JP2004325713A - Objective lens - Google Patents
Objective lens Download PDFInfo
- Publication number
- JP2004325713A JP2004325713A JP2003119354A JP2003119354A JP2004325713A JP 2004325713 A JP2004325713 A JP 2004325713A JP 2003119354 A JP2003119354 A JP 2003119354A JP 2003119354 A JP2003119354 A JP 2003119354A JP 2004325713 A JP2004325713 A JP 2004325713A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- objective lens
- refractive power
- numerical example
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/003—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0035—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/004—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は対物レンズに関し、特にビデオカメラやデジタルカメラ、またカメラ付の携帯電話や携帯端末等の撮影レンズ(撮影光学系)に好適なものである。
【0002】
【従来の技術】
近年、CCDセンサやCMOSセンサ等の固体撮像素子を有するビデオカメラやデジタルカメラ、そしてカメラ付の携帯電話や携帯端末が種々開発されている。特に、携帯電話や携帯端末においては、その携帯性の観点から小型・軽量の撮影レンズが強く望まれている。
【0003】
小型の撮影レンズとしては、正の屈折力の第1レンズと負の屈折力の第2レンズの2枚構成のものが知られている(例えば特許文献1,2)。
【0004】
また、小型化とともに結像性能の向上も考慮した、正の屈折力の第1レンズと負の屈折力の第2レンズ、正の屈折力の第3レンズからなる所謂トリプレット構成の撮影レンズも知られている(例えば特許文献3〜8)。
【0005】
トリプレット構成の内、前玉径の縮小化及び射出瞳距離を長くするために比較的有利な構成となる、最も物体側に開口絞りを配置した所謂前絞りタイプの撮影レンズも知られている(例えば特許文献9〜11)。
【0006】
さらに、撮影レンズでは無いがトリプレット構成を採用し、小型化を狙ったものも知られている。(例えば特許文献12,13)
【0007】
【特許文献1】
特開2002−258155号公報
【特許文献2】
米国特許第5329403号明細書
【特許文献3】
特開2001−83409号公報
【特許文献4】
特開2002−221659号公報
【特許文献5】
特開2002−244030号公報
【特許文献6】
特許第2683463号明細書
【特許文献7】
特許第2742581号明細書
【特許文献8】
米国特許第5596455号明細書
【特許文献9】
特開平4−153612号公報
【特許文献10】
特開2001−75006号公報
【特許文献11】
米国特許第6441971号明細書
【特許文献12】
米国特許第4163604号明細書
【特許文献13】
米国特許第5596452号明細書
【0008】
【発明が解決しようとする課題】
特許文献1に記載された系では、2枚構成の負レンズを像側に比較的強い凹面を向けた形状としており、射出瞳が短くなりやすく固体撮像素子を用いた場合シェーディングの発生が課題となる。
【0009】
特許文献2に記載された系では、2枚構成の正レンズと負レンズの間隔が大きく小型化の点では課題を有する。
【0010】
また、正負正の3枚構成のレンズ系の場合、前玉径を縮小し小型化を図るとともに、像側のテレセントリック特性を良好にするために、開口絞りを撮像素子から最も離した前絞りタイプが有利である。前絞りタイプにて全長短縮を図りながら良好な光学性能を得るには開口絞りに対してコンセントリックな形状が好ましいが、従来例では各レンズの形状が、開口絞りに対してコンセントリックな形状となっていないか、若しくはコンセントリックとはなっているものの、形状的に最適な形状とは言いがたかった。
【0011】
本発明は、これら従来のレンズ系の問題点を認識した上で、必要十分なテレセントリック特性を確保しつつ、小型で光学性能の良好な対物レンズを提供することを目的とする。
【0012】
【課題を解決するための手段】
このような目的を達成するため、本発明の対物レンズは、物体側から像側へ順に、開口絞り、像側の面が凸形状で正の屈折力の第1レンズ、物体側の面が凹形状で負の屈折力の第2レンズを有し、全体として正の屈折力を有する対物レンズであって、第1レンズの物体側の面の曲率半径をR11、像側の面の曲率半径をR12、第2レンズの物体側の面の曲率半径をR21、像側の面の曲率半径をR22とするとき、
−1.0<(R11+R12)/(R11−R12)<−0.1
1.0<(R21+R22)/(R21−R22)<3.0
なる条件を満足することを特徴としている。
【0013】
【発明の実施の形態】
以下、図面を用いて本発明の対物レンズの実施形態について説明する。
【0014】
図1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45は、それぞれ後述する数値実施例1〜23の対物レンズのレンズ断面図である。図2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46は、それぞれ数値実施例1〜23の対物レンズの諸収差図である。以後、数値実施例1〜23を総称して本実施形態と言う。本実施形態の対物レンズは、デジタルカメラや、カメラ付の携帯電話や携帯端末等の撮影レンズに適用されるものである。
【0015】
本実施形態の各レンズ断面図において、L1は正の屈折力の第1レンズ、L2は負の屈折力の第2レンズ、L3は正の屈折力の第3レンズ、L4は正又は負の屈折力の第4レンズ、SPは開口絞りである。IMは像面であり、CCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)の感光面が配置されている。Gは水晶ローパスフィルターや赤外カットフィルター等に対応して設計上設けられたガラスブロックである。
【0016】
図37に示す数値実施例19を除く他の数値実施例の対物レンズは正の屈折力の第3レンズL3を有している。図39,41,43,44に示す数値実施例20〜23の対物レンズは第4レンズL4を有しているが、図39,41,43(数値実施例20〜22)の第4レンズL4は正の屈折力であり、図44(数値実施例23)の第4レンズL4は負の屈折力である。
【0017】
なおレンズ断面図において左方が被写体側(物体側)で、右方は像面側である。本実施形態の対物レンズは、2群2枚、3群3枚、そして4群4枚のいずれかのレンズ構成で第1レンズL1と第2レンズL2の形状を適切に設定することにより、良好な光学性能を有しつつ、小型で簡易な構成の対物レンズを実現している。
【0018】
本実施形態の対物レンズでは、開口絞りSPをレンズ系の最も物体側に配置する所謂前絞り構成として、近年の固体撮像素子に適した射出瞳距離を得ている。そして開口絞りSPの像側に、物体側に比して像側に強い屈折力の凸面を向けた正の屈折力の第1レンズL1、続いて像側に比して物体側に強い屈折力の凹面を向けた負の屈折力の第2レンズL2を配置している。
【0019】
本実施形態では、比較的屈折力の強い第1レンズL1の像側の面を凸形状とし、やはり屈折力の強い第2レンズL2の物体側の面を凹形状とすることで、いずれの面も開口絞りSPの中心に対してコンセントリックな形状に近づけている。このような構成により軸外光束における非点収差、コマ収差等の発生を抑え画面全域の結像性能を良好にしている。
【0020】
なお、第1レンズL1の物体側の面は比較的曲率を緩く(曲率半径を大きく)することでコンセントリックな面ではないが収差の発生を極力低減している。また第2レンズL2の像側の面も同様に比較的緩い曲率としているが、像側に凸形状として若干コンセントリックな形状に近づけている。このように屈折力の強いレンズ面をコンセントリックにし、コンセントリックから外れるレンズ面は曲率を緩くすることでレンズL1,L2の必要な屈折力を確保しながら小型化と収差補正を両立している点が本実施形態の対物レンズの特徴である。
【0021】
図37に示す数値実施例19の対物レンズは、第1レンズL1と第2レンズL2の2枚構成であり、最小枚数にて良好な光学性能を実現している。
【0022】
図1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35に示す数値実施例1〜18の対物レンズは、第2レンズL2の像側に正の屈折力の第3レンズL3を有している。この第3レンズL3が像面近傍に配置されることでフィールドレンズの役割を果たし、2枚構成に比べてさらに射出瞳を像面から遠ざけることが可能となる。よってこのような構成によりコンパクト化とテレセントリック特性がさらに良好に両立できるというメリットがある。
【0023】
また図39,41,43に示す数値実施例20〜23の対物レンズは、第2レンズL2の像側に2枚のレンズを配置している点が特徴である。これら2枚のレンズは数値実施例1〜18のような3枚構成の正レンズL3の屈折力を分割した構成となっている。数値実施例20〜22では負レンズL2の像側は2枚の正レンズであり、正の屈折力を分担することで諸収差の発生を抑えさらに良好な光学性能が提供できるメリットがある。また数値実施例23では負レンズL2の像側に順に正レンズ、負レンズを配置している。これら2枚のレンズにてテレフォトタイプの屈折力配置を形成しているため3枚構成に比べさらにバックフォーカスが短縮できコンパクト化の点でメリットがある。
【0024】
なお、本実施形態の対物レンズは2枚、3枚、4枚いずれのタイプにおいても、主に第1レンズL1の像側のレンズ面と第2レンズL2の物体側のレンズ面にて正負のテレフォトタイプの屈折力配置としている点が特徴である。よって第1レンズL1、第2レンズL2の屈折力をある程度強めながら第1レンズL1と第2レンズL2の間隔を適切に設定することで光学全長を短縮してコンパクト化を図っている。
【0025】
また第1レンズL1と第2レンズL2に非球面を設けると更に良好な光学性能が提供できる。特に比較的曲率がきつい(曲率半径が小さい)第1レンズL1の像側のレンズ面、第2レンズL2の物体側のレンズ面のいずれか、もしくは両方を非球面とすると、球面収差、コマ収差を良好に補正できるため、高画素の固体撮像素子を用いる場合好適である。
【0026】
更に第1レンズL1の物体側のレンズ面を非球面とすると、球面収差補正能力が高まり、Fナンバーを小さくして口径比を高める場合に特に有効となる。
【0027】
また第2レンズL2の像側のレンズ面を非球面とすると、軸外光束に対しコマ収差補正能力が高まるため、特に画角を大きくした場合に軸外性能を良好にすることができる。
【0028】
また第3レンズL3の物体側のレンズ面を非球面とすると、像面湾曲が良好に補正され平坦な結像特性を提供できる。
【0029】
なおレンズL1,L2,L3の媒質はガラス材料であっても合成樹脂材料(プラスチック材料)であってもよい。特に第3レンズL3は第1レンズ、第2レンズに比べ屈折力を弱くできるので樹脂材料とした場合の温度変化によるピント変動が比較的小さくできる。また第1レンズと第2レンズは屈折力が強いため樹脂材料とした場合の温度変化によるピント変動が課題となるが、各レンズを同様な屈折力とすればピント変動に関しキャンセル作用が働くため課題を回避できる。このように樹脂材料とした場合はガラス材料に比べ非球面レンズとしながら低コストで作製できるというメリットがある。
【0030】
さらに本実施形態の対物レンズは以下の条件式を満足している。
但し、R11は第1レンズL1の物体側の面の曲率半径、R12は第1レンズL1の像側の面の曲率半径、R21は第2レンズL2の物体側の面の曲率半径、R22は第2レンズL2の像側の面の曲率半径である。
【0031】
条件式(1)は、第1レンズL1の形状因子に関する条件式である。条件式(1)にて−1となる場合は平凸形状であり、−1から0までが両凸形状にて像側レンズ面の曲率が物体側レンズ面の曲率より大きい(曲率半径が小さい)形状となる。条件式(1)の上限を超えると第1レンズL1の像側レンズ面の曲率が緩くなり開口絞りSPに対するコンセントリックな形状からずれを生じ非点収差、コマ収差等の発生により軸外性能が低下するため好ましくない。また下限を超えて物体側レンズ面が物体側に凹面となると球面収差の発生が過度となり好ましくない。
【0032】
条件式(2)は、第2レンズL2の形状因子に関する条件式である。条件式(2)にて1となる場合は凹平形状であり、1より大きい場合は物体側に凹面を向けたメニスカス形状となる。条件式(2)の下限を超えると像側レンズ面が凹面となり屈折力が弱いながらもコンセントリックとして軸外収差の発生を低減する作用が弱まる。結果として軸外光束の入射角が大きくなるため像面湾曲、非点収差の発生が課題となる。また上限を超えてメニスカスの度合いが強まりすぎると負レンズとして必要な屈折力を設定できなくなり正レンズL1に対して球面収差、色収差等の収差をキャンセルする作用が薄れるのが課題となる。
【0033】
また、本実施形態の対物レンズは更に以下の条件式を満足している。
0.1<|f2/f|<0.8 …(3)
0.5< f3/f <3.0 …(4)
(n1+n2)/2>0.1 …(5)
0.5<d12/f<3.0 …(6)
但し、f2は第2レンズL2の焦点距離、f3は第3レンズL3の焦点距離、fは対物レンズ全系の焦点距離、n1,n2はそれぞれ第1レンズL1、第2レンズL2を構成する媒質の屈折率、d12は第1レンズL1と第2レンズL2の間隔である。
【0034】
条件式(3)は第2レンズL2の焦点距離、すなわち屈折力に関する式である。上限を超えて第2レンズL2の屈折力が弱すぎるとペッツバール和が正に大きくなりすぎアンダーの像面湾曲が発生するため好ましくない。また下限を超えて第2レンズL2の屈折力が強すぎると球面収差がオーバー側に補正過剰となり好ましくない。また製造誤差に起因する第2レンズL2の偏芯による中心コマ、片ボケ等の発生も課題となる。
【0035】
条件式(4)は第3レンズL3の焦点距離、すなわち屈折力に関する式である。上限を超えて第3レンズL3の屈折力が弱すぎるとフィールドレンズとしての作用が弱まり射出瞳が像面に近づくため固体撮像素子を用いた場合には画面周辺のシェーディングが問題となる。また下限を超えて第3レンズL3の屈折力が強すぎるとフィルターを挿入するために必要なバックフォーカスが確保できなくなるのが課題となる。
【0036】
条件式(5)は第1レンズL1と第2レンズL2の屈折率の平均値に関する式である。本実施形態の対物レンズの第1レンズL1と第2レンズL2は順に正負のテレフォト配置を構成しているため、各レンズともある程度の屈折力をもたせて全長短縮を図っている。この際、所望の屈折力においてはレンズ媒質の屈折率が小さいほど曲率がきつくなる。下限を超えて屈折率が小さくなりすぎるとレンズ面の曲率がきつくなりすぎ高次の球面収差、コマ収差の発生が顕著となり非球面を用いても補正が困難となるため好ましくない。
【0037】
条件式(6)は第1レンズL1と第2レンズL2の間隔に関する式である。本実施形態の対物レンズは主に第1レンズL1の像側レンズ面と第2レンズL2の物体側レンズ面にて正負のテレフォトタイプの屈折力配置としているが、このテレフォトタイプの屈折配置を形成する上でこれらのレンズ面間隔を適切に設定することが重要である。条件式(6)の下限を超えて間隔が小さすぎるとテレフォトタイプの屈折力配置とする効果が薄れ光学全長が長くなりコンパクト化の点で好ましくない。また上限を超えて間隔が大きくなりすぎるとフィルター挿入に必要なバックフォーカスが確保できなくなるのが課題となる。
【0038】
次に数値実施例1〜23の数値データを示す。各数値実施例において、Riは物体側より順に第i番目の面(第i面)の曲率半径、Diは第i面と第(i+1)面との間の間隔、Niとνiはそれぞれ第i番目の部材のd線に対する屈折率、アッベ数である。そして、fは焦点距離、FnoはFナンバー、ωは半画角である。
【0039】
非球面形状は、光軸方向にx軸、光軸と垂直方向にh軸、光の進行方向を正とし、Rを近軸曲率半径、kを円錐定数、B,C,D,Eを各々非球面係数としたとき、
【外1】
なる式で表している。なお「e±Z」は「×10±Z」を表している。
【0040】
また前述の各条件式と数値実施例における諸数値との関係を表1に示す。
【0041】
【0042】
【0043】
【0044】
【0045】
【0046】
【0047】
【0048】
【0049】
【0050】
【0051】
【0052】
【0053】
【0054】
【0055】
【0056】
【0057】
【0058】
【0059】
【0060】
【0061】
【0062】
【0063】
【0064】
【表1】
【0065】
次に本発明の対物レンズを撮影光学系として用いたデジタルスチルカメラの実施形態を図47を用いて説明する。
【0066】
図47において、20はカメラ本体、21は数値実施例1〜23いずれかの対物レンズによって構成された撮影光学系、22はカメラ本体に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)、23は固体撮像素子22によって光電変換された被写体像に対応する情報を記録するメモリ、24は液晶ディスプレイパネル等によって構成され、固体撮像素子22上に形成された被写体像を観察するためのファインダである。
【0067】
このように本発明の対物レンズをデジタルスチルカメラ等の光学機器に適用することにより、小型で高い光学性能を有する光学機器が実現できる。
【0068】
以下に本発明のとり得る態様について列挙する。
【0069】
(態様1) 物体側から像側へ順に、開口絞り、像側の面が凸形状で正の屈折力の第1レンズ、物体側の面が凹形状で負の屈折力の第2レンズを有し、全体として正の屈折力を有する対物レンズにおいて、該第1レンズの物体側の面の曲率半径をR11、像側の面の曲率半径をR12、該第2レンズの物体側の面の曲率半径をR21、像側の面の曲率半径をR22とするとき、
−1.0<(R11+R12)/(R11−R12)<−0.1
1.0<(R21+R22)/(R21−R22)<3.0
なる条件を満足することを特徴とする対物レンズ。
【0070】
(態様2) 前記対物レンズ全系の焦点距離をf、前記第2レンズの焦点距離をf2とするとき、
0.1<|f2/f|<0.8
なる条件を満足することを特徴とする態様1の対物レンズ。
【0071】
(態様3) 前記第2レンズの像側に正の屈折力の第3レンズを有し、前記対物レンズ全系の焦点距離をf、該第3レンズの焦点距離をf3とするとき、
0.5< f3/f <3.0
なる条件を満足することを特徴とする態様1又は2の対物レンズ。
【0072】
(態様4) 前記第2レンズの像側に正の屈折力の第3レンズを有し、前記第1レンズの屈折率をn1、前記第2レンズの屈折率をn2とするとき、
(n1+n2)/2>0.1
なる条件を満足することを特徴とする態様1〜3いずれかの対物レンズ。
【0073】
(態様5) 前記対物レンズ全系の焦点距離をf、前記第1レンズと第2レンズの間隔をd12とするとき、
0.5<d12/f<3.0
なる条件を満足することを特徴とする態様1〜4いずれかの対物レンズ。
【0074】
(態様6) 前記第1レンズ、第2レンズ、第3レンズのうち少なくとも一つはプラスチック材料で構成されることを特徴とする態様1〜5いずれかの対物レンズ。
【0075】
(態様7) 固体撮像素子上に像を形成することを特徴とする態様1〜6いずれかの対物レンズ。
【0076】
(態様8) 態様1〜7いずれかに記載された対物レンズによって構成される撮影光学系と、該撮影光学系によって形成される像を受光する光電変換素子とを備えることを特徴とする機器。
【0077】
【発明の効果】
以上説明したように、本発明によれば、十分なテレセントリック特性を確保しつつ、小型で光学性能の良好な対物レンズを実現することができる。
【図面の簡単な説明】
【図1】数値実施例1の対物レンズのレンズ断面図である。
【図2】数値実施例1の対物レンズの収差図である。
【図3】数値実施例2の対物レンズのレンズ断面図である。
【図4】数値実施例2の対物レンズの収差図である。
【図5】数値実施例3の対物レンズのレンズ断面図である。
【図6】数値実施例3の対物レンズの収差図である。
【図7】数値実施例4の対物レンズのレンズ断面図である。
【図8】数値実施例4の対物レンズの収差図である。
【図9】数値実施例5の対物レンズのレンズ断面図である。
【図10】数値実施例5の対物レンズの収差図である。
【図11】数値実施例6の対物レンズのレンズ断面図である。
【図12】数値実施例6の対物レンズの収差図である。
【図13】数値実施例7の対物レンズのレンズ断面図である。
【図14】数値実施例7の対物レンズの収差図である。
【図15】数値実施例8の対物レンズのレンズ断面図である。
【図16】数値実施例8の対物レンズの収差図である。
【図17】数値実施例9の対物レンズのレンズ断面図である。
【図18】数値実施例9の対物レンズの収差図である。
【図19】数値実施例10の対物レンズのレンズ断面図である。
【図20】数値実施例10の対物レンズの収差図である。
【図21】数値実施例11の対物レンズのレンズ断面図である。
【図22】数値実施例11の対物レンズの収差図である。
【図23】数値実施例12の対物レンズのレンズ断面図である。
【図24】数値実施例12の対物レンズの収差図である。
【図25】数値実施例13の対物レンズのレンズ断面図である。
【図26】数値実施例13の対物レンズの収差図である。
【図27】数値実施例14の対物レンズのレンズ断面図である。
【図28】数値実施例14の対物レンズの収差図である。
【図29】数値実施例15の対物レンズのレンズ断面図である。
【図30】数値実施例15の対物レンズの収差図である。
【図31】数値実施例16の対物レンズのレンズ断面図である。
【図32】数値実施例16の対物レンズの収差図である。
【図33】数値実施例17の対物レンズのレンズ断面図である。
【図34】数値実施例17の対物レンズの収差図である。
【図35】数値実施例18の対物レンズのレンズ断面図である。
【図36】数値実施例18の対物レンズの収差図である。
【図37】数値実施例19の対物レンズのレンズ断面図である。
【図38】数値実施例19の対物レンズの収差図である。
【図39】数値実施例20の対物レンズのレンズ断面図である。
【図40】数値実施例20の対物レンズの収差図である。
【図41】数値実施例21の対物レンズのレンズ断面図である。
【図42】数値実施例21の対物レンズの収差図である。
【図43】数値実施例22の対物レンズのレンズ断面図である。
【図44】数値実施例22の対物レンズの収差図である。
【図45】数値実施例23の対物レンズのレンズ断面図である。
【図46】数値実施例23の対物レンズの収差図である。
【図47】デジタルスチルカメラの要部概略図である。
【符号の説明】
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
SP 絞り
G ガラスブロック
IM 結像面
d d線
g g線
ΔM メリディオナル像面
ΔS サジタル像面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an objective lens, and is particularly suitable for a photographic lens (photographing optical system) of a video camera, a digital camera, a mobile phone with a camera, a portable terminal, or the like.
[0002]
[Prior art]
2. Description of the Related Art In recent years, various types of video cameras and digital cameras having a solid-state imaging device such as a CCD sensor and a CMOS sensor, and mobile phones and mobile terminals with cameras have been developed. In particular, for mobile phones and mobile terminals, a small and lightweight photographing lens is strongly desired from the viewpoint of portability.
[0003]
2. Description of the Related Art As a small photographic lens, a two-lens configuration having a first lens having a positive refractive power and a second lens having a negative refractive power is known (for example,
[0004]
In addition, a so-called triplet-type photographing lens including a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a positive refractive power is also known in consideration of improvement in imaging performance as well as miniaturization. (For example, Patent Documents 3 to 8).
[0005]
Among the triplet configurations, a so-called front stop type photographing lens having an aperture stop closest to the object, which is a relatively advantageous structure for reducing the front lens diameter and increasing the exit pupil distance, is also known ( For example, Patent Documents 9 to 11).
[0006]
Further, there is also known a lens which is not a photographing lens but adopts a triplet structure and aims at miniaturization. (For example,
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-258155 [Patent Document 2]
US Pat. No. 5,329,403 [Patent Document 3]
JP 2001-83409 A [Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-221659 [Patent Document 5]
JP 2002-244030 A [Patent Document 6]
Japanese Patent No. 2683463 [Patent Document 7]
Patent No. 2742581 [Patent Document 8]
US Pat. No. 5,596,455 [Patent Document 9]
JP-A-4-153612 [Patent Document 10]
JP 2001-75006 A [Patent Document 11]
US Pat. No. 6,441,971 [Patent Document 12]
US Pat. No. 4,163,604 [Patent Document 13]
US Pat. No. 5,596,452 [0008]
[Problems to be solved by the invention]
In the system described in
[0009]
The system described in Patent Document 2 has a problem in that the distance between the two-element positive lens and the negative lens is large and the size is reduced.
[0010]
In addition, in the case of a lens system having three positive, negative, and positive lenses, a front stop type in which an aperture stop is furthest away from an image pickup element is used in order to reduce the front lens diameter to reduce the size and to improve telecentric characteristics on the image side. Is advantageous. In order to obtain good optical performance while shortening the overall length with the front stop type, a concentric shape with respect to the aperture stop is preferable, but in the conventional example, the shape of each lens is a concentric shape with respect to the aperture stop. Although it was not or was concentric, it was hard to say that it was optimally shaped.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to provide a compact objective lens having good optical performance while securing necessary and sufficient telecentric characteristics, while recognizing the problems of these conventional lens systems.
[0012]
[Means for Solving the Problems]
In order to achieve such an object, the objective lens of the present invention comprises, in order from the object side to the image side, an aperture stop, a first lens having a convex shape on the image side and a positive refractive power, and a concave surface on the object side. An objective lens having a shape and a second lens having a negative refractive power, and having a positive refractive power as a whole, wherein the radius of curvature of the object-side surface of the first lens is R11, and the radius of curvature of the image-side surface is R11. R12, when the radius of curvature of the object-side surface of the second lens is R21 and the radius of curvature of the image-side surface is R22,
−1.0 <(R11 + R12) / (R11−R12) <− 0.1
1.0 <(R21 + R22) / (R21-R22) <3.0
It is characterized by satisfying certain conditions.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the objective lens of the present invention will be described with reference to the drawings.
[0014]
1, 3, 5, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, and 45 are described below, respectively. 24 is a lens cross-sectional view of an objective lens according to Numerical Examples 1 to 23. FIG. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 are numerical values, respectively. It is a some aberration figure of the objective lens of Examples 1-23. Hereinafter, Numerical Examples 1 to 23 are collectively referred to as the present embodiment. The objective lens according to the present embodiment is applied to a photographing lens of a digital camera, a mobile phone with a camera, a mobile terminal, or the like.
[0015]
In each lens cross-sectional view of this embodiment, L1 is a first lens having a positive refractive power, L2 is a second lens having a negative refractive power, L3 is a third lens having a positive refractive power, and L4 is positive or negative refraction. The fourth lens of force, SP, is an aperture stop. IM is an image plane on which a photosensitive surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is arranged. G is a glass block provided in design corresponding to a crystal low-pass filter, an infrared cut filter, and the like.
[0016]
An objective lens of a numerical example other than numerical example 19 shown in FIG. 37 has a third lens L3 having a positive refractive power. The objective lenses of Numerical Examples 20 to 23 shown in FIGS. 39, 41, 43, and 44 have the fourth lens L4, but the fourth lens L4 of FIGS. 39, 41, and 43 (Numerical Examples 20 to 22). Has a positive refractive power, and the fourth lens L4 in FIG. 44 (Numerical Example 23) has a negative refractive power.
[0017]
In the lens cross-sectional view, the left side is the object side (object side), and the right side is the image plane side. The objective lens of the present embodiment is good by appropriately setting the shapes of the first lens L1 and the second lens L2 in any one of the two-group, two-group, three-group, three-group, and four-group four-lens configurations. The objective lens has a small size and a simple configuration while having excellent optical performance.
[0018]
In the objective lens of the present embodiment, an exit pupil distance suitable for a recent solid-state imaging device is obtained as a so-called front stop configuration in which the aperture stop SP is disposed closest to the object side of the lens system. Then, on the image side of the aperture stop SP, a first lens L1 having a positive refractive power with a convex surface having a stronger refractive power facing the image side than the object side, and subsequently a stronger refractive power toward the object side than the image side. The second lens L2 having a negative refractive power and facing the concave surface is disposed.
[0019]
In the present embodiment, the image-side surface of the first lens L1 having a relatively high refractive power is made convex, and the object-side surface of the second lens L2, which also has a strong refractive power, is made concave. Also approximates a concentric shape to the center of the aperture stop SP. With such a configuration, the occurrence of astigmatism, coma, and the like in the off-axis light beam is suppressed, and the imaging performance over the entire screen is improved.
[0020]
The object-side surface of the first lens L1 is not concentric by making the curvature relatively small (the radius of curvature is large), but the occurrence of aberration is reduced as much as possible. Similarly, the image-side surface of the second lens L2 also has a relatively gentle curvature, but has a convex shape on the image side to approximate a slightly concentric shape. In this way, the lens surface having a strong refractive power is made concentric, and the lens surface that deviates from the concentric shape has a small curvature, so that the required refracting power of the lenses L1 and L2 is ensured, and both miniaturization and aberration correction are achieved. The point is a feature of the objective lens of the present embodiment.
[0021]
The objective lens of Numerical Example 19 shown in FIG. 37 has a two-lens configuration of the first lens L1 and the second lens L2, and achieves good optical performance with a minimum number of lenses.
[0022]
The objective lenses of Numerical Examples 1 to 18 shown in FIG. 1, 3, 5, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 A third lens L3 having a positive refractive power is provided on the image side of the two lenses L2. By arranging the third lens L3 in the vicinity of the image plane, the third lens L3 functions as a field lens, and the exit pupil can be further moved away from the image plane as compared with the two-lens configuration. Therefore, there is a merit that such a configuration can achieve both compactness and telecentric characteristics more favorably.
[0023]
The objective lenses of Numerical Examples 20 to 23 shown in FIGS. 39, 41, and 43 are characterized in that two lenses are arranged on the image side of the second lens L2. These two lenses have a configuration in which the refractive power of the three-element positive lens L3 is divided as in Numerical Examples 1 to 18. In Numerical Examples 20 to 22, the image side of the negative lens L2 is two positive lenses, and sharing the positive refracting power has the advantage of suppressing the occurrence of various aberrations and providing better optical performance. In Numerical Example 23, a positive lens and a negative lens are sequentially arranged on the image side of the negative lens L2. Since a telephoto type refractive power arrangement is formed by these two lenses, the back focus can be further reduced as compared with the three-lens configuration, which is advantageous in terms of compactness.
[0024]
In any of the two, three, and four objective lenses of the present embodiment, the positive and negative lens surfaces mainly on the image-side lens surface of the first lens L1 and the object-side lens surface of the second lens L2 are used. It is characterized by the telephoto type refractive power arrangement. Therefore, by appropriately setting the distance between the first lens L1 and the second lens L2 while increasing the refractive power of the first lens L1 and the second lens L2 to some extent, the overall optical length is shortened and the size is reduced.
[0025]
Further, providing an aspheric surface for the first lens L1 and the second lens L2 can provide better optical performance. In particular, if one or both of the image-side lens surface of the first lens L1 and the object-side lens surface of the second lens L2, or both of them, are relatively aspheric (the radius of curvature is small), spherical aberration and coma aberration Can be satisfactorily corrected, so that it is preferable to use a solid-state imaging device having a high number of pixels.
[0026]
Further, when the object-side lens surface of the first lens L1 is made aspherical, the spherical aberration correction capability is enhanced, which is particularly effective when the F-number is reduced to increase the aperture ratio.
[0027]
If the lens surface on the image side of the second lens L2 is aspherical, the ability to correct coma aberration with respect to off-axis light flux is enhanced, so that off-axis performance can be improved particularly when the angle of view is increased.
[0028]
In addition, when the object-side lens surface of the third lens L3 is an aspherical surface, the curvature of field is well corrected, and a flat imaging characteristic can be provided.
[0029]
The medium of the lenses L1, L2, L3 may be a glass material or a synthetic resin material (plastic material). In particular, since the third lens L3 can have a lower refractive power than the first lens and the second lens, the focus variation due to a temperature change when using a resin material can be relatively small. In addition, since the first lens and the second lens have high refractive power, a focus variation due to a temperature change when a resin material is used becomes a problem. Can be avoided. In the case of using a resin material as described above, there is an advantage that it can be manufactured at low cost while forming an aspherical lens as compared with a glass material.
[0030]
Further, the objective lens of the present embodiment satisfies the following conditional expressions.
Here, R11 is the radius of curvature of the object side surface of the first lens L1, R12 is the radius of curvature of the image side surface of the first lens L1, R21 is the radius of curvature of the object side surface of the second lens L2, and R22 is the second radius. This is the radius of curvature of the image-side surface of the two lenses L2.
[0031]
Conditional expression (1) is a conditional expression relating to the shape factor of the first lens L1. When the conditional expression (1) is −1, it is a plano-convex shape, and from −1 to 0 is a biconvex shape, and the curvature of the image-side lens surface is larger than the curvature of the object-side lens surface (the radius of curvature is small). ) Shape. When the value exceeds the upper limit of the conditional expression (1), the curvature of the image side lens surface of the first lens L1 becomes loose, causing a deviation from a concentric shape with respect to the aperture stop SP, and astigmatism, coma aberration and the like cause off-axis performance. It is not preferable because it lowers. If the object side lens surface becomes concave on the object side beyond the lower limit, spherical aberration is excessively generated, which is not preferable.
[0032]
Conditional expression (2) is a conditional expression relating to the shape factor of the second lens L2. If the conditional expression (2) is 1, the lens has a concave flat shape, and if it is greater than 1, the lens has a meniscus shape with the concave surface facing the object side. If the lower limit of conditional expression (2) is exceeded, the image-side lens surface becomes concave and the function of reducing the generation of off-axis aberrations as a concentric lens becomes weak although the refractive power is weak. As a result, the incident angle of the off-axis light beam becomes large, so that the field curvature and astigmatism occur. If the meniscus is too strong beyond the upper limit, the refractive power required for the negative lens cannot be set, and the effect of canceling aberrations such as spherical aberration and chromatic aberration with respect to the positive lens L1 is reduced.
[0033]
Further, the objective lens of the present embodiment further satisfies the following conditional expressions.
0.1 <| f2 / f | <0.8 (3)
0.5 <f3 / f <3.0 (4)
(N1 + n2) / 2> 0.1 (5)
0.5 <d12 / f <3.0 (6)
Here, f2 is the focal length of the second lens L2, f3 is the focal length of the third lens L3, f is the focal length of the entire objective lens system, and n1 and n2 are the media constituting the first lens L1 and the second lens L2, respectively. , D12 is the distance between the first lens L1 and the second lens L2.
[0034]
Conditional expression (3) is an expression relating to the focal length of the second lens L2, that is, the refractive power. If the refractive power of the second lens L2 exceeds the upper limit and the refractive power is too weak, the Petzval sum becomes too large and undesirably causes an under field curvature. On the other hand, if the lower limit is exceeded and the refractive power of the second lens L2 is too strong, the spherical aberration is overcorrected to the over side, which is not preferable. In addition, the occurrence of a center coma, one-sided blur, and the like due to the eccentricity of the second lens L2 due to a manufacturing error also becomes a problem.
[0035]
Conditional expression (4) is an expression relating to the focal length of the third lens L3, that is, the refractive power. If the upper limit is exceeded and the refractive power of the third lens L3 is too weak, the action as a field lens is weakened and the exit pupil approaches the image plane, so shading around the screen becomes a problem when using a solid-state imaging device. If the refractive power of the third lens L3 exceeds the lower limit and the refractive power of the third lens L3 is too strong, the problem is that the back focus required for inserting the filter cannot be secured.
[0036]
Conditional expression (5) is an expression relating to the average value of the refractive index of the first lens L1 and the second lens L2. Since the first lens L1 and the second lens L2 of the objective lens of this embodiment form a positive / negative telephoto arrangement in order, each lens has a certain refractive power to shorten the overall length. At this time, for a desired refractive power, the smaller the refractive index of the lens medium, the steeper the curvature. If the refractive index is too small below the lower limit, the curvature of the lens surface becomes too tight, and high-order spherical aberration and coma aberration are remarkably generated, and correction is difficult even with an aspherical surface.
[0037]
Conditional expression (6) is an expression relating to the distance between the first lens L1 and the second lens L2. The objective lens according to the present embodiment mainly has a positive-negative telephoto type refractive power arrangement on the image side lens surface of the first lens L1 and the object side lens surface of the second lens L2. It is important to appropriately set the distance between these lens surfaces in forming the image. If the lower limit of the conditional expression (6) is exceeded and the interval is too small, the effect of the telephoto type refractive power arrangement is reduced and the overall optical length becomes longer, which is not preferable in terms of compactness. In addition, if the interval exceeds the upper limit and the interval is too large, it becomes a problem that the back focus required for inserting the filter cannot be secured.
[0038]
Next, numerical data of Numerical Examples 1 to 23 are shown. In each numerical example, Ri is the radius of curvature of the i-th surface (i-th surface) in order from the object side, Di is the distance between the i-th surface and the (i + 1) -th surface, and Ni and νi are the i-th surface. These are the refractive index and Abbe number for the d-line of the th member. F is the focal length, Fno is the F number, and ω is the half angle of view.
[0039]
The aspherical shape has an x-axis in the direction of the optical axis, an h-axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature, k is a conic constant, and B, C, D, and E are each Assuming the aspheric coefficient,
[Outside 1]
It is represented by the following equation. Note that “e ± Z” represents “× 10 ± Z ”.
[0040]
Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.
[0041]
[0042]
[0043]
[0044]
[0045]
[0046]
[0047]
[0048]
[0049]
[0050]
[0051]
[0052]
[0053]
[0054]
[0055]
[0056]
[0057]
[0058]
[0059]
[0060]
[0061]
[0062]
[0063]
[0064]
[Table 1]
[0065]
Next, an embodiment of a digital still camera using the objective lens of the present invention as a photographic optical system will be described with reference to FIG.
[0066]
In FIG. 47,
[0067]
By applying the objective lens of the present invention to an optical device such as a digital still camera, a compact optical device having high optical performance can be realized.
[0068]
Hereinafter, possible embodiments of the present invention will be listed.
[0069]
(Aspect 1) In order from the object side to the image side, an aperture stop, a first lens having a positive refractive power with a convex surface on the image side, and a second lens having a negative refractive power with a concave surface on the object side are provided. In the objective lens having a positive refractive power as a whole, the radius of curvature of the object-side surface of the first lens is R11, the radius of curvature of the image-side surface is R12, and the curvature of the object-side surface of the second lens is When the radius is R21 and the radius of curvature of the image-side surface is R22,
−1.0 <(R11 + R12) / (R11−R12) <− 0.1
1.0 <(R21 + R22) / (R21-R22) <3.0
An objective lens characterized by satisfying the following conditions.
[0070]
(Aspect 2) When the focal length of the entire objective lens system is f and the focal length of the second lens is f2,
0.1 <| f2 / f | <0.8
The objective lens according to
[0071]
(Aspect 3) When a third lens having a positive refractive power is provided on the image side of the second lens, and the focal length of the objective lens entire system is f and the focal length of the third lens is f3,
0.5 <f3 / f <3.0
The objective lens according to
[0072]
(Aspect 4) When a third lens having a positive refractive power is provided on the image side of the second lens, and the refractive index of the first lens is n1 and the refractive index of the second lens is n2,
(N1 + n2) / 2> 0.1
The objective lens according to any one of
[0073]
(Aspect 5) When the focal length of the entire objective lens system is f and the distance between the first lens and the second lens is d12,
0.5 <d12 / f <3.0
5. The objective lens according to any one of
[0074]
(Aspect 6) The objective lens according to any one of
[0075]
(Aspect 7) The objective lens according to any one of
[0076]
(Aspect 8) An apparatus comprising: a photographing optical system constituted by the objective lens according to any one of
[0077]
【The invention's effect】
As described above, according to the present invention, a compact objective lens having good optical performance can be realized while securing sufficient telecentric characteristics.
[Brief description of the drawings]
FIG. 1 is a lens cross-sectional view of an objective lens according to Numerical Example 1.
FIG. 2 is an aberration diagram of the objective lens according to Numerical Example 1.
FIG. 3 is a lens cross-sectional view of an objective lens according to Numerical Example 2.
FIG. 4 is an aberration diagram of the objective lens according to Numerical Example 2.
FIG. 5 is a sectional view of an objective lens according to Numerical Example 3;
FIG. 6 is an aberration diagram of the objective lens according to Numerical Example 3.
FIG. 7 is a sectional view of an objective lens according to Numerical Example 4;
FIG. 8 is an aberration diagram of the objective lens in Numerical Example 4.
FIG. 9 is a sectional view of an objective lens according to Numerical Example 5;
FIG. 10 is an aberration diagram of the objective lens of Numerical Example 5.
FIG. 11 is a sectional view of an objective lens according to Numerical Example 6;
FIG. 12 is an aberration diagram of the objective lens according to Numerical Example 6.
FIG. 13 is a sectional view of an objective lens according to Numerical Example 7;
FIG. 14 is an aberration diagram of the objective lens of Numerical Example 7.
FIG. 15 is a sectional view of an objective lens according to Numerical Example 8;
FIG. 16 is an aberration diagram of the objective lens of Numerical Example 8.
FIG. 17 is a sectional view of an objective lens according to Numerical Example 9;
FIG. 18 is an aberration diagram of the objective lens according to Numerical Example 9.
FIG. 19 is a sectional view of an objective lens according to Numerical Example 10;
FIG. 20 is an aberration diagram of the objective lens of Numerical Example 10.
FIG. 21 is a sectional view of an objective lens according to Numerical Example 11;
FIG. 22 is an aberration diagram of the objective lens according to Numerical Example 11.
FIG. 23 is a sectional view of an objective lens according to Numerical Example 12;
FIG. 24 is an aberration diagram of the objective lens in Numerical Example 12.
FIG. 25 is a sectional view of an objective lens according to Numerical Example 13;
FIG. 26 is an aberration diagram of the objective lens in Numerical Example 13.
FIG. 27 is a sectional view of an objective lens according to Numerical Example 14;
FIG. 28 is an aberration diagram of the objective lens in Numerical Example 14;
FIG. 29 is a sectional view of an objective lens according to Numerical Example 15;
FIG. 30 is an aberration diagram of the objective lens in Numerical Example 15;
FIG. 31 is a sectional view of an objective lens according to Numerical Example 16;
FIG. 32 is an aberration diagram of the objective lens in Numerical Example 16;
FIG. 33 is a sectional view of an objective lens according to Numerical Example 17;
FIG. 34 is an aberration diagram of the objective lens of Numerical Example 17;
FIG. 35 is a sectional view of an objective lens according to Numerical Example 18;
FIG. 36 is an aberration diagram of the objective lens in Numerical Example 18;
FIG. 37 is a sectional view of an objective lens according to Numerical Example 19;
FIG. 38 is an aberration diagram of the objective lens in Numerical Example 19;
FIG. 39 is a sectional view of an objective lens according to Numerical Example 20;
40 is an aberration diagram of the objective lens of Numerical Example 20. FIG.
FIG. 41 is a sectional view of an objective lens according to Numerical Example 21;
42 is an aberration diagram of the objective lens of Numerical Example 21. FIG.
FIG. 43 is a sectional view of an objective lens according to Numerical Example 22;
FIG. 44 is an aberration diagram of the objective lens according to Numerical Example 22.
FIG. 45 is a sectional view of an objective lens according to Numerical Example 23;
FIG. 46 is an aberration diagram of the objective lens in Numerical Example 23.
FIG. 47 is a schematic view of a main part of a digital still camera.
[Explanation of symbols]
L1 First lens L2 Second lens L3 Third lens L4 Fourth lens SP Aperture G Glass block IM Image plane d d line g g line ΔM Meridional image plane ΔS Sagittal image plane
Claims (1)
−1.0<(R11+R12)/(R11−R12)<−0.1
1.0<(R21+R22)/(R21−R22)<3.0
なる条件を満足することを特徴とする対物レンズ。In order from the object side to the image side, an aperture stop, a first lens having a positive refractive power with a convex surface on the image side and a second lens having a negative refractive power with a concave surface on the object side are provided as a whole. In an objective lens having a positive refractive power, the radius of curvature of the object-side surface of the first lens is R11, the radius of curvature of the image-side surface is R12, the radius of curvature of the object-side surface of the second lens is R21, When the radius of curvature of the image-side surface is R22,
−1.0 <(R11 + R12) / (R11−R12) <− 0.1
1.0 <(R21 + R22) / (R21-R22) <3.0
An objective lens characterized by satisfying the following conditions.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119354A JP4510402B2 (en) | 2003-04-24 | 2003-04-24 | Objective lens and optical instrument |
US10/829,058 US7035023B2 (en) | 2003-04-24 | 2004-04-21 | Lens system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119354A JP4510402B2 (en) | 2003-04-24 | 2003-04-24 | Objective lens and optical instrument |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004325713A true JP2004325713A (en) | 2004-11-18 |
JP4510402B2 JP4510402B2 (en) | 2010-07-21 |
Family
ID=33498597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003119354A Expired - Fee Related JP4510402B2 (en) | 2003-04-24 | 2003-04-24 | Objective lens and optical instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4510402B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005026807A1 (en) * | 2003-09-10 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Imaging lens, imaging unit, and optical apparatus |
WO2005026806A1 (en) * | 2003-09-10 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Imaging lens, imaging unit, and optical device |
WO2005047951A1 (en) * | 2003-11-13 | 2005-05-26 | Konica Minolta Opto, Inc. | Imaging lens and imaging device |
JP2005202019A (en) * | 2004-01-14 | 2005-07-28 | Matsushita Electric Ind Co Ltd | Imaging lens |
WO2006077663A1 (en) * | 2005-01-21 | 2006-07-27 | Milestone Co., Ltd. | Imaging lens |
EP1712944A3 (en) * | 2005-04-15 | 2007-07-18 | Fujinon Corporation | Imaging lens |
JP2007193195A (en) * | 2006-01-20 | 2007-08-02 | Canon Electronics Inc | Photographic lens and imaging apparatus having the same |
JP2007226107A (en) * | 2006-02-27 | 2007-09-06 | Tamron Co Ltd | Imaging lens |
JP2008046526A (en) * | 2006-08-21 | 2008-02-28 | Konica Minolta Opto Inc | Imaging lens, imaging apparatus and mobile terminal |
WO2008121483A1 (en) * | 2007-03-30 | 2008-10-09 | Symbol Technologies, Inc. | Compact imaging lens assembly for an imaging-based bar code reader |
EP1995620A1 (en) | 2007-05-22 | 2008-11-26 | Enplas Corporation | Imaging lens |
EP2037306A1 (en) * | 2007-09-12 | 2009-03-18 | Fujinon Corporation | Imaging lens and imaging apparatus |
US7535658B2 (en) | 2005-09-29 | 2009-05-19 | Fujinon Corporation | Imaging lens |
JP2010079252A (en) * | 2008-09-01 | 2010-04-08 | Fujinon Corp | Small projection lens and projection display using the same |
US7889442B2 (en) | 2007-09-12 | 2011-02-15 | Fujinon Corporation | Imaging lens and imaging apparatus |
JP2011518341A (en) * | 2008-02-29 | 2011-06-23 | グローバル バイオニック オプティクス リミテッド | Single lens extended depth of field imaging system |
CN102486573A (en) * | 2010-12-01 | 2012-06-06 | 奥林巴斯株式会社 | Microscope objective lens |
JP2012108449A (en) * | 2010-11-16 | 2012-06-07 | E-Pin Optical Industry Co Ltd | Optical imaging lens with two lenses |
WO2012176791A1 (en) | 2011-06-24 | 2012-12-27 | オリンパスメディカルシステムズ株式会社 | Objective optical system |
US9753247B2 (en) | 2015-05-28 | 2017-09-05 | Largan Precision Co., Ltd. | Photographing lens system, image capturing device, and electronic device |
US10306031B2 (en) | 2017-03-15 | 2019-05-28 | Largan Precision Co., Ltd. | Optical image capturing assembly, imaging apparatus and electronic device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281388A (en) * | 1996-04-15 | 1997-10-31 | Olympus Optical Co Ltd | Lens system |
JP2003227999A (en) * | 2001-11-27 | 2003-08-15 | Minolta Co Ltd | Imaging lens |
JP2003329921A (en) * | 2002-05-10 | 2003-11-19 | Seiko Epson Corp | Imaging lens |
JP2004004566A (en) * | 2002-03-25 | 2004-01-08 | Konica Minolta Holdings Inc | Imaging lens and imaging apparatus equipped with same, imaging unit and mobile terminal equipped with same |
JP2004061554A (en) * | 2002-07-24 | 2004-02-26 | Kyocera Corp | Imaging lens |
JP2004118077A (en) * | 2002-09-27 | 2004-04-15 | Fuji Photo Optical Co Ltd | Image pickup optical system |
JP2004219807A (en) * | 2003-01-16 | 2004-08-05 | Konica Minolta Holdings Inc | Imaging lens |
JP2004226487A (en) * | 2003-01-20 | 2004-08-12 | Seiko Epson Corp | Imaging lens |
JP2004240063A (en) * | 2003-02-04 | 2004-08-26 | Fuji Photo Optical Co Ltd | Imaging lens |
JP2004317743A (en) * | 2003-04-15 | 2004-11-11 | Minolta Co Ltd | Imaging lens |
-
2003
- 2003-04-24 JP JP2003119354A patent/JP4510402B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281388A (en) * | 1996-04-15 | 1997-10-31 | Olympus Optical Co Ltd | Lens system |
JP2003227999A (en) * | 2001-11-27 | 2003-08-15 | Minolta Co Ltd | Imaging lens |
JP2004004566A (en) * | 2002-03-25 | 2004-01-08 | Konica Minolta Holdings Inc | Imaging lens and imaging apparatus equipped with same, imaging unit and mobile terminal equipped with same |
JP2003329921A (en) * | 2002-05-10 | 2003-11-19 | Seiko Epson Corp | Imaging lens |
JP2004061554A (en) * | 2002-07-24 | 2004-02-26 | Kyocera Corp | Imaging lens |
JP2004118077A (en) * | 2002-09-27 | 2004-04-15 | Fuji Photo Optical Co Ltd | Image pickup optical system |
JP2004219807A (en) * | 2003-01-16 | 2004-08-05 | Konica Minolta Holdings Inc | Imaging lens |
JP2004226487A (en) * | 2003-01-20 | 2004-08-12 | Seiko Epson Corp | Imaging lens |
JP2004240063A (en) * | 2003-02-04 | 2004-08-26 | Fuji Photo Optical Co Ltd | Imaging lens |
JP2004317743A (en) * | 2003-04-15 | 2004-11-11 | Minolta Co Ltd | Imaging lens |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005026806A1 (en) * | 2003-09-10 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Imaging lens, imaging unit, and optical device |
US7532416B2 (en) | 2003-09-10 | 2009-05-12 | Panasonic Corporation | Imaging lens, imaging unit and optical device |
US7492533B2 (en) | 2003-09-10 | 2009-02-17 | Panasonic Corporation | Imaging lens, imaging unit, and optical device |
WO2005026807A1 (en) * | 2003-09-10 | 2005-03-24 | Matsushita Electric Industrial Co., Ltd. | Imaging lens, imaging unit, and optical apparatus |
JP4561634B2 (en) * | 2003-11-13 | 2010-10-13 | コニカミノルタオプト株式会社 | Imaging lens and imaging apparatus |
WO2005047951A1 (en) * | 2003-11-13 | 2005-05-26 | Konica Minolta Opto, Inc. | Imaging lens and imaging device |
JPWO2005047951A1 (en) * | 2003-11-13 | 2007-05-31 | コニカミノルタオプト株式会社 | Imaging lens and imaging apparatus |
JP2005202019A (en) * | 2004-01-14 | 2005-07-28 | Matsushita Electric Ind Co Ltd | Imaging lens |
CN100367066C (en) * | 2005-01-21 | 2008-02-06 | 里程碑株式会社 | Imaging lens |
WO2006077663A1 (en) * | 2005-01-21 | 2006-07-27 | Milestone Co., Ltd. | Imaging lens |
EP1712944A3 (en) * | 2005-04-15 | 2007-07-18 | Fujinon Corporation | Imaging lens |
US7345830B2 (en) | 2005-04-15 | 2008-03-18 | Fujinon Corporation | Imaging lens |
US7715119B2 (en) | 2005-09-29 | 2010-05-11 | Fujinon Corporation | Imaging lens |
US7535658B2 (en) | 2005-09-29 | 2009-05-19 | Fujinon Corporation | Imaging lens |
JP2007193195A (en) * | 2006-01-20 | 2007-08-02 | Canon Electronics Inc | Photographic lens and imaging apparatus having the same |
JP2007226107A (en) * | 2006-02-27 | 2007-09-06 | Tamron Co Ltd | Imaging lens |
JP2008046526A (en) * | 2006-08-21 | 2008-02-28 | Konica Minolta Opto Inc | Imaging lens, imaging apparatus and mobile terminal |
WO2008121483A1 (en) * | 2007-03-30 | 2008-10-09 | Symbol Technologies, Inc. | Compact imaging lens assembly for an imaging-based bar code reader |
EP1995620A1 (en) | 2007-05-22 | 2008-11-26 | Enplas Corporation | Imaging lens |
US7663815B2 (en) | 2007-05-22 | 2010-02-16 | Enplas Corporation | Imaging lens |
EP2037306A1 (en) * | 2007-09-12 | 2009-03-18 | Fujinon Corporation | Imaging lens and imaging apparatus |
US7787196B2 (en) | 2007-09-12 | 2010-08-31 | Fujinon Corporation | Imaging lens and imaging apparatus |
US7889442B2 (en) | 2007-09-12 | 2011-02-15 | Fujinon Corporation | Imaging lens and imaging apparatus |
JP2011518341A (en) * | 2008-02-29 | 2011-06-23 | グローバル バイオニック オプティクス リミテッド | Single lens extended depth of field imaging system |
JP2010079252A (en) * | 2008-09-01 | 2010-04-08 | Fujinon Corp | Small projection lens and projection display using the same |
JP2012108449A (en) * | 2010-11-16 | 2012-06-07 | E-Pin Optical Industry Co Ltd | Optical imaging lens with two lenses |
CN102486573A (en) * | 2010-12-01 | 2012-06-06 | 奥林巴斯株式会社 | Microscope objective lens |
WO2012176791A1 (en) | 2011-06-24 | 2012-12-27 | オリンパスメディカルシステムズ株式会社 | Objective optical system |
US8767307B2 (en) | 2011-06-24 | 2014-07-01 | Olympus Medical Systems Corp. | Objective optical system |
US9753247B2 (en) | 2015-05-28 | 2017-09-05 | Largan Precision Co., Ltd. | Photographing lens system, image capturing device, and electronic device |
US10306031B2 (en) | 2017-03-15 | 2019-05-28 | Largan Precision Co., Ltd. | Optical image capturing assembly, imaging apparatus and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP4510402B2 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4916198B2 (en) | Zoom lens, imaging device having zoom lens, camera device, and portable information terminal device | |
JP3656089B2 (en) | Imaging lens device | |
JP4589231B2 (en) | Zoom lens, imaging device, and camera equipped with imaging device | |
JP4642883B2 (en) | Zoom lens, camera, and portable information terminal device | |
US20120147485A1 (en) | Imaging lens, imaging device and information device | |
JP4510402B2 (en) | Objective lens and optical instrument | |
CN100416332C (en) | Zoom lens system and camera with same | |
JP2004177435A (en) | Wide angle lens, camera and projection display device | |
JP2004205796A (en) | Optical path bending zoom optical system | |
JP2014059466A (en) | Imaging lens, image capturing device, and information device | |
JP2002082284A (en) | Imaging lens device | |
JP2004037966A (en) | Image pickup lens device | |
JP2008158413A (en) | Imaging lens and imaging apparatus having same | |
JP2010217506A (en) | Imaging optical system, camera, and personal digital assistant | |
JP2017146478A (en) | Imaging lens and imaging apparatus | |
JP2019090949A (en) | Image capturing lens, image capturing optical device, and digital equipment | |
JP4917922B2 (en) | Zoom lens system, imaging device and camera | |
JP2019090947A (en) | Image capturing lens, image capturing optical device, and digital equipment | |
JP2007212636A (en) | Zoom lens system, imaging device and camera | |
JP2007322839A (en) | Imaging lens and personal digital assistant | |
JP2005037576A (en) | Imaging lens device | |
JP2004070235A (en) | Image pickup lens device | |
JP2002221657A (en) | Single focus lens | |
JP2016218486A (en) | Imaging lens, image capturing device, and information device | |
JP2003149545A (en) | Front-shutter type single focal point lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091006 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091207 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100105 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100401 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100427 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100430 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |