシール性を向上させることが可能となる。例えば、流体層が接する部分の流体層に対する濡れ性を向上させることにより、流体層の保持性やシール性を向上させることが可能となる。流体(25,41,51)は、光学部材及び対向部材の一方に形成された凹部(61,71,81)に溜められ、流れ止めは、光学部材及び対向部材の他方に形成された凸部(62,72,82)の少なくとも一部が、凹部に溜められた流体に浸されることによって構成されるものでは、簡単な構造により、流体の漏れを防止することができる。
対向部材が、光学部材を支持或いは押さえる座(53)を備え、座が流れ止めを兼ねるものでは、既存の部材を用いることにより、特別な装置や機構を用いることなく、装置の大型化等を抑えることができる。
【0011】
第2の発明は、露光装置(100)が、パターンが形成されたマスク(R)をエネルギービーム(IL)により照明する照明系(121)と、マスク(R)のパターンを基板(W)上に転写する投影光学系(PL)との少なくとも一方を、第1の発明に係る光学装置(10,40,50)で構成するようにした。この発明によれは、この露光装置では、光学装置における気体等のリークが防止されるとともに、光学的な性能の向上が図られることから、露光精度の向上が図られる。
【0012】
上記の露光装置において、例えば、光学部材は、投影光学系(PL)を構成する複数の光学素子のうち、基板(W)に対向する光学素子(351)であり、空間は、投影光学系内の空間(301)であり、他の空間は、光学素子と基板との間の空間(303)である。
この場合において、投影光学系内の空間(301)に第1のガスを供給する第1のガス供給機構(310)と、光学素子と基板との間の空間(303)に、第1のガスとは種類が異なる第2のガスを供給する第2のガス供給機構(311)とを有することにより、投影光学系内の空間と、光学素子と基板との間の空間とに互いに異なる種類のガスが供給されるとともに、それらの空間の境界を介した気体等のリークが防止される。
【0013】
また、上記の露光装置において、例えば、光学部材は、投影光学系(PL)を構成する複数の光学素子のうち、マスク(R)側に配置される光学素子(350)であり、空間は、投影光学系(PL)内の空間(301)であり、他の空間は、光学素子(350)とマスク(R)との間の空間(302)である。
この場合において、投影光学系内の空間(301)に第1のガスを供給する第1のガス供給機構(310)と、光学素子とマスクとの間の空間(302)に、第1のガスとは種類が異なる第2のガスを供給する第2のガス供給機構(311)とを有することにより、投影光学系内の空間と、光学素子とマスクとの間の空間とに互いに異なる種類のガスが供給されるとともに、それらの空間の境界を介した気体等のリークが防止される。
【0014】
第3の発明は、デバイス製造方法が、第2の発明に係る露光装置(100)を用いて、マスク(R)上に形成されたデバイスパターンを基板(W)上に転写するリソグラフィ工程を含むようにした。この発明によれば、露光精度の向上により、形成されるパターンの精度が向上したデバイスを提供することができる。
【0015】
【発明の実施の形態】
以下、本発明の光学装置の実施形態について図面を参照して説明する。
図1は、本発明に係る光学装置10の第1実施形態を模式的に示す図である。
光学装置10は、エネルギービームILの光路上に形成され、かつ所定のガスが供給される空間11を備える。この空間11は光学装置10を構成する筒状の筐体12の内部空間である。この空間11と外部空間13との境界には、光学部材14が配置されている。すなわち、筐体12には、エネルギービームILが通過する開口15が形成されており、その開口15を塞ぐように上記光学部材14が配置されている。また、光学部材14は、互いに平行な面を有する平行平板(平行平面板)からなり、光学的な有効領域を有する光学面14a,14bと、この光学面と同一面内の周縁面14c,14dと、側面14eとを含む。光学面14aと光学面14bとは互いに平行であり、周縁面14cと周縁面14dとも互いに平行である。
【0016】
図2に、流体を用いたシール構造を、部分的に拡大して示す。
光学装置10では、光学部材14と筐体12との間に設けられた流体によって空間11と外部空間13とが隔離される。図2において、筐体12の軸方向の端部には、光学部材14を支持する支持部20が設けられている。この支持部20は、光学部材14の一方の周縁面14cに対向する対向面20a及び側面14eに対向する対向面20bを有し、対向面20aと光学部材14の周縁面14cとの間及び対向面20bと光学部材14の側面14eとの間に、それぞれ間隔を空けた状態で光学部材14を支持している。
そして、光学部材14の周縁面14cと支持部20における対向面20aとの間に、全周にわたって流体層25が設けられている。
【0017】
図3は、図1に示すA−A矢視断面図である。支持部20は、光学部材14の周縁部における一方の周縁面14cに接触し、光学部材14の周縁部をほぼ等間隔(本例では、周方向に120°間隔)で支持する3つの座27を有している。
これらの座27は、支持部20における上記対向面20aから突出して形成されており、光学部材14との接触面積は小さい。
また、筐体12には、上記3つの座27のそれぞれに対応する位置に配置され、光学部材14の他方の周縁面14dに接触し、かつ光学部材14の周縁部を上記3つの座27とともに挟み込む中空円盤形のレンズ押さえ部材28が設けられている。
レンズ押さえ部材28は、光学部材14と接する部分(レンズ押圧部29)が突出して形成されており、光学部材14との接触面積は小さい。レンズ押さえ部材28のレンズ押圧部29は、光学部材14を挟んで上記座27と互いに向かい合う位置関係(両者が同一軸線L1上に位置する関係)になるように配置される。つまり、レンズ押圧部29は、対向面20a上の座27に対向するように、周方向に互いにほぼ等間隔(本例では、周方向に120°間隔)で配される。
そして、このレンズ押さえ部材28は、光学部材14の一方の周縁面14dに対向する対向面28aを有し、周縁面14dと対向面28aとの間に間隔を空けた状態で光学部材14を支持している。
なお、本実施形態では、レンズ押さえ部材28は、一の部材に3つの突出部(レンズ押圧部)を設けた構造としたが、これに限らず、例えば、それぞれに突出部が形成された3つのレンズ押さえ部材を設けた構造としてもよい。
なお、レンズ押圧部29を省略し、レンズ押さえ部材28が直接、光学部材14に接してもよい。更に、一旦、レンズ押圧部29を押して流体層25と光学部材14との密着度(密閉度)を高めておき、その後、レンズ押圧部29を解除してもよい。
【0018】
流体は、低蒸気圧で脱ガスが少ないものが好ましい。具体的には、フッ素系グリース(例えば、BARRIERTA(登録商標))が用いられる。そして、フッ素系グリースの粘度(或いは稠度)を高く調整することにより、一箇所に留まり、流れ出さないようにすることができる。すなわち、液体の粘度を流れ止めとして利用することにより、流体層25が所定の位置に保持される。
【0019】
上記構成の光学装置10では、光学部材14の周縁部と支持部20との間に設けられた流体層25によって、筐体12の内部空間11と外部空間13との境界における気体等のリークが防止される。つまり、流体を用いたシール構造では、流体層25が光学部材14及び支持部20のそれぞれに対して周縁部の周方向全体にわたって接触しており、流体層25が壁となって、内部空間11と外部空間13との間での気体の流れが確実に遮断される。
しかも、流体の経時的な劣化は少なく、シール性能の経時変化も極めて少ない。そのため、この光学装置10では、高いシール性能により、筐体12内を、所定のガスで高純度かつ安定的に満たすことが可能となる。
なお、筐体12の内部空間11と外部空間13との気圧差は、できるだけ小さくすることが望ましい。気圧差が大きいと、液体によるシール構造が破壊されて、気体がリークしてしまうからである。また、流体層25の粘度が変化しなように、温度及び湿度管理を行うことが望ましい。
【0020】
また、流体を用いたシール構造では、Oリングなどのシール部材を用いた構造に比べて、シールに伴って光学部材14に作用する力が少なくて済む。つまり、流体層25は、流体の粘性等によって保持されるために、その保持に伴って光学部材14に作用する力が小さい。そのため、この光学装置10では、保持に伴う光学部材14の変形が抑制され、光学的な性能の向上が図られる。しかも、流体を用いたシール構造では、Oリングに比べて、シール部材である流体と物体との間の摩擦抵抗が小さく、また、流体層25の形が容易に変化する。そのため、光学部材14の姿勢に対する制約が小さく、光学部材14の配置の調整が容易である。
【0021】
また、この光学装置10では、光学部材14の一方の周縁面14cに支持部20の3つの座27が接し、光学部材14の他方の周縁面14dに3つのレンズ押さえ部材28のレンズ押圧部29が接し、座27とレンズ押圧部29とは光学部材14を挟んで向かい合って配置される。そのため、レンズ押さえ部材28の押圧の力は、光学部材14を挟んで同一軸線L1上で押し合うように作用し、保持に伴う光学部材14内部での曲げモーメントの発生が抑制される。つまり、保持のための押圧力は、上記座27及びレンズ押圧部29が接する各位置において、それぞれ互いに打ち消し合う。したがって、この光学装置10では、光学部材14の歪みの発生が抑制され、光学的な性能の向上が図られる。
【0022】
また、この光学装置10では、光学部材14の周縁面14cと支持部20における対向面20aとの間に流体層25が配置されており、流体層25が配置される空間(間隔)は、座27によって規定されている。この場合、流体層25の厚みなど、流体層25の形状に変化が生じることが少なく、シール性能の低下が起こりにくい。
【0023】
ここで、光学部材14の周縁面14cのうち、流体層25に接する部分は他の部分と異なる表面特性に処理されるのが好ましい。これにより、流体層25の保持性やシール性を向上させることが可能となる。
例えば、図4に示すように、周縁面14c及び対向面20aの流体層25と接する部分を、流体に対して親液性を有するように表面処理してもよい。これにより、光学部材14に対する流体層25の濡れ性が向上し、流体層25の保持性やシール性が向上する。
また、光学部材14の周縁面14c及び対向面20aの他の部分を流体層25に対して撥液性に処理することにより、流体層25の保持性がさらに向上する。
すなわち、撥液性に処理した部分が流体の漏れを防止する流れ止めとして機能する。
なお、親液性等の表面処理としては、例えば、光学部材の表面に流体に対して親液性を示す膜を形成するとよい。
【0024】
図5は、本発明に係る光学装置の第2実施形態を示す図であり、流体を用いたシール構造を部分的に拡大して示している。なお、本例において、上述した実施形態と同一の機能を有するものは同一の符号を付し、その説明を省略または簡略化する。
図5において、光学装置40では、第1実施形態と同様に、光学部材14と筐体12との間が流体を用いてシールされている。本実施形態では、光学部材14と光学部材14を支持する支持部42とにより流れ止め60が形成され、流体からなる流体層41がその流れ止め60により、一定の位置に保持されている。
筐体12の軸方向の端部には、光学部材14を支持する支持部42が設けられている。この支持部42は、第1実施形態と同様に、光学部材14の周縁部における一方の周縁面14cに接触し、光学部材14の周縁部をほぼ等間隔(周方向に120°間隔)で支持する3つの座43を有している。
また、筐体12には、上記3つの座43のそれぞれに対応する位置に配置され、光学部材14の他方の周縁面14dに接触し、かつ光学部材14の周縁部を上記3つの座43とともに挟み込む中空円盤形のレンズ押さえ部材44を有している。レンズ押さえ部材44は、第1実施形態と同様に、光学部材14と接するレンズ押圧部29が突出して形成されている。
そして、支持部42は、光学部材14の一方の周縁面14cに対向する対向面42aと、光学部材14の側面14eに対向する対向面42bとを有し、対向面42aと光学部材14の上記周縁面14cとの間、及び対向面42bと光学部材14の上記側面14eとの間にそれぞれ間隔を空けた状態で光学部材14を支持している。同様に、レンズ押さえ部材44は、光学部材14の他方の周縁面14dに対向する対向面44aを有し、周縁面14dと対向面44aとの間に間隔を空けた状態で光学部材14を支持している。
また、支持部42の対向面42aには、その全周に凹部61が形成される。そして、光学部材14の一方の周縁面14cであって、上記凹部61に対応する位置に凸部62が全周に隙間なく形成されている。そして、流体は、支持部42に形成された凹部61に溜められ、光学部材14に形成された凸部62が、凹部61に溜められた流体に浸されるように構成されている。
すなわち、対向面42aに形成された凹部61が、流体からなる流体層41を一定の位置に保持する流れ止め60として機能する。そして、その流体層41に光学部材14に形成された凸部62が浸されることにより、光学部材14と筐体12との間がシールされる。
【0025】
図6は、他の流れ止め70を示す図である。上記例と異なり、支持部42の対向面42aに突起部73が全周に隙間なく設置される。これにより、突起部73と支持部42の対向面42bとにより、凹部71が形成される。そして、この凹部71に流体が溜められる。一方、光学部材14の一方の周縁面14cには、対向面42aの凸部71と干渉しないように、溝74が形成されるとともに、周縁面14cの端部には、凹部71に溜められた流体に浸るように、凸部72が全周に隙間なく形成される。
すなわち、突起部73と対向面42bとから形成される凹部71が、流体からなる流体層41を一定の位置に保持する流れ止め70として機能する。そして、その流体層41に光学部材14に形成された凸部72が浸されることにより、光学部材14と筐体12との間がシールされる。
【0026】
図7は、他の流れ止め80を示す図である。上記2例と異なり、光学部材14の一方の周縁面14dには、その全周に凹部81が形成される。また、レンズ押さえ部材44の対向面44aであって、上記凹部81に対応する位置に凸部82が全周に隙間なく形成されている。そして、流体は、光学部材14に形成された凹部81に溜められ、押さえ部材44に形成された凸部82が、凹部81に溜められた流体に浸されるように構成されている。
すなわち、光学部材14に形成された凹部81が、流体からなる流体層41を一定の位置に保持する流れ止め80として機能する。そして、その流体層41に押さえ部材44に形成された凸部82が浸されることにより、光学部材14と筐体12との間がシールされる。
なお、上記3例では、流体層25は、流れ止め60,70,80により、一定の位置に保持されるので、粘度の高低は問わないことは、言うまでもない。
また、凸部62,72,82及び突起部73は、それぞれ全周に渡って隙間なく形成される場合について説明したが、これに限るものではない。すなわち、流体の粘度、或いは表面張力が高い場合には、凸部62,72,82及び突起部73の一部に隙間が形成されている場合であっても、その隙間から流体が流れることがないので、光学部材14と筐体12との間がシールされるからである。
また、上記3例においても、光学部材14や凸部62,72,82及び突起部73の表面に、流体に対して親液性を有する表面処理を施すことにより、流体層41の保持性やシール性が向上する。
また、流体層25と接しない部分に対して撥液性に処理することにより、流体の保持性がさらに向上する。すなわち、撥液性に処理した部分が流れ止めとして機能することにより、流体の漏れを防止する能力が向上する。
なお、親液性処理と撥液性処理の両方を行う場合に限らず、親液性処理と撥液性処理のいずれか一方のみを行ってもよい。
【0027】
図8は、本発明に係る光学装置の第3実施形態を示す図であり、流体を用いたシール構造を部分的に拡大して示している。なお、本例において、上述した実施形態と同一の機能を有するものは同一の符号を付し、その説明を省略または簡略化する。
図8において、光学装置50では、第1及び第2実施形態と同様に、光学部材14と筐体12との間が流体を用いてシールされている。本実施形態では、支持部52に設けられる座53により流れ止め90が形成され、流体からなる流体層51がその流れ止め90により、一定の位置に保持されている。
筐体12の軸方向の端部には、光学部材14を支持する支持部52が設けられている。この支持部52は、光学部材14の周縁部における一方の周縁面14cに接触し、光学部材14の周縁部をほぼ等間隔(例えば、周方向に3°間隔等)で支持する複数の座53を有している。
また、筐体12には、上記複数の座53のそれぞれに対応する位置に配置され、光学部材14の他方の周縁面14dに接触し、かつ光学部材14の周縁部を上記複数の座53とともに挟み込む中空円盤形のレンズ押さえ部材54を有している。レンズ押さえ部材54は、第1及び第2実施形態と同様に、光学部材14と接するレンズ押圧部29が突出して形成されている。
そして、支持部52は、光学部材14の一方の周縁面14cに対向する対向面52aと、光学部材14の側面14eに対向する対向面52bとを有し、対向面52aと光学部材14の上記周縁面14cとの間、及び対向面52bと光学部材14の上記側面14eとの間にそれぞれ間隔を空けた状態で光学部材14を支持している。同様に、レンズ押さえ部材54は、光学部材14の他方の周縁面14dに対向する対向面54aを有し、周縁面14dと対向面54aとの間に間隔を空けた状態で光学部材14を支持している。
そして、流体は、複数の座53と支持部52の対向面52bとの間に溜められる。すなわち、複数の座53が、流体からなる流体層51を一定の位置に保持する流れ止め90を兼ねている。そして、その流体層51に光学部材14の周縁面14aが隙間なく接触する(浸る)ことにより、光学部材14と筐体12との間がシールされる。
なお、複数の座53の間から流体が漏れないようにするために、流体には、粘度の高いものを用いることが望ましい。言い換えれば、複数の座53の間から流体が漏れないように、座53の設置間隔を定めればよい。このため、座53の設置間隔は、上述した例のように、周方向に数度間隔で設置することが望ましい。そして、複数の座53に代えて、隙間のないリング形の座を用いてもよい。
また、本例においても、光学部材14や座53の表面に、流体に対して親液性を有する表面処理を施したりすることにより、流体層51の保持性やシール性が向上する。
【0028】
図9は、上述した光学装置10,40,50を露光装置100に適用した実施形態を示している。なお、図9ではXYZ直交座標系を採用している。XYZ直交座標系は、基板(感光性基板)としてのウエハWを保持するウエハステージWSに対して平行となるようにX軸及びY軸が設定され、Z軸がウエハステージWSに対して直交する方向に設定される。実際には、図中のXYZ直交座標系は、XY平面が水平面に平行な面に設定され、Z軸が鉛直方向に設定される。
本実施形態に係る露光装置100は、露光光源としてF2レーザ光源を使用している。また、マスク(投影原版)としてのレチクルR上の所定形状の照明領域に対して相対的に所定の方向へレチクルR及びウエハWを同期して走査することにより、ウエハW上の1つのショット領域に、レチクルRのパターン像を逐次的に転写するステップ・アンド・スキャン方式を採用している。このようなステップ・アンド・スキャン型の露光装置では、投影光学系の露光フィールドよりも広い基板(ウエハW)上の領域にレチクルRのパターンを露光できる。
【0029】
図9において、露光装置100は、レーザ光源120、このレーザ光源120からのエネルギービームとしての露光光ILによりレチクルRを照明する照明光学系121、レチクルRから射出される露光光ILをウエハW上に投射する投影光学系PL、及び装置全体を統括的に制御する不図示の主制御装置等を備えている。さらに、露光装置100は全体としてチャンバ(不図示)の内部に収納されている。
レーザ光源120は、発振波長157nmのパルス紫外光を出力するF2レーザを有する。また、レーザ光源120には、図示しない光源制御装置が併設されており、この光源制御装置は、主制御装置からの指示に応じて、射出されるパルス紫外光の発振中心波長及びスペクトル半値幅の制御、パルス発振のトリガ制御、レーザチャンバ内のガスの制御等を行う。
レーザ光源120からのパルスレーザ光(照明光)は、偏向ミラー130にて偏向されて、光アッテネータとしての可変減光器131に入射する。可変減光器131は、ウエハ上のフォトレジストに対する露光量を制御するために、減光率が段階的又は連続的に調整可能である。可変減光器131から射出される照明光は、光路偏向ミラー132にて偏向された後に、第1フライアイレンズ133、ズームレンズ134、振動ミラー135等を順に介して第2フライアイレンズ136に達する。第2フライアイレンズ136の射出側には、有効光源のサイズ・形状を所望に設定するための照明光学系開口絞り用の切り替えレボルバ137が配置されている。本実施形態では、照明光学系開口絞りでの光量損失を低減させるために、ズームレンズ134による第2フライアイレンズ136への光束の大きさを可変としている。
【0030】
照明光学系開口絞りの開口から射出した光束は、コンデンサレンズ群140を介して照明視野絞り(レチクルブラインド)141を照明する。なお、照明視野絞り141については、特開平4−196513号公報及びこれに対応する米国特許第5,473,410号公報に開示されている。
照明視野絞り141からの光は、偏向ミラー142,145、レンズ群143,144,146からなる照明視野絞り結像光学系(レチクルブラインド結像系)を介してレチクルR上に導かれ、レチクルR上には、照明視野絞り141の開口部の像である照明領域が形成される。レチクルR上の照明領域からの光は、投影光学系PLを介してウエハW上へ導かれ、ウエハW上には、レチクルRの照明領域内のパターンの縮小像が形成される。レチクルRを保持するレチクルステージRSはXY平面内で二次元的に移動可能であり、その位置座標は干渉計150によって計測されかつ位置制御される。また、ウエハWを保持するウエハステージWSもXY平面内で二次元的に移動可能であり、その位置座標は干渉計151によって計測されかつ位置制御される。これらにより、レチクルR及びウエハWを高精度に同期走査することが可能になる。なお、上述したレーザ光源120〜照明視野絞り結像光学系等により照明光学系121が構成される。
【0031】
本実施形態で使用するF2レーザ光(波長:157nm)のように、真空紫外域の光を露光光とする場合には、透過率の良好な光学硝材(光学素子)としては、蛍石(CaF2の結晶)、フッ素や水素等をドープした石英ガラス、及びフッ化マグネシウム(MgF2)等に限られる。この場合、投影光学系PLにおいて、屈折光学部材のみで構成して所望の結像特性(色収差特性等)を得るのは困難であることから、屈折光学部材と反射鏡とを組み合わせた反射屈折系を採用してもよい。
また、真空紫外域の光に対する吸光物質としては、酸素(O2)、水(水蒸気:H2O )、一酸化炭素(CO)、炭酸ガス(二酸化炭素:CO2)、有機物、及びハロゲン化物等がある。一方、真空紫外域の光が透過する気体(エネルギー吸収がほとんど無い物質)としては、窒素ガス(N2)、水素(H2)、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)、ラドン(Rn)よりなる希ガスがある。以降、この窒素ガス及び希ガスをまとめて「透過性ガス」と呼ぶことにする。本実施形態では、照明光路(レーザ光源120〜レチクルRへ至る光路)及び投影光路(レチクルR〜ウエハWへ至る光路)を外部雰囲気から遮断し、それらの光路を真空紫外域の光に対して吸収の少ない特性を有する透過性ガスとしての窒素、ヘリウム、アルゴン、ネオン、クリプトン、キセノン、ラドンなどのガス、またはそれらの混合ガスで満たしている。
具体的には、レーザ光源120から可変減光器131までの光路がケーシング160により外部雰囲気より遮断され、可変減光器131から照明視野絞り141までの光路がケーシング161により外部雰囲気より遮断され、照明視野絞り結像光学系がケーシング162により外部雰囲気から遮断され、それらの光路内に上記透過性ガスが充填されている。なお、ケーシング161とケーシング162はケーシング163により接続されている。また、投影光学系PL自体もその鏡筒169がケーシングとなっており、その内部光路に上記透過性ガスが充填されている。
【0032】
ケーシング164は、照明視野絞り結像光学系を納めたケーシング162と投影光学系PLとの間の空間を外部雰囲気から遮断しており、その内部にレチクルRを保持するレチクルステージRSが収納されている。このケーシング164には、レチクルRを搬入・搬出するための扉170が設けられており、この扉170の外側には、レチクルRを搬入・搬出時にケーシング164内の雰囲気が汚染されるのを防ぐためのガス置換室165が設けられている。このガス置換室165にも扉171が設けられており、複数種のレチクルを保管しているレチクルストッカ166との間のレチクルの受け渡しは扉171を介して行われる。
また、ケーシング167は、投影光学系PLとウエハWとの間の空間を外部雰囲気から遮断しており、その内部に、ウエハホルダ180を介してウエハWを保持するウエハステージWS、ウエハWの表面のZ方向の位置(フォーカス位置)や傾斜角を検出するための斜入射形式のオートフォーカスセンサ181、オフ・アクシス方式のアライメントセンサ182、ウエハステージWSを載置している定盤183等が収納されている。このケーシング167には、ウエハWを搬入・搬出するための扉172が設けられており、この扉172の外側にはケーシング167内部の雰囲気が汚染されるのを防ぐためのガス置換室168が設けられている。このガス置換室168には扉173が設けられており、装置内部へのウエハWの搬入、装置外部へのウエハWの搬出はこの扉173を介して行われる。
【0033】
各光路上の空間に充填される透過性ガス(パージガス)としては、窒素やヘリウムを用いることが好ましい。窒素は波長が150nm程度以下の光に対しては吸光物質として作用し、ヘリウムは波長100nm程度以下の光に対して透過性ガスとして使用することができる。ヘリウムは熱伝導率が窒素の約6倍であり、気圧変化に対する屈折率の変動量が窒素の約1/8であるため、特に高透過率と光学系の結像特性の安定性や冷却性とで優れている。なお、投影光学系PLの鏡筒について透過性ガスとしてヘリウムを用い、他の光路(例えばレーザ光源120〜レチクルRまでの照明光路など)については透過性ガスとして窒素を用いてもよい。
【0034】
ここで、ケーシング161,162,164,167のそれぞれには、給気弁200,201,202,203が設けられており、これらの給気弁200〜203は不図示のガス供給システムにおける給気管路に接続されている。また、ケーシング161,162,164,167のそれぞれには、排気弁210,211,212,213が設けられており、これらの排気弁210〜213は、それぞれガス供給システムにおける排気管路に接続されている。
同様に、ガス置換室165,168にも給気弁204,205及ぶ排気弁214,215が設けられ、投影光学系PLの鏡筒169にも給気弁206及び排気弁216が設けられ、これらはガス供給システムにおける給気管路あるいは排気管路に接続されている。
また、ガス置換室165,168においては、レチクル交換又はウエハ交時等の際にガス置換を行う必要がある。例えば、レチクル交換の際には、扉171を開いてレチクルストッカ166からレチクルをガス置換室165内に搬入し、扉171を閉めてガス置換室165内を透過性ガスで満たし、その後、扉170を開いて、レチクルをレチクルステージRS上に載置する。また、ウエハ交換の際には、扉173を開いてウエハをガス置換室168内に搬入し、この扉173を閉めてガス置換室168内を透過性ガスで満たす。その後、扉172を開いてウエハをウエハホルダ180上に載置する。なお、レチクル搬出、ウエハ搬出の場合はこの逆の手順である。また、ガス置換室165,168のガス置換の際には、ガス置換室内の雰囲気を減圧した後に、給気弁から透過性ガスを供給しても良い。
また、ケーシング164,167においては、ガス置換室165,168によるガス置換を行った気体が混入する可能性があり、このガス置換室165,168のガス中にはかなりの量の酸素などの吸光物質が混入している可能性が高い。そのため、ガス置換室165,168のガス置換と同じタイミングでガス置換を行うことが望ましい。また、ケーシング及びガス置換室においては、外部雰囲気の圧力よりも高い圧力の透過性ガスを充填しておくことが好ましい。
【0035】
図10は、上述した露光光の光路上の各空間に、パージガスとして上述した透過性ガスを供給するガス供給システム300の構成の一例を示している。図10では、透過性ガスの供給先として、前述した露光光ILの光路上の空間のうち、投影光学系PLにおける鏡筒169内部の空間301、レチクルステージRSを収納するケーシング164内部の空間302、及びウエハステージWSを収納するケーシング167内部の空間303を代表的に示している。本例では、空間301にはヘリウムガス(He)が供給され、空間302及び空間303には窒素ガス(N2)が供給される。なお、露光光の光路上の空間のうち、その他の空間にはヘリウムガス及び窒素ガスのいずれかが適宜供給される。
ガス供給システム300は、ヘリウムガス用の第1ガス供給機構310と、窒素ガス用の第2ガス供給機構311とを備える。第1ガス供給機構310及び第2ガス供給機構311はそれぞれ、ヘリウムガスもしくは窒素ガスを収容するガスボンベなどのガス供給源320,321、ガス供給源320,321から光路上の各空間にガスを供給するガス供給装置322,323,324、光路上の各空間からガスを含む気体を排出する排気装置325,326等を有している。なお、ガス供給システム300は、フィルタ、ガスの温度を制御するための温調装置、光路上の各空間内の吸光物質の濃度を計測する濃度計などを適宜備えるとよい。
ガス供給装置322,323,324は、ガス供給源320,321から送られるガスを例えば加圧することにより、そのガスを給気管路330,331,332を介して各空間301,302,303に供給する。なお、ガス供給源320,321から排出されるガスが十分に圧力を有している場合はガス供給装置を省くことも可能である。また、給気管路330,331,332に用いられる配管としては、洗浄されたステンレスなどの金属、あるいは洗浄された四フッ化エチレン、テトラフルオロエチレン−テレフルオロ(アルキルビニルエーテル)、またはテトラフルオロエチレン−ヘキサフルオロプロペン共重合体等の各種ポリマー等、ケミカルクリーンな素材のものが用いられ、配管継手としては、例えば禁油処理されたステンレスなどの金属製、あるいは各種ポリマー製のものが用いられる。
排気装置325,326は、例えば真空圧を発生させることにより、排気管路333,334,335を介して空間301,302,303内の気体を排出する。各空間301,302,303から排出した気体は、例えば装置外部の空間に排出される。なお、各空間301,302,303から排出した気体を、精製してパージガスとして再利用してもよい。ガスの再利用により、パージガス(本例ではヘリウムガス)の消費量を低減することができる。
【0036】
本例の露光装置100では、第1ガス供給機構310により、投影光学系PLの鏡筒169内部の空間301にヘリウムガス(He)が供給され、第2ガス供給機構311により、レチクルRが配置される空間302と、ウエハWが配置される空間303とに窒素ガス(N2)が供給される。すなわち、投影光学系PL内の空間302と、その空間302に隣接する空間303、304とで、互いに種類が異なるガスが供給される。
また、投影光学系PLを構成する複数の光学部材(光学素子)のうち、レチクルR側の最上段に配置される光学素子350、及びウエハW側の最下段に配置される光学素子351のそれぞれに対して、上述した流体を用いたシール構造が用いられている。すなわち、光学素子350は、投影光学系PLの内部の空間301とレチクルRが配置される空間302との境界に配置され、図1〜図3に示したシール構造を有する支持部355によって支持されている。また、光学素子351も同様に、投影光学系PLの内部の空間301とウエハWが配置される空間303との境界に配置され、図1〜図3に示した流体を用いたシール構造を有する支持部355によって支持されている。
本例の露光装置では、投影光学系PL内の空間301とレチクルRが配置される空間302との境界、及び投影光学系PL内の空間301とウエハWが配置される空間303との境界のそれぞれが、流体を用いてシールされていることから、それらの境界を介した気体等のリークが防止される。そのため、高いシール性能により、露光光の光路上の各空間301,302,303が、ヘリウムガスまたは窒素ガスに高純度かつ安定的に満たされる。また、シールに伴う光学素子350,351の変形が小さく、光学特性の向上が図られる。
ここで、光学素子350,351は、互いに平行な面を有する平行平板(平行平面板)からなる。また、光学素子350,351の姿勢や位置を調整することにより、露光光の局所的な収差(回転対称でないディストーションなど)を補正することが可能である。本例では、光学素子350,351の支持部355において、流体を用いたシール構造が用いられていることから、シール部材である流体と物体との間の摩擦抵抗が小さく、また、流体層の形が容易に変化する。そのため、光学素子350,351の姿勢に対する制約が小さく、光学素子350,351の位置や姿勢を容易に調整することができる。この点からも、光学特性の向上が図られる。
【0037】
このように本例の露光装置100によれば、露光光の光路上の空間における気体等のリークが防止されかつ、光学的な性能の向上が図られることから、露光精度の向上を図ることができる。
なお、上記例では、投影光学系PLにおける露光光の入口及び出口に配置される光学部材に対して、流体を用いたシール構造が用いられていたが、照明光学系121における各ケーシング(例えば、ケーシング161,162、図9参照)の露光光の入口または出口に配置される光学部材に対しても同様に、流体を用いたシール構造を用いてもよい。この場合にも、各ケーシング内の空間における気体等のリークが防止されるとともに、光学特性の向上が図られる。
【0038】
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0039】
例えば、流体を用いたシール構造によって支持する光学部材としては、平行平板に限らず、曲面レンズ、ビームスプリッタ、ダイクロイックミラーなど、光学装置に用いられる様々な光学部材が適用可能である。また、その支持構造は、上述した実施例で示した構造に限らず、光学部材の設置スペースや光学部材の特性や要求精度に応じて適宜決定される。
【0040】
また、光学部材と支持部との間に流体層を設ける際、光学部材の一面における流体層と接する部分に段差を設けてもよい。この技術は、光学的な有効領域を有する光学面が曲面である場合などに光学部材を確実に支持する上で有利である。
【0041】
また、上述したレンズ押さえ部材など、支持部における光学部材に接する部分の材質としては、ケミカルクリーン対策が施された樹脂あるいは金属部材が好ましく用いられる。また、インバー材など、熱歪みが生じにくい材質を用いることにより、熱の発生に伴う台座の変形を防ぎ、光学素子での歪みの発生や、光学素子の姿勢の乱れを抑制することができる。
【0042】
また、光路上から吸光物質を排除するには、予め構造材料表面からの脱ガス量を低減する処置を施しておくことが好ましい。例えば、(1)構造材料の表面積を小さくする、(2)構造材料表面を機械研磨、電解研磨、バル研磨、化学研磨、又はGBB(Glass Beads Blasting)といった方法によって研磨し、構造材料の表面粗さを低減しておく、(3)超音波洗浄、クリーンドライエア等の流体の吹き付け、真空加熱脱ガス(ベーキング)などの手法によって、構造材料表面を洗浄する、(4)炭化水素やハロゲン化物を含む電線被膜物質やシール部材(Oリング等)、接着剤等を光路空間に可能な限り設置しない、等の方法がある。
【0043】
また、照明系チャンバからウエハ操作部のカバーを構成する筐体(筒状体等も可)や、透過性ガスを供給する配管は、不純物ガス(脱ガス)の少ない材料、例えばステンレス鋼、チタン合金、セラミックス、四フッ化エチレン、テトラフルオロエチレン−テルフルオロ(アルキルビニルエーテル)、又はテトラフルオロエチレン−ヘキサフルオロプロペン共重合体等の各種ポリマーで形成することが望ましい。
【0044】
また、流体を用いたシール構造により隔てられる空間には、気体が供給される場合だけに限らない。例えば、投影光学系PLとウエハWの間に液体(水、フッ素系オイル等)を供給する場合であってもよい。この場合には、投影光学系PL内の気体が投影光学系PLとウエハWの間に漏れたり、逆に、投影光学系PLとウエハWの間の液体が投影光学系PL内に漏れたりすることが防止できる。
【0045】
また、各筐体内の駆動機構(レチクルブラインドやステージ等)などに電力を供給するケーブルなども、同様に上述した不純物ガス(脱ガス)の少ない材料で被覆することが望ましい。
【0046】
なお、本発明は走査露光型の投影露光装置のみならず、一括露光型(ステッパー型)の投影露光装置等にも適用できることは明らかである。これらに備えられる投影光学系は、反射屈折系のみならず、屈折系や反射系であってもよい。さらに、投影光学系の倍率は縮小倍率のみならず、等倍や拡大であってもよい。
【0047】
また、本発明はエネルギービームとして、ArFエキシマレーザ光(波長193nm)を使用する場合や、Kr2レーザ光(波長146nm)、Ar2レーザ光(波長126nm)、YAGレーザ等の高調波、又は半導体レーザの高調波等の波長が200nm〜100nm程度の真空紫外光にも適用できる。
【0048】
また、露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光装置や、薄膜磁気ヘッドを製造するための露光装置にも広く適当できる。
【0049】
また、ウエハステージやレチクルステージにリニアモータを用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもいい。また、ステージは、ガイドに沿って移動するタイプでもいいし、ガイドを設けないガイドレスタイプでもよい。
【0050】
また、ステージの駆動装置として平面モ−タを用いる場合、磁石ユニット(永久磁石)と電機子ユニットのいずれか一方をステージに接続し、磁石ユニットと電機子ユニットの他方をステージの移動面側(ベース)に設ければよい。
【0051】
また、ウエハステージの移動により発生する反力は、特開平8−166475号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。本発明は、このような構造を備えた露光装置においても適用可能である。
【0052】
また、レチクルステージの移動により発生する反力は、特開平8−330224号公報に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。本発明は、このような構造を備えた露光装置においても適用可能である。
【0053】
以上のように、本願実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0054】
そして、上記のように露光が行われたウエハが、現像工程、パターン形成工程、ボンディング工程、パッケージング等を経ることによって、半導体素子等の電子デバイスが製造される。
【0055】
【発明の効果】
以上説明したように、本発明の光学装置によれば、複数の空間の境界に光学部材が配置される場合において、流体層を用いてシールを行うことにより、その境界を介した気体等のリークを防止するとともに、光学的な性能の向上を図ることができる。
また、本発明の露光装置によれば、光学装置における気体等のリークが防止されかつ、光学的な性能の向上が図られることから、露光精度の向上を図ることができる。
また、本発明のデバイス製造方法によれば、露光精度の向上により、形成されるパターンの精度が向上したデバイスを提供することができる。
【図面の簡単な説明】
【図1】光学装置の第1実施形態を示す模式図
【図2】流体を用いたシール構造の部分的拡大図
【図3】光学装置の断面図
【図4】光学部材等を表面処理した例を示す図
【図5】光学装置の第2実施形態を示す模式図
【図6】他の流れ止めを示す模式図
【図7】他の流れ止めを示す模式図
【図8】光学装置の第3実施形態を示す模式図
【図9】露光装置を示す模式図
【図10】ガス供給システムを示す模式図
【符号の説明】
10,40,50 光学装置
11,301 空間
13,302,303 空間(他の空間)
14 光学部材
14c,14d 周縁面(周縁部)
20,42,52 支持部(対向部材)
28,44,54 部材(対向部材)
20a,28a,42a,44a,52a,54a 対向面
25,41,51 流体層(流体)
53 座
60,70,80,90 流れ止め
61,71,81 溝(凹部)
62,72,82 凸部
100 露光装置
121 照明光学系
310,311 ガス供給機構
350,351 光学素子
IL エネルギービーム(露光光)
W ウエハ(基板)
R レチクル(ウエハ)
PL 投影光学系
Claims (12)
- エネルギービームの光路上に形成され、かつ所定のガスが供給される空間を備える光学装置において、
前記空間と他の空間との境界に配置される光学部材と、前記光学部材の周縁部に対向する対向面を有し、該対向面と前記光学部材の周縁部との間に間隔を空けて設置される対向部材と、前記光学部材の周縁部と前記対向面との間に設けられて前記空間と前記他の空間とを隔てる流体と、前記流体を所定の位置に保持するための流れ止めと、を備えることを特徴とする光学装置。 - 前記対向部材は、前記光学部材を支持する支持部材を有することを特徴とする請求項1に記載の光学装置。
- 前記流体は、フッ素系グリースであることを特徴とする請求項1又は請求項2に記載の光学装置。
- 前記流れ止めは、前記流体と接する部分が他の部分と異なる表面特性に処理されて形成されることを特徴とする請求項1から請求項3のうちいずれか一項に記載の光学装置。
- 前記流体は、前記光学部材及び前記対向部材の一方に形成された凹部に溜められ、
前記流れ止めは、前記光学部材及び前記対向部材の他方に形成された凸部の少なくとも一部が、前記凹部に溜められた流体に浸されることによって構成されることを特徴とする請求項1から請求項4のうちいずれか一項に記載の光学装置。 - 前記対向部材は、前記光学部材を支持或いは押さえる座を備え、該座が前記流れ止めを兼ねることを特徴とする請求項1から請求項5のうちいずれか一項に記載の光学装置。
- パターンが形成されたマスクをエネルギービームにより照明する照明系と、前記マスクのパターンを基板上に転写する投影光学系との少なくとも一方を、請求項1から請求項6のうちいずれか一項に記載の光学装置で構成することを特徴とする露光装置。
- 前記光学部材は、前記投影光学系を構成する複数の光学素子のうち、前記基板に対向する光学素子であり、
前記空間は、前記投影光学系内の空間であり、
前記他の空間は、前記光学素子と前記基板との間の空間であることを特徴とする請求項7に記載の露光装置。 - 前記投影光学系内の空間に第1のガスを供給する第1のガス供給機構と、
前記光学素子と前記基板との間の空間に前記第1のガスとは種類が異なる第2のガスを供給する第2のガス供給機構とを有することを特徴とする請求項8に記載の露光装置。 - 前記光学部材は、前記投影光学系を構成する複数の光学素子のうち、前記マスク側に配置される光学素子であり、
前記空間は、前記投影光学系内の空間であり、
前記他の空間は、前記光学素子と前記マスクとの間の空間であることを特徴とする請求項7に記載の露光装置。 - 前記投影光学系内の空間に第1のガスを供給する第1のガス供給機構と、
前記光学素子と前記マスクとの間の空間に前記第1のガスとは種類が異なる第2のガスを供給する第2のガス供給機構とを有することを特徴とする請求項10に記載の露光装置。 - 請求項7から請求項11のうちいずれか一項に記載の露光装置を用いて、マスク上に形成されたデバイスパターンを基板上に転写するリソグラフィ工程を含むことを特徴とするデバイス製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003207497A JP2005064045A (ja) | 2003-08-13 | 2003-08-13 | 光学装置、露光装置、並びにデバイス製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003207497A JP2005064045A (ja) | 2003-08-13 | 2003-08-13 | 光学装置、露光装置、並びにデバイス製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005064045A true JP2005064045A (ja) | 2005-03-10 |
Family
ID=34363951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003207497A Withdrawn JP2005064045A (ja) | 2003-08-13 | 2003-08-13 | 光学装置、露光装置、並びにデバイス製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005064045A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1032193C2 (nl) * | 2005-08-31 | 2007-08-08 | Topcon Corp | Werkwijze voor het verbeteren van transmissievermogen van optisch onderdeel en optisch onderdeel, waarvan het transmissievermogen daardoor wordt verbeterd. |
JP2007533148A (ja) * | 2004-04-13 | 2007-11-15 | カール ツァイス エスエムテー アクチェンゲゼルシャフト | 露光プロセス用の光学素子ユニット |
-
2003
- 2003-08-13 JP JP2003207497A patent/JP2005064045A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007533148A (ja) * | 2004-04-13 | 2007-11-15 | カール ツァイス エスエムテー アクチェンゲゼルシャフト | 露光プロセス用の光学素子ユニット |
JP2011176346A (ja) * | 2004-04-13 | 2011-09-08 | Carl Zeiss Smt Gmbh | 露光プロセス用の光学素子ユニット |
JP4881853B2 (ja) * | 2004-04-13 | 2012-02-22 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 露光プロセス用の光学素子ユニット |
NL1032193C2 (nl) * | 2005-08-31 | 2007-08-08 | Topcon Corp | Werkwijze voor het verbeteren van transmissievermogen van optisch onderdeel en optisch onderdeel, waarvan het transmissievermogen daardoor wordt verbeterd. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101013347B1 (ko) | 노광방법, 노광장치, 및 디바이스 제조방법 | |
KR100805142B1 (ko) | 노광방법 및 노광장치 | |
JP4081813B2 (ja) | 光学装置、露光装置、及びデバイス製造方法 | |
KR20020036951A (ko) | 노광방법 및 장치 | |
JP2004228497A (ja) | 露光装置及び電子デバイスの製造方法 | |
JP4265257B2 (ja) | 露光装置及び露光方法、フィルム構造体 | |
JP4258840B2 (ja) | 支持装置、光学装置及び露光装置、並びにデバイス製造方法 | |
JP2005064045A (ja) | 光学装置、露光装置、並びにデバイス製造方法 | |
WO2007083686A1 (ja) | 露光装置 | |
JPWO2004081999A1 (ja) | 光学装置、露光装置、並びにデバイス製造方法 | |
JP2003257826A (ja) | 光学装置及び露光装置 | |
WO2004051716A1 (ja) | 露光装置及び露光方法、並びにデバイス製造方法 | |
JP2003257821A (ja) | 光学装置及び露光装置 | |
JP2003257822A (ja) | 光学装置及び露光装置 | |
JP2002033258A (ja) | 露光装置、マスク装置及びパターン保護装置、並びにデバイス製造方法 | |
JP2005166922A (ja) | 支持装置、光学装置、露光装置、及びデバイスの製造方法 | |
JP2004095654A (ja) | 露光装置及びデバイス製造方法 | |
JP2004241478A (ja) | 露光方法及びその装置、並びにデバイス製造方法 | |
JPWO2002065183A1 (ja) | 鏡筒及び露光装置並びにデバイスの製造方法 | |
JP4325371B2 (ja) | 露光装置及びデバイスの製造方法 | |
JPWO2003030229A1 (ja) | 露光装置及びデバイス製造方法 | |
JP2002328298A (ja) | 光学装置、露光装置、並びにデバイス製造方法 | |
JP2005079294A (ja) | 露光装置、露光システム、及びデバイス製造方法 | |
JPWO2001093319A1 (ja) | ガス供給システム、露光装置及びデバイスの製造方法 | |
JP2002260998A (ja) | 露光方法及び露光装置並びにデバイスの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061107 |