Nothing Special   »   [go: up one dir, main page]

JP2004335411A - イオン発生素子及び除菌方法 - Google Patents

イオン発生素子及び除菌方法 Download PDF

Info

Publication number
JP2004335411A
JP2004335411A JP2003133181A JP2003133181A JP2004335411A JP 2004335411 A JP2004335411 A JP 2004335411A JP 2003133181 A JP2003133181 A JP 2003133181A JP 2003133181 A JP2003133181 A JP 2003133181A JP 2004335411 A JP2004335411 A JP 2004335411A
Authority
JP
Japan
Prior art keywords
discharge electrode
dielectric
ion generating
discharge
semiconductor photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003133181A
Other languages
English (en)
Inventor
Soichiro Sakata
総一郎 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2003133181A priority Critical patent/JP2004335411A/ja
Publication of JP2004335411A publication Critical patent/JP2004335411A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electrostatic Separation (AREA)

Abstract

【課題】オゾンの発生を抑制しながら空気中の除菌を行うことが可能なイオン発生素子を提供する。
【解決手段】このイオン発生素子1は,誘電体10の表面に配置された放電電極11と,間に誘電体10を介在させて放電電極11と平行に配置された対向電極12を備え,放電電極11と誘電体表面10の境界部分に沿って半導体光触媒13が配置されている。放電電極11と対向電極12に交流電圧を印加することにより,沿面放電を生じさせ,プラスイオンH(HO)nとマイナスイオンO (HO)nを大量に発生させることができる。また,人体に有害なオゾンの発生も同時に抑制することができる。
【選択図】 図1

Description

【0001】
本発明は,空気の除菌などを行うために使用されるイオン発生素子に関する。
【0002】
【従来の技術】
例えば特開2003−35445号公報に示されるように,空気中の微粒子をイオンにより帯電させて電極に集塵し,紫外線等により殺菌する方法が知られている。また,特開2000−93836号公報に示されるように,コロナ放電によって発生させたマイナスイオンとオゾンにより,殺菌を行う方法が知られている。
【0003】
【特許文献1】特開2003−35445号公報
【特許文献2】特開2000−93836号公報
【0004】
【発明が解決しようとする課題】
しかしながら,電極に集塵して殺菌する場合,電極を定期的に清掃しなければならない。また,電極には高電圧を印加しているため,取扱いに注意を払う必要がある。
【0005】
一方,オゾンを利用して殺菌する場合,オゾンは人体に有害なため,オゾンを分解してからでなければ,空調空間などに給気することができない。この場合,下流にオゾン分解装置を配置したのでは,装置が大がかりとなり,コストアップとなる。
【0006】
従って本発明の目的は,オゾンの発生を抑制しながら空気中の除菌を行うことが可能なイオン発生素子を提供することにある。
【0007】
【課題を解決するための手段】
本発明にあっては,誘電体の表面に配置された放電電極と,間に誘電体を介在させて放電電極と平行に配置された対向電極を備え,放電電極と対向電極に交流電圧を印加することにより,沿面放電を生じさせるイオン発生素子であって,少なくとも放電電極と誘電体表面の境界部分に沿って半導体光触媒を配置したことを特徴としている。
【0008】
本発明において,少なくとも放電電極と誘電体表面の境界部分に沿って,半導体光触媒を含有する,透明かつ多孔質の透明層を形成しても良い。この場合,前記透明層が,チタニアゾルと,シリカまたはアルミナのゾルバインダを混合したコーティング剤を塗布して形成されるものであっても良い。
【0009】
前記放電電極が,チタン,インジウム,タングステンのいずれか,もしくはチタン,インジウム,タングステンのいずれかを主要成分とする合金で構成されていることが好ましい。
【0010】
また,本発明にあっては,これらのイオン発生素子を空気中に配置し,放電電極と対向電極に交流電圧を印加することにより,沿面放電を生じさせて除菌することを特徴としている。
【0011】
【発明の実施の形態】
以下,本発明の好ましい実施の形態を図面を参照にして説明する。
図1〜3に示すように,この実施の形態にかかるイオン発生素子1は,絶縁性を有する直方体形状の誘電体10の表面(上面)に幅狭の長方形の板状の放電電極11を長手方向に沿って配置し,誘電体10の内部に,放電電極11よりも幅の広い長方形の板状の対向電極12を配置した構成を有している。放電電極11と対向電極12は所定の隙間を空けて互いに平行に配置されており,放電電極11と対向電極12の間には誘電体10が介在し,両者は絶縁された状態になっている。誘電体10は,例えばガラス,セラミックス等の絶縁体からなる。
【0012】
誘電体10の表面(上面)には,放電電極11の周縁部と誘電体10の表面との境界部分に沿って半導体光触媒13が配置されている。半導体光触媒13は,例えば酸化チタン(TiO),ガリウムリン(GaP),ガリウムヒ素(GaAs),硫化カドミウム(CdS),チタン酸ストロンチウム(SrTiO),酸化亜鉛(ZnO),酸化鉄(Fe),酸化タングステン(WO)などである。半導体光触媒13は,そのバンドキャップエネルギー以上のエネルギーを有する紫外線を照射されると活性化し,人体に有害なオゾンを分解させることができる。
【0013】
放電電極11と対向電極12に交流電圧を印加するための電源15が接続されている。
【0014】
以上のように構成された本発明の実施の形態にかかるイオン発生素子1を例えば大気中に配置して,電源15によって放電電極11と対向電極12に交流電圧を印加すると,誘電体10の表面に沿って電流が流れ,沿面放電が発生する。そして,この沿面放電によって,イオン発生素子1の周囲に存在する空気中の分子を励起して,除菌効果がありかつ人体に無害なプラスイオンとマイナスイオンを交流電圧の周期で交互に発生させることができる。
【0015】
こうして発生したプラスイオンはHにHOが付着したクラスターイオンH(HO)であり,マイナスイオンはOにHOが付着したクラスターイオンO(HO)である。これらのイオンH(HO),O(HO)は,イオン発生素子1の周囲の空気中に浮遊する菌やカビなどに取り付き,菌やカビなどの表面で両極イオンが中和・消滅する際に,過酸化水素やOHラジカルを発生する。
(HO)+O(HO) → H,OH
【0016】
そして,過酸化水素は浮遊微生物の細胞膜を浸透し,原形質内の増殖機構(DNAメカニズム)を破壊して殺菌する(オキシドールによる傷口雑菌の殺菌と同様)。また,OHラジカルは脱臭効果がある。こうして,空気中に浮遊する菌やカビなどを滅し,除菌を行うことが可能となる。
【0017】
また,沿面放電により,イオンと同時に人体に有害なオゾンも発生する。一方,沿面放電に伴って発生する紫外線領域の光は,放電電極11の周縁部と誘電体10の表面の境界部分に沿って配置された半導体光触媒13を活性化させる。この場合,半導体光触媒13が例えば酸化チタンであれば,酸化チタンの3種類の結晶系のルチル,アナターゼ,ブルッカイトに対して,活性化に必要なバンドキャップエネルギーはそれぞれ3.0eV,3.2eV,3.2eVであり,それぞれ413nm以下,380nm以下,380nm以下の波長を有する紫外線が照射されれば,半導体光触媒13(酸化チタン)は活性化されることになる。沿面放電に伴って発生する紫外線領域の光は,こられの波長領域の紫外線を含んでいるから,半導体光触媒13(酸化チタン)を活性化させ,イオンと同時に発生したオゾンを分解させることができる。この場合,半導体光触媒13が放電電極11の周縁部と誘電体10の表面との境界部分に沿って配置されているため,放電電極11の周縁部と誘電体10の表面との境界部分でイオンと共に発生するオゾンを,発生直後に分解することが可能である。
【0018】
図4,5に示すように,本発明のイオン発生素子1において,誘電体10の表面(上面)に配置される放電電極11が格子状に形成されているような場合は,放電電極11と誘電体10の表面との境界部分となる,格子状に形成された放電電極11の外側の周縁部と内側の周縁部の両方に沿って半導体光触媒13を配置すれば良い。そうすれば,放電電極11の周縁部と誘電体10の表面との境界部分で発生するオゾンを,半導体光触媒13の活性化によって即座に分解することが可能である。
【0019】
なお,半導体光触媒13は,少なくとも放電電極11と誘電体10表面の境界部分に沿って配置されていれば良く,例えば誘電体10表面の全体に半導体光触媒13が配置されていても良い。図6に示す形態では,放電電極11の真上を除き,誘電体10表面の全体に半導体光触媒13が配置されている。このように,放電電極11の真上を除いて誘電体10の表面全体に半導体光触媒13が配置することによっても,放電電極11の周縁部と誘電体10の表面との境界部分で発生するオゾンを,半導体光触媒13の活性化によって即座に分解することが可能である。
【0020】
この図6のように,放電電極11の真上を除いて誘電体10の表面全体に半導体光触媒13を配置するためには,先ず,放電電極11の真上も含んだ誘電体10の表面全体に半導体光触媒13を塗布等して,その後,例えばやすりやカッターなどで削る等して,放電電極11の真上から半導体光触媒13を取除き,放電電極11の表面を再度露出させるようにすると良い。放電電極11の形状が複雑な場合は,放電電極11と誘電体10の表面の境界部分に沿って半導体光触媒13を正確に配置させようとすると,製造コストが高くなってしまう。そのような場合は,一度誘電体10の表面全体に半導体光触媒13を塗布等してから,放電電極11の表面を露出させることが望ましい。なお,このように放電電極11の表面を露出させる目的は,放電電極11に加える交流電圧を小さくするためである。放電電極11の表面を露出させずに,放電電極11の表面にも半導体光触媒13を塗布したままの状態で放電を生じさせるには,放電電極11に加える交流電圧を大きくしなければならなくなる。なお,交流電圧を大きくさせることが問題とならないのであれば,放電電極11の表面にも半導体光触媒13を塗布したままの状態で良く,放電電極11の真上から半導体光触媒13を取除く必要は無い。
【0021】
ここで,本発明のように沿面放電を生じさせる放電体は,表面がアルミナ被膜で覆われているものが一般に知られている(例えば特公平2−56793号公報)。図7に示すように,本発明のイオン発生素子1は,誘電体10の表面(放電電極11の表面も含む)の全体がアルミナ被膜16で覆われている場合は,アルミナ被膜16の表面(上面)において,少なくとも放電電極11と誘電体10表面の境界部分に沿って半導体光触媒13を配置すれば良い。この場合,もちろん先に説明したように,アルミナ被膜16の表面において,放電電極11の真上を除いて誘電体10の表面全体に半導体光触媒13を配置しても良い。このように誘電体10の表面全体を覆うアルミナ被膜16の上に半導体光触媒13を配置した場合も,放電電極11と誘電体10表面の境界部分に沿って半導体光触媒13を配置することにより,誘電体10の表面に直接(アルミナ被膜16を介さずに)半導体光触媒13を配置した場合と同等のオゾン発生を抑制する効果が得られる。
【0022】
図8に示したように,例えば粒状の半導体光触媒13を含有する,透明かつ多孔質の透明層20を,放電電極11と誘電体10表面の境界部分に沿って形成しても良い。このような透明層20の具体例としては,半導体光触媒13としてのチタニアゾルと,シリカゾルまたはアルミナゾルなどのバインダを混合したコーティング剤を放電電極11と誘電体10表面の境界部分に塗布することによって形成することができる。
【0023】
この図8の形態によれば,イオンの発生に伴って発生したオゾンは,透明層20に形成された多孔性空隙部21に捕捉・吸着される。そして,沿面放電に伴って発生した紫外線領域の光が透明層20を透過することにより,透明層20に含有されている半導体光触媒13に光が照射され,活性化された半導体光触媒13の作用でオゾンは分解されて消滅する。こうして未分解のオゾンが多孔性空隙部21を閉塞してしまうことなく,イオンの発生に伴って発生したオゾンの多孔性空隙部21への捕捉・吸着,分解が連続して起こるようになる。特に,シリカゲルやアルミナゲルは吸着容量や吸着表面が大きく,オゾンを捕捉・吸着する能力に優れており,しかも透明であるから,放電発光と半導体光触媒13を利用したオゾンの光分解処理を円滑に行うことができる。
【0024】
なお,図8で説明した透明かつ多孔質の透明層20は,必ずしも放電電極11と誘電体10表面の境界部分にコーティング剤を塗布することによって形成する必要は無い。例えば,誘電体10自体を,半導体光触媒13を含有したシリカゾルまたはアルミナゾルなどのバインダを含んだ透明層20に構成し,結果的に誘電体10の表面に半導体光触媒13を含有した透明層20が形成されるように構成しても良い。
【0025】
誘電体10の表面に設けられる導電性の放電電極11の材質は,チタン,インジウム,タングステンのいずれか,もしくはチタン,インジウム,タングステンのいずれかを主要成分とする合金とすると良い。これらの材質を用いれば,オゾンの強い酸化力によって放電電極11が酸化された場合に,チタンは酸化チタン(TiO)となり,インジウムは酸化インジウム(In)となり,タングステンは酸化タングステン(WO)となる。これらの金属酸化物は,半導体光触媒であるから,オゾンの分解に寄与することとなる。なお,ステンレスのような鉄を主要成分する合金や,亜鉛なども酸化するとFe,ZnOといった半導体光触媒に変化するが,鉄や亜鉛を主要成分とする合金などは酸化されやすく,放電電極11そのものの機械的劣化が著しくなるため,放電電極11の材質としては,チタン,インジウム,タングステンか,もしくはそれらを主要成分とする合金が好ましい。
【0026】
図9に示したように,本発明のイオン発生素子1を,例えば食品加工工場のようなオイルミストを生ずる空調空間への給気ダクト25に設置する場合,放電電極11を給気ダクト25の内部に向けた姿勢で,給気ダクト25の壁面に誘電体10を取り付け,誘電体10の周囲は給気ダクト25の外部に水が漏れ出ないような防水構造26(例えばパテ埋め,パッキンなどのシール構造等)とするのが良い。食品加工工場などでは,加工等の際に発生するオイルミストが給気ダクト25内に設置されたイオン発生素子1の放電電極11に付着する心配がある。放電電極11にオイルミストが付着すると,放電が起こりにくくなり,空気イオンの発生量が減って,除菌性能が低下する。誘電体10の周囲を防水構造26としておけば,毎日の操業終了後にイオン発生素子1に付着したオイルミストを水溶性洗浄液を染み込ませたワイパーで拭き取ることができる。そのような洗浄液によるクリーニングの際に,誘電体10の裏面側に配置される電源15側に洗浄液が回り込まず,故障が生じにくい。
【0027】
ここで,先に図8で説明した形態では,透明層20の多孔性空隙部21にオゾンを捕捉して分解が行われるが,その際,透明層20に水分が付着すると,多孔性空隙部21が水分によって閉塞され,オゾンを捕捉できなくなる。例えば梅雨の季節などに空調空気の除菌対策に本発明によるイオン発生素子1を適用した場合,相対湿度が100%に近い湿った空気を処理しようとすると,透明層20に水分が付着してそのような問題を生ずる心配がある。そこで,先に図8で説明した形態のように,粒状等の半導体光触媒13を含有する,透明かつ多孔質の透明層20を放電電極11と誘電体10表面の境界部分に沿って形成する場合は,この透明層20における半導体光触媒13によるオゾン分解を促進するために,透明層20の温度を,イオン発生素子1がおかれた周囲雰囲気よりも少なくとも1℃以上高い状態に加熱できるヒータを備えていても良い。ヒータによって,透明層20の温度を,イオン発生素子1がおかれた周囲雰囲気よりも少なくとも1℃以上高い状態に加熱することで,結露などによる水分閉塞を防止できる。この場合,例えば図9中に記入したように,誘電体10の裏面(放電電極11が設けられていない側の面)にヒータ27を取り付け,イオン発生素子1全体を加熱するように構成しても良い。
【0028】
その他,以上の実施の形態においては,誘電体10の内部に対向電極12を配置した構成を示したが,放電電極11と対向電極12が誘電体10を挟んで互いに平行に配置されていれば良く,例えば誘電体10の表面に放電電極11を取り付け,誘電体10の裏面に放電電極11を取り付けても良い。
【0029】
【実施例】
図10に示すように,内壁面に帯電防止処理が施された1m立方の密閉されたチャンバ30内に,枯草菌芽胞31(通常の細菌の細胞膜が親水性であるのに対して,疎水性の多糖性膜を有する。疎水性の細胞膜は乾燥に極めて強く,内部の原形質にDNAを濃縮した状態で保存でき,環境変化に対しても,“冬眠状態”で生き続ける。炭疽菌芽胞も同類。殺菌剤や紫外線殺菌の効果を検証するための標準菌としての利用法がJIS規格にも定められている。)をコンプレッサー式ネブライザ32で噴霧し,落下しないようにファン33で巻き上げた。チャンバ30内にオゾン濃度計35とイオン濃度計36を配置し,チャンバ30内のオゾン濃度とイオン濃度を,遠隔計測器37でモニタリングすることにより,イオン濃度およびオゾン濃度の経時変化を測定した。
【0030】
以上のようなチャンバ30内において,ファン33で巻き上げられた直後の空気流が当る位置に,本発明に従って構成したイオン発生素子1を配置した。また,比較例1として,本発明のイオン発生素子1の代りに,誘電体10の表面に半導体光触媒13を配置していないイオン発生素子を,同様の位置に配置した。
【0031】
30分おきにチャンバ30内の空気100リットルをインピンジャー38で吸引し,インピンジャー38内に入れた超純水中に空気中の枯草菌芽胞31を捕集し,超純水中の枯草菌芽胞31の生菌数を寒天培地法によってカウントした。こうして,チャンバ30内の枯草菌芽胞31の空気中浮遊生菌数の経時変化を測定した。なお,初期(経過時間0分)の枯草菌芽胞31の浮遊濃度は,20万個/100リットルエアであった。
【0032】
本発明の実施例と比較例1についてオゾン濃度の経時変化を比較したところ,本発明の実施例では,図11に示すように,誘電体10の表面に半導体光触媒13を配置していることにより,人体に有害なオゾンの発生を抑制できたことがわかった。一方,誘電体10の表面に半導体光触媒13を配置していない比較例1では,オゾンの発生を抑制できていなかった。なお,図11中のコントロールとは,実施例や比較例1で設けたイオン発生素子をチャンバ30内に配置しなかった場合の測定結果を意味する。いわゆるバックグラウンドデータである。
【0033】
本発明の実施例と比較例1についてイオン濃度の経時変化を比較したところ,図12に示すように,本発明の実施例では,プラスイオン,マイナスイオンとも,誘電体10の表面に半導体光触媒13を配置していない比較例1に比べてイオン発生量が増加することがわかった。
【0034】
本発明の実施例と比較例1について枯草菌芽胞31の浮遊生菌数相対値(初期浮遊数を100%)の経時変化を比較したところ,図13に示すように,本発明の実施例では,イオン発生量が増加した結果,比較例1に比べて除菌効果も増大したことがわかった。なお,図13中のコントロールとは,実施例や比較例1で設けたイオン発生素子をチャンバ30内に配置しなかった場合の測定結果を意味する。いわゆるバックグラウンドデータである。
【0035】
この図13の浮遊生菌数相対値を浮遊菌除菌率に表現して,本発明の実施例と比較例1について除菌率の経時変化を比較したところ,図14に示すようになった。浮遊菌除菌率=(1−イオン発生時の浮遊生菌数/コントロールの浮遊生菌数)×100%
【0036】
次に,図15に示すように,比較例2のイオン発生素子40として,誘電体10の表面(上面)において,放電電極11の周縁部と誘電体10の表面との境界部分から外側に離れた位置に半導体光触媒13を配置した。この比較例2のイオン発生素子40を,図10で説明したチャンバ30内において,本発明のイオン発生素子1の代りに同様の位置に配置した。
【0037】
また,図16に示すように,比較例3として,チャンバ30内において,本発明のイオン発生素子1の代りに,誘電体10の表面(上面)に半導体光触媒13を配置していないイオン発生素子41(比較例1のイオン発生素子と同じもの)を,同様にファン33で巻き上げられた直後の空気流が当る位置に配置し,更に,イオン発生素子41の下流(上方)に,半導体光触媒を担持させたハニカム構造体42と紫外線ランプ43を配置した。
【0038】
本発明の実施例と比較例1〜3についてオゾン濃度の経時変化を比較したところ,図17に示すように,本発明の実施例と比較して,放電電極11の周縁部と誘電体10の表面との境界部分から外側に離れた位置に半導体光触媒13が配置されている比較例2では,オゾン発生をほとんど抑止しえないことがわかった。一方,比較例3は,装置が大がかりとなり,コストアップとなる。なお,図17中のコントロールとは,実施例や比較例1〜3で設けたイオン発生素子,ハニカム構造体42,紫外線ランプ43をチャンバ30内に配置しなかった場合の測定結果を意味する。いわゆるバックグラウンドデータである。
【0039】
【発明の効果】
本発明によれば,簡便な構成でありながら,除菌効果がありかつ人体に無害なプラスイオンH(HO)nとマイナスイオンO (HO)nを大量に発生させることができ,かつ,従来イオン発生には不可避であった人体に有害なオゾンの発生を同時に抑制することが容易となる。本発明によれば,オゾン分解のための特別の分解装置を設ける必要がない。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかるイオン発生素子の平面図である。
【図2】図1におけるX−X断面図である。
【図3】図1におけるY−Y断面拡大図である。
【図4】放電電極が格子状に形成されている本発明の実施の形態にかかるイオン発生素子の平面図である。
【図5】図4におけるX−X断面図である。
【図6】放電電極が格子状に形成され,放電電極の真上を除き,誘電体表面の全体に半導体光触媒が配置されている本発明の実施の形態にかかるイオン発生素子の平面図である。
【図7】誘電体の表面を覆うアルミナ被膜の表面に半導体光触媒を配置した本発明の実施の形態にかかるイオン発生素子の縦断面図である。
【図8】半導体光触媒含有する,透明かつ多孔質の透明層の拡大図である。
【図9】誘電体の周囲を防水構造とした本発明の実施の形態をダクトに取り付けた状態を示す断面図である。
【図10】実施例に用いたチャンバの説明図である。
【図11】本発明の実施例と比較例1についてオゾン濃度の経時変化を比較したグラフである。
【図12】本発明の実施例と比較例1についてイオン濃度の経時変化を比較したグラフである。
【図13】本発明の実施例と比較例1について枯草菌芽胞の浮遊生菌数相対値の経時変化を比較したグラフである。
【図14】本発明の実施例と比較例1について除菌率の経時変化を比較したグラフである。
【図15】比較例2のイオン発生素子の平面図である。
【図16】比較例3の説明図である。
【図17】本発明の実施例と比較例1〜3についてオゾン濃度の経時変化を比較したグラフである。
【符号の説明】
1 イオン発生素子
10 誘電体
11 放電電極
12 対向電極
13 半導体光触媒
15 電源
20 透明層
21 多孔性空隙部
25 給気ダクト
26 防水構造
27 ヒータ
30 チャンバ
31 枯草菌芽胞
32 ネブライザ
33 ファン
35 オゾン濃度計
36 イオン濃度計
37 遠隔計測器
38 インピンジャー

Claims (5)

  1. 誘電体の表面に配置された放電電極と,間に誘電体を介在させて放電電極と平行に配置された対向電極を備え,放電電極と対向電極に交流電圧を印加することにより,沿面放電を生じさせるイオン発生素子であって,
    少なくとも放電電極と誘電体表面の境界部分に沿って半導体光触媒を配置したことを特徴とする,イオン発生素子。
  2. 少なくとも放電電極と誘電体表面の境界部分に沿って,半導体光触媒を含有する,透明かつ多孔質の透明層を形成したことを特徴とする,請求項1に記載のイオン発生素子。
  3. 前記透明層が,チタニアゾルと,シリカまたはアルミナのゾルバインダを混合したコーティング剤を塗布して形成されることを特徴とする,請求項1又は2に記載のイオン発生素子。
  4. 前記放電電極が,チタン,インジウム,タングステンのいずれか,もしくはチタン,インジウム,タングステンのいずれかを主要成分とする合金で構成されていることを特徴とする,請求項1,2又は3に記載のイオン発生素子。
  5. 請求項1,2,3又は4に記載のイオン発生素子を空気中に配置し,放電電極と対向電極に交流電圧を印加することにより,沿面放電を生じさせて除菌することを特徴とする,除菌方法。
JP2003133181A 2003-05-12 2003-05-12 イオン発生素子及び除菌方法 Pending JP2004335411A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133181A JP2004335411A (ja) 2003-05-12 2003-05-12 イオン発生素子及び除菌方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133181A JP2004335411A (ja) 2003-05-12 2003-05-12 イオン発生素子及び除菌方法

Publications (1)

Publication Number Publication Date
JP2004335411A true JP2004335411A (ja) 2004-11-25

Family

ID=33507813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133181A Pending JP2004335411A (ja) 2003-05-12 2003-05-12 イオン発生素子及び除菌方法

Country Status (1)

Country Link
JP (1) JP2004335411A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289337A (ja) * 2005-01-07 2006-10-26 Matsushita Electric Ind Co Ltd 集塵装置および空調装置
JP2007083203A (ja) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd 集塵装置および空調装置
JP2009055791A (ja) * 2007-08-29 2009-03-19 Midori Anzen Co Ltd 微生物採取装置、ノズル装置および微生物採取方法
JP2009517175A (ja) * 2005-11-30 2009-04-30 エアロケアー,インコーポレーテッド 空気及び室内の衛生化装置及び方法
JP2009101279A (ja) * 2007-10-22 2009-05-14 Panasonic Electric Works Co Ltd 静電霧化装置
KR101167146B1 (ko) 2010-06-30 2012-07-20 송파공업고등학교 연면방전체 및 씨브디광촉매필터부를 이용한 이온 발생장치
JP2013078573A (ja) * 2011-09-21 2013-05-02 Nbc Meshtec Inc 浮遊ウイルス除去ユニット
JP2013183769A (ja) * 2012-03-06 2013-09-19 Shunsuke Hosokawa 小型脱臭器
WO2015069066A1 (en) * 2013-11-07 2015-05-14 Lg Electronics Inc. Ion generator and method of manufacturing the same
WO2019230245A1 (ja) * 2018-05-28 2019-12-05 パナソニックIpマネジメント株式会社 電気集塵装置、換気装置及び空気清浄機
EP4030571A1 (de) * 2021-01-13 2022-07-20 Marquardt GmbH Ionengenerierendes element
WO2023127822A1 (ja) * 2021-12-28 2023-07-06 キヤノン株式会社 気体処理装置、及び気体処理方法
WO2023127836A1 (ja) * 2021-12-28 2023-07-06 キヤノン株式会社 気体処理装置、及び気体処理方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289337A (ja) * 2005-01-07 2006-10-26 Matsushita Electric Ind Co Ltd 集塵装置および空調装置
JP2007083203A (ja) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd 集塵装置および空調装置
JP2009517175A (ja) * 2005-11-30 2009-04-30 エアロケアー,インコーポレーテッド 空気及び室内の衛生化装置及び方法
JP2009055791A (ja) * 2007-08-29 2009-03-19 Midori Anzen Co Ltd 微生物採取装置、ノズル装置および微生物採取方法
JP2009101279A (ja) * 2007-10-22 2009-05-14 Panasonic Electric Works Co Ltd 静電霧化装置
KR101167146B1 (ko) 2010-06-30 2012-07-20 송파공업고등학교 연면방전체 및 씨브디광촉매필터부를 이용한 이온 발생장치
JP2013078573A (ja) * 2011-09-21 2013-05-02 Nbc Meshtec Inc 浮遊ウイルス除去ユニット
JP2013183769A (ja) * 2012-03-06 2013-09-19 Shunsuke Hosokawa 小型脱臭器
WO2015069066A1 (en) * 2013-11-07 2015-05-14 Lg Electronics Inc. Ion generator and method of manufacturing the same
CN105706318A (zh) * 2013-11-07 2016-06-22 Lg电子株式会社 离子发生器及其制造方法
JP2016537773A (ja) * 2013-11-07 2016-12-01 エルジー エレクトロニクス インコーポレイティド イオン発生装置及びその製造方法
EP3066728A4 (en) * 2013-11-07 2017-07-12 LG Electronics Inc. Ion generator and method of manufacturing the same
US10116124B2 (en) 2013-11-07 2018-10-30 Lg Electronics Inc. Ion generator and method of manufacturing the same
WO2019230245A1 (ja) * 2018-05-28 2019-12-05 パナソニックIpマネジメント株式会社 電気集塵装置、換気装置及び空気清浄機
JPWO2019230245A1 (ja) * 2018-05-28 2021-07-15 パナソニックIpマネジメント株式会社 電気集塵装置、換気装置及び空気清浄機
EP4030571A1 (de) * 2021-01-13 2022-07-20 Marquardt GmbH Ionengenerierendes element
WO2023127822A1 (ja) * 2021-12-28 2023-07-06 キヤノン株式会社 気体処理装置、及び気体処理方法
WO2023127836A1 (ja) * 2021-12-28 2023-07-06 キヤノン株式会社 気体処理装置、及び気体処理方法

Similar Documents

Publication Publication Date Title
US9974881B2 (en) Air purifying apparatus using ultra violet light emitting diode
KR100535123B1 (ko) 하이브리드형 차량용 공기 청정기
JP5855122B2 (ja) 微生物・ウイルスの捕捉・不活化装置及びその方法
JP3773767B2 (ja) イオン発生装置を備えた空気清浄機並びに空気調和機
JP3770782B2 (ja) イオン発生装置を備えた空気清浄機及び空気調和機
KR100625771B1 (ko) 공기순환식 유인 오존 살균시스템 및 방법
JP2004335411A (ja) イオン発生素子及び除菌方法
JPWO2011152016A1 (ja) 微生物・ウイルスの捕捉・不活化装置及びその方法
KR101305762B1 (ko) 매립형 플라즈마 공기청정기
KR20050019692A (ko) 공조라인에 설치가능한 공기살균 청정유닛
JP3924589B2 (ja) 空気清浄機
US20230241280A1 (en) Multi-function air purifing and sterilizing system
KR20110090539A (ko) 공기 살균정화 장치
CN113154608A (zh) 一种等离子灭杀病毒病菌方法及装置
KR100949164B1 (ko) 이온화 믹싱셀을 갖는 다단 광촉매 산화와 환원 반응기 및 그 방법과 이를 이용한 냄새제거장치
JP3000056B2 (ja) 空気清浄化装置
JP4075869B2 (ja) 浄化装置
JP2002319471A (ja) イオン発生素子及びそれを備えた装置
JP2002085544A (ja) イオン発生装置及びそれを備えた空気清浄機並びに空気調和機
KR20160063693A (ko) 휘발성 유기화합물 제거장치 및 이를 이용한 휘발성 유기화합물의 제거방법
JP2002075588A (ja) イオン発生装置及びそれを備えた空気清浄機並びに空気調和機
JP2006167190A (ja) 空気浄化装置
CN221425049U (zh) 一种针对设施农业可移动式等离子体室内环境消杀装置
KR20030048989A (ko) 공기청정기
CN216799377U (zh) 灭菌消毒的等离子空气清净机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428