JP2004338972A - 光ファイバの製造方法及び製造装置 - Google Patents
光ファイバの製造方法及び製造装置 Download PDFInfo
- Publication number
- JP2004338972A JP2004338972A JP2003134538A JP2003134538A JP2004338972A JP 2004338972 A JP2004338972 A JP 2004338972A JP 2003134538 A JP2003134538 A JP 2003134538A JP 2003134538 A JP2003134538 A JP 2003134538A JP 2004338972 A JP2004338972 A JP 2004338972A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- temperature
- furnace
- spinning
- annealing furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
- C03B37/02718—Thermal treatment of the fibre during the drawing process, e.g. cooling
- C03B37/02727—Annealing or re-heating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/55—Cooling or annealing the drawn fibre prior to coating using a series of coolers or heaters
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/56—Annealing or re-heating the drawn fibre prior to coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
【課題】光ファイバの製造において、光ファイバ裸線を冷却する際に、紡糸の高速度を保ちながらも限られたスペースのなかで効率的に徐冷を行い、耐水素特性の良好な光ファイバを製造できるようにする。
【解決手段】紡糸炉1と徐冷炉4との間に設けた温度調整装置6により、光ファイバ裸線3の徐冷炉4への入線温度を900〜1300℃の範囲に調整する。好ましくは、徐冷炉4内の温度と前記入線温度が同一になるように調整する。この温度調整装置6は、熱伝導率の異なる二種類のガスで満たされており、これらのガスの供給量は、徐冷炉4上部における光ファイバ裸線3の温度に基づいて制御されている。徐冷炉4において光ファイバ裸線3を0.1〜0.5秒間徐冷し、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下である光ファイバ素線を提供する。
【選択図】 図1
【解決手段】紡糸炉1と徐冷炉4との間に設けた温度調整装置6により、光ファイバ裸線3の徐冷炉4への入線温度を900〜1300℃の範囲に調整する。好ましくは、徐冷炉4内の温度と前記入線温度が同一になるように調整する。この温度調整装置6は、熱伝導率の異なる二種類のガスで満たされており、これらのガスの供給量は、徐冷炉4上部における光ファイバ裸線3の温度に基づいて制御されている。徐冷炉4において光ファイバ裸線3を0.1〜0.5秒間徐冷し、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下である光ファイバ素線を提供する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、光ファイバの製造装置及び製造方法に関するものである。特に、紡糸炉と徐冷炉の間に温度調整装置を設け、光ファイバ裸線の徐冷炉への入線温度を調整し、紡糸速度を高速化しても耐水素特性の良好な光ファイバを得られるようにしたものである。
【0002】
【従来の技術】
光通信分野で広く用いられている石英系光ファイバの製造において、一般に、石英ガラス系を主成分とする光ファイバ母材を気相軸付法(VAD法)、外付法(OVD法)、内付法(CVD法、MCVD法、PCVD法)などにより製造し、紡糸炉により溶融紡糸を行い光ファイバ裸線とする。この光ファイバ裸線をコーターにおいてまず紫外線硬化型樹脂などからなる被覆材で一次被覆し、引き続き紫外線硬化型樹脂などからなる被覆材で二次被覆することで光ファイバ素線を形成する。近年、光ファイバへの需要が高まるに伴って、光ファイバの生産性の向上が望まれ、光ファイバの紡糸速度は高速化する傾向にある。
【0003】
光ファイバの温度は、溶融紡糸の際に約2000℃の高温に達するが、これに樹脂の被覆を行うためには、溶融紡糸した光ファイバ裸線を短時間で急冷することが必要である。このため、紡糸炉と被覆を行うコーターの間に冷却筒を設け、これにより光ファイバ裸線を5000〜30000℃/秒の冷却速度で冷却するようになっている。
【0004】
ところで、光ファイバの伝送損失の要因のひとつとして、水酸基(OH基)による光の吸収がある。この水酸基は、光ファイバ内に含まれる非架橋酸素ホールセンター(Non bridging oxygen hole center)などの欠陥と水素が結合して生成するものである。例えば光ファイバケーブルを海底などに敷設した場合、光ファイバ中に水素が拡散してきて損失が増加するが、この水素に対する耐性は耐水素特性と呼ばれ、水素試験と呼ばれる試験で調べることができる。水素試験は、例えば、光ファイバを水素雰囲気中に約40時間放置し、放置前後で測定した損失値を比較することにより行われる。このような水素試験により、耐水素特性の悪い光ファイバは、1.38μmでのOH吸収ピークが大きく増加し、1.52μmに吸収ピークが現れることが知られている。
【0005】
光ファイバ内の非架橋酸素ホールセンターを含む前記欠陥は、光ファイバ母材を高温で溶融すると発生し、これを急冷却すると、冷却後の光ファイバ内部に前記欠陥がそのまま残留する。このため、かかる耐水素特性の改善のためには、溶融した光ファイバ裸線を冷却する際に、これをゆっくりと冷却し、すなわち徐冷し、非架橋酸素ホールセンターを含む欠陥を徐冷中に再結合させ、冷却後の光ファイバ中に残存する前記欠陥を減少させることが好ましい。
【0006】
図4は、従来の光ファイバの製造装置の一例を示す概略構成図である。
図4において、符号1は紡糸炉を示す。この紡糸炉1の内部には、光ファイバ母材2が収められており、この光ファイバ母材2は、気相軸付法などにより製造された石英ガラス系を主成分とするものである。紡糸炉1にはアルゴン(Ar)やヘリウム(He)などのガスが供給され、約2000℃の高温で光ファイバ母材2を溶融紡糸する。溶融紡糸された光ファイバ母材2はその直径が約125μmである光ファイバ裸線3となる。
図4において、符号4は徐冷炉を示す。この徐冷炉4は紡糸炉2と間隔を配して設けられている。徐冷炉4は、窒素、アルゴンなどのガスで満たされ、溶融紡糸された光ファイバ裸線3を徐冷するものである。徐冷炉を通過した光ファイバ裸線3は次に冷却筒5において急冷され、図示しない樹脂被覆を行うコーターへと送られる。
【0007】
しかしながら、従来、徐冷炉は、紡糸炉を出た光ファイバ裸線の温度が所定の範囲において徐冷するために、これの設置位置を調整する必要があった。このため、光ファイバを高速温度で紡糸する際、紡糸炉出口と徐冷炉との間にかなりの距離を置く必要があるという設備上の不都合が生じていた。また、伝送損失のうちレイリー散乱には触れているものの、耐水素特性に言及しているものはない。
【0008】
光ファイバの冷却に徐冷炉を用いて徐冷する技術に関する先行技術文献としては、以下のようなものがある。
【0009】
【特許文献1】
特開2000−335935号公報
【特許文献2】
特開2001−114526号公報
【0010】
【発明が解決しようとする課題】
よって、本発明における課題は、光ファイバ裸線を冷却する際に、紡糸の高速度を保ちながらも限られたスペースのなかで効率的に徐冷を行い、耐水素特性の良好な光ファイバを製造できるようにすることにある。
【0011】
【課題を解決するための手段】
かかる課題を解決するために、請求項1の発明は、光ファイバ母材を溶融紡糸する紡糸炉とこの紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に、光ファイバ裸線の徐冷炉への入線温度を900〜1300℃に調節する温度調整装置を設けたことを特徴とする光ファイバの製造装置を提供する。
請求項2の発明は、前記温度調整装置が、一種類以上のガスで満たされていることを特徴とする光ファイバの製造装置である。
請求項3の発明は、前記温度調整装置が、熱伝達率の異なる二種類のガスで満たされていることを特徴とする光ファイバの製造装置である。
請求項4の発明は、徐冷炉上部での光ファイバ裸線の温度を測定し、この測定温度に基づいて前記温度調整装置に供給するガス量を調整する制御装置が設けられたことを特徴とする光ファイバの製造装置である。
請求項5の発明は、徐冷炉との間に隙間を配して前記温度調整装置を設けたことを特徴とする光ファイバの製造装置である。
請求項6の発明は、光ファイバ母材を溶融紡糸する紡糸炉とこの紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に温度調整装置を設け、この温度調整装置により光ファイバ裸線の徐冷炉への入線温度を900〜1300℃とし、徐冷炉の温度を800〜1300℃に設定することを特徴とする光ファイバの製造方法である。
請求項7の発明は、徐冷炉への光ファイバ裸線の入線温度と徐冷炉の温度とを同一にすることを特徴とする前記光ファイバの製造方法である。
請求項8の発明は、光ファイバ裸線を徐冷炉により0.1〜0.5秒間徐冷することを特徴とする前記光ファイバの製造方法である。
請求項9の発明は、請求項6ないし8のいずれかの光ファイバの製造方法によって製造され、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下であることを特徴とする光ファイバ心線を提供する。
【0012】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明者は、耐水素特性を改善するためには、SiO2を主成分とする一般的なシングルモードファイバの場合、800〜1300℃の温度域で徐冷するのがよいことを発見した。好ましくは、900〜1100℃がよい。さらに好ましくは、これらの温度域のいずれかの一定温度を保つのがよいことを知見した。
【0013】
図1は、本発明の光ファイバの製造装置の一例を示す概略構成図である。この製造装置は、紡糸炉1と徐冷炉4との間に温度調整装置6を設置し、徐冷炉4上部に光ファイバ裸線3の温度を測定し、この温度に基づいて温度調整装置6へのガス供給量を制御する制御装置を設けた以外は図4に示した製造装置と同様である。
図1において符号1は紡糸炉を示す。紡糸炉1の中には光ファイバ母材2が収容され、この光ファイバ母材2の先端部分を高温で加熱し、溶融紡糸するようになっている。
【0014】
図中符号6は、温度調整装置を示す。この温度調整装置6は、光ファイバ裸線3が走行する長さ10〜100cm、内径5〜50mmの真鍮、アルミなどからなる中心管61を有しており、この中心管61内部に雰囲気ガスを供給するガス導入管62と、この雰囲気ガスを排出するガス排出管63が設けられている。また、中心管61の周囲には、冷却用のジャケット64が設けられ、このジャケット64の内部に冷却水などの冷媒を供給できるようになっている。また、ガス導入管62は、管65を介して二基のガス供給源66,67に接続されている。
【0015】
図中符号11は、徐冷炉4に入線する光ファイバ裸線の温度を測定する赤外温度計を示し、この赤外温度計11からの温度信号が制御装置12に入力されるようになっている。この制御装置12は、この入力された温度信号に基づいて、二基のガス供給源66,67の開閉弁66a、67aの開度を調整し、ガス導入管62から中心管61に供給される雰囲気ガスの混合比率を制御するようになっている。
【0016】
ガス供給源66,67の一方からは、熱伝導率の高いヘリウムが、他方からは熱伝導率の低いアルゴンや窒素などが供給され、これらガスの混合比率を変化させることで、中心管61内部の雰囲気ガスの熱伝導率を変化させ、これによって中心管61における冷却能力を制御できるようになっている。さらに、ジャケット64内に供給する冷媒の温度、流量を調整することでも中心管61での冷却能力を変化させることができる。
【0017】
徐冷炉4は、その内部に光ファイバ裸線3の通る炉心管と、この炉心管内部の雰囲気を加熱するヒータを具備している。この徐冷炉4は空気、窒素、アルゴンなどが供給されていて、炉心管内の温度が50〜1500℃の範囲に制御できるようになっている。この徐冷炉4の炉心管の炉長は、紡糸線速が200〜1500m/分のとき、光ファイバが徐冷される徐冷時間が0.1〜0.5秒となる30〜1000cmである。また、この徐冷炉4は、これと温度調整装置6の間に10〜100cmの間隔を配した位置に設けられている。このため、温度調整装置6を出た光ファイバ裸線3は、いったん外気にさらされ、徐冷炉4内のガスと温度調整装置6内のガスとが混ざらないようになっている。
【0018】
また、図1において、符号5は冷却筒を示し、ヘリウム、窒素、アルゴンなどのガスで満たされている。この冷却筒5は、徐冷炉4を出た光ファイバ裸線3を樹脂被覆が可能な温度、すなわち常温〜100℃位にまで冷却するものである。
【0019】
図1のような光ファイバの製造装置を用いた、本発明の光ファイバの製造方法を以下説明する。
最初に、紡糸炉1の内部に、気相軸付法(VAD法)などにより製造した光ファイバ母材2を収め、その先端部を約2000℃の高温で加熱し、溶融紡糸し、光ファイバ裸線3とする。このときの光ファイバ裸線3の温度は約1300〜1800℃である。
【0020】
つぎに、光ファイバ裸線3をただちに温度調整装置6に送り込み、これによって冷却する。このとき、光ファイバ裸線3の徐冷炉4への入線温度が徐冷炉4内の温度と同等あるいはそれより高くなるようにする。前記入線温度が徐冷炉4の温度より低いと、徐冷が効率的に行われず、好ましくない。
【0021】
上記のように、光ファイバの耐水素特性を改善するためには、徐冷炉4によって光ファイバ裸線3を800〜1300℃の範囲で徐冷するのが好ましい。さらに好ましくは、900〜1100℃であるとよい。このため、光ファイバ裸線3の徐冷炉4への入線温度が900〜1300℃、好ましくは900〜1100℃となるようにその温度を調整する。
【0022】
また、光ファイバの耐水素特性の改善のためにはこれが徐冷炉4内で900〜1100℃の範囲のなかで一定温度に保たれることがより好ましい。このため、温度調整装置6において光ファイバ裸線3の徐冷炉4への入線温度が徐冷炉4内の温度と同じになるように調整することが最も好ましい。
【0023】
このようにして、光ファイバ裸線3の温度を温度調整装置6により調整し、つぎにこれを徐冷炉4へと送る。このとき、徐冷炉4の温度を800〜1300℃、好ましくは900〜1100℃に設定する。光ファイバの耐水素特性は、通常徐冷時間が長ければ長いほど改善される。しかし、徐冷時間が0.5秒を超えると徐冷炉4の炉長が長くなり、大型化して設備上の観点から好ましくない。また、徐冷時間が0.1秒以下では前記改善はあまり見られない。したがって、徐冷炉4における光ファイバ裸線3の徐冷時間は、0.1〜0.5秒が好ましい。
【0024】
このとき、上記のように、徐冷炉4の上部において赤外温度計11により光ファイバ裸線3の入線温度を測定する。この温度が目標値を外れているときには、制御装置12を介してガス供給源の開閉弁66a,67aを調整する。こうして、ガス供給源66,67の供給量を変化させ、温度調整装置6の冷却能力を調整する。
【0025】
徐冷炉4において0.1〜0.5秒間光ファイバ裸線3を徐冷し、つぎに徐冷炉4を出た光ファイバ裸線3を冷却筒5によってさらに冷却する。この際、冷却筒5を出たときの光ファイバ裸線3の温度が常温〜100℃となるように冷却する。
最後に、冷却筒5において冷却された光ファイバ裸線3を、図示しないコーターにおいて一次及び二次被覆を行い、光ファイバ素線を形成する。
【0026】
このような光ファイバの製造方法においては、紡糸炉1で溶融紡糸された光ファイバ裸線3を温度調整装置6により温度調整し、徐冷炉4において800〜1300℃、好ましくは900〜1100℃の温度に0.1〜0.5秒間保つため、溶融紡糸時に光ファイバ裸線内に発生した非架橋酸素ホールセンターを含む欠陥が十分に再結合してその大部分が消滅し、こうして得られる光ファイバの耐水素特性が良好となる。
前記温度調整装置6は、光ファイバ母材の種類、サイズ、形状等に限定されることもなく、また200〜1500m/分の幅広い紡糸線速に対応できる。
【0027】
本発明による光ファイバの製造装置は、温度調整装置6を用いて徐冷炉4への光ファイバ裸線3の入線温度を調整するため、炉長の長い大型の徐冷炉を必要とせず、さらに紡糸炉1と徐冷炉4との距離を著しく置く必要もないため、設備的に無理がない。
【0028】
【実施例】
以下、具体的な実施例を示して本発明の効果を明らかにする。
【0029】
共通条件
光ファイバ裸線:外径125μm,波長1.3μm伝送用シングルモードファイバ
一次及び二次被覆材:ウレタンーアクリレート系紫外線硬化型樹脂
被覆径:250μm
紡糸線速:200〜1500m/分
【0030】
実施例1
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1500℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1150℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.052dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0031】
実施例2
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1300℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1100℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.032dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0032】
実施例3
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.025dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0033】
比較例1
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置なし、徐冷炉の位置:紡糸炉出口から1.3m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.025dB/kmであった。
【0034】
実施例4
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度800℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度950℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.045dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0035】
実施例5
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度600℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度850℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.045dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0036】
比較例2
紡糸速度1000m/分、温度調整装置なし、徐冷炉なし、自然冷却により紡糸炉出口の1.7m後の光ファイバ裸線の温度600℃、得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.080dB/kmであった。
【0037】
以上の実施例1ないし5ならびに比較例1及び2の結果を、表1、表2、及び図2に示す。
【0038】
【表1】
【0039】
【表2】
【0040】
図2は、光ファイバ裸線の徐冷炉への入線温度と水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分との関係を示すグラフである。図2から、ファイバ入線温度が800〜1300℃の範囲であれば、耐水素特性がある程度改善されることが確認できる。これは、表1より、光ファイバ裸線の徐冷炉への入線温度及び徐冷炉からの出線温度を見ると、前記入線温度が600℃、1500℃の場合は、出線温度がそれぞれ850℃、1150℃であり、耐水素特性の改善に効果のある徐冷好温度域である800〜1300℃の範囲で徐冷される時間が短いことが原因と考えられる。
【0041】
また、表1及び図2から、光ファイバ裸線の徐冷炉への入線温度と徐冷炉内の温度が同等である実施例3が最も耐水素特性の改善がなされていることがわかる。すなわち、耐水素特性の改善には、800〜1300℃の範囲内の一定温度で保たれるのが最も効果的である。
【0042】
さらに、表2より、温度調整装置の有無による耐水素特性の変化は見られないことが分かる。このことから、温度調整装置を設けることにより紡糸炉と徐冷炉との間の間隔を短縮することが可能になり、限られた建屋の高さを有効に使用することができるようになる。
【0043】
実施例6
紡糸速度1200m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.085秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.038dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0044】
実施例7
紡糸速度1500m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.068秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.050dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0045】
実施例8
紡糸速度800m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.13秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.021dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0046】
実施例9
紡糸速度400m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.26秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.014dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0047】
実施例10
紡糸速度200m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.51秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.010dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0048】
以上の実施例6ないし10の結果を表3及び図3に示す。
【0049】
【表3】
【0050】
図3は、光ファイバ裸線の徐冷時間と水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分との関係を示すグラフである。表3及び図3から、光ファイバ裸線の耐水素特性の改善には、光ファイバ裸線の徐冷時間は0.1〜0.5秒位でよいことが分かる。これは、徐冷時間は長ければ長いほど耐水素特性は改善されるが、徐冷時間を長くするために紡糸線速を低下させすぎることは好ましくないからである。
【0051】
【発明の効果】
以上説明したように、請求項1の発明による光ファイバの製造装置は、紡糸炉と徐冷炉との間に温度調整装置を設けたものであるので、光ファイバ裸線の徐冷炉への入線温度を900〜1300℃の範囲に調整することができる。請求項2の発明は、前記温度調整装置が一種類以上のガスで満たされているものであるので、このガスにより光ファイバ裸線の温度調整をすることができる。請求項3の発明は、前記温度調整装置が、熱伝達率の異なる二種類のガスで満たされているものであるので、これら二種類のガスの混合比を調整することによって、光ファイバ裸線の温度調整を行うことができる。
【0052】
請求項4の発明は、徐冷炉上部での光ファイバ裸線の温度を測定し、この測定温度に基づいて温度調整装置に供給するガス量を調整する制御装置を設けたものであるので、これにより光ファイバ裸線の温度調整が可能である。請求項5の発明は、前記温度調整装置が、徐冷炉との間に隙間を配して設けられているものであるので、徐冷炉及び温度調整装置内部のガスが混ざることがなく、適切な温度調整ができる。
【0053】
請求項6の発明は、光ファイバ母材を溶融紡糸する紡糸炉と、この紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に設けた温度調整装置で光ファイバ裸線の徐冷炉への入線温度を900〜1300℃とし、徐冷炉の温度を800〜1300℃とするものであるので、耐水素特性の良好な光ファイバが製造できるようにしたものである。請求項7の発明は、徐冷炉への光ファイバ裸線の入線温度が徐冷炉の温度と同じになるようにしたものであるので、効率的に耐水素特性の改善を行うことができる。
【0054】
請求項8の発明は、光ファイバ裸線を徐冷炉により0.1〜0.5秒間徐冷するものであるので、設備コストを上げたり紡糸線速を低下したりせずに徐冷を行えるようにしたものである。請求項9の発明は、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下であることを特徴とする光ファイバ素線であるので、これの耐水素特性は良好である。
【図面の簡単な説明】
【図1】本発明の光ファイバの製造装置の一例を示す概略構成図である。
【図2】光ファイバ裸線の徐冷炉への入線温度と水素試験後1383nmでの損失増加分との関係を示すグラフである。
【図3】光ファイバ裸線の徐冷時間と水素試験後1383nmでの損失増加分との関係を示すグラフである。
【図4】従来の光ファイバの製造装置の一例を示す概略構成図である。
【符号の説明】1・・・紡糸炉、2・・・光ファイバ母材、3・・・光ファイバ裸線、4・・・徐冷炉、6・・・温度調整装置、12・・・制御装置、61・・・中心管、62・・・ガス導入管、63・・・ガス排出管。
【発明の属する技術分野】
本発明は、光ファイバの製造装置及び製造方法に関するものである。特に、紡糸炉と徐冷炉の間に温度調整装置を設け、光ファイバ裸線の徐冷炉への入線温度を調整し、紡糸速度を高速化しても耐水素特性の良好な光ファイバを得られるようにしたものである。
【0002】
【従来の技術】
光通信分野で広く用いられている石英系光ファイバの製造において、一般に、石英ガラス系を主成分とする光ファイバ母材を気相軸付法(VAD法)、外付法(OVD法)、内付法(CVD法、MCVD法、PCVD法)などにより製造し、紡糸炉により溶融紡糸を行い光ファイバ裸線とする。この光ファイバ裸線をコーターにおいてまず紫外線硬化型樹脂などからなる被覆材で一次被覆し、引き続き紫外線硬化型樹脂などからなる被覆材で二次被覆することで光ファイバ素線を形成する。近年、光ファイバへの需要が高まるに伴って、光ファイバの生産性の向上が望まれ、光ファイバの紡糸速度は高速化する傾向にある。
【0003】
光ファイバの温度は、溶融紡糸の際に約2000℃の高温に達するが、これに樹脂の被覆を行うためには、溶融紡糸した光ファイバ裸線を短時間で急冷することが必要である。このため、紡糸炉と被覆を行うコーターの間に冷却筒を設け、これにより光ファイバ裸線を5000〜30000℃/秒の冷却速度で冷却するようになっている。
【0004】
ところで、光ファイバの伝送損失の要因のひとつとして、水酸基(OH基)による光の吸収がある。この水酸基は、光ファイバ内に含まれる非架橋酸素ホールセンター(Non bridging oxygen hole center)などの欠陥と水素が結合して生成するものである。例えば光ファイバケーブルを海底などに敷設した場合、光ファイバ中に水素が拡散してきて損失が増加するが、この水素に対する耐性は耐水素特性と呼ばれ、水素試験と呼ばれる試験で調べることができる。水素試験は、例えば、光ファイバを水素雰囲気中に約40時間放置し、放置前後で測定した損失値を比較することにより行われる。このような水素試験により、耐水素特性の悪い光ファイバは、1.38μmでのOH吸収ピークが大きく増加し、1.52μmに吸収ピークが現れることが知られている。
【0005】
光ファイバ内の非架橋酸素ホールセンターを含む前記欠陥は、光ファイバ母材を高温で溶融すると発生し、これを急冷却すると、冷却後の光ファイバ内部に前記欠陥がそのまま残留する。このため、かかる耐水素特性の改善のためには、溶融した光ファイバ裸線を冷却する際に、これをゆっくりと冷却し、すなわち徐冷し、非架橋酸素ホールセンターを含む欠陥を徐冷中に再結合させ、冷却後の光ファイバ中に残存する前記欠陥を減少させることが好ましい。
【0006】
図4は、従来の光ファイバの製造装置の一例を示す概略構成図である。
図4において、符号1は紡糸炉を示す。この紡糸炉1の内部には、光ファイバ母材2が収められており、この光ファイバ母材2は、気相軸付法などにより製造された石英ガラス系を主成分とするものである。紡糸炉1にはアルゴン(Ar)やヘリウム(He)などのガスが供給され、約2000℃の高温で光ファイバ母材2を溶融紡糸する。溶融紡糸された光ファイバ母材2はその直径が約125μmである光ファイバ裸線3となる。
図4において、符号4は徐冷炉を示す。この徐冷炉4は紡糸炉2と間隔を配して設けられている。徐冷炉4は、窒素、アルゴンなどのガスで満たされ、溶融紡糸された光ファイバ裸線3を徐冷するものである。徐冷炉を通過した光ファイバ裸線3は次に冷却筒5において急冷され、図示しない樹脂被覆を行うコーターへと送られる。
【0007】
しかしながら、従来、徐冷炉は、紡糸炉を出た光ファイバ裸線の温度が所定の範囲において徐冷するために、これの設置位置を調整する必要があった。このため、光ファイバを高速温度で紡糸する際、紡糸炉出口と徐冷炉との間にかなりの距離を置く必要があるという設備上の不都合が生じていた。また、伝送損失のうちレイリー散乱には触れているものの、耐水素特性に言及しているものはない。
【0008】
光ファイバの冷却に徐冷炉を用いて徐冷する技術に関する先行技術文献としては、以下のようなものがある。
【0009】
【特許文献1】
特開2000−335935号公報
【特許文献2】
特開2001−114526号公報
【0010】
【発明が解決しようとする課題】
よって、本発明における課題は、光ファイバ裸線を冷却する際に、紡糸の高速度を保ちながらも限られたスペースのなかで効率的に徐冷を行い、耐水素特性の良好な光ファイバを製造できるようにすることにある。
【0011】
【課題を解決するための手段】
かかる課題を解決するために、請求項1の発明は、光ファイバ母材を溶融紡糸する紡糸炉とこの紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に、光ファイバ裸線の徐冷炉への入線温度を900〜1300℃に調節する温度調整装置を設けたことを特徴とする光ファイバの製造装置を提供する。
請求項2の発明は、前記温度調整装置が、一種類以上のガスで満たされていることを特徴とする光ファイバの製造装置である。
請求項3の発明は、前記温度調整装置が、熱伝達率の異なる二種類のガスで満たされていることを特徴とする光ファイバの製造装置である。
請求項4の発明は、徐冷炉上部での光ファイバ裸線の温度を測定し、この測定温度に基づいて前記温度調整装置に供給するガス量を調整する制御装置が設けられたことを特徴とする光ファイバの製造装置である。
請求項5の発明は、徐冷炉との間に隙間を配して前記温度調整装置を設けたことを特徴とする光ファイバの製造装置である。
請求項6の発明は、光ファイバ母材を溶融紡糸する紡糸炉とこの紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に温度調整装置を設け、この温度調整装置により光ファイバ裸線の徐冷炉への入線温度を900〜1300℃とし、徐冷炉の温度を800〜1300℃に設定することを特徴とする光ファイバの製造方法である。
請求項7の発明は、徐冷炉への光ファイバ裸線の入線温度と徐冷炉の温度とを同一にすることを特徴とする前記光ファイバの製造方法である。
請求項8の発明は、光ファイバ裸線を徐冷炉により0.1〜0.5秒間徐冷することを特徴とする前記光ファイバの製造方法である。
請求項9の発明は、請求項6ないし8のいずれかの光ファイバの製造方法によって製造され、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下であることを特徴とする光ファイバ心線を提供する。
【0012】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明者は、耐水素特性を改善するためには、SiO2を主成分とする一般的なシングルモードファイバの場合、800〜1300℃の温度域で徐冷するのがよいことを発見した。好ましくは、900〜1100℃がよい。さらに好ましくは、これらの温度域のいずれかの一定温度を保つのがよいことを知見した。
【0013】
図1は、本発明の光ファイバの製造装置の一例を示す概略構成図である。この製造装置は、紡糸炉1と徐冷炉4との間に温度調整装置6を設置し、徐冷炉4上部に光ファイバ裸線3の温度を測定し、この温度に基づいて温度調整装置6へのガス供給量を制御する制御装置を設けた以外は図4に示した製造装置と同様である。
図1において符号1は紡糸炉を示す。紡糸炉1の中には光ファイバ母材2が収容され、この光ファイバ母材2の先端部分を高温で加熱し、溶融紡糸するようになっている。
【0014】
図中符号6は、温度調整装置を示す。この温度調整装置6は、光ファイバ裸線3が走行する長さ10〜100cm、内径5〜50mmの真鍮、アルミなどからなる中心管61を有しており、この中心管61内部に雰囲気ガスを供給するガス導入管62と、この雰囲気ガスを排出するガス排出管63が設けられている。また、中心管61の周囲には、冷却用のジャケット64が設けられ、このジャケット64の内部に冷却水などの冷媒を供給できるようになっている。また、ガス導入管62は、管65を介して二基のガス供給源66,67に接続されている。
【0015】
図中符号11は、徐冷炉4に入線する光ファイバ裸線の温度を測定する赤外温度計を示し、この赤外温度計11からの温度信号が制御装置12に入力されるようになっている。この制御装置12は、この入力された温度信号に基づいて、二基のガス供給源66,67の開閉弁66a、67aの開度を調整し、ガス導入管62から中心管61に供給される雰囲気ガスの混合比率を制御するようになっている。
【0016】
ガス供給源66,67の一方からは、熱伝導率の高いヘリウムが、他方からは熱伝導率の低いアルゴンや窒素などが供給され、これらガスの混合比率を変化させることで、中心管61内部の雰囲気ガスの熱伝導率を変化させ、これによって中心管61における冷却能力を制御できるようになっている。さらに、ジャケット64内に供給する冷媒の温度、流量を調整することでも中心管61での冷却能力を変化させることができる。
【0017】
徐冷炉4は、その内部に光ファイバ裸線3の通る炉心管と、この炉心管内部の雰囲気を加熱するヒータを具備している。この徐冷炉4は空気、窒素、アルゴンなどが供給されていて、炉心管内の温度が50〜1500℃の範囲に制御できるようになっている。この徐冷炉4の炉心管の炉長は、紡糸線速が200〜1500m/分のとき、光ファイバが徐冷される徐冷時間が0.1〜0.5秒となる30〜1000cmである。また、この徐冷炉4は、これと温度調整装置6の間に10〜100cmの間隔を配した位置に設けられている。このため、温度調整装置6を出た光ファイバ裸線3は、いったん外気にさらされ、徐冷炉4内のガスと温度調整装置6内のガスとが混ざらないようになっている。
【0018】
また、図1において、符号5は冷却筒を示し、ヘリウム、窒素、アルゴンなどのガスで満たされている。この冷却筒5は、徐冷炉4を出た光ファイバ裸線3を樹脂被覆が可能な温度、すなわち常温〜100℃位にまで冷却するものである。
【0019】
図1のような光ファイバの製造装置を用いた、本発明の光ファイバの製造方法を以下説明する。
最初に、紡糸炉1の内部に、気相軸付法(VAD法)などにより製造した光ファイバ母材2を収め、その先端部を約2000℃の高温で加熱し、溶融紡糸し、光ファイバ裸線3とする。このときの光ファイバ裸線3の温度は約1300〜1800℃である。
【0020】
つぎに、光ファイバ裸線3をただちに温度調整装置6に送り込み、これによって冷却する。このとき、光ファイバ裸線3の徐冷炉4への入線温度が徐冷炉4内の温度と同等あるいはそれより高くなるようにする。前記入線温度が徐冷炉4の温度より低いと、徐冷が効率的に行われず、好ましくない。
【0021】
上記のように、光ファイバの耐水素特性を改善するためには、徐冷炉4によって光ファイバ裸線3を800〜1300℃の範囲で徐冷するのが好ましい。さらに好ましくは、900〜1100℃であるとよい。このため、光ファイバ裸線3の徐冷炉4への入線温度が900〜1300℃、好ましくは900〜1100℃となるようにその温度を調整する。
【0022】
また、光ファイバの耐水素特性の改善のためにはこれが徐冷炉4内で900〜1100℃の範囲のなかで一定温度に保たれることがより好ましい。このため、温度調整装置6において光ファイバ裸線3の徐冷炉4への入線温度が徐冷炉4内の温度と同じになるように調整することが最も好ましい。
【0023】
このようにして、光ファイバ裸線3の温度を温度調整装置6により調整し、つぎにこれを徐冷炉4へと送る。このとき、徐冷炉4の温度を800〜1300℃、好ましくは900〜1100℃に設定する。光ファイバの耐水素特性は、通常徐冷時間が長ければ長いほど改善される。しかし、徐冷時間が0.5秒を超えると徐冷炉4の炉長が長くなり、大型化して設備上の観点から好ましくない。また、徐冷時間が0.1秒以下では前記改善はあまり見られない。したがって、徐冷炉4における光ファイバ裸線3の徐冷時間は、0.1〜0.5秒が好ましい。
【0024】
このとき、上記のように、徐冷炉4の上部において赤外温度計11により光ファイバ裸線3の入線温度を測定する。この温度が目標値を外れているときには、制御装置12を介してガス供給源の開閉弁66a,67aを調整する。こうして、ガス供給源66,67の供給量を変化させ、温度調整装置6の冷却能力を調整する。
【0025】
徐冷炉4において0.1〜0.5秒間光ファイバ裸線3を徐冷し、つぎに徐冷炉4を出た光ファイバ裸線3を冷却筒5によってさらに冷却する。この際、冷却筒5を出たときの光ファイバ裸線3の温度が常温〜100℃となるように冷却する。
最後に、冷却筒5において冷却された光ファイバ裸線3を、図示しないコーターにおいて一次及び二次被覆を行い、光ファイバ素線を形成する。
【0026】
このような光ファイバの製造方法においては、紡糸炉1で溶融紡糸された光ファイバ裸線3を温度調整装置6により温度調整し、徐冷炉4において800〜1300℃、好ましくは900〜1100℃の温度に0.1〜0.5秒間保つため、溶融紡糸時に光ファイバ裸線内に発生した非架橋酸素ホールセンターを含む欠陥が十分に再結合してその大部分が消滅し、こうして得られる光ファイバの耐水素特性が良好となる。
前記温度調整装置6は、光ファイバ母材の種類、サイズ、形状等に限定されることもなく、また200〜1500m/分の幅広い紡糸線速に対応できる。
【0027】
本発明による光ファイバの製造装置は、温度調整装置6を用いて徐冷炉4への光ファイバ裸線3の入線温度を調整するため、炉長の長い大型の徐冷炉を必要とせず、さらに紡糸炉1と徐冷炉4との距離を著しく置く必要もないため、設備的に無理がない。
【0028】
【実施例】
以下、具体的な実施例を示して本発明の効果を明らかにする。
【0029】
共通条件
光ファイバ裸線:外径125μm,波長1.3μm伝送用シングルモードファイバ
一次及び二次被覆材:ウレタンーアクリレート系紫外線硬化型樹脂
被覆径:250μm
紡糸線速:200〜1500m/分
【0030】
実施例1
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1500℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1150℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.052dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0031】
実施例2
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1300℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1100℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.032dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0032】
実施例3
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.025dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0033】
比較例1
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置なし、徐冷炉の位置:紡糸炉出口から1.3m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.025dB/kmであった。
【0034】
実施例4
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度800℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度950℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.045dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0035】
実施例5
紡糸速度1000m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度600℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.1秒、徐冷炉出口での光ファイバ裸線の温度850℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.045dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0036】
比較例2
紡糸速度1000m/分、温度調整装置なし、徐冷炉なし、自然冷却により紡糸炉出口の1.7m後の光ファイバ裸線の温度600℃、得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.080dB/kmであった。
【0037】
以上の実施例1ないし5ならびに比較例1及び2の結果を、表1、表2、及び図2に示す。
【0038】
【表1】
【0039】
【表2】
【0040】
図2は、光ファイバ裸線の徐冷炉への入線温度と水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分との関係を示すグラフである。図2から、ファイバ入線温度が800〜1300℃の範囲であれば、耐水素特性がある程度改善されることが確認できる。これは、表1より、光ファイバ裸線の徐冷炉への入線温度及び徐冷炉からの出線温度を見ると、前記入線温度が600℃、1500℃の場合は、出線温度がそれぞれ850℃、1150℃であり、耐水素特性の改善に効果のある徐冷好温度域である800〜1300℃の範囲で徐冷される時間が短いことが原因と考えられる。
【0041】
また、表1及び図2から、光ファイバ裸線の徐冷炉への入線温度と徐冷炉内の温度が同等である実施例3が最も耐水素特性の改善がなされていることがわかる。すなわち、耐水素特性の改善には、800〜1300℃の範囲内の一定温度で保たれるのが最も効果的である。
【0042】
さらに、表2より、温度調整装置の有無による耐水素特性の変化は見られないことが分かる。このことから、温度調整装置を設けることにより紡糸炉と徐冷炉との間の間隔を短縮することが可能になり、限られた建屋の高さを有効に使用することができるようになる。
【0043】
実施例6
紡糸速度1200m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.085秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.038dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0044】
実施例7
紡糸速度1500m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.068秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.050dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0045】
実施例8
紡糸速度800m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.13秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.021dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0046】
実施例9
紡糸速度400m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.26秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.014dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0047】
実施例10
紡糸速度200m/分、徐冷炉温度1000℃、光ファイバ裸線の徐冷炉への入線温度1000℃、温度調整装置あり、徐冷炉の位置:紡糸炉出口から0.5m、徐冷長1.7m、徐冷時間0.51秒、徐冷炉出口での光ファイバ裸線の温度1000℃の条件で徐冷を行った。得られた光ファイバの水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分は0.010dB/kmであった。なお、紡糸炉と徐冷炉の間に温度調整装置を設け、これにはアルゴン及びヘリウムを供給し、光ファイバ裸線の徐冷炉への入線温度を調整した。
【0048】
以上の実施例6ないし10の結果を表3及び図3に示す。
【0049】
【表3】
【0050】
図3は、光ファイバ裸線の徐冷時間と水素試験(IEC60793−2準拠)後の1383nmでの伝送損失増加分との関係を示すグラフである。表3及び図3から、光ファイバ裸線の耐水素特性の改善には、光ファイバ裸線の徐冷時間は0.1〜0.5秒位でよいことが分かる。これは、徐冷時間は長ければ長いほど耐水素特性は改善されるが、徐冷時間を長くするために紡糸線速を低下させすぎることは好ましくないからである。
【0051】
【発明の効果】
以上説明したように、請求項1の発明による光ファイバの製造装置は、紡糸炉と徐冷炉との間に温度調整装置を設けたものであるので、光ファイバ裸線の徐冷炉への入線温度を900〜1300℃の範囲に調整することができる。請求項2の発明は、前記温度調整装置が一種類以上のガスで満たされているものであるので、このガスにより光ファイバ裸線の温度調整をすることができる。請求項3の発明は、前記温度調整装置が、熱伝達率の異なる二種類のガスで満たされているものであるので、これら二種類のガスの混合比を調整することによって、光ファイバ裸線の温度調整を行うことができる。
【0052】
請求項4の発明は、徐冷炉上部での光ファイバ裸線の温度を測定し、この測定温度に基づいて温度調整装置に供給するガス量を調整する制御装置を設けたものであるので、これにより光ファイバ裸線の温度調整が可能である。請求項5の発明は、前記温度調整装置が、徐冷炉との間に隙間を配して設けられているものであるので、徐冷炉及び温度調整装置内部のガスが混ざることがなく、適切な温度調整ができる。
【0053】
請求項6の発明は、光ファイバ母材を溶融紡糸する紡糸炉と、この紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に設けた温度調整装置で光ファイバ裸線の徐冷炉への入線温度を900〜1300℃とし、徐冷炉の温度を800〜1300℃とするものであるので、耐水素特性の良好な光ファイバが製造できるようにしたものである。請求項7の発明は、徐冷炉への光ファイバ裸線の入線温度が徐冷炉の温度と同じになるようにしたものであるので、効率的に耐水素特性の改善を行うことができる。
【0054】
請求項8の発明は、光ファイバ裸線を徐冷炉により0.1〜0.5秒間徐冷するものであるので、設備コストを上げたり紡糸線速を低下したりせずに徐冷を行えるようにしたものである。請求項9の発明は、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下であることを特徴とする光ファイバ素線であるので、これの耐水素特性は良好である。
【図面の簡単な説明】
【図1】本発明の光ファイバの製造装置の一例を示す概略構成図である。
【図2】光ファイバ裸線の徐冷炉への入線温度と水素試験後1383nmでの損失増加分との関係を示すグラフである。
【図3】光ファイバ裸線の徐冷時間と水素試験後1383nmでの損失増加分との関係を示すグラフである。
【図4】従来の光ファイバの製造装置の一例を示す概略構成図である。
【符号の説明】1・・・紡糸炉、2・・・光ファイバ母材、3・・・光ファイバ裸線、4・・・徐冷炉、6・・・温度調整装置、12・・・制御装置、61・・・中心管、62・・・ガス導入管、63・・・ガス排出管。
Claims (9)
- 光ファイバ母材を溶融紡糸する紡糸炉と、この紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に、光ファイバ裸線の徐冷炉への入線温度を900〜1300℃に調節する温度調整装置を設けたことを特徴とする光ファイバの製造装置。
- 温度調整装置が、一種類以上のガスで満たされていることを特徴とする請求項1記載の光ファイバの製造装置。
- 温度調整装置が、熱伝達率の異なる二種類のガスで満たされていることを特徴とする請求項2記載の光ファイバの製造装置。
- 徐冷炉上部での光ファイバ裸線の温度を測定し、この測定温度に基づいて温度調整装置に供給するガス量を調整する制御装置が設けられたことを特徴とする請求項1ないし3のいずれかに記載の光ファイバの製造装置。
- 温度調整装置が、徐冷炉との間に隙間を配して設けられていることを特徴とする請求項1ないし3のいずれかに記載の光ファイバの製造装置。
- 光ファイバ母材を溶融紡糸する紡糸炉と、この紡糸炉で溶融紡糸された光ファイバ裸線を徐冷する徐冷炉との間に温度調整装置を設け、この温度調整装置により光ファイバ裸線の徐冷炉への入線温度を900〜1300℃とし、徐冷炉の温度を800〜1300℃に設定することを特徴とする光ファイバの製造方法。
- 徐冷炉への光ファイバ裸線の入線温度と徐冷炉の温度とを同一にすることを特徴とする請求項6記載の光ファイバの製造方法。
- 光ファイバ裸線を徐冷炉により0.1〜0.5秒間徐冷することを特徴とする請求項6または7記載の光ファイバの製造方法。
- 請求項6ないし8のいずれかの製造方法によって製造され、水素試験(IEC60793−2準拠)後の波長1383nmでの損失増加量が0.02dB/km以下であることを特徴とする光ファイバ心線。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003134538A JP2004338972A (ja) | 2003-05-13 | 2003-05-13 | 光ファイバの製造方法及び製造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003134538A JP2004338972A (ja) | 2003-05-13 | 2003-05-13 | 光ファイバの製造方法及び製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004338972A true JP2004338972A (ja) | 2004-12-02 |
Family
ID=33525076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003134538A Pending JP2004338972A (ja) | 2003-05-13 | 2003-05-13 | 光ファイバの製造方法及び製造装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004338972A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281090A (ja) * | 2004-03-30 | 2005-10-13 | Toyota Gakuen | 光ファイバの製造方法及び製造装置 |
JP2007063030A (ja) * | 2005-08-29 | 2007-03-15 | Fujikura Ltd | 光ファイバ裸線の製造方法、光ファイバ素線の製造方法と製造装置並びに光ファイバ素線 |
JP2009298664A (ja) * | 2008-06-16 | 2009-12-24 | Fujikura Ltd | 希土類添加光ファイバの製造方法 |
WO2010133537A1 (de) * | 2009-05-20 | 2010-11-25 | J-Fiber Gmbh | Verfahren zur herstellung einer glasfaser und vorrichtung |
WO2017132295A3 (en) * | 2016-01-29 | 2017-09-21 | Corning Incorporated | Thermal energy control system for an optical fiber |
-
2003
- 2003-05-13 JP JP2003134538A patent/JP2004338972A/ja active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281090A (ja) * | 2004-03-30 | 2005-10-13 | Toyota Gakuen | 光ファイバの製造方法及び製造装置 |
JP4568003B2 (ja) * | 2004-03-30 | 2010-10-27 | 学校法人トヨタ学園 | 光ファイバの製造方法及び製造装置 |
JP2007063030A (ja) * | 2005-08-29 | 2007-03-15 | Fujikura Ltd | 光ファイバ裸線の製造方法、光ファイバ素線の製造方法と製造装置並びに光ファイバ素線 |
JP2009298664A (ja) * | 2008-06-16 | 2009-12-24 | Fujikura Ltd | 希土類添加光ファイバの製造方法 |
WO2010133537A1 (de) * | 2009-05-20 | 2010-11-25 | J-Fiber Gmbh | Verfahren zur herstellung einer glasfaser und vorrichtung |
US8800324B2 (en) | 2009-05-20 | 2014-08-12 | J-Fiber Gmbh | Method for producing a glass fiber and device |
WO2017132295A3 (en) * | 2016-01-29 | 2017-09-21 | Corning Incorporated | Thermal energy control system for an optical fiber |
US10611669B2 (en) | 2016-01-29 | 2020-04-07 | Corning Incorporated | Thermal energy control system for an optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4990429B2 (ja) | 線引き中の光ファイバーの冷却方法 | |
US4897100A (en) | Apparatus and process for fiberizing fluoride glasses using a double crucible and the compositions produced thereby | |
US7677060B2 (en) | Method for manufacturing optical fiber and the cooling of the optical fiber | |
JP2011505326A (ja) | 低減衰ファイバーのためのファイバー・エアターン | |
US20090084141A1 (en) | Single Mode Optical Fiber and Manufacturing Method Therefor | |
CN106125192B (zh) | 一种超低损耗大有效面积光纤及其制备工艺 | |
JPH0459631A (ja) | 光ファイバの線引方法 | |
KR20040108764A (ko) | 인발 단계 동안 유리 광섬유를 열 처리하는 방법 및 장치 | |
JP4356155B2 (ja) | 光ファイバの製造方法 | |
EP4219418A1 (en) | Optical fiber drawing furnace, optical fiber preparation apparatus, optical fiber preparation method, and small-diameter optical fiber | |
JP4663277B2 (ja) | 光ファイバ素線及びその製造方法 | |
WO2000073224A1 (fr) | Dispositif de production et procede pour fibre optique | |
GB2314077A (en) | Making optical fibres by drawing rod-in-tube preforms | |
RU2335465C2 (ru) | Способ вытяжки оптического волокна без оболочки, способ изготовления оптического волокна и оптическое волокно | |
WO2022121259A1 (zh) | 光纤及其制备方法 | |
CN107108327A (zh) | 光纤的制造方法 | |
JP2004338972A (ja) | 光ファイバの製造方法及び製造装置 | |
JP4302367B2 (ja) | 光ファイバの線引き方法および線引き装置 | |
US8381549B2 (en) | Optical fiber preform fabricating method | |
JP2000335933A (ja) | 光ファイバの製造方法及び製造装置 | |
JP4459720B2 (ja) | 光ファイバ素線の製造方法 | |
JP4400026B2 (ja) | 光ファイバの製造方法 | |
US6935139B2 (en) | Method of manufacturing optical fiber | |
US6907757B2 (en) | Drawing method of optical fiber and drawing furnace | |
US8839645B2 (en) | Method of manufacturing optical fiber base material and apparatus of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080812 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090106 |