Nothing Special   »   [go: up one dir, main page]

JP2005045038A - Nitride semiconductor light emitting element - Google Patents

Nitride semiconductor light emitting element Download PDF

Info

Publication number
JP2005045038A
JP2005045038A JP2003277959A JP2003277959A JP2005045038A JP 2005045038 A JP2005045038 A JP 2005045038A JP 2003277959 A JP2003277959 A JP 2003277959A JP 2003277959 A JP2003277959 A JP 2003277959A JP 2005045038 A JP2005045038 A JP 2005045038A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
electrode
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003277959A
Other languages
Japanese (ja)
Other versions
JP4889193B2 (en
Inventor
Takeshi Kususe
健 楠瀬
Takahiko Sakamoto
貴彦 坂本
Takashi Ichihara
隆志 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2003277959A priority Critical patent/JP4889193B2/en
Publication of JP2005045038A publication Critical patent/JP2005045038A/en
Application granted granted Critical
Publication of JP4889193B2 publication Critical patent/JP4889193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an absorption of light of a light emitting element and to improve a light extraction efficiency of the light emitting element. <P>SOLUTION: The nitride semiconductor light emitting element has a p-type nitride semiconductor layer having a p-electrode, and a n-type nitride semiconductor layer having an n-electrode. The p-type nitride semiconductor layer comprises at least a first layer 10a-1 having a transparent conductive film for transmitting a part of light from the nitride semiconductor light emitting element, and a second layer 10a-2 for covering at least a part of the transparent conductive film and for reflecting a transmitted light from the transparent conductive film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、窒化ガリウム系化合物半導体素子に係わり、特に反射性に優れ、且つp型半導体層と良好なオーミック接触を得ることができる電極に関する。   The present invention relates to a gallium nitride-based compound semiconductor device, and particularly to an electrode that is excellent in reflectivity and that can obtain good ohmic contact with a p-type semiconductor layer.

従来、透光性基板上にp型およびn型半導体層を積層させ、同一面側にp側電極およびn側電極を設けてなる半導体発光素子において、光を透光性基板側から出光させることを目的として、該p側電極あるいはn側電極に反射率の高い金属材料を設けている(例えば、特許文献1参照。)。   Conventionally, in a semiconductor light emitting device in which p-type and n-type semiconductor layers are stacked on a translucent substrate and a p-side electrode and an n-side electrode are provided on the same surface, light is emitted from the translucent substrate side. For this purpose, a metal material having high reflectivity is provided on the p-side electrode or the n-side electrode (see, for example, Patent Document 1).

特開2001−127343号公報。JP 2001-127343 A.

しかしながら、p型半導体層あるいはn型半導体層と上記反射率の高い金属材料との界面において、発光素子から出光しようとする光の一部は金属材料に吸収され、発光素子の光取り出し効率の向上を妨げている。   However, at the interface between the p-type semiconductor layer or the n-type semiconductor layer and the metal material having high reflectivity, part of the light that is emitted from the light-emitting element is absorbed by the metal material, and thus the light extraction efficiency of the light-emitting element is improved. Is hindering.

そこで、本発明は、発光素子における光の吸収を抑制し、発光素子の光取り出し効率を向上させることを目的とする。   Therefore, an object of the present invention is to suppress light absorption in a light emitting element and improve light extraction efficiency of the light emitting element.

以上の目的を達成するために本発明に係る窒化物半導体発光素子は、p電極を有するp型窒化物半導体層と、n電極を有するn型窒化物半導体層とを有する窒化物半導体発光素子において、上記p型窒化物半導体層は、上記窒化物半導体発光素子からの光の一部を透過させる透明導電膜よりなる第一の層と、該透明導電膜の少なくとも一部を被覆し該透明導電膜からの透過光を反射させる第二の層と、を少なくとも有することを特徴とする。   In order to achieve the above object, a nitride semiconductor light emitting device according to the present invention includes a p-type nitride semiconductor layer having a p-electrode and an n-type nitride semiconductor layer having an n-electrode. The p-type nitride semiconductor layer includes a first layer made of a transparent conductive film that transmits a part of light from the nitride semiconductor light-emitting element, and at least a part of the transparent conductive film and covers the transparent conductive film. And at least a second layer that reflects light transmitted from the film.

また、上記第一の層は、さらにパッド部を有してもよい。また、上記第二の層は、さらにパッド部を有してもよい。   The first layer may further have a pad portion. The second layer may further have a pad portion.

また、上記第一の層は、亜鉛(Zn)、インジウム(In)、スズ(Sn)、マグネシウム(Mg)よりなる群から選択された少なくとも一種の元素を含む酸化物よりなる。   The first layer is made of an oxide containing at least one element selected from the group consisting of zinc (Zn), indium (In), tin (Sn), and magnesium (Mg).

また、上記第二の層は、アルミニウム(Al)、チタン(Ti)、白金(Pt)、ロジウム(Rh)、銀(Ag)、パラジウム(Pd)、イリジウム(Ir)よりなる群から選択された少なくとも一種の元素を含む金属、合金あるいは酸化物を含む。   The second layer is selected from the group consisting of aluminum (Al), titanium (Ti), platinum (Pt), rhodium (Rh), silver (Ag), palladium (Pd), and iridium (Ir). It contains a metal, alloy or oxide containing at least one element.

また、上記第一の層の膜厚は、100Åから10000Åである。また、上記第二の層の膜厚は、200Åから10000Åである。   The film thickness of the first layer is from 100 to 10,000 mm. The film thickness of the second layer is 200 to 10,000 mm.

本発明は、窒化物半導体発光素子において、p側電極あるいはn側電極の材料を発光素子から出光しようとする光に対して反射率の高い金属材料とし、光の吸収を抑制し、発光素子の光取り出し効率を向上させることができる。   In the nitride semiconductor light emitting device, the material of the p-side electrode or the n-side electrode is made of a metal material having a high reflectance with respect to light that is going to be emitted from the light emitting device, thereby suppressing light absorption. Light extraction efficiency can be improved.

本発明に係るLEDを構成する各半導体層としては種々の窒化物半導体を用いることができる。具体的には、有機金属気相成長法(MOCVD)、ハイドライド気相成長法(HVPE)などにより基板上にInAlGa1−X−YN(0≦X、0≦Y、X+Y≦1)等の半導体を複数形成させたものが好適に用いられる。また、その層構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。また、各層を超格子構造としたり、活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。また、本発明にかかる窒化物半導体発光素子のp電極およびn電極の形成は、p型窒化物半導体層およびn型窒化物半導体層に対し、電極を構成する材料の蒸着、スパッタリング等、通常の気相成膜によって行うことができる。あるいは、蒸着法、スパッタリング法等、それぞれ異なる成膜方法を使い分けて形成することができる。 As each semiconductor layer constituting the LED according to the present invention, various nitride semiconductors can be used. Specifically, In X Al Y Ga 1- XYN (0 ≦ X, 0 ≦ Y, X + Y ≦) is formed on the substrate by metal organic vapor phase epitaxy (MOCVD), hydride vapor phase epitaxy (HVPE), or the like. A semiconductor in which a plurality of semiconductors such as 1) are formed is preferably used. In addition, the layer structure includes a homo structure having a MIS junction, a PIN junction or a PN junction, a hetero structure, or a double hetero structure. Each layer may have a superlattice structure, or may have a single quantum well structure or a multiple quantum well structure in which an active layer is formed in a thin film in which a quantum effect is generated. In addition, the formation of the p electrode and the n electrode of the nitride semiconductor light emitting device according to the present invention is performed by a normal method such as vapor deposition or sputtering of the material constituting the electrode with respect to the p type nitride semiconductor layer and the n type nitride semiconductor layer. It can be performed by vapor deposition. Alternatively, different film formation methods such as vapor deposition and sputtering can be used.

LEDは、一般的には、特定の基板上に各半導体層を成長させて形成されるが、その際、基板としてサファイア等の絶縁性基板を用いその絶縁性基板を最終的に取り除かない場合、通常、p電極およびn電極はいずれも半導体層上の同一面側に形成されることになる。この場合、フェイスアップ実装すなわち半導体層側を視認側に配置し発光された光を半導体層側から取り出すことも可能であるし、フェイスダウン実装すなわち基板側を視認側に配置し発光された光を基板側から取り出すことも可能である。もちろん、最終的に基板を除去した上で、フェイスアップ実装或いはフェイスダウン実装することもできる。なお、基板はサファイアに限定されず、例えば、スピネル、SiC、GaN、GaAs等、公知の部材を用いることができる。また、基板としてSiC、GaN、GaAs等の導電性基板を用いることによりp電極及びn電極を対向して配置させることもできる。   The LED is generally formed by growing each semiconductor layer on a specific substrate, but when an insulating substrate such as sapphire is used as the substrate and the insulating substrate is not finally removed, Normally, both the p electrode and the n electrode are formed on the same surface side on the semiconductor layer. In this case, it is possible to take out the emitted light from the semiconductor layer side with the face-up mounting, i.e., the semiconductor layer side arranged on the viewing side, or the face-down mounting, i.e., arrange the substrate side on the viewing side, It is also possible to take out from the substrate side. Of course, it is also possible to mount the face up or face down after finally removing the substrate. In addition, a board | substrate is not limited to sapphire, For example, well-known members, such as a spinel, SiC, GaN, GaAs, can be used. Further, by using a conductive substrate such as SiC, GaN, or GaAs as the substrate, the p electrode and the n electrode can be arranged to face each other.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのLEDを例示するものであって、本発明のLEDを以下のものに特定するものではない。さらに、各図面が示す部材の大きさや位置関係などは、説明を明確にするため誇張していることがある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies an LED for embodying the technical idea of the present invention, and does not specify the LED of the present invention as follows. Further, the size and positional relationship of the members shown in each drawing may be exaggerated for clarity of explanation.

(実施の形態1)
図1、2に基づいて、本実施の形態のLEDについて説明する。本実施の形態のLEDは、図に示すように同一面側にp電極およびn電極を配置したLEDである。図2は、本実施の形態のLEDを電極配置面側から見た概略図である。また、図1は、本実施の形態におけるLEDの層構成を示す模式的断面図であり、図2のX−X部における断面を表す。
(Embodiment 1)
The LED of the present embodiment will be described based on FIGS. The LED of the present embodiment is an LED in which a p electrode and an n electrode are arranged on the same surface side as shown in the figure. FIG. 2 is a schematic view of the LED of the present embodiment as viewed from the electrode arrangement surface side. FIG. 1 is a schematic cross-sectional view showing the layer structure of the LED according to the present embodiment, and shows a cross section taken along line XX in FIG.

図1に示すように、本実施の形態のLEDは、例えば、サファイア基板1上にGaNバッファ層2、ノンドープGaN層3、n型コンタクト層となるSiドープGaN層4、n型クラッド層となるSiドープGaN層5、活性層となるInGaN層6、p型クラッド層となるMgドープAlGaN層7、p型コンタクト層となるMgドープGaN層8が、順次積層された層構造を有する。さらに、MgドープGaN層8、MgドープAlGaN層7、InGaN層6、SiドープGaN層5、SiドープGaN層4が部分的にエッチング等により除去され、SiドープGaN層4の露出面にn電極9が形成され、MgドープGaN層8の上面の略全面にp電極10が設けられている。なお、本実施の形態では、特許請求の範囲に記載するn型窒化物半導体がn型コンタクト層となるSiドープGaN層4に対応し、p型窒化物半導体がp型コンタクト層となるMgドープGaN層8に対応している。   As shown in FIG. 1, the LED of the present embodiment has, for example, a GaN buffer layer 2, a non-doped GaN layer 3, a Si-doped GaN layer 4 serving as an n-type contact layer, and an n-type cladding layer on a sapphire substrate 1. The Si-doped GaN layer 5, the InGaN layer 6 serving as an active layer, the Mg-doped AlGaN layer 7 serving as a p-type cladding layer, and the Mg-doped GaN layer 8 serving as a p-type contact layer have a layered structure. Further, the Mg-doped GaN layer 8, the Mg-doped AlGaN layer 7, the InGaN layer 6, the Si-doped GaN layer 5, and the Si-doped GaN layer 4 are partially removed by etching or the like, and an n electrode is formed on the exposed surface of the Si-doped GaN layer 4. 9 is formed, and a p-electrode 10 is provided on substantially the entire upper surface of the Mg-doped GaN layer 8. In this embodiment, the n-type nitride semiconductor described in the claims corresponds to the Si-doped GaN layer 4 serving as the n-type contact layer, and the p-type nitride semiconductor serves as the p-type contact layer. This corresponds to the GaN layer 8.

本実施の形態において、p電極10は、LEDからの光を反射させる光反射部10a(以下「p光反射部」と呼ぶこともある。)と、該光反射部10aとは別に設けられ、最終的に外部リード電極と接続するために導電性部材が接続されるパッド部10b(以下「pパッド部」という)とからなる。p光反射部10aは、p型コンタクト層8側から順に、第1の層10a−1と、LEDからの光の主波長において、第1の層10a−1よりも反射率の高い第2の層10a−2とから少なくとも構成される。ここで、第一の層10a−1は、p型コンタクト層8より屈折率が低く、p型コンタクト層8からの光の一部が全反射し、他の光は透過させる。また、第1の層10a−1よりも反射率の高い第2の層10a−2は、第一の層10a−1を透過した光を全反射させるような構成とされる。   In the present embodiment, the p-electrode 10 is provided separately from the light reflecting portion 10a that reflects light from the LED (hereinafter also referred to as “p light reflecting portion”) and the light reflecting portion 10a. A pad portion 10b (hereinafter referred to as a “p pad portion”) to which a conductive member is connected in order to be finally connected to the external lead electrode. The p-light reflecting portion 10a includes, in order from the p-type contact layer 8 side, a second layer having a reflectance higher than that of the first layer 10a-1 and the first layer 10a-1 at the dominant wavelength of light from the LED. And at least the layer 10a-2. Here, the first layer 10a-1 has a refractive index lower than that of the p-type contact layer 8, so that a part of the light from the p-type contact layer 8 is totally reflected and other light is transmitted. Further, the second layer 10a-2 having a higher reflectance than the first layer 10a-1 is configured to totally reflect the light transmitted through the first layer 10a-1.

次に、p光反射部10aを構成する具体的な材料について説明する。第一の層10a−1は、発光素子からの光の少なくとも一部を透過させる透明導電膜よりなり、例えば、亜鉛、インジウム、スズ、マグネシウムよりなる群から選択された少なくとも一種の元素を含む酸化物、より具体的には具体的には、ZnO、In、SnO、ITO(InとSnの複合酸化物)、MgO等で示されるZn、In、Sn、Mg等の酸化物を含む抵抗の低い透明導電膜よりなる。さらに、第一の層10a−1は、p型コンタクト層8に対してNi、Co等の金属もしくはその酸化物を介して積層されることが好ましい。このように構成することによって、第一の層10a−1は、p型コンタクト層8とよりオーミック接触しやすくなる。また、第二の層10a−2は、該透明導電膜の少なくとも一部を被覆し、該透明導電膜からの透過光を反射させる金属、合金或いは酸化物から選択された少なくとも一種よりなる。例えば、第二の層10a−2は、アルミニウム、チタン、白金、ロジウム、銀、パラジウム、イリジウムよりなる群から選択された少なくとも一種の元素を含む金属、合金あるいは酸化物を含む層である。また、pパッド部10bは、p型コンタクト層8側から順に、第一の層10b−1と、第二の層10b−2とから少なくとも構成される。ここで、第二の層10b−2は、発光素子からの光の主波長において、第一の層10b−1よりも反射率の高いことが好ましい。 Next, a specific material constituting the p light reflecting portion 10a will be described. The first layer 10a-1 is made of a transparent conductive film that transmits at least part of light from the light emitting element. For example, the first layer 10a-1 is an oxide containing at least one element selected from the group consisting of zinc, indium, tin, and magnesium. More specifically, an oxide of Zn, In, Sn, Mg, etc. represented by ZnO, In 2 O 3 , SnO 2 , ITO (complex oxide of In and Sn), MgO, etc. It consists of a transparent conductive film with low resistance. Furthermore, the first layer 10a-1 is preferably laminated on the p-type contact layer 8 via a metal such as Ni or Co or an oxide thereof. By configuring in this way, the first layer 10a-1 is more easily in ohmic contact with the p-type contact layer 8. The second layer 10a-2 is made of at least one selected from a metal, an alloy, or an oxide that covers at least a part of the transparent conductive film and reflects transmitted light from the transparent conductive film. For example, the second layer 10a-2 is a layer containing a metal, an alloy, or an oxide containing at least one element selected from the group consisting of aluminum, titanium, platinum, rhodium, silver, palladium, and iridium. The p pad portion 10b is composed of at least a first layer 10b-1 and a second layer 10b-2 in order from the p-type contact layer 8 side. Here, the second layer 10b-2 preferably has a higher reflectance than the first layer 10b-1 at the main wavelength of light from the light emitting element.

本実施の形態において、n電極9は、n型コンタクト層4側から順に、第1の層9−1と、第2の層9−2とから少なくとも構成される。n電極の第1の層を構成する材料は特に限定されるものではないが、Ti、V、Cr、Mn、Co、Zn、Nb、Mo、Ru、Ta、Re、W、Ni、Mg、Zr、In、Sn、ITOの少なくとも一種を好適に用いることができる。その中でも、n型コンタクト層4との接着性、接触抵抗、光透過性を総合的に考慮すると、Ti、Nb、ITO、さらに好ましくはTi、Nb、さらに好ましくはTiを好適に用いることができる。   In the present embodiment, the n-electrode 9 includes at least a first layer 9-1 and a second layer 9-2 in order from the n-type contact layer 4 side. The material constituting the first layer of the n-electrode is not particularly limited, but Ti, V, Cr, Mn, Co, Zn, Nb, Mo, Ru, Ta, Re, W, Ni, Mg, Zr At least one of In, Sn, and ITO can be preferably used. Among these, considering comprehensively the adhesion to the n-type contact layer 4, contact resistance, and light transmittance, Ti, Nb, ITO, more preferably Ti, Nb, and more preferably Ti can be suitably used. .

また、pパッド部10bにおける第1の層10b−1を構成する材料は、特に限定されるものではないが、n電極の第1の層9−1と同様にTi、V、Cr、Mn、Co、Zn、Nb、Mo、Ru、Ta、Re、W、Ni、Mg、Zr、In、Sn、ITOの少なくとも一種を好適に用いることができる。その中でも、p光反射部10aとの接着性、光透過性を総合的に考慮すると、Ti、Nb、ITO、さらに好ましくはTi、Nb、さらに好ましくはTiを好適に用いることができる。   Further, the material constituting the first layer 10b-1 in the p pad portion 10b is not particularly limited, but Ti, V, Cr, Mn, and the like as in the first layer 9-1 of the n-electrode. At least one of Co, Zn, Nb, Mo, Ru, Ta, Re, W, Ni, Mg, Zr, In, Sn, and ITO can be suitably used. Among these, considering comprehensively the adhesiveness and light transmittance with the p-light reflecting portion 10a, Ti, Nb, ITO, more preferably Ti, Nb, and more preferably Ti can be suitably used.

n電極9の第二の層9−2、及びp電極10の第2の層10a−2は、第1の層を透過した光を反射させると共に、第1の層と一体となってより低い接触抵抗が得られる材料が選択される。第2の層は、光を反射させることを主な目的とするので、その膜厚は材料によっても異なるが100Å以上、より好ましくは150Å以上にすることができる。また、膜厚の上限としては、製造効率を考慮して、10000Å以下が好ましい。なお、第2の層を構成する材料は特に限定されるものではないが、Ag、Rh、Al、Ti、Pt、Pd、Irよりなる群から選択された少なくとも一種の元素を含む金属、合金、あるいは酸化物を好適に用いることができる。その中でも、第1の層との接着性、接触抵抗(特にn電極)、光反射性を総合的に考慮すると、Rh、Al、Agが特に好ましい。さらに、Alは拡散、Agはマイグレーション等が問題となる可能性があるので、信頼性を加味するとRhが最も好ましい。   The second layer 9-2 of the n-electrode 9 and the second layer 10a-2 of the p-electrode 10 reflect the light transmitted through the first layer and are lower together with the first layer. A material that provides contact resistance is selected. The main purpose of the second layer is to reflect light, and the thickness of the second layer varies depending on the material, but can be 100 mm or more, more preferably 150 mm or more. Further, the upper limit of the film thickness is preferably 10,000 mm or less in consideration of production efficiency. The material constituting the second layer is not particularly limited, but a metal, an alloy containing at least one element selected from the group consisting of Ag, Rh, Al, Ti, Pt, Pd, and Ir, Or an oxide can be used conveniently. Among these, Rh, Al, and Ag are particularly preferable in view of the adhesiveness with the first layer, contact resistance (particularly, n electrode), and light reflectivity. Further, since diffusion of Al may cause a problem such as migration of Ag, Rh is most preferable in consideration of reliability.

本実施の形態のLEDは、n電極9及びpパッド部10bが共に同様の構成となっている。このように構成することにより、n電極及びpパッド部において、光を反射させ光の取り出し効率の向上が期待できると共に、n電極とpパッド部を同時に形成することができるので、製造工程を簡略化することが可能となる。   In the LED of the present embodiment, both the n electrode 9 and the p pad portion 10b have the same configuration. With this configuration, the n electrode and the p pad portion can reflect light to improve the light extraction efficiency, and the n electrode and the p pad portion can be formed at the same time, thus simplifying the manufacturing process. Can be realized.

また、pパッド部10bは、基本的にp型コンタクト層8との接触抵抗(オーミック接触)を考慮する必要がないので(p光反射部10aの第一の層10a−1がp型コンタクト層8とオーミック接触するため、pパッド部10bを変化させても接触抵抗にあまり差がでない)、その部材、積層構造をn電極と同一にしn電極と一括して形成した方が、作業効率等を考慮すると結果的には好ましい。   Further, the p-pad portion 10b basically does not need to consider contact resistance (ohmic contact) with the p-type contact layer 8 (the first layer 10a-1 of the p-light reflecting portion 10a is a p-type contact layer). 8 is in ohmic contact with each other, so there is not much difference in contact resistance even if the p-pad portion 10b is changed). Is preferable as a result.

なお、ここではn電極9とpパッド部10bの双方が、上述したような第1の層及び第2の層を備える構成としたが、少なくとも一方が第1の層及び第2の層を備える構成とすることにより、本件発明の効果を得ることができる。勿論、本実施の形態のように、n電極とpパッド部の双方を上記構成とすることによりその効果を最大限に得られることは言うまでもない。   Here, both the n-electrode 9 and the p-pad portion 10b are configured to include the first layer and the second layer as described above, but at least one includes the first layer and the second layer. With the configuration, the effect of the present invention can be obtained. Of course, it goes without saying that the effect can be maximized by configuring both the n-electrode and the p-pad portion as described above, as in this embodiment.

また、本実施の形態におけるpパッド部は、p光反射部10aの第二の層10a−2に設ける構成としたが、本件発明はこれに限定されず、例えば、pパッド部10bとp光反射部10aの第二の層10a−2とがp光反射部10aの第一の層10a−1に対してそれぞれ異なる位置に配置されることにより、pパッド部10bをp光反射部10aの第二の層10a−2に設ける代わりに、p光反射部10aの第一の層10a−1上に直接設けられても良い。   Moreover, although the p pad part in this Embodiment was set as the structure provided in the 2nd layer 10a-2 of the p light reflection part 10a, this invention is not limited to this, For example, p pad part 10b and p light The second layer 10a-2 of the reflecting part 10a and the first layer 10a-1 of the p light reflecting part 10a are arranged at different positions, so that the p pad part 10b is replaced with the p light reflecting part 10a. Instead of being provided on the second layer 10a-2, it may be provided directly on the first layer 10a-1 of the p-light reflecting portion 10a.

(実施の形態2)
図3、4に基づいて、本実施の形態のLEDについて説明する。本実施の形態のLEDはp電極が実施の形態1のLEDと下記の点で異なる他は、実施の形態1のLEDと同様である。図4は、本実施の形態のLEDを電極配置面側から見た概略図である。また、図3は、本実施の形態のLEDの層構成を示す模式的断面図であり、図4のX−X部における断面を表す。
(Embodiment 2)
The LED of the present embodiment will be described based on FIGS. The LED of the present embodiment is the same as the LED of the first embodiment except that the p-electrode differs from the LED of the first embodiment in the following points. FIG. 4 is a schematic view of the LED of the present embodiment as viewed from the electrode arrangement surface side. FIG. 3 is a schematic cross-sectional view showing the layer structure of the LED of the present embodiment, and represents a cross section taken along the line XX of FIG.

本実施の形態のLEDは、p光反射部10aとpパッド部10bが共に、p型コンタクト層8に接している。詳細には、p光反射部10aはp型コンタクト層8が露出するような開口部を有し、その開口部の露出面にてpパッド部10bがp型コンタクト層8と接している。なお、図4における点線はこの開口部を示すものである。   In the LED of the present embodiment, both the p-light reflecting portion 10 a and the p-pad portion 10 b are in contact with the p-type contact layer 8. Specifically, the p-light reflecting portion 10 a has an opening that exposes the p-type contact layer 8, and the p-pad portion 10 b is in contact with the p-type contact layer 8 on the exposed surface of the opening. In addition, the dotted line in FIG. 4 shows this opening part.

このように構成することにより、例え、p型コンタクト層8とp光反射部10aとの接着性が弱くても、及び/又はp光反射部10aに対してpパッド部10bの接着性が弱くても、pパッド部10bをp型コンタクト層8に直接配置することができるので、p光反射部10a上にpパッド部10bを設けるよりも、pパッド部10bの剥がれを大幅に軽減することができる。すなわち、本実施の形態は、pパッド部10bとp型コンタクト層8との接着性が、p光反射部10aとp型コンタクト層8との接着性、あるいはpパッド部10bとp光反射部10aとの接着性の少なくとも一方よりも強い場合に特に有効な構成である。   With this configuration, even if the adhesiveness between the p-type contact layer 8 and the p-light reflecting portion 10a is weak and / or the adhesiveness of the p-pad portion 10b is weak with respect to the p-light reflecting portion 10a. However, since the p-pad portion 10b can be directly arranged on the p-type contact layer 8, peeling of the p-pad portion 10b can be greatly reduced as compared with the case where the p-pad portion 10b is provided on the p-light reflecting portion 10a. Can do. That is, in the present embodiment, the adhesion between the p pad portion 10b and the p-type contact layer 8 is the same as the adhesion between the p light reflection portion 10a and the p type contact layer 8, or the p pad portion 10b and the p light reflection portion. This configuration is particularly effective when it is stronger than at least one of the adhesiveness with 10a.

なお、本実施の形態において、p光反射部10aはp型コンタクト層8が露出するような開口部を有する構成としたが、本件発明はこれに限定されず、例えば、pパッド部10bとp光反射部10aとがp型コンタクト層8に対してそれぞれ異なる位置に配置されることにより、pパッド部10bは、p光反射部10aの上に設けられる代わりに、p型コンタクト層8に直接設けられても良い。   In the present embodiment, the p light reflecting portion 10a has an opening that exposes the p-type contact layer 8. However, the present invention is not limited to this, and, for example, the p pad portion 10b and the p light reflecting portion 10a. Since the light reflecting portion 10a and the p-type contact layer 8 are arranged at different positions, the p pad portion 10b is directly provided on the p-type contact layer 8 instead of being provided on the p light reflecting portion 10a. It may be provided.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

図1、2に基づいて、本実施例のLEDについて説明する。本実施例の半導体積層構造は実施の形態1と同様である。なお、図1は、図2のX−X方向における模式的な断面図であり、図2は、本実施例におけるLEDを電極配置面から見た模式的な上面図である。   The LED of this embodiment will be described with reference to FIGS. The semiconductor stacked structure of this example is the same as that of the first embodiment. FIG. 1 is a schematic cross-sectional view in the XX direction of FIG. 2, and FIG. 2 is a schematic top view of the LED in this example as viewed from the electrode arrangement surface.

本実施例のLEDに設けられるn電極9及びpパッド部10bの第1の層にはW、第2の層にはPtを用い、n電極及びpパッド部10bの全体としてはW(200Å)/Pt(2000Å)/Au(5000Å)とする。なお、本明細書中において「W/Pt/Au」とは、元素記号の記載順に半導体側から積層することを示し、n電極9においては、W/Pt/Auがそれぞれ図1の9−1、9−2、9−3に対応し、pパッド部10bにおいてはW/Pt/Auがそれぞれ図1の10b−1、10b−2、10b−3に対応する。また、本実施例におけるp光反射部10aは、第一の層10a−1としてITO(2000Å)、および第二の層10a−2としてAl(2000Å)からなる。ここで、p型コンタクト層8(屈折率は2.50)と第一の層10a−1であるITO(屈折率は2.12)との界面において、発光の一部が全反射するように構成してある。   W is used for the first layer of the n electrode 9 and the p pad portion 10b provided in the LED of this embodiment, Pt is used for the second layer, and W (200 () as a whole of the n electrode and the p pad portion 10b. / Pt (2000 cm) / Au (5000 cm). In this specification, “W / Pt / Au” indicates that layers are stacked from the semiconductor side in the order of description of the element symbols. In the n-electrode 9, W / Pt / Au is 9-1 in FIG. 9-2 and 9-3, and in the p pad portion 10b, W / Pt / Au corresponds to 10b-1, 10b-2 and 10b-3 in FIG. The p-light reflecting portion 10a in the present embodiment is made of ITO (2000 () as the first layer 10a-1 and Al (2000Å) as the second layer 10a-2. Here, at the interface between the p-type contact layer 8 (refractive index is 2.50) and the first layer 10a-1 ITO (refractive index is 2.12), a part of light emission is totally reflected. It is configured.

上記構成中PtはWがAuに、又はAuがWに拡散するのを軽減するためのバリア層として用い、最終層のAuは、Auワイヤーを接続しやすくするためである。このように比較的高融点の材料を用いることにより、その前後の部材の拡散を効果的に軽減することができる。   In the above configuration, Pt is used as a barrier layer for reducing the diffusion of W into Au or Au into W, and Au in the final layer is for making it easy to connect the Au wire. Thus, by using a material having a relatively high melting point, diffusion of the members before and after that can be effectively reduced.

本実施例の構成とすることにより、p型コンタクト層8からp電極に向かう光のほとんどは、ITOとAlとの界面において全反射され、ITOを透過する一部の光もAlにより全反射される。従って、p型コンタクト層8に直接Alを設けた発光素子と比較して、発光素子の光取り出し効率を向上させることができる。   With the configuration of this embodiment, most of the light traveling from the p-type contact layer 8 to the p-electrode is totally reflected at the interface between ITO and Al, and part of the light transmitted through the ITO is also totally reflected by Al. The Therefore, the light extraction efficiency of the light emitting element can be improved as compared with the light emitting element in which Al is directly provided on the p-type contact layer 8.

図3、4に基づいて、本実施例のLEDについて説明する。本実施例のLEDは、以下の点が異なる他は実施例1のLEDと同様に構成する。なお、図3は、図4のX−X方向における模式的な断面図であり、図4は、本実施例におけるLEDを電極配置面から見た模式的な上面図である。   The LED of the present embodiment will be described based on FIGS. The LED of this example is configured in the same manner as the LED of Example 1 except for the following points. FIG. 3 is a schematic cross-sectional view in the XX direction of FIG. 4, and FIG. 4 is a schematic top view of the LED in this example as viewed from the electrode arrangement surface.

すなわち、p光反射部10aの第一の層10a−1としてインジウム・スズ酸化物であるITO(2000Å)、第二の層10a−2としてAl(2000Å)を用いる。また、n電極9及びpパッド部10bとしてTi(60Å)/Rh(200Å)/Pt(2000Å)/Au(5000Å)を用いている。   That is, ITO (2000 ス ズ), which is indium tin oxide, is used as the first layer 10a-1 of the p-light reflecting portion 10a, and Al (2000Å) is used as the second layer 10a-2. Further, Ti (60 Å) / Rh (200 Å) / Pt (2000 Å) / Au (5000 Å) is used as the n electrode 9 and the p pad portion 10b.

Tiは直下の部材(n電極の場合はn型コンタクト層4、p電極の場合は光反射部10a)との密着性、接触抵抗(特にn電極の場合)、透光性等を考慮して選択する。Rhを選択する主な理由は、Tiとの密着性、接触抵抗は勿論、窒化物半導体を活性層とする波長370〜500nmの光に対する反射率が良いことである。さらに、PtはRhがAuに、又はAuがRhに拡散するのを軽減するためのバリア層として用い、最終層のAuは、Auワイヤーを接続しやすくするためである。   Ti takes into consideration the adhesion to the member directly below (n-type contact layer 4 in the case of n electrode, light reflecting portion 10a in the case of p electrode), contact resistance (particularly in the case of n electrode), translucency, etc. select. The main reason for selecting Rh is that it has good reflectivity for light with a wavelength of 370 to 500 nm using a nitride semiconductor as an active layer, as well as adhesion to Ti and contact resistance. Further, Pt is used as a barrier layer for reducing diffusion of Rh into Au or Au into Rh, and Au in the final layer is for making it easy to connect Au wires.

なお、RhはRh単体で、又はPtと一体となって、Au又はPtの拡散を軽減するためのバリア層としても機能すると考えられる。このように比較的高融点の材料を複数用いることにより、その前後の部材の拡散を効果的に軽減することができる。ちなみに、Tiの融点は1667℃、Rhの融点は1960℃、Ptの融点は1769℃、Auの融点は1064℃である。なお、Auの拡散防止機能は多少落ちるものの、Ptを用いずにTi/Rh/Auとすることも可能である。   In addition, it is thought that Rh functions as a barrier layer for reducing diffusion of Au or Pt alone or in combination with Pt. By using a plurality of materials having a relatively high melting point in this way, diffusion of members before and after that can be effectively reduced. Incidentally, the melting point of Ti is 1667 ° C., the melting point of Rh is 1960 ° C., the melting point of Pt is 1769 ° C., and the melting point of Au is 1064 ° C. It should be noted that Ti / Rh / Au can be used without using Pt, although the function of preventing diffusion of Au is somewhat reduced.

第1の層としてのTiを用いずに、第2の層であるRhをn型コンタクト層4に直接形成すると、370〜550nmの光に対する反射率は飛躍的に向上するものの、n型コンタクト層4との接触抵抗が大きくなり、LEDとして十分に機能しない。また、Tiを300Å以上にすると、370〜550nmの光に対する反射率が低下するばかりか、n型コンタクト層4との接触抵抗も大きくなってしまう。本願発明者は、このような実験結果をもとに、Ti/Rh系においては、Tiの膜厚は10〜300Å、好ましくは20〜200Å、より好ましくは30〜120Å、さらに好ましくは40〜80Å、より好ましくは50〜70Åとすることにより、n型コンタクト層4との接触抵抗と光反射率を両立して得ることができることを見いだした。   When Rh, which is the second layer, is directly formed on the n-type contact layer 4 without using Ti as the first layer, the reflectivity for light of 370 to 550 nm is greatly improved, but the n-type contact layer The contact resistance with 4 becomes large and does not function sufficiently as an LED. Further, when Ti is made 300 mm or more, not only the reflectance for light of 370 to 550 nm is lowered, but also the contact resistance with the n-type contact layer 4 is increased. Based on such experimental results, the inventor of the present application has a Ti film thickness of 10 to 300 mm, preferably 20 to 200 mm, more preferably 30 to 120 mm, and even more preferably 40 to 80 mm in the Ti / Rh system. It was found that the contact resistance with the n-type contact layer 4 and the light reflectivity can be both achieved by setting the thickness to 50 to 70 mm more preferably.

p電極の光反射部にITOを用いることにより、従来技術と比較して光取り出し効率を大幅に向上させることができる。また、p型コンタクト層8上にNiあるいはNiOを介してからITOを設けることにより、オーミック接触が容易に得られる。このように構成することにより、p型コンタクト層8とp電極のオーミック特性を確保しつつ、LEDからの光を効果的に取り出すことができる。   By using ITO for the light reflecting portion of the p-electrode, the light extraction efficiency can be greatly improved as compared with the prior art. Also, ohmic contact can be easily obtained by providing ITO on the p-type contact layer 8 via Ni or NiO. By comprising in this way, the light from LED can be taken out effectively, ensuring the ohmic characteristic of the p-type contact layer 8 and p electrode.

しかしながら、ITOは金属からなるpパッド部10bとの密着性が悪く、このためITOに直接pパッド部10bを設けると後に剥がれが生じてしまう場合がある。本実施例はこのような場合に有効な構成であり、p光反射部10aであるITOは、p型コンタクト層8が露出するような開口部を有する。さらに、該開口部にて、pパッド部10bは、p光反射部10aの第一の層10a−1、第二の層10a−2およびp型コンタクト層8と直接接するように構成されている。つまり、pパッド部10bとp型コンタクト層8との接着力が、pパッド部10bとp光反射部10aとの接着力及び/又はp光反射部10aとp型コンタクト層8との接着力よりも強いことを特徴としている。また、p光反射部10aとpパッド部10bとは開口部周辺において重複するように接して設けられており、これにより効果的に電流を注入することができる。   However, ITO has poor adhesion to the p-pad portion 10b made of metal. For this reason, if the p-pad portion 10b is directly provided on the ITO, peeling may occur later. This embodiment is effective in such a case, and the ITO that is the p-light reflecting portion 10a has an opening through which the p-type contact layer 8 is exposed. Further, the p pad portion 10b is configured to be in direct contact with the first layer 10a-1, the second layer 10a-2, and the p-type contact layer 8 of the p light reflecting portion 10a at the opening. . That is, the adhesive force between the p pad portion 10b and the p-type contact layer 8 is the adhesive force between the p pad portion 10b and the p light reflecting portion 10a and / or the adhesive force between the p light reflecting portion 10a and the p type contact layer 8. It is characterized by being stronger. Further, the p-light reflecting portion 10a and the p-pad portion 10b are provided in contact with each other so as to overlap in the vicinity of the opening, thereby effectively injecting current.

この構成では基本的にpパッド部10bとp型コンタクト層8との接触面直下はオーミック接触していないので、その領域については電流が流れにくいが、元々pパッド部10b直下は光にくいので不利益はない。むしろ、pパッド部10bの剥がれを軽減しつつ、電流を広げることが可能になるので、結果的には好ましいものとなる。   In this configuration, the ohmic contact is basically not provided immediately below the contact surface between the p pad portion 10b and the p-type contact layer 8, so that current does not flow easily in that region, but the light immediately below the p pad portion 10b is not easily light. There is no profit. Rather, the current can be expanded while reducing the peeling of the p-pad portion 10b, which is preferable as a result.

本実施例の構成は、pパッド部10bが、p光反射部10aを介さずに直接p型コンタクト層8と接しているので、pパッド部10bの剥がれを防止することができる。もちろん、本実施例のような構成にすることにより、例えばW/Pt/Auのような他の実施例におけるpパッド部10bであっても、pパッド部10bの剥がれを防止することができるので好ましい。   In the configuration of the present embodiment, the p pad portion 10b is in direct contact with the p-type contact layer 8 without passing through the p light reflecting portion 10a, so that the p pad portion 10b can be prevented from peeling off. Of course, by adopting the configuration as in this embodiment, it is possible to prevent the p-pad portion 10b from being peeled even in the case of the p-pad portion 10b in another embodiment such as W / Pt / Au. preferable.

なお、本実施例では、p光反射部10aとしてNiおよびインジウム・スズ酸化物であるITOを用いて説明したが、ITO単体を用いることも可能である。   In the present embodiment, the p light reflecting portion 10a has been described using ITO, which is Ni and indium tin oxide, but it is also possible to use a single ITO.

図5は、本発明にかかる半導体発光素子を用いた発光装置の模式的な上面図を示し、図6は、図5における対角線方向の模式的な断面図を示す。以下、図面を参照しながら本実施例にかかる半導体発光素子および発光装置について詳述する。   FIG. 5 is a schematic top view of a light emitting device using the semiconductor light emitting element according to the present invention, and FIG. 6 is a schematic cross-sectional view in the diagonal direction in FIG. Hereinafter, a semiconductor light emitting element and a light emitting device according to this example will be described in detail with reference to the drawings.

放熱性のよいマウント基板500上に、絶縁性の材料501として例えばSiOを形成し、その上に例えばAlやAlを含む合金等の第1の金属膜502と第2の金属膜503を、第1の金属膜を第2の金属膜が囲むように形成する。同一面側にn電極602およびp電極603が形成された2以上の窒化物半導体発光素子601をn電極602が第1の金属膜502と接するように、p電極603が第2の金属膜と接続するように形成する。ここで、第1の金属膜502に接続する電極はp電極603で、第2の金属膜503に接続する電極はn電極602であってもよい。すなわち、複数の窒化物半導体発光素子が一つの金属膜に同じ導電型で接していればよい。また第1の金属膜502と第2の金属膜503は、お互いが接していなければよく、図5に示されるように、第1の金属膜502が正方形であり、第2の金属膜503が正方形の第1の金属膜と等間隔で離間した形状の場合や、第1の金属膜が円形であり、第2の金属膜が円形の第1の金属膜と等間隔で離間したような形状の場合でもよい。 For example, SiO 2 is formed as an insulating material 501 on the mount substrate 500 with good heat dissipation, and a first metal film 502 and a second metal film 503 such as Al or an alloy containing Al are formed thereon. The first metal film is formed so as to be surrounded by the second metal film. Two or more nitride semiconductor light emitting devices 601 in which an n-electrode 602 and a p-electrode 603 are formed on the same plane side are connected to the second metal film so that the n-electrode 602 is in contact with the first metal film 502. Form to connect. Here, the electrode connected to the first metal film 502 may be the p-electrode 603, and the electrode connected to the second metal film 503 may be the n-electrode 602. That is, a plurality of nitride semiconductor light emitting elements may be in contact with one metal film with the same conductivity type. The first metal film 502 and the second metal film 503 are not required to be in contact with each other. As illustrated in FIG. 5, the first metal film 502 is square and the second metal film 503 is In the case of a shape spaced apart from the square first metal film at equal intervals, or a shape in which the first metal film is circular and the second metal film is spaced from the circular first metal film at equal intervals It may be the case.

また第1の金属膜502とn電極602、および第2の金属膜503とp電極603は、350℃で形成された少なくともAuとSnを含んでなる共晶合金505によって接合されている。共晶合金は窒化物半導体素子側面に回り込まない程度として5μm以下となるように形成する。   Further, the first metal film 502 and the n-electrode 602, and the second metal film 503 and the p-electrode 603 are joined by a eutectic alloy 505 containing at least Au and Sn formed at 350 ° C. The eutectic alloy is formed to have a thickness of 5 μm or less so as not to go around the side surface of the nitride semiconductor element.

複数の窒化物半導体発光素子が第1の金属膜と第2の金属膜に接続された状態で、さらに樹脂504を注入することで保護し、窒化物半導体発光装置を得る。   In a state where the plurality of nitride semiconductor light emitting elements are connected to the first metal film and the second metal film, the nitride semiconductor light emitting device is obtained by further injecting a resin 504 to obtain a nitride semiconductor light emitting device.

以上のように、複数の窒化物半導体発光素子をフェイスダウンでマウント基板上に形成することによって、複数の窒化物半導体発光素子が等電位で実装でき、フェイスアップで実装するよりも、窒化物半導体発光装置の小型化が図れる。また接合に共晶合金を用いることで、小型化にしても比較的発光面積を大きく取ることができる。また、第1の金属膜と第2の金属膜の膜厚を調節することで、素子の発光面を水平としたり、水平から傾斜して設けたりすることが容易にできる。   As described above, by forming a plurality of nitride semiconductor light-emitting elements on the mount substrate face-down, a plurality of nitride semiconductor light-emitting elements can be mounted at an equipotential, and nitride semiconductors can be mounted rather than mounting face-up. The light emitting device can be reduced in size. Further, by using a eutectic alloy for bonding, a relatively large light emitting area can be obtained even if the size is reduced. Further, by adjusting the film thicknesses of the first metal film and the second metal film, the light emitting surface of the element can be easily made horizontal or inclined from the horizontal.

図1は、本発明の一実施例にかかる模式的な断面図である。FIG. 1 is a schematic cross-sectional view according to one embodiment of the present invention. 図2は、本発明の一実施例にかかる模式的な上面図である。FIG. 2 is a schematic top view according to one embodiment of the present invention. 図3は、本発明の一実施例にかかる模式的な断面図である。FIG. 3 is a schematic cross-sectional view according to one embodiment of the present invention. 図4は、本発明の一実施例にかかる模式的な上面図である。FIG. 4 is a schematic top view according to one embodiment of the present invention. 図5は、本発明の一実施例にかかる模式的な上面図である。FIG. 5 is a schematic top view according to one embodiment of the present invention. 図6は、本発明の一実施例にかかる模式的な断面図である。FIG. 6 is a schematic cross-sectional view according to one embodiment of the present invention.

符号の説明Explanation of symbols

1・・・サファイア基板
2・・・GaNバッファ層
3・・・ノンドープGaN層
4・・・n型コンタクト層となるSiドープGaN層
5・・・n型クラッド層となるSiドープGaN層
6・・・活性層となるInGaN層
7・・・p型クラッドとなるMgドープAlGaN層
8・・・p型コンタクト層となるMgドープGaN層
9、602・・・n電極
9−1・・・n電極の第1の層
9−2・・・n電極の第2の層
9−3・・・n電極の第3の層
9−4・・・n電極の第4の層
10、603・・・p電極
10a・・・p光反射部
10a−1・・・p光反射部の第1の層
10a−2・・・p光反射部の第2の層
10b・・・pパッド部
10b−1・・・pパッド部の第1の層
10b−2・・・pパッド部の第2の層
10b−3・・・pパッド部の第3の層
10b−4・・・pパッド部の第4の層
500・・・マウント基板
501・・・絶縁性の材料
502・・・第1の金属膜
503・・・第2の金属膜
504・・・樹脂
505・・・共晶合金
DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate 2 ... GaN buffer layer 3 ... Non-doped GaN layer 4 ... Si-doped GaN layer 5 serving as an n-type contact layer 5 ... Si-doped GaN layer 6 serving as an n-type cladding layer ..InGaN layer 7 as an active layer ... Mg doped AlGaN layer 8 as a p-type cladding ... Mg doped GaN layer 9, 602 ... n electrode 9-1 ... n as a p-type contact layer The first layer 9-2 of the electrode ... The second layer 9-3 of the n electrode ... The third layer 9-4 of the n electrode ... The fourth layer 10, 603 of the n electrode P electrode 10a... P light reflecting portion 10a-1... P light reflecting portion first layer 10a-2... P light reflecting portion second layer 10b. DESCRIPTION OF SYMBOLS 1 ... 1st layer 10b-2 of p pad part ... 2nd layer 10b-3 ... p pad part of p pad part Third layer 10b-4 ... p pad fourth layer 500 ... mount substrate 501 ... insulating material 502 ... first metal film 503 ... second metal film 504: Resin 505: Eutectic alloy

Claims (8)

p電極を有するp型窒化物半導体層と、n電極を有するn型窒化物半導体層とを有する窒化物半導体発光素子において、
前記p型窒化物半導体層は、前記窒化物半導体発光素子からの光の一部を透過させる透明導電膜よりなる第一の層と、該透明導電膜の少なくとも一部を被覆し該透明導電膜からの透過光を反射させる第二の層と、を少なくとも有することを特徴とする窒化物半導体発光素子。
In a nitride semiconductor light emitting device having a p-type nitride semiconductor layer having a p-electrode and an n-type nitride semiconductor layer having an n-electrode,
The p-type nitride semiconductor layer includes a first layer made of a transparent conductive film that transmits a part of light from the nitride semiconductor light-emitting element, and covers at least a part of the transparent conductive film. And a second layer that reflects the transmitted light from the nitride semiconductor light-emitting element.
前記第一の層は、さらにパッド部を有する請求項1に記載の窒化物半導体発光素子。 The nitride semiconductor light emitting element according to claim 1, wherein the first layer further has a pad portion. 前記第二の層は、さらにパッド部を有する請求項1または2に記載の窒化物半導体発光素子。 The nitride semiconductor light emitting element according to claim 1, wherein the second layer further has a pad portion. 前記パッド電極は、さらに前記p型窒化物半導体層に対して設けられる請求項2または3に記載の窒化物半導体発光素子。 The nitride semiconductor light emitting element according to claim 2, wherein the pad electrode is further provided for the p-type nitride semiconductor layer. 前記第一の層は、亜鉛(Zn)、インジウム(In)、スズ(Sn)、マグネシウム(Mg)よりなる群から選択された少なくとも一種の元素を含む酸化物よりなることを特徴とする請求項1乃至4に記載の窒化物半導体発光素子。 The first layer is made of an oxide containing at least one element selected from the group consisting of zinc (Zn), indium (In), tin (Sn), and magnesium (Mg). 5. The nitride semiconductor light emitting device according to 1 to 4. 前記第二の層は、アルミニウム(Al)、チタン(Ti)、白金(Pt)、ロジウム(Rh)、銀(Ag)、パラジウム(Pd)、イリジウム(Ir)よりなる群から選択された少なくとも一種の元素を含む金属、合金あるいは酸化物を含む請求項1乃至5に記載の窒化物半導体発光素子。 The second layer is at least one selected from the group consisting of aluminum (Al), titanium (Ti), platinum (Pt), rhodium (Rh), silver (Ag), palladium (Pd), and iridium (Ir). The nitride semiconductor light emitting device according to claim 1, comprising a metal, an alloy, or an oxide containing any of the above elements. 前記第一の層の膜厚は、100Åから10000Åである請求項1乃至6に記載の窒化物半導体発光素子。 7. The nitride semiconductor light emitting device according to claim 1, wherein the first layer has a thickness of 100 to 10,000 mm. 8. 前記第二の層の膜厚は、200Åから10000Åである請求項1乃至7に記載の窒化物半導体発光素子。
The nitride semiconductor light-emitting element according to claim 1, wherein the second layer has a thickness of 200 to 10,000 mm.
JP2003277959A 2003-07-23 2003-07-23 Nitride semiconductor light emitting device Expired - Fee Related JP4889193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277959A JP4889193B2 (en) 2003-07-23 2003-07-23 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003277959A JP4889193B2 (en) 2003-07-23 2003-07-23 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2005045038A true JP2005045038A (en) 2005-02-17
JP4889193B2 JP4889193B2 (en) 2012-03-07

Family

ID=34264509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277959A Expired - Fee Related JP4889193B2 (en) 2003-07-23 2003-07-23 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4889193B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156603A (en) * 2004-11-26 2006-06-15 Kyocera Corp Package for housing light emitting element, light emitting device, and illuminating device
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
KR100631976B1 (en) 2005-03-30 2006-10-11 삼성전기주식회사 Group iii-nitride light emitting device
JP2006303430A (en) * 2005-04-15 2006-11-02 Samsung Electro Mech Co Ltd Flip-chip nitride semiconductor light-emitting element
JP2006313888A (en) * 2005-05-03 2006-11-16 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element and its manufacturing method
KR100650189B1 (en) 2005-09-28 2006-11-27 삼성전기주식회사 High brightness nitride semiconductor light emitting device
JP2006324511A (en) * 2005-05-19 2006-11-30 Nichia Chem Ind Ltd Nitride semiconductor element
JP2007027540A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
JP2007027539A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
JP2007035735A (en) * 2005-07-25 2007-02-08 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and lighting system using the same
JP2007081400A (en) * 2005-09-09 2007-03-29 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element
JP2007134533A (en) * 2005-11-11 2007-05-31 Nichia Chem Ind Ltd Semiconductor light emitting element and manufacturing method thereof
JP2007273975A (en) * 2006-03-10 2007-10-18 Matsushita Electric Works Ltd Light-emitting device
JP2007318157A (en) * 2006-05-25 2007-12-06 Philips Lumileds Lightng Co Llc Reflective electrode for semiconductor light emitting device
JP2008218440A (en) * 2007-02-09 2008-09-18 Mitsubishi Chemicals Corp GaN-BASED LED ELEMENT AND LIGHT-EMITTING APPARATUS
WO2009154191A1 (en) * 2008-06-16 2009-12-23 昭和電工株式会社 Semiconductor light emitting element, electrode and manufacturing method for the element, and lamp
JP2010028100A (en) * 2008-06-16 2010-02-04 Showa Denko Kk Semiconductor light emitting element, electrode and manufacturing method for the element, and lamp
JP2010087283A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Semiconductor light emitting element
US7714333B2 (en) 2004-03-23 2010-05-11 Toyoda Gosei Co., Ltd. Solid-state element and solid-state element device
JP2011223049A (en) * 2005-02-23 2011-11-04 Cree Inc Method of removing substrate for high light extraction led
JP2011258974A (en) * 2011-08-12 2011-12-22 Mitsubishi Chemicals Corp GaN-BASED LIGHT-EMITTING DIODE AND LIGHT-EMITTING DEVICE USING THE SAME
EP2074664A4 (en) * 2006-12-26 2012-03-07 Lg Innotek Co Ltd Semiconductor light emitting device
EP2565944A2 (en) 2011-08-31 2013-03-06 Nichia Corporation Semiconductor light emitting device
US8569735B2 (en) 2008-06-16 2013-10-29 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, electrode and manufacturing method for the element, and lamp
US8969905B2 (en) 2008-12-25 2015-03-03 Toyoda Gosei Co., Ltd. Semiconductor light emitting device and method for manufacturing semiconductor light emitting device, and lamp
WO2016159744A1 (en) * 2015-04-03 2016-10-06 주식회사 세미콘라이트 Semiconductor light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856459B (en) * 2012-09-06 2015-09-16 安徽三安光电有限公司 The passivating method of LED reflection electrode

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638265U (en) * 1992-10-21 1994-05-20 日亜化学工業株式会社 Electrodes of gallium nitride-based light emitting device
JPH0794782A (en) * 1993-09-21 1995-04-07 Nichia Chem Ind Ltd Gallium nitride semiconductor light-emitting device
JPH08228048A (en) * 1994-12-22 1996-09-03 Nichia Chem Ind Ltd Nitride semiconductor laser device
JPH09325213A (en) * 1996-06-03 1997-12-16 Toppan Printing Co Ltd Antireflection film-provided polarizing film
JPH11340514A (en) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd Flip-chip optical semiconductor element
JP3068914U (en) * 1999-11-11 2000-05-26 洲磊科技股▲ふん▼有限公司 Flip-chip light emitting device
JP2000216431A (en) * 1998-11-19 2000-08-04 Sanyo Electric Co Ltd Light emitting element
JP2001007399A (en) * 1999-06-23 2001-01-12 Toshiba Corp Semiconductor light emitting element
JP2001217461A (en) * 2000-02-04 2001-08-10 Matsushita Electric Ind Co Ltd Compound light-emitting device
JP2001352101A (en) * 2000-06-06 2001-12-21 Nichia Chem Ind Ltd Light emitting device
JP2001358371A (en) * 2000-06-16 2001-12-26 Nichia Chem Ind Ltd Optical semiconductor device
JP2002118294A (en) * 2000-04-24 2002-04-19 Nichia Chem Ind Ltd Flip chip type light-emitting diode and manufacturing method thereof
JP2002277608A (en) * 2001-03-22 2002-09-25 Sony Corp Antireflection film and image display using the same
JP2002344021A (en) * 2001-05-16 2002-11-29 Nichia Chem Ind Ltd Light-emitting device
JP2003023180A (en) * 2001-07-05 2003-01-24 Seiwa Electric Mfg Co Ltd Compound semiconductor light emitting element and its manufacturing method
JP2003124517A (en) * 2001-10-19 2003-04-25 Nichia Chem Ind Ltd Semiconductor light emitting element
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2004179347A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor light emitting element

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566207Y2 (en) * 1992-10-21 1998-03-25 日亜化学工業株式会社 Gallium nitride based light emitting device with current injection
JPH0638265U (en) * 1992-10-21 1994-05-20 日亜化学工業株式会社 Electrodes of gallium nitride-based light emitting device
JPH0794782A (en) * 1993-09-21 1995-04-07 Nichia Chem Ind Ltd Gallium nitride semiconductor light-emitting device
JPH08228048A (en) * 1994-12-22 1996-09-03 Nichia Chem Ind Ltd Nitride semiconductor laser device
JPH09325213A (en) * 1996-06-03 1997-12-16 Toppan Printing Co Ltd Antireflection film-provided polarizing film
JPH11340514A (en) * 1998-05-22 1999-12-10 Nichia Chem Ind Ltd Flip-chip optical semiconductor element
JP2000216431A (en) * 1998-11-19 2000-08-04 Sanyo Electric Co Ltd Light emitting element
JP2001007399A (en) * 1999-06-23 2001-01-12 Toshiba Corp Semiconductor light emitting element
JP3068914U (en) * 1999-11-11 2000-05-26 洲磊科技股▲ふん▼有限公司 Flip-chip light emitting device
JP2001217461A (en) * 2000-02-04 2001-08-10 Matsushita Electric Ind Co Ltd Compound light-emitting device
JP2002118294A (en) * 2000-04-24 2002-04-19 Nichia Chem Ind Ltd Flip chip type light-emitting diode and manufacturing method thereof
JP2001352101A (en) * 2000-06-06 2001-12-21 Nichia Chem Ind Ltd Light emitting device
JP2001358371A (en) * 2000-06-16 2001-12-26 Nichia Chem Ind Ltd Optical semiconductor device
JP2002277608A (en) * 2001-03-22 2002-09-25 Sony Corp Antireflection film and image display using the same
JP2002344021A (en) * 2001-05-16 2002-11-29 Nichia Chem Ind Ltd Light-emitting device
JP2003023180A (en) * 2001-07-05 2003-01-24 Seiwa Electric Mfg Co Ltd Compound semiconductor light emitting element and its manufacturing method
JP2003124517A (en) * 2001-10-19 2003-04-25 Nichia Chem Ind Ltd Semiconductor light emitting element
JP2003163373A (en) * 2001-11-26 2003-06-06 Toyoda Gosei Co Ltd Iii nitride compound semiconductor light emitting element
JP2004179347A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor light emitting element

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714333B2 (en) 2004-03-23 2010-05-11 Toyoda Gosei Co., Ltd. Solid-state element and solid-state element device
JP4601404B2 (en) * 2004-11-26 2010-12-22 京セラ株式会社 Light emitting device and lighting device
JP2006156603A (en) * 2004-11-26 2006-06-15 Kyocera Corp Package for housing light emitting element, light emitting device, and illuminating device
JP2011223049A (en) * 2005-02-23 2011-11-04 Cree Inc Method of removing substrate for high light extraction led
JP2006261609A (en) * 2005-03-18 2006-09-28 Mitsubishi Cable Ind Ltd Garium nitride based light emitting diode and light emitting device using the same
KR100631976B1 (en) 2005-03-30 2006-10-11 삼성전기주식회사 Group iii-nitride light emitting device
JP2006303430A (en) * 2005-04-15 2006-11-02 Samsung Electro Mech Co Ltd Flip-chip nitride semiconductor light-emitting element
JP2011176378A (en) * 2005-04-15 2011-09-08 Samsung Led Co Ltd Flip chip type nitride semiconductor light emitting element
JP2006313888A (en) * 2005-05-03 2006-11-16 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element and its manufacturing method
JP2006324511A (en) * 2005-05-19 2006-11-30 Nichia Chem Ind Ltd Nitride semiconductor element
KR101161897B1 (en) 2005-05-19 2012-07-03 니치아 카가쿠 고교 가부시키가이샤 Nitride semiconductor device
JP2007027539A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
JP2007027540A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
JP2007035735A (en) * 2005-07-25 2007-02-08 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and lighting system using the same
JP2007081400A (en) * 2005-09-09 2007-03-29 Samsung Electro Mech Co Ltd Nitride semiconductor light emitting element
US7868344B2 (en) 2005-09-09 2011-01-11 Samsung Led Co., Ltd. Nitride semiconductor light emitting device including electrodes of a multilayer structure
KR100650189B1 (en) 2005-09-28 2006-11-27 삼성전기주식회사 High brightness nitride semiconductor light emitting device
JP2007134533A (en) * 2005-11-11 2007-05-31 Nichia Chem Ind Ltd Semiconductor light emitting element and manufacturing method thereof
JP2007273975A (en) * 2006-03-10 2007-10-18 Matsushita Electric Works Ltd Light-emitting device
JP2007318157A (en) * 2006-05-25 2007-12-06 Philips Lumileds Lightng Co Llc Reflective electrode for semiconductor light emitting device
EP2074664A4 (en) * 2006-12-26 2012-03-07 Lg Innotek Co Ltd Semiconductor light emitting device
US9356197B2 (en) 2006-12-26 2016-05-31 Lg Innotek Co., Ltd. Semiconductor light emitting device
US9054258B2 (en) 2006-12-26 2015-06-09 Lg Innotek Co., Ltd. Semiconductor light emitting device
JP2008218440A (en) * 2007-02-09 2008-09-18 Mitsubishi Chemicals Corp GaN-BASED LED ELEMENT AND LIGHT-EMITTING APPARATUS
US8569735B2 (en) 2008-06-16 2013-10-29 Toyoda Gosei Co., Ltd. Semiconductor light-emitting element, electrode and manufacturing method for the element, and lamp
JP2010028100A (en) * 2008-06-16 2010-02-04 Showa Denko Kk Semiconductor light emitting element, electrode and manufacturing method for the element, and lamp
WO2009154191A1 (en) * 2008-06-16 2009-12-23 昭和電工株式会社 Semiconductor light emitting element, electrode and manufacturing method for the element, and lamp
JP2010087283A (en) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd Semiconductor light emitting element
US8969905B2 (en) 2008-12-25 2015-03-03 Toyoda Gosei Co., Ltd. Semiconductor light emitting device and method for manufacturing semiconductor light emitting device, and lamp
JP2011258974A (en) * 2011-08-12 2011-12-22 Mitsubishi Chemicals Corp GaN-BASED LIGHT-EMITTING DIODE AND LIGHT-EMITTING DEVICE USING THE SAME
US8823031B2 (en) 2011-08-31 2014-09-02 Nichia Corporation Semiconductor light emitting device including metal reflecting layer
KR20130024852A (en) 2011-08-31 2013-03-08 니치아 카가쿠 고교 가부시키가이샤 Semiconductor light emitting device including metal reflecting layer
EP2565944A2 (en) 2011-08-31 2013-03-06 Nichia Corporation Semiconductor light emitting device
WO2016159744A1 (en) * 2015-04-03 2016-10-06 주식회사 세미콘라이트 Semiconductor light emitting device
US10158047B2 (en) 2015-04-03 2018-12-18 Semicon Light Co., Ltd. Semiconductor light emitting device

Also Published As

Publication number Publication date
JP4889193B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4889193B2 (en) Nitride semiconductor light emitting device
JP5582054B2 (en) Semiconductor light emitting device
US10840412B2 (en) Semiconductor light emitting device
JP4946195B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5719110B2 (en) Light emitting element
JP5793292B2 (en) Semiconductor light emitting device
JP5633477B2 (en) Light emitting element
JP5494005B2 (en) Semiconductor light emitting device
JP2005277372A (en) Semiconductor light emitting device and its manufacturing method
US20070102692A1 (en) Semiconductor light emitting device
JP5246199B2 (en) Group III nitride semiconductor light emitting device
JP5276959B2 (en) LIGHT EMITTING DIODE, ITS MANUFACTURING METHOD, AND LAMP
JP4875361B2 (en) Group 3 nitride light emitting device
WO2005050748A1 (en) Semiconductor device and method for manufacturing same
JP2008218878A (en) GaN BASED LED ELEMENT AND LIGHT-EMITTING DEVICE
JP2012124306A (en) Semiconductor light-emitting element
JP2011198997A (en) Group iii nitride semiconductor light emitting element
JP2005123489A (en) Nitride semiconductor light emitting element and its manufacturing method
JP2007243074A (en) Group iii nitride light emitting diode
JP4411871B2 (en) Nitride semiconductor light emitting device
JP2012124321A (en) Semiconductor light-emitting element, lamp and method of manufacturing semiconductor light-emitting element
EP2672530A2 (en) Light emitting device and light emitting device package
JP2012204373A (en) Semiconductor light-emitting element
TW201505211A (en) Light-emitting element
JP5353809B2 (en) Semiconductor light emitting element and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees