Nothing Special   »   [go: up one dir, main page]

JP2004304163A - Oxide superconducting current lead, its manufacturing method, and superconducting system - Google Patents

Oxide superconducting current lead, its manufacturing method, and superconducting system Download PDF

Info

Publication number
JP2004304163A
JP2004304163A JP2004028451A JP2004028451A JP2004304163A JP 2004304163 A JP2004304163 A JP 2004304163A JP 2004028451 A JP2004028451 A JP 2004028451A JP 2004028451 A JP2004028451 A JP 2004028451A JP 2004304163 A JP2004304163 A JP 2004304163A
Authority
JP
Japan
Prior art keywords
oxide superconductor
metal
current lead
joining
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028451A
Other languages
Japanese (ja)
Other versions
JP4857435B2 (en
Inventor
Shuichi Kohayashi
秀一 小早志
Kazushi Kamimura
一志 上村
Shigeo Nagaya
重夫 長屋
Naoji Kajima
直二 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Dowa Mining Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP2004028451A priority Critical patent/JP4857435B2/en
Priority to US10/771,381 priority patent/US7394024B2/en
Priority to EP07015642A priority patent/EP1860736A3/en
Priority to EP04002691A priority patent/EP1445834B1/en
Priority to DE602004014046T priority patent/DE602004014046D1/en
Publication of JP2004304163A publication Critical patent/JP2004304163A/en
Application granted granted Critical
Publication of JP4857435B2 publication Critical patent/JP4857435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide superconducting current lead through which a current of ≥1,000 A can be made to flow even under an external magnetic field of 0.5 T when the lead is cooled with liquid nitrogen and has a contact resistance value of ≤0.5 μΩ when the current is made to flow through the lead, and to provide a method of manufacturing the lead. <P>SOLUTION: After a metallic electrode 10 having an installing groove 31 for installing an oxide superconductor 60 and a drift suppressing member 50 having a size matching the installing groove 31 are manufactured and a molten junction metal is applied to the electrode 10 and the member 50; the end of the oxide superconductor 60 coated with silver and the molten junction metal is installed to the installing groove 31, and the flowing out of the molten junction metal is prevented. Then the current lead 1 is manufactured by joining the metallic electrode 10, oxide superconductor 60, and drift suppressing member 50 to each other with a pore-free junction metal by melting the junction metal by heating the metal, foaming the metal by deaerating the metal in a vacuum, and then, bursting the formed bubbles by giving mechanical shocks to the bubbles through the drift suppressing member 50, and, in addition, coating the oxide superconductor 60 with a coating member 70. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、MRI、リニア、SMES等に用いられる超電導磁石等の超電導システムへ、電流を供給する際に用いられる酸化物超電導電流リードおよびその製造方法並びに超電導システムに関する。   The present invention relates to an oxide superconducting current lead used for supplying a current to a superconducting system such as a superconducting magnet used for MRI, linear, SMES, and the like, a manufacturing method thereof, and a superconducting system.

超電導磁石等に大電流を供給する際に用いられる電流リードとは、室温部の電源から極低温の超電導磁石等の超電導システムへ、数百から数千アンペアの電流を供給するものである。従来はこの電流リードとして、電気抵抗値の低い銅線が用いられていた。しかし、銅線を電流リードとして用い、これに所定の大電流を流した際に発生するジュール熱を下げるために、銅線の線径を太いものにすると、今度は、この太い線径を有する銅線を介して超電導システム側へ熱伝導による熱侵入が起こり、この熱侵入による冷凍機の電力損失や冷媒のHeガスの損失が大きなものになっていた。そこで、熱伝導率が銅に比べて小さく、且つ大電流を流してもジュール熱が発生しない酸化物超電導体を、この電流リードの途中に介在させることが特許文献1に提案されている。   A current lead used to supply a large current to a superconducting magnet or the like supplies a current of several hundred to several thousand amps from a power supply at room temperature to a superconducting system such as a cryogenic superconducting magnet. Conventionally, a copper wire having a low electric resistance has been used as the current lead. However, when the copper wire is used as a current lead and the wire diameter of the copper wire is increased in order to reduce the Joule heat generated when a predetermined large current is applied to the current lead, the copper wire has this large wire diameter. Heat infiltration by heat conduction into the superconducting system side via the copper wire occurred, and power loss of the refrigerator and loss of He gas of the refrigerant due to the heat invasion were large. To solve this problem, Patent Document 1 proposes that an oxide superconductor having a lower thermal conductivity than copper and generating no Joule heat even when a large current flows is interposed in the middle of the current lead.

実開昭63−200307号公報JP-A-63-200307

近年、超電導応用機器の開発が進行し、酸化物超電導電流リードに対する要求性能の水準も高いものとなり、より大電流を流せること、よりジュール発生熱が少ないことに加えて、外界からの熱侵入も少ないことが求められてきた。
因みに、酸化物超電導電流リードの主要な用途である電力貯蔵用SMESにおいて、1MJ級SMESの酸化物超電導電流リードに対する要求水準の一例は、高温側温度77K、低温側温度4.2K、外部磁場0.5Tの下で、所定の電流として1000A以上の電流を流すことができ、さらに高温側から低温側への熱侵入は、0.5W以下、というものである。酸化物超電導電流リードの特性が、この水準を満たすことができれば、前記電力貯蔵用SMESの冷却用に、比較的低価格でコンパクトな冷凍機が使用できるからである。
In recent years, the development of superconducting applied equipment has progressed, and the required level of performance for oxide superconducting current leads has also become higher.In addition to being able to flow larger current, less heat generated by Joule, heat intrusion from the outside world There has been a demand for less.
Incidentally, in the SMES for power storage, which is a main use of the oxide superconducting current lead, one example of the required level of the oxide superconducting current lead of 1MJ class SMES is a high temperature side temperature of 77K, a low temperature side temperature of 4.2K, and an external magnetic field of 0K. Under 1.5T, a current of 1000 A or more can be passed as a predetermined current, and the heat penetration from the high temperature side to the low temperature side is 0.5 W or less. If the characteristics of the oxide superconducting current lead can satisfy this level, a relatively low-cost and compact refrigerator can be used for cooling the SMES for power storage.

しかし、酸化物超電導電流リードに用いられている酸化物超電導体は、セラミックであることから金属との接合性が悪く、金属電極(一般には、銅電極が用いられる。)との接合面で、無視できない電気抵抗(以下、接触抵抗と記載する。)が発生する。このため、酸化物超電導電流リードへ所定の電流を通電した際、ジュール熱による発熱という問題が起こってしまった。   However, since the oxide superconductor used for the oxide superconducting current lead is a ceramic, it has poor bondability with a metal, and has a poor bonding property with a metal electrode (generally, a copper electrode is used). Electrical resistance that cannot be ignored (hereinafter referred to as contact resistance) is generated. For this reason, when a predetermined current is applied to the oxide superconducting current lead, a problem of heat generation due to Joule heat has occurred.

そこで上述の接触抵抗の値を低減するために、まず、酸化物超電導体と銅電極との間に、銀を銀コートの形で介在させることが試みられた。すなわち、銀と酸化物超電導体との接触抵抗値が、銅と酸化物超電導体との接触抵抗値より低いことに注目し、酸化物超電導体へ、銀箔を圧着、銀ペースト材を塗布、あるいは銀を溶射して付着させた後、これを焼き付けて銀コートとし、この銀コート付きの酸化物超電導体と、銅電極とを、例えばハンダのような接合用金属を用いて接合し、酸化物超電導電流リードとしたのである。   Therefore, in order to reduce the above-described contact resistance, first, an attempt was made to interpose silver in the form of silver coat between the oxide superconductor and the copper electrode. In other words, paying attention to the fact that the contact resistance value between silver and the oxide superconductor is lower than the contact resistance value between copper and the oxide superconductor, crimping a silver foil onto the oxide superconductor, applying a silver paste material, or After silver is sprayed and adhered, it is baked to form a silver coat, and the oxide superconductor with the silver coat and the copper electrode are joined using a joining metal such as solder, for example, to form an oxide. It was a superconducting current lead.

しかし、電流リードに流す電流が増加してきた結果、上述の銀コート付きの酸化物超電導体を用いた電流リードでは、発生するジュール熱が看過し得なくなってきた。そこで電流リードに所定の電流を流しながら、ジュール熱の発生を抑制するため、酸化物超電導体を大型化し、銅電極との接触面積を大きくとることが行われた。
この結果、ジュール熱の発生抑制はできたものの、酸化物超電導体と銅電極との接触面積を大きくとるために、酸化物超電導体を大型化することが必要となり、今度は、この大型化した酸化物超電導体を介して高温側から低温側への熱侵入が増加することとなった。
However, as a result of an increase in the current flowing through the current lead, in the current lead using the above-described oxide superconductor with a silver coat, the generated Joule heat cannot be overlooked. Therefore, in order to suppress the generation of Joule heat while passing a predetermined current through the current lead, the oxide superconductor was increased in size and the contact area with the copper electrode was increased.
As a result, although the generation of Joule heat could be suppressed, it was necessary to increase the size of the oxide superconductor in order to increase the contact area between the oxide superconductor and the copper electrode. Heat penetration from the high temperature side to the low temperature side via the oxide superconductor increased.

そこで、例えば、図6に示すような酸化物超電導電流リードが考えられた。
図6に示す酸化物超電導電流リード100は、小さな断面積であっても大電流を流すことが可能な、熔融法で作製された希土類系酸化物超電導体110の両側に、金属電極として銅電極120が接続されている。そして、希土類系酸化物超電導体110の両端部112は、大きな断面積を有しているが、中央部111は、小さな断面積を有している。一方、銅電極120においても、酸化物超電導体の両端部112と接する接触部分121は、両端部112を包み込むように抉られており、両者が広い接触面積を確保できるようになっている。
この酸化物超電導電流リード100は、所定の電流を流しても、ジュール熱の発生、および高温側から低温側への熱侵入の両者を抑制できるものであった。
Thus, for example, an oxide superconducting current lead as shown in FIG. 6 has been considered.
An oxide superconducting current lead 100 shown in FIG. 6 has a copper electrode as a metal electrode on both sides of a rare-earth-based oxide superconductor 110 manufactured by a melting method, which allows a large current to flow even with a small cross-sectional area. 120 are connected. The two end portions 112 of the rare-earth oxide superconductor 110 have a large cross-sectional area, but the central portion 111 has a small cross-sectional area. On the other hand, also in the copper electrode 120, the contact portion 121 in contact with the both end portions 112 of the oxide superconductor is gouged so as to surround the both end portions 112, so that both can secure a wide contact area.
The oxide superconducting current lead 100 was able to suppress both generation of Joule heat and heat intrusion from the high-temperature side to the low-temperature side even when a predetermined current is passed.

しかし、酸化物超電導体の中でも電流リードに適している、熔融法で作製された希土類系酸化物超電導体においては、図6に示すような中央部のみが細く縊れた形状の成形体を作製することが困難である。このため、このような形状の酸化物超電導体を作製するには、まず、金属電極との間で十分な接触面積を確保できるサイズの直方体形状の希土類系酸化物超電導体を作製し、次に、当該希土類系酸化物超電導体を介しての熱侵入を低減するため、中央部を切削加工して断面積を小さくする工程をとる必要があった。しかし、これでは、酸化物超電導電流リードへ流す所定の電流値が大きい場合、大型の希土類系酸化物超電導体を作製し、且つ、当該希土類系酸化物超電導体を、大きく切削せざるを得ず、当該希土類系酸化物超電導体の歩留まりが非常に悪く、工数もかかる。さらに金属電極の部分が大型化するため、酸化物超電導電流リード総体としての小型化も困難であった。   However, among the oxide superconductors, a rare-earth oxide superconductor manufactured by a melting method, which is suitable for a current lead, has a molded body in which only a central portion is narrow and narrow as shown in FIG. Is difficult to do. For this reason, in order to manufacture an oxide superconductor having such a shape, first, a rectangular parallelepiped rare earth-based oxide superconductor having a size capable of securing a sufficient contact area with a metal electrode is manufactured. In order to reduce heat penetration through the rare-earth oxide superconductor, it was necessary to take a step of cutting the central portion to reduce the cross-sectional area. However, in this case, when the predetermined current value flowing to the oxide superconducting current lead is large, a large-sized rare-earth oxide superconductor must be manufactured, and the rare-earth oxide superconductor must be largely cut. However, the yield of the rare earth oxide superconductor is very low, and it takes a lot of man-hours. Further, since the size of the metal electrode is increased, it is difficult to reduce the size of the oxide superconducting current lead as a whole.

本発明は、上記の課題を解決するためになされたものであり、以下の構成を有する。   The present invention has been made to solve the above problems, and has the following configuration.

すなわち、上記の課題を解決するための第1の構成は、酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードであって、
前記接合部分に設けられた前記接合用金属中の空孔の体積が、前記接合部分の容積の5%以下であることを特徴とする酸化物超電導電流リードである。
That is, in a first configuration for solving the above-described problem, a metal electrode is provided on both sides of an oxide superconductor, and a bonding metal is formed at a bonding portion formed by the oxide superconductor and the metal electrode. An oxide superconducting current lead in which the oxide superconductor and the metal electrode are joined by the joining metal provided,
An oxide superconducting current lead, wherein the volume of holes in the joining metal provided at the joining portion is 5% or less of the volume of the joining portion.

第2の構成は、第1の構成に記載の酸化物超電導電流リードであって、
前記接合用金属により接合される前記酸化物超電導体の表面に、銀のコートが設けられていることを特徴とする酸化物超電導電流リードである。
A second configuration is the oxide superconducting current lead according to the first configuration,
An oxide superconducting current lead, wherein a silver coat is provided on a surface of the oxide superconductor joined by the joining metal.

第3の構成は、第1または第2の構成に記載の酸化物超電導電流リードであって、
前記接合用金属とは、Cd、Zn、Sbのいずれか一種以上と、Pb、Sn、Inのいずれか一種以上とを含むハンダであることを特徴とする酸化物超電導電流リードである。
A third configuration is the oxide superconducting current lead according to the first or second configuration,
The joining metal is a solder containing at least one of Cd, Zn, and Sb and at least one of Pb, Sn, and In, and is an oxide superconducting current lead.

第4の構成は、酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードの製造方法であって、
前記接合用金属によって、前記酸化物超電導体と前記金属電極とを接合する際、前記接合部分を、前記接合用金属の融点以上に加熱した後、減圧して、前記接合用金属を脱気させる工程を有することを特徴とする酸化物超電導電流リードの製造方法である。
In a fourth configuration, a metal electrode is provided on both sides of the oxide superconductor, and a bonding metal is provided at a bonding portion formed by the oxide superconductor and the metal electrode. A method for producing an oxide superconducting current lead in which an oxide superconductor and the metal electrode are joined,
When joining the oxide superconductor and the metal electrode with the joining metal, the joining portion is heated to a temperature equal to or higher than the melting point of the joining metal, and then the pressure is reduced to degas the joining metal. A method for manufacturing an oxide superconducting current lead, comprising the steps of:

第5の構成は、第4の構成に記載の酸化物超電導電流リードの製造方法であって、
前記接合用金属の加熱および脱気の際、接合用金属が、前記接合部分より流れ出すのを抑制する封止部材を設けることを特徴とする酸化物超電導電流リードの製造方法である。
A fifth configuration is a method for manufacturing an oxide superconducting current lead according to the fourth configuration,
A method for manufacturing an oxide superconducting current lead, comprising providing a sealing member that suppresses the joining metal from flowing out of the joining portion when the joining metal is heated and degassed.

第6の構成は、第1から第3の構成のいずれかに記載の酸化物超電導電流リードを用いたことを特徴とする超電導システムである。   A sixth configuration is a superconducting system using the oxide superconducting current lead according to any one of the first to third configurations.

本発明者らは、酸化物超電導電流リードの試料を作製し、酸化物超電導体と金属電極との接合面における接触抵抗の値を詳細に測定し、酸化物超電導電流リードの試料の試料毎に、接触抵抗の値が一定でないことを見いだした。そこで、この接触抵抗値のバラツキの原因を究明するため、酸化物超電導体と金属電極との接合面を、全面に亘り詳細に分解して検討した。
その結果、酸化物超電導体と金属電極との接合面にある接合金属中に、空孔があることが見いだされた。そして、この接合用金属中の空孔の体積を積算すると、接合部分の容積の概ね30%以上あることもわかった。そこで第1の構成に記載したように、この接合用金属中の空孔の体積を接合部分の容積の5%以下としたところ、酸化物超電導体と金属電極との接触抵抗値が低減し、酸化物超電導体と金属電極との接触部分において、酸化物超電導体の断面積を拡大せずに金属電極と接合し、所定の電流を流しても発生するジュール熱を抑制することが可能となった。
The present inventors prepared a sample of an oxide superconducting current lead, measured the value of the contact resistance at the joint surface between the oxide superconductor and the metal electrode in detail, and determined the sample for each sample of the oxide superconducting current lead. And found that the value of the contact resistance was not constant. Therefore, in order to investigate the cause of the variation in the contact resistance value, the joint surface between the oxide superconductor and the metal electrode was disassembled in detail over the entire surface and examined.
As a result, it was found that the bonding metal on the bonding surface between the oxide superconductor and the metal electrode had pores. When the volume of the holes in the joining metal was integrated, it was found that the volume was approximately 30% or more of the volume of the joining portion. Therefore, as described in the first configuration, when the volume of the holes in the bonding metal is set to 5% or less of the volume of the bonding portion, the contact resistance value between the oxide superconductor and the metal electrode is reduced, At the contact portion between the oxide superconductor and the metal electrode, it is possible to join the metal electrode without expanding the cross-sectional area of the oxide superconductor and suppress the Joule heat generated even when a predetermined current flows. Was.

第2の構成に記載したように、接合用金属と酸化物超電導体との間に銀のコートを介在させることで、前記酸化物超電導体と金属電極との接触抵抗値をさらに低下させることができ、所定の電流を安定的に流すことができた。   As described in the second configuration, by interposing a silver coat between the bonding metal and the oxide superconductor, the contact resistance between the oxide superconductor and the metal electrode can be further reduced. As a result, a predetermined current was able to flow stably.

第3の構成に記載したように、接合用金属としてCd、Zn、Sbのいずれか一種以上を含み且つ、Pb、Sn、Inのいずれか一種以上を含むハンダを用いると、金属電極と酸化物超電導体間の剥がれや、酸化物超電導体のクラックを抑制することができるため、接合用金属として上述のハンダを用いた酸化物超電導電流リードは、所定の電流を安定的に流すことができた。   As described in the third configuration, when a solder containing at least one of Cd, Zn, and Sb as a bonding metal and containing at least one of Pb, Sn, and In is used, a metal electrode and an oxide can be formed. Since the peeling between the superconductors and the cracks in the oxide superconductor can be suppressed, the oxide superconducting current lead using the above-described solder as the joining metal was able to stably flow a predetermined current. .

第4の構成に記載したように、酸化物超電導電流リードに用いられる接合用金属を融点以上に加熱した後、減圧して脱気することで、前記接合部分に設けられた前記接合用金属中の空孔の体積を低減することができた。   As described in the fourth configuration, after the bonding metal used for the oxide superconducting current lead is heated to a temperature equal to or higher than the melting point, the pressure is reduced and degassed, so that the bonding metal provided in the bonding portion is removed. Was able to reduce the volume of pores.

第5の構成に記載したように、接合用金属の脱気の際、前記接合用金属接合が外界と接触する部分へ前記接合用金属の流れ出しを抑制する封止部材を設け、接合用金属が前記接合部分から流出するのを抑制することで、接合部分において接合用金属の量の不足による空孔の発生を回避すると共に、接合用金属が接合部分以外の部分へ拡散し、当該拡散部分の接触抵抗値が上がることも回避することができた。   As described in the fifth configuration, at the time of degassing the joining metal, a sealing member that suppresses the outflow of the joining metal to a portion where the joining metal joint comes into contact with the outside is provided, and the joining metal is provided. By suppressing the outflow from the joining portion, it is possible to avoid the occurrence of vacancies due to an insufficient amount of the joining metal in the joining portion, and the joining metal is diffused to portions other than the joining portion, and It was also possible to avoid an increase in contact resistance.

第6の構成に記載したように、第1から第3の構成のいずれかに記載の酸化物超電導電流リードを用いた超電導システムは、所定の電流を流した際にも高温側から低温側への熱侵入が少ないので、冷凍機の負担を削減することができ、生産コストおよびランニングコストの低い超電導システムとなった。   As described in the sixth configuration, the superconducting system using the oxide superconducting current lead according to any one of the first to third configurations is capable of moving from a high temperature side to a low temperature side even when a predetermined current is applied. Since the heat intrusion into the refrigerator is small, the load on the refrigerator can be reduced, and a superconducting system with low production cost and running cost can be obtained.

以下、図面を参照しながら、本発明の実施の形態について説明する。
図1は、本発明に係る酸化物超電導電流リードにおける金属電極への酸化物超電導体の設置例を示す斜視図であり、図2は、図1に示す酸化物超電導体が設置された金属電極へ封止部材を設けた場合の斜視図であり、図3は、本発明に係る酸化物超電導電流リードの特性測定の概念図であり、図4は、酸化物超電導体と金属電極との接合体へ被覆部材を被覆するために、前記接合体を金型中へ納めた際の斜視図であり、図5は、従来の技術で作製した酸化物超電導電流リードにおける、酸化物超電導体と金属電極との接合部分の模式的な横断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an example of installing an oxide superconductor on a metal electrode in the oxide superconducting current lead according to the present invention, and FIG. 2 is a metal electrode on which the oxide superconductor shown in FIG. 1 is installed. FIG. 3 is a perspective view in the case where a sealing member is provided, FIG. 3 is a conceptual diagram of characteristic measurement of the oxide superconducting current lead according to the present invention, and FIG. FIG. 5 is a perspective view when the joined body is placed in a mold in order to cover the body with a covering member. FIG. 5 is an oxide superconductor and a metal in an oxide superconducting current lead manufactured by a conventional technique. It is a schematic cross section of the joint part with an electrode.

図1において、本発明に係る酸化物超電導電流リード(以下、電流リードと記載する。)1は、金属電極10、偏流抑止部材50、酸化物超電導体60、および被覆部材70を有している。尚、図示していないが、酸化物超電導体60の他端には金属電極10と同様の金属電極が対向して設けられている。   In FIG. 1, an oxide superconducting current lead (hereinafter, referred to as a current lead) 1 according to the present invention includes a metal electrode 10, a drift suppression member 50, an oxide superconductor 60, and a covering member 70. . Although not shown, a metal electrode similar to the metal electrode 10 is provided at the other end of the oxide superconductor 60 so as to face the same.

まず金属電極10は、平板状のリード線接合部20と直方体状の酸化物超電導体設置部(以下、設置部と記載する。)30とを有する。リード線接合部20には、リード線やブスバー等を設置するためのリード線設置孔21が所望数設けられている。一方、設置部30の上面34と対向面33とには、酸化物超電導体設置溝(以下、設置溝と記載する。)31が設けられ 、さらに、対向面33には酸化物超電導体受継部(以下、受継部と記載する。)32が、設置溝31を囲うように上部を開口してコの字に設けられている。さらに設置溝31内壁は、後述する接合用金属との密着性を向上させるため、リード線接合部20は、ここに接合されるリード線やブスバー等との接触抵抗を低減するため、予め錫、銀、金、ニッケル、亜鉛、パラジウムの単体または合金を主成分とするメッキ、或いは前記メッキの積層体を設けておくことが好ましい。   First, the metal electrode 10 has a plate-shaped lead wire joining portion 20 and a rectangular parallelepiped oxide superconductor mounting portion (hereinafter, referred to as a mounting portion) 30. A desired number of lead wire installation holes 21 for installing lead wires, bus bars, and the like are provided in the lead wire joint portion 20. On the other hand, an oxide superconductor installation groove (hereinafter, referred to as an installation groove) 31 is provided on the upper surface 34 and the opposed surface 33 of the installation portion 30, and the oxide superconductor transfer portion is provided on the opposed surface 33. (Hereinafter referred to as a succession part.) 32 is provided in a U-shape with an open upper part so as to surround the installation groove 31. Further, the inner wall of the installation groove 31 improves the adhesion to the metal for bonding described later, and the lead wire bonding portion 20 is made of tin, tin, or the like in advance in order to reduce the contact resistance with the lead wire or bus bar bonded thereto. It is preferable to provide plating mainly containing a simple substance or an alloy of silver, gold, nickel, zinc, and palladium, or a laminate of the plating.

次に、偏流抑制部材50は、偏流抑制部材本体51と偏流抑制部材突起部(以下、突起部と記載する。)52とを有し、上述した設置溝31へ填め込み可能な形状を有し、設置溝31填め込まれた後は、金属電極10と一体化する。この偏流抑制部材50および設置溝31も、後述する接合用金属との密着性を向上させるため、予め錫、銀、金、ニッケル、亜鉛、パラジウムの単体または合金を主成分とするメッキ、或いは前記メッキの積層体を設けておくことが好ましい。   Next, the drift suppression member 50 has a drift suppression member main body 51 and a drift suppression member protrusion (hereinafter, referred to as a protrusion) 52, and has a shape that can be fitted into the installation groove 31 described above. After being set in the installation groove 31, the metal electrode 10 is integrated. The drift suppressing member 50 and the installation groove 31 are also preliminarily plated with tin, silver, gold, nickel, zinc, palladium as a main component or an alloy in order to improve the adhesion with a bonding metal described later, or It is preferable to provide a plating laminate.

次に、酸化物超電導体60は、角柱形状を有し、その角柱の両端には銀コート61が設けられている。尚、本実施の形態においては、後述する電流リードの電気特性評価のため、角柱端部より適宜な位置に、測定用銀コート62が設けられている。   Next, the oxide superconductor 60 has a prismatic shape, and silver coats 61 are provided on both ends of the prism. In the present embodiment, the silver coating for measurement 62 is provided at an appropriate position from the end of the prism for evaluating the electrical characteristics of the current lead described later.

さらに、角柱形状の酸化物超電導体60を挟んで対向する金属電極10の対向面33間には、酸化物超電導体60を被覆する被覆部材70が設けられている。この被覆部材70は対向面33に設けられた受継部32に支えられ、金属電極10に固定される。   Further, a covering member 70 for covering the oxide superconductor 60 is provided between the facing surfaces 33 of the metal electrodes 10 facing each other with the prism-shaped oxide superconductor 60 interposed therebetween. The covering member 70 is supported by the transfer portion 32 provided on the facing surface 33 and is fixed to the metal electrode 10.

ここで、酸化物超電導体60には、小さな断面積であっても大電流を流すことが可能な、熔融法で作製された希土類系酸化物超電導体を用いることが好ましい。所定の電流を流すのに必要な酸化物超電導体60の断面積を小さくすることで、極低温の超電導磁石への熱侵入を、より低減することができるからである。
加えて、酸化物超電導体60は、全体に亘って実質的に同じ断面積を有しているので、母材となる酸化物超電導体からの切り出しにより作製でき、この切り出しの後、さらに大きな切削加工をする必要はない。
Here, as the oxide superconductor 60, it is preferable to use a rare-earth-based oxide superconductor manufactured by a melting method, which allows a large current to flow even with a small cross-sectional area. This is because heat intrusion into the cryogenic superconducting magnet can be further reduced by reducing the cross-sectional area of the oxide superconductor 60 necessary for flowing a predetermined current.
In addition, since the oxide superconductor 60 has substantially the same cross-sectional area throughout, it can be manufactured by cutting from the oxide superconductor serving as the base material. No processing is required.

次に、金属電極10への、酸化物超電導体60および偏流抑制部材50の設置について説明する。金属電極10に設けられた設置溝31は、酸化物超電導体60の端部が、填め込まれる形状を有しているが、当該部分に1000A以上の大電流が流れることを考慮すると、その幅・高さ・奥行きは3×3×10mm以上あることが好ましい。   Next, the installation of the oxide superconductor 60 and the drift suppression member 50 on the metal electrode 10 will be described. The installation groove 31 provided in the metal electrode 10 has a shape in which the end of the oxide superconductor 60 is fitted. -It is preferable that the height and depth are 3 x 3 x 10 mm or more.

この設置溝31には、酸化物超電導体60の端部が設置され、さらにその上に偏流抑制部材50が設置される。この偏流抑制部材50と設置溝31との隙間は、片側0.05〜0.5mm程度とすることが好ましい。そしてこの偏流抑制部材50と設置溝31との隙間が、図3にて説明する脱気部42となる。このとき隙間が、0.05mm以上あれば接合金属の脱気が十分に進み、0.5mm以下であれば接合金属の容積が大きくなることによる不必要な接触抵抗値の上昇を回避できるので好ましい。   The end of the oxide superconductor 60 is installed in the installation groove 31, and the drift suppression member 50 is further installed thereon. The gap between the drift suppressing member 50 and the installation groove 31 is preferably about 0.05 to 0.5 mm on one side. The gap between the drift suppressing member 50 and the installation groove 31 serves as a deaerator 42 described with reference to FIG. At this time, if the gap is 0.05 mm or more, deaeration of the joining metal proceeds sufficiently, and if the gap is 0.5 mm or less, unnecessary increase in contact resistance due to an increase in the volume of the joining metal can be avoided, which is preferable. .

再び、図2に戻り、偏流抑制部材50を設置溝31へ設置したとき、偏流抑制部材本体51は、概ね金属電極の上面34および対向面33と面一になり、突起部52は受継部32と一体化するサイズであることが好ましい。そして、設置溝31に酸化物超電導体60の端部が設置され、さらにその上に偏流抑制部材50が設置された際、この設置溝31や偏流抑制部材50を含む金属電極10と、酸化物超電導体60の端部とに囲まれた部分が接合部分を構成する。   Returning to FIG. 2 again, when the drift preventing member 50 is installed in the installation groove 31, the drift preventing member main body 51 is substantially flush with the upper surface 34 and the facing surface 33 of the metal electrode, and the protrusion 52 is Preferably, the size is such that it is integrated with. When the end of the oxide superconductor 60 is installed in the installation groove 31 and the drift suppression member 50 is further installed thereon, the metal electrode 10 including the installation groove 31 and the drift suppression member 50 is The portion surrounded by the end of the superconductor 60 constitutes a joining portion.

接合部分を構成する酸化物超電導体60の、設置溝31および偏流抑制部材50と対向する5つの面は、この部分の接触抵抗を減少させる観点より、予め銀コート61されていることが好ましい。銀コートの方法としては、銀ペースト材の塗布焼き付け法、メッキ法、蒸着法、スパッター法、および溶射法等が適用可能なので、生産性、量産性の観点より適宜選択すれば良い。そして、この銀コート61上へ、酸化物超電導体60を設置溝31へ接合するための接合用金属を熔融塗布しておくことが好ましい。この接合用金属としては、酸化物超電導体が加熱されて、ここから酸素が抜けてしまうのを回避するため、300℃以下の融点を有する各種のハンダが好個に用いられる。中でも、この接合部分の密着性を上げて接触抵抗を下げる観点から、例えば、セラミックとの密着性と塗れ性が高くなるようにCd、Zn、Sb等が添加されたPb−Sn系やIn系の半田材を用いることが望ましい。   It is preferable that the five surfaces of the oxide superconductor 60 constituting the joint portion facing the installation groove 31 and the drift suppression member 50 be previously silver-coated 61 from the viewpoint of reducing the contact resistance at this portion. As the silver coating method, a coating and baking method of a silver paste material, a plating method, a vapor deposition method, a sputtering method, a thermal spraying method, and the like can be applied, and thus may be appropriately selected from the viewpoint of productivity and mass productivity. Then, it is preferable that a joining metal for joining the oxide superconductor 60 to the installation groove 31 be melt-coated on the silver coat 61. As the joining metal, various solders having a melting point of 300 ° C. or less are preferably used in order to prevent the oxide superconductor from being heated and oxygen being released therefrom. Among them, from the viewpoint of increasing the adhesiveness of the joining portion and lowering the contact resistance, for example, Pb-Sn-based or In-based, to which Cd, Zn, Sb, etc. are added so as to increase the adhesiveness with ceramic and the wettability. It is desirable to use the solder material of the above.

即ち、Cd、Zn、Sbのいずれか一種以上を含み且つ、Pb、Sn、Inのいずれか一種以上を含むハンダは、金属電極とも酸化物超電導体とも接着強度が強い。このため、金属電極と酸化物超電導体間の線膨張差に起因して、液体窒素温度またはそれ以下の温度と室温までの熱履歴により、金属電極と酸化物超電導体間に応力が発生しても、この応力が局所に集中するのを回避できる。この結果、金属電極と酸化物超電導体間の剥がれや、酸化物超電導体のクラックの発生を抑制することができ、熱履歴の繰り返しに対しても抵抗の上昇などが起こらず、所定の電流を安定的に流すことができたものと考えられる。   That is, a solder containing any one or more of Cd, Zn, and Sb and containing one or more of Pb, Sn, and In has a high adhesive strength to both the metal electrode and the oxide superconductor. Therefore, due to the difference in linear expansion between the metal electrode and the oxide superconductor, stress is generated between the metal electrode and the oxide superconductor due to the thermal history up to the temperature of liquid nitrogen or lower and room temperature. However, this stress can be prevented from being concentrated locally. As a result, peeling between the metal electrode and the oxide superconductor and generation of cracks in the oxide superconductor can be suppressed. It is considered that it was possible to flow stably.

ここで、セラミック用半田材の好ましい例として、セラソルザ(登録商標)を記載する。
セラソルザ143 旭硝子(株)製
成分:Sn:45〜51(Wt%)、Pb:26〜32、Cd:16〜22、Zn:2〜4、Sb:1〜3
融点:143℃
セラソルザ123 旭硝子(株)製
成分:In:44〜50(Wt%)、Cd:45〜50、Zn:1〜3、Sb:1未満
融点:123℃
Here, Cerasolzer (registered trademark) will be described as a preferable example of the ceramic solder material.
Cerasolza 143 Asahi Glass Co., Ltd. Ingredients: Sn: 45-51 (Wt%), Pb: 26-32, Cd: 16-22, Zn: 2-4, Sb: 1-3
Melting point: 143 ° C
Cerasolza 123, manufactured by Asahi Glass Co., Ltd. Ingredients: In: 44 to 50 (Wt%), Cd: 45 to 50, Zn: 1 to 3, Sb: less than 1 Melting point: 123 ° C.

金属電極10に設けられた設置溝31へ、酸化物超電導体60の端部を填め込み、その上に偏流抑制部材50を設置して接合部分を形成し、そこへ接合用金属を設けて金属電極10と酸化物超電導体60とを接合する構成を採ることで、金属電極10と酸化物超電導体60とが、全て面接触の状態で電気的に接合されるので、この部分の接触抵抗値を下げることができ好ましい。もちろん、この他の実施の形態として、金属電極をキャップ状とし、そこへ酸化物超電導体を填め込む形態、あるいは、金属電極を分割可能な構造とし、酸化物超電導体を挟み込む形で金属電極を組み上げる形態を採ることも可能であり、酸化物超電導体の構造も円柱状、あるいは筒状であっても良い。   The end portion of the oxide superconductor 60 is inserted into the installation groove 31 provided in the metal electrode 10, and the drift suppression member 50 is installed thereon to form a joining portion, and a joining metal is provided there to provide a joining metal. By adopting a configuration in which the electrode 10 and the oxide superconductor 60 are joined, the metal electrode 10 and the oxide superconductor 60 are all electrically joined in a state of surface contact. Can be reduced. Of course, as another embodiment, a metal electrode is formed in a cap shape and an oxide superconductor is filled therein, or a metal electrode is formed in a structure capable of dividing the metal electrode and sandwiching the oxide superconductor. It is also possible to adopt an assembled form, and the structure of the oxide superconductor may be cylindrical or cylindrical.

設置溝31内にも接合用金属を熔融塗布しておき、ここへ、銀コート上に接合用金属を熔融塗布した酸化物超電導体60を設置し、酸化物超電導体60と設置溝31とが形成する接合部分へ熔融した接合用金属を設置し、これを固化して両者を接合する。   The joining metal is also melt-coated in the installation groove 31, and the oxide superconductor 60 in which the joining metal is melt-coated on the silver coat is installed, and the oxide superconductor 60 and the installation groove 31 are formed. A molten joining metal is placed on the joining portion to be formed, and this is solidified to join the two.

この接合用金属を用いた接合において、熔解させた接合用金属を酸化物超電導体60上や設置溝31壁に設置するため、塗布または注入等をおこなう際、大気等のガス状成分が巻き込まれる。この熔解した接合用金属中に巻き込まれたガス状成分は、接合用金属が固化する際、内部に空孔を形成する。接合用金属内に空孔が形成されると、接合用金属を介して金属電極と酸化物超電導体との間を流れていた電流の流路が狭まり、所定電流、例えば1000Aの通電時には、この部分が接触抵抗値の増加原因となっていたものと考えられる。   In the joining using the joining metal, gaseous components such as air are involved when applying or pouring the molten joining metal on the oxide superconductor 60 or on the wall of the installation groove 31 in order to install the melted joining metal. . The gaseous components entrained in the molten joining metal form voids inside when the joining metal is solidified. When the holes are formed in the joining metal, the flow path of the current flowing between the metal electrode and the oxide superconductor through the joining metal is narrowed, and when a predetermined current, for example, 1000 A is applied, It is considered that the portion caused the increase in the contact resistance value.

ここで、金属電極と酸化物超電導体との間の接触抵抗値と、空孔が形成された接合用金属との関係について図5を参照しながら説明する。
図5において、金属電極10に設けられた設置溝31中には、酸化物超電導体60の銀コート61がされた部分が設置され、金属電極10と酸化物超電導体60とで構成された接合部分には、接合用金属90が設けられている。そして、従来の技術により、金属電極10と酸化物超電導体60とを接合用金属90を用いて接合した場合、この接合用金属90中に空孔91が存在していたのである。この空孔91の体積が、接合部分の容積に占める割合は、例えば次のような方法で測定することができる。すなわち、接合部分を順次切断してゆき、その切断面に現れる、接合部分の断面の面積と空孔91の断面積との割合を測定し、その値を順次積算してゆけばよい。
Here, the relationship between the contact resistance value between the metal electrode and the oxide superconductor and the bonding metal in which holes are formed will be described with reference to FIG.
In FIG. 5, a portion of the oxide superconductor 60 on which the silver coating 61 is provided is installed in the installation groove 31 provided in the metal electrode 10, and the junction formed by the metal electrode 10 and the oxide superconductor 60 is formed. The joining metal 90 is provided in the portion. When the metal electrode 10 and the oxide superconductor 60 were joined by using the joining metal 90 according to the conventional technique, the holes 91 were present in the joining metal 90. The ratio of the volume of the holes 91 to the volume of the joint portion can be measured, for example, by the following method. That is, the joint portion may be sequentially cut, the ratio of the cross-sectional area of the joint portion and the cross-sectional area of the holes 91 appearing on the cut surface may be measured, and the values may be sequentially integrated.

従来の方法により、接合用金属90を用いて金属電極10と酸化物超電導体60とを接合した場合、接合部分の容積に占める空孔91の体積の割合は、約50%を占めていることが判明した。そして、この接合用金属90中における空孔91の存在が、金属電極と酸化物超電導体との間における接触抵抗値の要因と考えられた。   When the metal electrode 10 and the oxide superconductor 60 are joined using the joining metal 90 by a conventional method, the ratio of the volume of the holes 91 to the volume of the joining portion occupies about 50%. There was found. The existence of the holes 91 in the joining metal 90 was considered to be a factor of the contact resistance value between the metal electrode and the oxide superconductor.

そこで、この接合用金属中の空孔の生成を、抑制、回避する方法として、上述した接合用金属の塗布を真空中にて行うことが考えられた。しかし、作業性、生産性の観点から、接合用金属の塗布は大気中において行い、設置溝31へ酸化物超電導体60を設置して加熱し接合用金属を熔融して、これらを接合するときに、当該部分を真空中に暴露し、真空脱気法により接合用金属内のガス状成分を除去することが好ましいことに想到した。この真空脱気の条件として、接合用金属の加熱温度は融点以上とすれば良いが、脱気を短時間で進行させ、且つ接合用金属の酸化を抑制する観点から、融点+15〜100℃程度とすることが望ましい。また周囲の真空度は、0.01MPa以下であれば効果が得られるが、10Pa以下とすると4〜5秒で脱気が完了することからより望ましい。そして、この水準の温度、および時間であれば、酸化物超電導体60から酸素が抜けてしまうことを考慮する必要はない。   Therefore, as a method of suppressing and avoiding the generation of holes in the joining metal, it has been considered that the above-described application of the joining metal is performed in a vacuum. However, from the viewpoint of workability and productivity, the application of the joining metal is performed in the air, and the oxide superconductor 60 is installed in the installation groove 31 and heated to melt the joining metal. In addition, the present inventor has found that it is preferable to expose the part in a vacuum and remove gaseous components in the joining metal by a vacuum degassing method. As the conditions for the vacuum degassing, the heating temperature of the joining metal may be set to a temperature equal to or higher than the melting point. From the viewpoint of deaeration proceeding in a short time and suppressing oxidation of the joining metal, a melting point of about +15 to 100 ° C. It is desirable that The effect can be obtained if the surrounding vacuum degree is 0.01 MPa or less, but it is more preferable if the surrounding vacuum degree is 10 Pa or less since deaeration is completed in 4 to 5 seconds. If the temperature and the time are at these levels, it is not necessary to consider that oxygen escapes from the oxide superconductor 60.

さらに、この真空脱気の際、熔解した接合用金属が、設置溝31から流出して金属電極10の他の部分へ拡散すると、設置溝31内は接合用金属量が不足する一方、拡散した部分においてはその部分の接触抵抗値上昇の原因となり、いずれも好ましくないことであるので、これを抑制する構成を採ることが好ましい。   Further, at the time of this vacuum degassing, when the molten joining metal flows out of the installation groove 31 and diffuses into other portions of the metal electrode 10, the inside of the installation groove 31 is diffused while the amount of the bonding metal is insufficient. In a part, it causes the contact resistance value of the part to increase, which is not preferable. Therefore, it is preferable to adopt a configuration for suppressing this.

接合用金属の流失を抑制する具体的な構成例を、図2を用いて説明する。
図2において、金属電極10に設けられた設置溝31へ酸化物超電導体60の端部が設置されている。そして、設置溝31の外周縁部および酸化物超電導体に沿って封止部材41が設置されている。尚、封止部材41を設置溝31の外周縁部に沿って設置する際、設置溝31へ偏流抑制部材50を填め込むことで形成される脱気部42を閉塞しないように設置することが好ましい。そして、封止部材41としては、接合用金属の融点以上の温度でも変質せず、金属電極10や酸化物超電導体60への適宜な接着力を有し、且つ設置が容易なシリコンゴム等を好個に用いることができる。
A specific configuration example for suppressing the loss of the joining metal will be described with reference to FIG.
In FIG. 2, the end of oxide superconductor 60 is installed in installation groove 31 provided in metal electrode 10. And the sealing member 41 is installed along the outer peripheral edge of the installation groove 31 and the oxide superconductor. When the sealing member 41 is installed along the outer peripheral edge of the installation groove 31, the sealing member 41 may be installed so as not to block the deaeration section 42 formed by inserting the drift preventing member 50 into the installation groove 31. preferable. The sealing member 41 is made of silicon rubber or the like which does not deteriorate even at a temperature equal to or higher than the melting point of the joining metal, has appropriate adhesive strength to the metal electrode 10 and the oxide superconductor 60, and is easy to install. It can be used favorably.

金属電極10への封止部材41の設置が完了したら、金属電極10および酸化物超電導体60を、接合用金属の融点より15〜100℃高い温度に加熱し、上述の条件により接合用金属を真空脱気すると、発生した気体成分は脱気部42より排出される。このとき、熔融した接合用金属の粘性が高いため、生成した空孔が破裂し難い場合は、例えば超音波ハンダ小手の超音波振動子を用い、機械的衝撃を加えて生成した空孔を破裂させ、さらに真空脱気を行うことが好ましい。本実施の形態においては、まず、熔融した接合用金属中から気体成分を真空脱気した後、偏流抑制部材50を設置溝31に填め込み、再度真空脱気を行う。このとき、偏流抑制部材50を介して機械的衝撃を加えることで、熔融した接合用金属中の空孔の破裂を容易に実現できる。この結果、金属電極10の設置溝31と偏流抑制部材50と酸化物超電導体60とが形成する接合部分に設置された接合用金属中から空孔の体積を、接合部分の容積の5%以下に抑制することが可能となった。   When the installation of the sealing member 41 on the metal electrode 10 is completed, the metal electrode 10 and the oxide superconductor 60 are heated to a temperature 15 to 100 ° C. higher than the melting point of the bonding metal, and the bonding metal is heated under the above conditions. When vacuum degassing is performed, the generated gas component is discharged from the degassing section 42. At this time, if the generated holes are difficult to burst due to the high viscosity of the molten joining metal, the holes generated by applying a mechanical shock using, for example, an ultrasonic vibrator with an ultrasonic soldering hand are ruptured. It is preferable to perform vacuum degassing. In the present embodiment, first, after the gas component is vacuum-degassed from the molten joining metal, the drift suppression member 50 is inserted into the installation groove 31, and the vacuum degassing is performed again. At this time, by applying a mechanical impact via the drift suppression member 50, the rupture of the holes in the molten joining metal can be easily realized. As a result, the volume of vacancies in the joining metal provided at the joint formed by the installation groove 31 of the metal electrode 10, the drift suppressing member 50, and the oxide superconductor 60 is reduced to 5% or less of the volume of the joint. It became possible to suppress.

ここで接合用金属中の脱気条件を変え、接合部分の容積と接合用金属中の空孔との比率が、様々な値を有する複数の電流リード試料を作製した。そして作製した電流リード試料の接合部分の接触抵抗値を、後述する接触抵抗値測定方法を用いて測定し、接合部分の容積と接合用金属中の空孔との比率と、接触抵抗値と、の関係を求めた。   Here, the degassing conditions in the joining metal were changed, and a plurality of current lead samples were prepared in which the ratio of the volume of the joining portion to the porosity in the joining metal had various values. Then, the contact resistance value of the joint portion of the prepared current lead sample was measured using a contact resistance value measuring method described later, and the ratio of the volume of the joint portion and the voids in the joining metal, and the contact resistance value, Sought a relationship.

ここで、酸化物超電導体60の例として、縦3mm横5mm長さ90mmの直方体形状を有する熔融法で作製されたGd系酸化物超電導体を用いた。Gd系酸化物超電導体をこの大きさとしたのは、当該酸化物超電導体を介しての熱侵入を0.3W以下とするためである。もちろん、断面形状は、正方形または円形であっても良い。このGd系酸化物超電導体の両端部10mmを各々金属電極と接合し(このとき、酸化物超電導体と金属電極との接合面積は175mm2となる。)、接合部分の容積に対する、接合用金属中の空孔の比率を変化させて、接触抵抗値を測定した。 Here, as an example of the oxide superconductor 60, a Gd-based oxide superconductor having a rectangular parallelepiped shape having a length of 3 mm, a width of 5 mm, and a length of 90 mm was used. The size of the Gd-based oxide superconductor is set to this value in order to reduce heat penetration through the oxide superconductor to 0.3 W or less. Of course, the cross-sectional shape may be square or circular. 10 mm at both ends of the Gd-based oxide superconductor was joined to a metal electrode (at this time, the joining area between the oxide superconductor and the metal electrode was 175 mm 2 ), and the joining metal with respect to the volume of the joining portion. The contact resistance value was measured by changing the ratio of pores in the inside.

すると、接合用金属中の脱気操作を行わない場合は、上述したように、接合用金属中の空孔の比率は、接合部分の容積の30〜50%程度となり、所定の電流を流した際の接触抵抗値の大きさは0.8〜1.2μΩ程度であり、試料による接触抵抗値のバラツキも大きかった。ところが、接合用金属中の空孔の比率が、接合部分の容積の5%以下になると、所定の電流を流した際の接触抵抗値の大きさは0.5μΩを下回ると同時に、接触抵抗値のバラツキも少なくなった。   Then, when the degassing operation in the joining metal is not performed, as described above, the ratio of the vacancies in the joining metal is about 30 to 50% of the volume of the joining portion, and a predetermined current is applied. In this case, the magnitude of the contact resistance was about 0.8 to 1.2 μΩ, and the variation in the contact resistance depending on the sample was large. However, when the ratio of vacancies in the joining metal is 5% or less of the volume of the joining portion, the magnitude of the contact resistance when a predetermined current is applied falls below 0.5 μΩ, and at the same time, the contact resistance Variation has also been reduced.

ここで、上述したように当該Gd系酸化物超電導体を介しての熱侵入量は0.3W以下であるので、この伝熱による熱侵入と、低温側を4.2Kまで冷却した場合の1000A通電時の接触抵抗によるジュール発熱とを足し合わせた低温側への侵入熱量は、0.5Wを十分下回ることが判明した。
従って、酸化物超電導体が母材から切り出したままの形状であり、大きな切削加工を施さなくても、酸化物超電導電流リードとして使用可能であることが判明した。この結果、酸化物超電導体に切削加工を必要とする酸化物超電導電流リードと比較して、遙かに酸化物超電導体の使用量を減らすことが可能になると同時に、酸化物超電導電流リード全体の小型化も可能となった。
Here, as described above, since the amount of heat penetration through the Gd-based oxide superconductor is 0.3 W or less, the heat penetration due to this heat transfer and the 1000A when the low temperature side is cooled to 4.2K. It has been found that the amount of heat entering the low-temperature side, which is obtained by adding the Joule heat generated by the contact resistance at the time of energization, is sufficiently lower than 0.5 W.
Therefore, it has been found that the oxide superconductor has a shape as it is cut from the base material and can be used as an oxide superconducting current lead without performing a large cutting process. As a result, compared to the oxide superconducting current lead that requires cutting work on the oxide superconductor, it is possible to greatly reduce the amount of the oxide superconductor used, and at the same time, to reduce the entire oxide superconducting current lead. Miniaturization is also possible.

ここで図1に戻り、金属電極10と酸化物超電導体60との接合が完了したら、封止部材を除去し、柱状の酸化物超電導体60の両端に対向して設けられた金属電極10の間へ、酸化物超電導体60を被覆する形で被覆部材70を設けることが好ましい。被覆部材70は、酸化物超電導体60を、機械的、環境的に保護するものなので、ガラス繊維を含んだ樹脂材料であるGFRP等が好ましく用いられる。   Here, returning to FIG. 1, when joining of the metal electrode 10 and the oxide superconductor 60 is completed, the sealing member is removed, and the metal electrode 10 provided opposite to both ends of the columnar oxide superconductor 60 is removed. It is preferable to provide the covering member 70 in a form that covers the oxide superconductor 60 therebetween. Since the covering member 70 protects the oxide superconductor 60 mechanically and environmentally, GFRP or the like, which is a resin material containing glass fiber, is preferably used.

酸化物超電導体へ被覆部材を設ける工程を、図4を用いて説明する。
図4は、両端に金属電極が接合された酸化物超電導体へ、被覆部材を被覆するための金型中へ設置した状態を示す斜視図である。
図4において、金型80中には、両端に上述した金属電極10が接合された酸化物超電導体60が設置されている。そして金属電極10の設置部30と、コ字状の断面を有する金型80とが、金型空間81を形成する。また、両側の金属電極10より金型空間81へ向かって、酸化物超電導体受継部32と偏流抑制部材突起部52とが突起している。
一方、熱硬化型樹脂をガラス繊維へ含浸させ、GFRPのプリプレグを調製しておく。そして調製したGFRPのプリプレグを、金型空間81中へ充填し、加熱硬化させて酸化物超電導体60の被覆部材とした。この結果、被覆部材は、金属電極10より突起した偏流抑制部材突起部52、酸化物超電導体受継部32と嵌合し機械的強度を発揮するので、電気的特性に優れ、機械的、環境的に頑丈な電流リードを製造することができた。
The step of providing the covering member on the oxide superconductor will be described with reference to FIG.
FIG. 4 is a perspective view showing a state in which an oxide superconductor having metal electrodes bonded to both ends is installed in a mold for coating a coating member.
In FIG. 4, an oxide superconductor 60 having the above-described metal electrodes 10 bonded to both ends is provided in a mold 80. The installation portion 30 of the metal electrode 10 and the mold 80 having a U-shaped cross section form a mold space 81. Further, the oxide superconductor transfer portion 32 and the drift suppression member protrusion 52 project from the metal electrodes 10 on both sides toward the mold space 81.
On the other hand, a glass fiber is impregnated with a thermosetting resin to prepare a prepreg of GFRP. Then, the prepared prepreg of GFRP was filled in a mold space 81, and was heated and cured to obtain a coating member of the oxide superconductor 60. As a result, the covering member is fitted with the drift suppressing member protrusion 52 protruding from the metal electrode 10 and the oxide superconductor transfer portion 32 and exhibits mechanical strength, so that the covering member is excellent in electrical characteristics, mechanical and environmentally friendly. A robust current lead could be manufactured.

以上に記載した電流リードを超電導システムに用いることで、当該超電導システムの冷却効率が著しく改善され、冷凍機容量のコンパクト化等による生産コストの削減と、システムのランニングコスト削減とを実現できるようになった。   By using the current leads described above in a superconducting system, the cooling efficiency of the superconducting system is significantly improved, so that the production cost can be reduced by reducing the capacity of the refrigerator and the running cost of the system can be reduced. became.

製造された電流リードの特性評価について、図3を用いて説明する。
図3において、酸化物超電導体60は幅5mm厚さ3mmであり、その両端部の幅10mmの位置と、両端部から15〜17mmまでの位置とに、Agペーストが焼き付けられている。そして、両端部の幅10mmの位置までは、銀コート61として金属電極10に接合され、両端部から15〜17mmまでの位置は、測定用銀コート62としてリード線が接続される。電流リード1に設けられた2箇所の金属電極10のリード線接合部20にはブスバーが接続され、各々のブスバーは電源(図示していない)に接続されている。電源には、所定の電流として、例えば1060Aの電流を供給するものを用いた。電流は、リード線接合部20より設置部30を通過し、被覆部材70に被覆された酸化物超電導体を流れ、対する金属電極10の設置部30に到達する。
The characteristic evaluation of the manufactured current lead will be described with reference to FIG.
In FIG. 3, the oxide superconductor 60 has a width of 5 mm and a thickness of 3 mm, and an Ag paste is baked at positions of 10 mm in width at both ends and positions of 15 to 17 mm from both ends. The metal wires 10 are joined to the metal electrode 10 as silver coats 61 up to the positions with a width of 10 mm at both ends, and lead wires are connected as the measurement silver coats 62 at positions from 15 to 17 mm from both ends. A bus bar is connected to the lead wire joints 20 of the two metal electrodes 10 provided on the current lead 1, and each bus bar is connected to a power supply (not shown). As the power supply, a power supply that supplies, for example, a current of 1060 A as a predetermined current was used. The current passes through the installation portion 30 from the lead wire joint portion 20, flows through the oxide superconductor covered by the covering member 70, and reaches the installation portion 30 of the corresponding metal electrode 10.

この電流リード1を77Kに冷却し、両ブスバー間に1060Aの電流を流したときの、設置部30と酸化物超電導体60の端から15mmとの電位差を測定し、その値より、この部分の接触抵抗値Rを算定した。   When the current lead 1 was cooled to 77 K and a current of 1060 A was passed between the two bus bars, the potential difference between the installation portion 30 and 15 mm from the end of the oxide superconductor 60 was measured. The contact resistance value R was calculated.

以下、実施例に基づいて、本発明の実施の形態をさらに詳細に説明する。
(実施例1)
1)柱状の酸化物超電導体の製造
Sm23、BaCO3、CuOの各原料粉末を、モル比でSm:Ba:Cu=1.6:2.3:3.3になるように秤量した後、BaCO3とCuOのみを880℃で30時間焼成して、BaCuO2とCuOの仮焼粉を得た(モル比でBaCuO2:CuO=2.3:1.0)。次に、この仮焼粉へ前記予め秤量しておいたSm23を加え、さらにPt粉末(平均粒径0.01μm)およびAg2O粉末(平均粒径13.8μm)を加えて混合し、大気中900℃で10時間焼成しAg入り仮焼粉とした。但し、Pt含有量は0.42wt%、Ag含有量は15wt%とした。このAg入り仮焼粉をポットミルで粉砕して、平均粒径約2μmとし合成粉を得た。
Hereinafter, embodiments of the present invention will be described in more detail based on examples.
(Example 1)
1) Manufacture of columnar oxide superconductor Each raw material powder of Sm 2 O 3 , BaCO 3 , and CuO is weighed so that the molar ratio is Sm: Ba: Cu = 1.6: 2.3: 3.3. After that, only BaCO 3 and CuO were fired at 880 ° C. for 30 hours to obtain a calcined powder of BaCuO 2 and CuO (BaCuO 2 : CuO = 2.3: 1.0 in molar ratio). Next, the previously weighed Sm 2 O 3 was added to the calcined powder, and further, a Pt powder (average particle size: 0.01 μm) and an Ag 2 O powder (average particle size: 13.8 μm) were added and mixed. Then, it was calcined at 900 ° C. in the air for 10 hours to obtain a calcined powder containing Ag. However, the Pt content was 0.42 wt%, and the Ag content was 15 wt%. This Ag-containing calcined powder was pulverized with a pot mill to obtain a synthetic powder having an average particle size of about 2 μm.

得られた合成粉を粉末X線回折により分析したところ、Sm1+pBa2+q(Cu1-bAgb37-x相およびSm2+rBa1+s(Cu1-dAgd)O5-r相が確認された。 When the obtained synthetic powder was analyzed by powder X-ray diffraction, Sm 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O 7-x phase and Sm 2 + r Ba 1 + s (Cu 1- d Ag d ) O 5-r phase was observed.

この合成粉を、縦77mm、横106mm、厚さ26mmの板状にプレス成形し、前駆体を作製した。そして、この前駆体を炉体内に設置して、以下の工程を行った。
まず、室温から70時間で1100℃まで昇温させ、この温度で20分間保持して前駆体を半熔融状態にした後、前駆体の上部が低温側になるように前駆体の上下に5℃/cmの温度勾配を加え、上部の温度が1025℃になるまで0.4℃/minで降温させた。
This synthetic powder was press-molded into a plate having a length of 77 mm, a width of 106 mm and a thickness of 26 mm to prepare a precursor. Then, the precursor was set in the furnace, and the following steps were performed.
First, the temperature is raised from room temperature to 1100 ° C. in 70 hours, and the temperature is maintained at this temperature for 20 minutes to bring the precursor into a semi-molten state, and then 5 ° C. above and below the precursor so that the upper part of the precursor is on the low temperature side. / Cm, and the temperature was lowered at 0.4 ° C / min until the upper temperature reached 1025 ° C.

ここで、予め熔融法で作製しておいた、Agを含まずPtを0.5wt%含むNd1.8Ba2.4Cu3.4x組成の結晶を、縦横2mm、厚さ1mmに切り出して製造しておいた種結晶を、成長方向がc軸と平行になるように前駆体の上部の中心に接触させる。そして、上部の温度を1025℃から1℃/hrの速度で1015℃まで降温させた。この温度で100時間保持した後、945℃まで70時間かけて徐冷し、その後、上下の温度勾配が0℃/cmになるように前駆体の下部を20時間で945℃になるように冷却し、その後、室温まで100時間かけて徐冷し、前駆体の結晶化を行い、酸化物超電導体の結晶試料を得た。 Contact Here, had been prepared in advance by melting method, the crystal of Nd 1.8 Ba 2.4 Cu 3.4 O x composition containing 0.5 wt% of Pt not contain Ag, vertical and horizontal 2 mm, manufactured by cutting the thickness of 1mm The seed crystal is brought into contact with the upper center of the precursor so that the growth direction is parallel to the c-axis. Then, the upper temperature was lowered from 1025 ° C. to 1015 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 100 hours, the temperature is gradually cooled to 945 ° C. over 70 hours, and then the lower part of the precursor is cooled to 945 ° C. in 20 hours so that the upper and lower temperature gradients become 0 ° C./cm. Thereafter, the mixture was gradually cooled to room temperature over 100 hours to crystallize the precursor, thereby obtaining a crystal sample of the oxide superconductor.

この酸化物超電導体の結晶試料を、上下方向の中心付近で切断して断面をEPMAで観察したところ、Sm1+pBa2+q(Cu1-bAgb37-x相中に0.1〜30μm程度のSm2+rBa1+s(Cu1-dAgd)O5-y相が微細に分散していた。
ここで、p、q、r、s、yはそれぞれ−0.2〜0.2の値であり、xは−0.2〜0.6の値であった。また、b、dは0.0〜0.05の値であり、平均的には0.008程度であった。さらに、結晶試料全体にわたって0.1〜100μm程度のAgが微細に分散していた。また、表面から1mmより深い部分には粒径5〜200μm程度の空孔が分散していた。また、結晶試料全体が種結晶を反映してディスク状材料の厚さ方向がc軸と平行であるように均一に配向し、隣接する結晶間の方位のずれが3°以下であり、実質的に単結晶状の結晶試料が得られた。この結晶試料の表面から1mmより深い部分を切り出して密度を測定したところ、6.87g/cm3(理論密度7.53g/cm3の91.2%)であった。
When a crystal sample of this oxide superconductor was cut near the center in the vertical direction and the cross section was observed by EPMA, it was confirmed that the crystal sample was in the Sm 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O 7-x phase. The Sm 2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-y phase of about 0.1 to 30 μm was finely dispersed.
Here, p, q, r, s, and y were values of -0.2 to 0.2, respectively, and x was a value of -0.2 to 0.6. Also, b and d were values of 0.0 to 0.05, and were about 0.008 on average. Further, Ag of about 0.1 to 100 μm was finely dispersed throughout the crystal sample. In addition, pores having a particle size of about 5 to 200 μm were dispersed in a portion deeper than 1 mm from the surface. In addition, the entire crystal sample is uniformly oriented so that the thickness direction of the disk-shaped material reflects the seed crystal so that the thickness direction is parallel to the c-axis, and the misorientation of the orientation between adjacent crystals is 3 ° or less. A single crystal sample was obtained. When a portion deeper than 1 mm was cut out from the surface of the crystal sample and the density was measured, it was 6.87 g / cm 3 (91.2% of the theoretical density 7.53 g / cm 3 ).

得られた結晶試料の表面から1mmの部分を削除した後、長さ方向が結晶のab面と平行になるように幅5mm厚さ3mm長さ90mmの柱状の酸化物超電導体を切り出した。また、この試料から別途3mm×3mm×20mm(但し、3mm方向のどちらかが結晶のc軸方向)の柱状試料を切り出し、アニール処理後の熱伝導率の温度依存性を測定したところ、温度77Kから10Kまでの積分平均値で、約113mW/cmKであり、銀が15wt%含有されているにもかかわらず低い値であった。   After removing a 1 mm portion from the surface of the obtained crystal sample, a columnar oxide superconductor having a width of 5 mm, a thickness of 3 mm, and a length of 90 mm was cut out so that the length direction became parallel to the ab plane of the crystal. Further, a columnar sample of 3 mm × 3 mm × 20 mm (one of the 3 mm directions is the c-axis direction of the crystal) was cut out from the sample, and the temperature dependence of the thermal conductivity after the annealing was measured. The average value was about 113 mW / cmK, which was low even though silver contained 15 wt%.

2)柱状の酸化物超電導体への銀コート設置
まず、エチルセルロース10wt%、テルピネオール30wt%、フタル酸ジブチル50wt%およびブチルカルビトールアセテート10wt%を混合して作製した有機ビヒクルと平均粒径3μmのAg粉末とを重量比3:7の割合で混合し、さらにリン酸エステルを2%添加してAgペーストを作製した。
2) Installation of silver coat on columnar oxide superconductor First, an organic vehicle prepared by mixing 10 wt% of ethylcellulose, 30 wt% of terpineol, 50 wt% of dibutyl phthalate, and 10 wt% of butyl carbitol acetate, and Ag having an average particle size of 3 μm. The powder and the powder were mixed at a weight ratio of 3: 7, and 2% of a phosphoric acid ester was added to prepare an Ag paste.

作製したAgペーストを、1)にて作製した柱状の酸化物超電導体の両端部10mm、および左右の端部から15mmの位置へ幅2mmにて、厚さ50μmを塗布し、真空含侵処理をした後、大気中80℃のオーブンの中で乾燥させた。次に、このAgペーストを塗布した柱状の酸化物超電導体を、再び、炉体中において920℃で10時間焼成してAgを焼き付けて銀コートとし、銀コート酸化物超電導体を作製した。焼き付け後のAgの膜厚は約30μmであった。   The prepared Ag paste was applied to a thickness of 50 μm with a width of 2 mm at a position of 10 mm at both ends of the columnar oxide superconductor prepared at 1) and at a position of 15 mm from the left and right ends, and subjected to vacuum impregnation. After that, it was dried in an oven at 80 ° C. in the atmosphere. Next, the columnar oxide superconductor to which the Ag paste was applied was again baked at 920 ° C. for 10 hours in a furnace to bake Ag to form a silver coat, thereby producing a silver-coated oxide superconductor. The film thickness of Ag after baking was about 30 μm.

3)銀コート酸化物超電導体のアニール処理
銀コート酸化物超電導体をガス置換可能な別の炉の中に設置し、まず、ロータリーポンプで0.1Torrまで炉内を排気した後、炉内へ酸素ガスを流し込んで、酸素分圧が99%以上である大気圧の雰囲気にした。その後は、0.5L/minの流量で酸素ガスを炉内に流しながら、室温から450℃まで10時間で昇温させ、次に450℃から250℃まで400時間かけて徐冷し、さらに250℃から室温まで10時間で降温させて、銀コート酸化物超電導体のアニール処理をおこなった。
3) Annealing treatment of the silver-coated oxide superconductor The silver-coated oxide superconductor is placed in another gas-replaceable furnace, and the furnace is first evacuated to 0.1 Torr by a rotary pump and then into the furnace. Oxygen gas was poured into the atmosphere at an atmospheric pressure in which the oxygen partial pressure was 99% or more. Thereafter, while flowing oxygen gas at a flow rate of 0.5 L / min into the furnace, the temperature was raised from room temperature to 450 ° C. for 10 hours, and then gradually cooled from 450 ° C. to 250 ° C. over 400 hours. The temperature was lowered from 10 ° C. to room temperature in 10 hours, and the silver-coated oxide superconductor was annealed.

4)金属電極および偏流抑制部材の作製
純度4Nの無酸素銅を加工して金属電極および偏流抑制部材を作製し、各々の表面にSnメッキを施した。この金属電極は、リード線接合部と設置部(酸化物超電導体設置部)とを有し、リード線接合部にはボルト穴が2箇所あり、設置部の対向面には被覆部材の接合強度を高めるための受継部が設けてある。尚、偏流抑制部材は、酸化物超電導体の設置と接合用金属の充填とを見込み、金属電極に設けられた設置溝のサイズより、高さ方向で3.5mm、幅方向で0.5mm削加工した形状とした。
4) Preparation of metal electrode and drift suppression member A metal electrode and a drift suppression member were fabricated by processing oxygen-free copper having a purity of 4N, and each surface was plated with Sn. This metal electrode has a lead wire joint portion and an installation portion (oxide superconductor installation portion), the lead wire joint portion has two bolt holes, and the joint surface of the installation member has a joint strength on the opposite surface. There is a succession section to increase the Note that the drift suppression member is cut by 3.5 mm in the height direction and 0.5 mm in the width direction from the size of the installation groove provided in the metal electrode in view of the installation of the oxide superconductor and the filling of the joining metal. It was a processed shape.

5)酸化物超電導体の金属電極への設置
金属電極の設置溝に接合用金属としてPbSn系ハンダであるセラソルザ143(以下、セラソルザと記載する。)を熔融塗布しておき、そこへ、Agを焼き付けた端部10mmにセラソルザを熔融塗布した酸化物超電導体を設置し、加熱して仮固定する。仮固定が完了したら酸化物超電導体の外周から設置溝の外縁部に亘って、耐熱シリコンゴムを封止部材として設けセラソルザの流出を防止する処理を行う。
5) Installation of Oxide Superconductor on Metal Electrode A PbSn-based solder Cerasolzer 143 (hereinafter referred to as Cerasolzer) is melt-coated as a bonding metal in the installation groove of the metal electrode, and Ag is added thereto. An oxide superconductor obtained by melt-coating Cerasolzer to the baked end 10 mm is set, heated and temporarily fixed. After the completion of the temporary fixing, heat-resistant silicone rubber is provided as a sealing member from the outer periphery of the oxide superconductor to the outer edge of the installation groove to perform a process for preventing the outflow of the Cerasolzer.

6)接合用金属の脱気処理
流出防止処理が完了したら、金属電極をセラソルザの融点(143℃)以上である180℃で加熱してセラソルザを充分に熔融させ、素早く真空容器内に入れて約100Paで2分間脱気を行う。次に、金属電極を再度180℃に加熱し、予めセラソルザを熔融塗布した偏流抑制用部材をあてがい、再度真空容器内に入れて約100Paで2分間脱気を行う。そして、超音波ハンダ小手により、この偏流抑制部材を介して機械的衝撃を加え、既存のセラソルザの空孔を破裂させる。
6) Deaeration treatment of joining metal After the outflow prevention treatment is completed, the metal electrode is heated at 180 ° C, which is higher than the melting point of the Cerasolzer (143 ° C), to sufficiently melt the Cerasolzer, and quickly placed in a vacuum vessel. Degas at 100 Pa for 2 minutes. Next, the metal electrode is heated again to 180 ° C., and a drift preventing member coated with Cerasolzer in advance is applied thereto, and is again placed in a vacuum vessel and degassed at about 100 Pa for 2 minutes. Then, a mechanical shock is applied to the holes of the existing Cerasolzer by using an ultrasonic soldering hand through the drift suppression member to burst the holes.

この結果、金属電極、酸化物超電導体、および偏流抑制部材は、空孔を含まない接合用金属にて、電気的にも機械的にも好ましい状態で接合される。接合が完了したら、封止部材は除去しておく。
尚、本実施例においては、作製した電流リードの特性を測定するため、酸化物超電導体の端から15〜17mmの位置に設けられたAgを焼き付けた部分に、特性測定用の直径0.1mmのステンレスリード線を、セラソルザを用いて接続した。
As a result, the metal electrode, the oxide superconductor, and the drift suppression member are joined by a joining metal that does not include holes in a state that is favorable both electrically and mechanically. After joining is completed, the sealing member is removed.
In this example, in order to measure the characteristics of the prepared current lead, a portion having a diameter of 0.1 mm for characteristic measurement was applied to a portion where Ag was baked provided at a position of 15 to 17 mm from the end of the oxide superconductor. Were connected using a Cerasolzer.

7)被覆部材の設置
ビスフェノールA型エポキシ樹脂と芳香族アミンとからなる熱硬化型のエポキシ樹脂の接着剤を準備し、ガラスクロス繊維およびチョプドガラス繊維へ真空含侵させ、GFRPのプリプレグとした。
次に、両端が、前記銅電極が接合された酸化物超電導体において、酸化物超電導体部分だけがGFRPで覆われるように金型中へ設置した。そして、まず金型内の内壁に沿ってガラスクロス繊維のプリプレグを配置し、次にチョップドガラス繊維のプリプレグを、酸化物超電導体の周囲の金型空間へ充填し、ガラスクロス繊維のプリプレグで覆った後、120℃で熱硬化させて、ガラス繊維で被覆された酸化物超電導体電流リード試料を製造した。
7) Installation of Coating Member An adhesive of a thermosetting epoxy resin composed of a bisphenol A type epoxy resin and an aromatic amine was prepared, and vacuum impregnated into glass cloth fibers and chopped glass fibers to obtain a GFRP prepreg.
Next, both ends were placed in a mold so that only the oxide superconductor portion of the oxide superconductor to which the copper electrode was joined was covered with GFRP. First, a glass cloth fiber prepreg is placed along the inner wall of the mold, and then the chopped glass fiber prepreg is filled into the mold space around the oxide superconductor and covered with the glass cloth fiber prepreg. Then, it was thermally cured at 120 ° C. to produce a glass fiber-coated oxide superconductor current lead sample.

8)電流リードの特性評価
製造された電流リード試料における、金属電極のリード線接合部にブスバーを接続して、金属電極と酸化物超電導体を77Kまで冷却し、両金属電極間に1060Aを通電した。そして通電を行いながら、金属電極と、酸化物超電導体の端部から15〜17mmの位置に接続した特性測定用ステンレス線との間の電圧を測定し、金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、当該電流リード試料の両側の接触抵抗値とも0.19μΩと非常に低い値であることが判明した。
8) Characteristic evaluation of current lead In the manufactured current lead sample, a bus bar is connected to the metal electrode lead wire joint, the metal electrode and the oxide superconductor are cooled down to 77 K, and 1060 A is supplied between both metal electrodes. did. Then, while energizing, the voltage between the metal electrode and the stainless steel wire for property measurement connected to a position 15 to 17 mm from the end of the oxide superconductor was measured, and the voltage between the metal electrode and the oxide superconductor was measured. Was calculated, it was found that the contact resistance value on both sides of the current lead sample was a very low value of 0.19 μΩ.

さらに当該電流リード試料を4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、両側の接触抵抗値とも0.03μΩと非常に低い値であることが判明した。
また、この電流リード試料の低温側を4.2K、高温側を77Kに冷却した際の、低温側への伝熱による熱侵入量は0.28Wであった。
一方、当該電流リード試料の77K、0.5T磁場中における臨界電流値を2000Aまで通電して測定したところ、抵抗の発生が無く、2000A以上であることが判明した。そこで、超電導体試料の断面を3mm×5mmからφ1.9mmに幅0.7mm程度研削加工し、有効断面積を減らして再度通電試験を行ったところ、臨界電流値は670Aであった。この結果を当該電流リード試料における3mm×5mmに換算し直すと、0.5Tの磁場中で、約3500Aに相当する値である。
Further, the current lead sample was cooled to 4.2K, and the contact resistance between the metal electrode and the oxide superconductor was calculated in the same manner. As a result, the contact resistance on both sides was a very low value of 0.03 μΩ. It turned out to be.
When the current lead sample was cooled to 4.2 K on the low temperature side and 77 K on the high temperature side, the amount of heat infiltrated by heat transfer to the low temperature side was 0.28 W.
On the other hand, when the critical current value of the current lead sample in a 77 K, 0.5 T magnetic field was measured by applying a current to 2000 A, it was found that no resistance was generated and the current was 2000 A or more. Therefore, when the cross section of the superconductor sample was ground from 3 mm × 5 mm to φ1.9 mm to a width of about 0.7 mm, and the effective cross-sectional area was reduced and the energization test was performed again, the critical current value was 670 A. If this result is converted back to 3 mm × 5 mm in the current lead sample, it is a value equivalent to about 3500 A in a magnetic field of 0.5 T.

以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで0.31Wと非常に低い値であることが判明した。
最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、一方は、接合部分の容積の0.07%、他方は0.08%を占めていることが判明した。
From the above, in the current lead sample, when one of the metal electrodes was set to the high temperature side (77K) and the other was set to the low temperature side (4.2K) and a current of 1000A was applied in a 0.5T magnetic field, the heat on the low temperature side was changed. The amount of generation was found to be a very low value of 0.31 W in total.
Lastly, the joints on both sides of the current lead sample were cut, and the percentage of the volume of the holes in the joining metal provided at the joints was measured. As a result, it was found that one occupied 0.07% of the volume of the joined portion and the other occupied 0.08%.

(実施例2)
1)柱状の酸化物超電導体の製造
Gd23、BaCO3、CuOの各原料粉末を、モル比でGd:Ba:Cu=1:2:3になるように秤量して混合し、920℃で30時間焼成してからポットミルを用いて平均粒径3μmに粉砕し、再び930℃で30時間焼成してからライカイ機およびポットミルにて平均粒径10μmに粉砕して、第1の仮焼粉であるGd1Ba2Cu37-xの粉末を作製した。
次に、前記各原料粉末をGd:Ba:Cu=2:1:1になるように秤量して混合し、890℃で20時間焼成してからポットミルを用いて平均粒径0.7μmに粉砕し、第2の仮焼粉であるGd2BaCuO5の粉末を作製した。
(Example 2)
1) Manufacture of columnar oxide superconductor Gd 2 O 3 , BaCO 3 , and CuO raw material powders are weighed and mixed in a molar ratio of Gd: Ba: Cu = 1: 2: 3, and mixed. Baked at 30 ° C. for 30 hours, pulverized to an average particle size of 3 μm using a pot mill, baked again at 930 ° C. for 30 hours, crushed to a mean particle size of 10 μm with a raikai machine and a pot mill, A powder of Gd 1 Ba 2 Cu 3 O 7-x as a powder was prepared.
Next, the respective raw material powders are weighed and mixed so that Gd: Ba: Cu = 2: 1: 1, fired at 890 ° C. for 20 hours, and then pulverized to an average particle diameter of 0.7 μm using a pot mill. Then, a powder of Gd 2 BaCuO 5 as the second calcined powder was produced.

第1、第2の仮焼粉をGd1Ba2Cu37-x:Gd2BaCuO5=1:0.4となるように秤量し、さらにPt粉末(平均粒径0.01μm)およびAg2O粉末(平均粒径13.8μm)を加えて混合し合成粉とした。ただし、Pt含有量は0.42wt%、Ag含有量は15wt%とした。 The first and second calcined powders were weighed so that Gd 1 Ba 2 Cu 3 O 7-x : Gd 2 BaCuO 5 = 1: 0.4, and further Pt powder (average particle size 0.01 μm) and Ag 2 O powder (average particle size: 13.8 μm) was added and mixed to obtain a synthetic powder. However, the Pt content was 0.42 wt%, and the Ag content was 15 wt%.

この合成粉を縦22mm、横120mm、厚さ26mmの板状に金型を用いてプレス成形して前駆体を作製した。そして、この前駆体を炉体内に設置して、以下の工程を行った。
まず、室温から70時間で1100℃まで昇温させ、この温度で20分間保持し、前駆体を半熔融状態にした後、前駆体の上部が低温側になるように前駆体の上下に5℃/cmの温度勾配を加え、上部の温度が995℃になるまで0.4℃/minで降温させた。
This synthetic powder was press-molded into a plate shape having a length of 22 mm, a width of 120 mm and a thickness of 26 mm using a mold to prepare a precursor. Then, the precursor was set in the furnace, and the following steps were performed.
First, the temperature was raised from room temperature to 1100 ° C. in 70 hours, and the temperature was maintained at this temperature for 20 minutes to bring the precursor into a semi-molten state, and then 5 ° C. above and below the precursor so that the upper part of the precursor was on the low temperature side. / Cm, and the temperature was lowered at 0.4 ° C / min until the upper temperature reached 995 ° C.

ここで、予め熔融法で作製しておいた、Agを含まずPtを0.5wt%含むNd1.8Ba2.4Cu3.4x組成の種結晶を、縦横2mm、厚さ1mmに切り出して製造しておいた種結晶を、成長方向がc軸と平行になるように前駆体の上部の中心に接触させる。そして、上部の温度を995℃から1℃/hrの速度で985℃まで降温させた。この温度で100時間保持した後、915℃まで70時間かけて徐冷し、その後、上下の温度勾配が0℃/cmになるように前駆体の下部を20時間で915℃になるように冷却し、その後、室温まで100時間かけて徐冷して結晶化を行い、酸化物超電導体の結晶試料を得た。 Here, had been prepared in advance by fusion method, a seed crystal of Nd 1.8 Ba 2.4 Cu 3.4 O x composition containing 0.5 wt% of Pt not contain Ag, vertical and horizontal 2 mm, manufactured by cutting the thickness of 1mm The seed crystal placed is brought into contact with the upper center of the precursor so that the growth direction is parallel to the c-axis. Then, the temperature of the upper part was decreased from 995 ° C. to 985 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 100 hours, the temperature is gradually cooled to 915 ° C. over 70 hours, and then the lower part of the precursor is cooled to 915 ° C. in 20 hours so that the upper and lower temperature gradients become 0 ° C./cm. After that, crystallization was performed by gradually cooling to room temperature over 100 hours to obtain a crystal sample of the oxide superconductor.

この酸化物超電導体の結晶試料を、上下方向の中心付近で切断して断面をEPMAで観察したところ、Gd1+pBa2+q(Cu1-bAgb37-x相中に0.1〜30μm程度のGd2+rBa1+s(Cu1-dAgd)O5-y相が微細に分散していた。
ここで、p、q、r、s、yはそれぞれ−0.2〜0.2の値であり、xは−0.2〜0.6の値であった。また、b、dは0.0〜0.05の値であり、平均的には0.008程度であった。さらに、結晶試料全体にわたって0.1〜100μm程度のAgが微細に分散していた。また、表面から1mmより深い部分には粒径5〜200μm程度の空孔が分散していた。また、結晶試料全体が種結晶を反映してディスク状材料の厚さ方向がc軸と平行であるように均一に配向し、隣接する結晶間の方位のずれが3°以下であり、実質的に単結晶状の結晶試料が得られた。この結晶試料の表面から1mmより深い部分を切り出して密度を測定したところ、7.0g/cm3(理論密度7.68g/cm3の91.1 %)であった。
The crystal sample of this oxide superconductor was cut near the center in the vertical direction, and the cross section was observed by EPMA. As a result, it was found that the Gd 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O 7-x phase The Gd 2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-y phase of about 0.1 to 30 μm was finely dispersed.
Here, p, q, r, s, and y were values of -0.2 to 0.2, respectively, and x was a value of -0.2 to 0.6. Also, b and d were values of 0.0 to 0.05, and were about 0.008 on average. Further, Ag of about 0.1 to 100 μm was finely dispersed throughout the crystal sample. In addition, pores having a particle size of about 5 to 200 μm were dispersed in a portion deeper than 1 mm from the surface. In addition, the entire crystal sample is uniformly oriented so that the thickness direction of the disk-shaped material reflects the seed crystal so that the thickness direction is parallel to the c-axis, and the misorientation of the orientation between adjacent crystals is 3 ° or less. A single crystal sample was obtained. When a portion deeper than 1 mm was cut out from the surface of the crystal sample and the density was measured, it was 7.0 g / cm 3 (91.1% of the theoretical density of 7.68 g / cm 3 ).

得られた結晶試料の表面から1mmの部分を削除した後、長さ方向が結晶のab面と平行になるように幅5mm厚さ3mm長さ105mmの柱状の酸化物超電導体を切り出した。また、この試料から別途3mm×3mm×20mm(但し、3mm方向のどちらかが結晶のc軸方向)の柱状試料を切り出し、アニール処理後の熱伝導率の温度依存性を測定したところ、銀が15wt%含有されているにもかかわらず、温度77Kから10Kまでの積分平均値で約141mW/cmKと低い値であった。   After removing a 1 mm portion from the surface of the obtained crystal sample, a columnar oxide superconductor having a width of 5 mm, a thickness of 3 mm and a length of 105 mm was cut out so that the length direction was parallel to the ab plane of the crystal. In addition, a columnar sample of 3 mm × 3 mm × 20 mm (either the 3 mm direction is the c-axis direction of the crystal) was cut out from this sample, and the temperature dependence of the thermal conductivity after annealing was measured. Despite containing 15 wt%, the integrated average value from a temperature of 77K to 10K was a low value of about 141 mW / cmK.

以降、
2)柱状の酸化物超電導体への銀コート設置
3)銀コート酸化物超電導体のアニール処理
4)金属電極および偏流抑制部材の作製
5)酸化物超電導体の金属電極への設置
6)接合用金属の脱気処理
7)被覆部材の設置
8)電流リードの特性評価
を実施例1と同様に行い、以下の結果を得た。
まず、当該電流リード試料の両端にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.2μΩ、他方が0.21μΩと非常に低い値であることが判明した。
Or later,
2) Installation of silver coating on columnar oxide superconductor 3) Annealing treatment of silver-coated oxide superconductor 4) Preparation of metal electrode and drift suppression member 5) Installation of oxide superconductor on metal electrode 6) Bonding Metal degassing 7) Installation of covering member 8) Characteristic evaluation of current lead was performed in the same manner as in Example 1, and the following results were obtained.
First, when the contact resistance of the joint between the metal electrode and the oxide superconductor at both ends of the current lead sample was calculated, one was 0.2 μΩ and the other was very low, 0.21 μΩ. There was found.

さらに当該電流リード試料を4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、両側の接触抵抗値とも0.03μΩと非常に低い値であることが判明した。
また、この電流リード試料の低温側を4.2K、高温側を77Kに冷却した際の、低温側への伝熱による熱侵入量は0.33Wであった。
一方、当該電流リード試料の77K、0.5T磁場中における臨界電流値を2000Aまで通電して測定したところ、抵抗の発生が無く、2000A以上であることが判明した。そこで、超電導体試料の断面を3mm×5mmからφ1.9mmに幅0.7mm程度研削加工し、有効断面積を減らして再度通電試験を行ったところ、臨界電流値は530Aであった。この結果を当該電流リード試料における3mm×5mmに換算し直すと、0.5Tの磁場中で、約2800Aに相当する値である。
Further, the current lead sample was cooled to 4.2K, and the contact resistance between the metal electrode and the oxide superconductor was calculated in the same manner. As a result, the contact resistance on both sides was a very low value of 0.03 μΩ. It turned out to be.
When the current lead sample was cooled to 4.2 K on the low-temperature side and 77 K on the high-temperature side, the amount of heat infiltrated by heat transfer to the low-temperature side was 0.33 W.
On the other hand, when the critical current value of the current lead sample in a 77 K, 0.5 T magnetic field was measured by applying a current to 2000 A, it was found that no resistance was generated and the current was 2000 A or more. Then, when the cross section of the superconductor sample was ground from 3 mm × 5 mm to φ1.9 mm to a width of about 0.7 mm, the effective cross-sectional area was reduced, and the energization test was performed again, the critical current value was 530 A. When this result is converted back to 3 mm × 5 mm in the current lead sample, it is a value corresponding to about 2800 A in a magnetic field of 0.5 T.

以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで0.36Wと非常に低い値であることが判明した。
最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、両方とも接合部分の容積の約0.1%を占めていることが判明した。
From the above, in the current lead sample, when one of the metal electrodes was set to the high temperature side (77K) and the other was set to the low temperature side (4.2K) and a current of 1000A was applied in a 0.5T magnetic field, the heat on the low temperature side was changed. The amount of generation was found to be a very low value of 0.36 W in total.
Lastly, the joints on both sides of the current lead sample were cut, and the percentage of the volume of the holes in the joining metal provided at the joints was measured. As a result, it was found that both occupy about 0.1% of the volume of the joint.

(実施例3)
1)柱状の酸化物超電導体の製造
Sm23、BaCO3、CuOの各原料粉末を、モル比でSm:Ba:Cu=1:2:3になるように秤量して混合し、920℃で30時間焼成してからポットミルを用いて平均粒径3μmに粉砕し、再び930℃で30時間焼成してからライカイ機およびポットミルにて平均粒径10μmに粉砕して、第1の仮焼粉であるSm1Ba2Cu37-xの粉末を作製した。
次に、前記各原料粉末をSm:Ba:Cu=2:1:1になるように秤量して混合し、890℃で20時間焼成してからポットミルを用いて平均粒径0.7μmに粉砕し、第2の仮焼粉であるSm2BaCuO5の粉末を作製した。
(Example 3)
1) Manufacture of columnar oxide superconductor Raw material powders of Sm 2 O 3 , BaCO 3 , and CuO were weighed and mixed so that the molar ratio Sm: Ba: Cu = 1: 2: 3, and mixed. Baked at 30 ° C. for 30 hours, pulverized to an average particle size of 3 μm using a pot mill, baked again at 930 ° C. for 30 hours, crushed to a mean particle size of 10 μm with a raikai machine and a pot mill, A powder of Sm 1 Ba 2 Cu 3 O 7-x was prepared.
Next, the respective raw material powders are weighed and mixed so that Sm: Ba: Cu = 2: 1: 1, fired at 890 ° C. for 20 hours, and then pulverized to an average particle diameter of 0.7 μm using a pot mill. Then, a powder of Sm 2 BaCuO 5 as the second calcined powder was produced.

第1、第2の仮焼粉をSm1Ba2Cu37-x:Sm2BaCuO5=1:0.4となるように秤量し、さらにPt粉末(平均粒径0.01μm)およびAg2O粉末(平均粒径13.8μm)を加えて混合し合成粉Aとした。そして同様に第1、第2の仮焼粉を1:0.3となるように秤量し、Pt粉末およびAg2O粉末を加えて混合し合成粉Bとした。ただし、合成粉A、Bとも、Pt含有量は0.42wt%、Ag含有量は10wt%とした。 The first and second calcined powders were weighed so that Sm 1 Ba 2 Cu 3 O 7-x : Sm 2 BaCuO 5 = 1: 0.4, and further Pt powder (average particle size 0.01 μm) and Ag 2 O powder (average particle size: 13.8 μm) was added and mixed to obtain synthetic powder A. Then, similarly, the first and second calcined powders were weighed so as to be 1: 0.3, and Pt powder and Ag 2 O powder were added and mixed to obtain synthetic powder B. However, in both of the synthetic powders A and B, the Pt content was 0.42 wt% and the Ag content was 10 wt%.

この2種類の合成粉A、Bを、各々縦22mm、横120mm、厚さ26mmの板状に金型を用いてプレス成形し、合成粉Aを用いた前駆体A、および合成粉Bを用いた前駆体Bを作製した。そして、この前駆体A、Bを炉体内に設置して、以下の工程を行った。
まず、室温から70時間で1100℃まで昇温させ、この温度で20分間保持し、前駆体を半熔融状態にした後、前駆体の上部が低温側になるように前駆体の上下に5℃/cmの温度勾配を加え、上部の温度が995℃になるまで0.4℃/minで降温させた。
These two types of synthetic powders A and B are press-formed using a mold into a plate having a length of 22 mm, a width of 120 mm, and a thickness of 26 mm, respectively, and a precursor A using the synthetic powder A and a synthetic powder B are used. Precursor B was prepared. Then, the precursors A and B were set in the furnace, and the following steps were performed.
First, the temperature was raised from room temperature to 1100 ° C. in 70 hours, and the temperature was maintained at this temperature for 20 minutes to bring the precursor into a semi-molten state, and then 5 ° C. above and below the precursor so that the upper part of the precursor was on the low temperature side. / Cm, and the temperature was lowered at 0.4 ° C / min until the upper temperature reached 995 ° C.

ここで、予め熔融法で作製しておいた、Agを含まずPtを0.5wt%含むNd1.8Ba2.4Cu3.4x組成の種結晶を、縦横2mm、厚さ1mmに切り出して製造しておいた種結晶を、成長方向がc軸と平行になるように前駆体の上部の中心に接触させる。そして、上部の温度を995℃から1℃/hrの速度で985℃まで降温させた。この温度で100時間保持した後、915℃まで70時間かけて徐冷し、その後、上下の温度勾配が0℃/cmになるように前駆体の下部を20時間で915℃になるように冷却し、その後、室温まで100時間かけて徐冷して結晶化を行い、前駆体Aより酸化物超電導体の結晶試料A、前駆体Bより酸化物超電導体の結晶試料Bを得た。 Here, had been prepared in advance by fusion method, a seed crystal of Nd 1.8 Ba 2.4 Cu 3.4 O x composition containing 0.5 wt% of Pt not contain Ag, vertical and horizontal 2 mm, manufactured by cutting the thickness of 1mm The seed crystal placed is brought into contact with the upper center of the precursor so that the growth direction is parallel to the c-axis. Then, the temperature of the upper part was decreased from 995 ° C. to 985 ° C. at a rate of 1 ° C./hr. After maintaining at this temperature for 100 hours, the temperature is gradually cooled to 915 ° C. over 70 hours, and then the lower part of the precursor is cooled to 915 ° C. in 20 hours so that the upper and lower temperature gradients become 0 ° C./cm. Thereafter, crystallization was performed by gradually cooling to room temperature over 100 hours to obtain a crystal sample A of the oxide superconductor from the precursor A and a crystal sample B of the oxide superconductor from the precursor B.

この酸化物超電導体の結晶試料A、Bを、上下方向の中心付近で切断して断面をEPMAで観察したところ、いずれもSm1+pBa2+q(Cu1-bAgb37-x相中に0.1〜30μm程度のSm2+rBa1+s(Cu1-dAgd)O5-y相が微細に分散していた。ここで、p、q、r、s、yはそれぞれ−0.2〜0.2の値であり、xは−0.2〜0.6の値であった。また、b、dは0.0〜0.05の値であり、平均的には0.008程度であった。さらに、結晶試料全体にわたって0.1〜100μm程度のAgが微細に分散していた。また、表面から1mmより深い部分には粒径5〜200μm程度の空孔が分散していた。また、結晶試料全体が種結晶を反映してディスク状材料の厚さ方向がc軸と平行であるように均一に配向し、隣接する結晶間の方位のずれが3°以下であり、実質的に単結晶状の結晶試料A、Bが得られた。この結晶試料A、Bの表面から1mmより深い部分を切り出して密度を測定したところ、1:0.4の組成で作製した結晶Aでは6.7g/cm3(理論密度7.38g/cm3の90.8%)であり1:0.3の組成で作製した結晶Bでは6.7g/cm3(理論密度7.35g/cm3の91.2%)であった。 When the crystal samples A and B of the oxide superconductor were cut in the vicinity of the center in the vertical direction and their cross sections were observed by EPMA, both of them were Sm 1 + p Ba 2 + q (Cu 1-b Ag b ) 3 O The Sm 2 + r Ba 1 + s (Cu 1-d Ag d ) O 5-y phase of about 0.1 to 30 μm was finely dispersed in the 7-x phase. Here, p, q, r, s, and y were values of -0.2 to 0.2, respectively, and x was a value of -0.2 to 0.6. Also, b and d were values of 0.0 to 0.05, and were about 0.008 on average. Further, Ag of about 0.1 to 100 μm was finely dispersed throughout the crystal sample. In addition, pores having a particle size of about 5 to 200 μm were dispersed in a portion deeper than 1 mm from the surface. In addition, the entire crystal sample is uniformly oriented so that the thickness direction of the disk-shaped material reflects the seed crystal so that the thickness direction is parallel to the c-axis, and the misorientation of the orientation between adjacent crystals is 3 ° or less. As a result, crystal samples A and B in the form of single crystals were obtained. A portion deeper than 1 mm was cut out from the surface of each of the crystal samples A and B, and the density was measured. As a result, 6.7 g / cm 3 (theoretical density of 7.38 g / cm 3) was obtained for the crystal A having a composition of 1: 0.4. Of Crystal B produced with a composition of 1: 0.3 was 6.7 g / cm 3 (91.2% of the theoretical density of 7.35 g / cm 3 ).

得られた結晶試料A、Bの表面から1mmの部分を削除した後、長さ方向が結晶のab面と平行になるように幅3mm厚さ3mm長さ90mmの柱状の酸化物超電導体A、Bを切り出した。
また、この試料から別途3mm×3mm×20mm(但し、3mm方向のどちらかが結晶のc軸方向)の柱状試料を切り出し、アニール処理後の熱伝導率の温度依存性を測定したところ、温度77Kから10Kまでの積分平均値でAは、約62.1mW/cmK、Bは、約62.9mW/cmKであり、銀が10wt%含有されているにもかかわらず低い値であった。
After removing a 1 mm portion from the surface of the obtained crystal samples A and B, a columnar oxide superconductor A having a width of 3 mm, a thickness of 3 mm, and a length of 90 mm was set so that the length direction became parallel to the ab plane of the crystal. B was cut out.
Further, a columnar sample of 3 mm × 3 mm × 20 mm (one of the 3 mm directions is the c-axis direction of the crystal) was cut out from the sample, and the temperature dependence of the thermal conductivity after the annealing was measured. A was about 62.1 mW / cmK and B was about 62.9 mW / cmK in the integrated average value from 1 to 10 K, which were low values despite the fact that silver contained 10 wt%.

以降、
2)柱状の酸化物超電導体A、Bへの銀コート設置
3)銀コート酸化物超電導体A、Bのアニール処理
4)金属電極および偏流抑制部材の作製
5)酸化物超電導体A、Bの金属電極への設置
6)接合用金属の脱気処理
7)被覆部材の設置
を実施例1と同様に行い、酸化物超電導体Aを用いた電流リードA、酸化物超電導体Bを用いた電流リードBを得た。
8)電流リードA、Bの特性評価
得られた電流リードA、Bの電気的特性を実施例1と同様に測定し、以下の結果を得た。
まず、当該電流リードAの両端にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.28μΩ、他方が0.29μΩと非常に低い値であることが判明し、同様に、当該電流リードBの接合部分では、一方が0.30μΩ、他方が0.29μΩと非常に低い値であることが判明した。
Or later,
2) Installation of silver coat on columnar oxide superconductors A and B 3) Annealing treatment of silver coat oxide superconductors A and B 4) Preparation of metal electrode and drift suppression member 5) Preparation of oxide superconductors A and B Installation on metal electrode 6) Deaeration treatment of joining metal 7) Installation of covering member was performed in the same manner as in Example 1, and current lead A using oxide superconductor A and current using oxide superconductor B Lead B was obtained.
8) Evaluation of Characteristics of Current Leads A and B The electrical characteristics of the obtained current leads A and B were measured in the same manner as in Example 1, and the following results were obtained.
First, when the contact resistance value at the junction between the metal electrode and the oxide superconductor at both ends of the current lead A was calculated, one was 0.28 μΩ and the other was a very low value of 0.29 μΩ. Similarly, at the junction of the current lead B, one was found to be 0.30 μΩ and the other was at a very low value of 0.29 μΩ.

さらに当該電流リードA、Bを4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、A、B両方の両側の接触抵抗値とも0.05μΩと非常に低い値であることが判明した。
また、この電流リード試料の低温側を4.2K、高温側を77Kに冷却した際の、低温側への伝熱による熱侵入量はA、B共に約0.15Wであった。
一方、当該電流リード試料の77Kにおける臨界電流値は、0.5Tの磁場中で、Aは1300A、Bは1500Aであった。
以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで0.2Wと非常に低い値であることが判明した。
最後に、当該電流リードA、Bの両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、電流リードAの一方では0.06%、他方では0.07%、電流リードBの一方では0.07%、他方では0.08%を占めていることが判明した。
Further, when the current leads A and B were cooled down to 4.2K and the contact resistance between the metal electrode and the oxide superconductor was calculated in the same manner, the contact resistance on both sides of both A and B was 0.1. It turned out to be a very low value of 05 μΩ.
Further, when the low temperature side of the current lead sample was cooled to 4.2K and the high temperature side was cooled to 77K, the heat intrusion into the low temperature side due to heat transfer was about 0.15 W for both A and B.
On the other hand, the critical current value at 77 K of the current lead sample was 1300 A for A and 1500 A for B in a magnetic field of 0.5 T.
From the above, in the current lead sample, when one of the metal electrodes was set to the high temperature side (77K) and the other was set to the low temperature side (4.2K) and a current of 1000A was applied in a 0.5T magnetic field, the heat on the low temperature side was changed. The amount of generation was found to be a very low value of 0.2 W in total.
Lastly, the joints on both sides of the current leads A and B were cut, and the percentage of the volume of the holes in the joining metal provided at the joints was measured. . As a result, it was found that one of the current leads A occupies 0.06%, the other occupies 0.07%, the one of the current leads B occupies 0.07%, and the other occupies 0.08%.

(実施例4)
実施例1において、6)接合用金属の脱気処理の温度を160℃とした以外は、実施例1と同様にして酸化物超電導体電流リード試料を製造した。
実施例1と同様に、当該電流リード試料の両側にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.3μΩ、他方が0.27μΩと非常に低い値であることが判明した。
さらに当該電流リード試料を4.2Kまで冷却して、同様に金属電極と酸化物超電導体との間の接触抵抗値を算定したところ、両側とも0.05μΩと非常に低い値であることが判明した。
一方、当該電流リード試料の77K、0.5T磁場中における臨界電流値および侵入熱は実施例1とほぼ同程度であった。
(Example 4)
In Example 1, an oxide superconductor current lead sample was manufactured in the same manner as in Example 1, except that the temperature of 6) the deaeration treatment of the joining metal was changed to 160 ° C.
Similar to Example 1, when the contact resistance value of the joint between the metal electrode and the oxide superconductor on both sides of the current lead sample was calculated, one was 0.3 μΩ, and the other was 0.27 μΩ. It turned out to be a low value.
Further, the current lead sample was cooled to 4.2K, and the contact resistance between the metal electrode and the oxide superconductor was calculated in the same manner. As a result, it was found that both sides had a very low value of 0.05 μΩ. did.
On the other hand, the critical current value and heat of penetration of the current lead sample in a 77 K, 0.5 T magnetic field were almost the same as those in Example 1.

以上のことから、当該電流リード試料において、金属電極の一方を高温側(77K)、他方を低温側(4.2K)として0.5Tの磁場中で1000Aを通電した場合、低温側での熱発生量は、トータルで約0.38Wと非常に低い値であることが判明した。
最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、一方は、接合部分の容積の5%、他方は4%を占めていることが判明した。
From the above, in the current lead sample, when one of the metal electrodes was set to the high temperature side (77K) and the other was set to the low temperature side (4.2K) and a current of 1000A was applied in a 0.5T magnetic field, the heat on the low temperature side was changed. The amount of generation was found to be a very low value of about 0.38 W in total.
Lastly, the joints on both sides of the current lead sample were cut, and the percentage of the volume of the holes in the joining metal provided at the joints was measured. As a result, it was found that one occupies 5% of the volume of the joined portion, and the other occupies 4%.

(比較例1)
実施例2と同様であるが、「6)接合用金属の脱気処理」の工程を行わずに、超音波ハンダ小手の設定温度を160℃および180℃に設定し、各々電流リードを製造し、「8)電流リードの特性評価」を行った。
まず、160℃設定で接合した試料について、実施例1と同様に、当該電流リード試料の両側にある、金属電極と酸化物超電導体との接合部分の接触抵抗値を算定したところ、一方が0.8μΩ、他方が0.9μΩと、絶対値が大きく、接触抵抗値のバラツキも大きいことが判明した。
180℃設定で接合した試料では、接合用金属の流れ出しが大きかったが、接触抵抗値を算定したところ、一方が1.2μΩ、他方が1.1μΩと、絶対値が大きく、接触抵抗値のバラツキも大きいことが判明した。
(Comparative Example 1)
Same as Example 2 except that the set temperature of the ultrasonic solder gloves was set to 160 ° C. and 180 ° C. without performing the step of “6) Deaeration treatment of bonding metal”, and current leads were manufactured respectively. And "8) Evaluation of characteristics of current lead".
First, for the sample joined at 160 ° C., the contact resistance of the joint between the metal electrode and the oxide superconductor on both sides of the current lead sample was calculated in the same manner as in Example 1. It was found that the absolute value was large at 0.8 μΩ and the other value was 0.9 μΩ, and the variation in the contact resistance value was also large.
In the sample joined at the setting of 180 ° C., the flowing out of the joining metal was large. However, when the contact resistance was calculated, one was 1.2 μΩ and the other was 1.1 μΩ. Also turned out to be great.

最後に、当該電流リード試料の両側の接合部分を切断し、接合部分に設置された接合用金属中の空孔の体積が、接合部分の容積の何%を占めているかを各々測定した。その結果、160℃設定で接合した試料の、一方は、接合部分の容積の30%、他方は35%を占めていることが判明し、180℃設定で接合した試料は接合部分の一方は、接合部分の容積の50%、他方は45%を占めていることが判明した。   Lastly, the joints on both sides of the current lead sample were cut, and the percentage of the volume of the holes in the joining metal provided at the joints was measured. As a result, it was found that one of the samples joined at the setting of 160 ° C. occupied 30% of the volume of the joined portion, and the other occupied 35% of the volume of the joined portion. It was found that the joint occupied 50% of the volume and the other 45%.

以上、説明したように、酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードであって、
前記接合部分に設けられた前記接合用金属中の空孔の体積が、前記接合部分の容積の5%以下の酸化物超電導電流リードであるが、当該酸化物超電導電流リードは、酸化物超電導体と金属電極との間に十分な電流の流路が確保される結果、用いられる酸化物超電導体が、全体に亘って実質的に同じ断面積であっても、所定の条件下において、低い接触抵抗値と、低温側への低い熱侵入とを実現した。
As described above, metal electrodes are provided on both sides of the oxide superconductor, and a bonding metal is provided at a bonding portion formed by the oxide superconductor and the metal electrode, and by the bonding metal, An oxide superconducting current lead in which the oxide superconductor and the metal electrode are joined,
The volume of holes in the bonding metal provided in the bonding portion is an oxide superconducting current lead having a volume of 5% or less of the volume of the bonding portion, and the oxide superconducting current lead is an oxide superconductor. As a result, a sufficient current flow path is secured between the oxide superconductor and the metal electrode. The resistance value and low heat penetration to the low temperature side are realized.

尚、上述した実施例1〜4および比較例1の、処理条件および評価結果の一覧表を図7に示した。図7において、電流リード試料の両側にある金属電極と酸化物超電導体との接合部分の、一方を「右」、他方を「左」と便宜的に記載した。   FIG. 7 shows a list of processing conditions and evaluation results of Examples 1 to 4 and Comparative Example 1 described above. In FIG. 7, one of the joining portions between the metal electrode and the oxide superconductor on both sides of the current lead sample is conveniently described as “right” and the other as “left”.

本発明に係る電流リードの金属電極への超電導体の設置例を示す斜視図である。It is a perspective view which shows the example of installation of the superconductor to the metal electrode of the current lead which concerns on this invention. 図1に示す金属電極へ封止部材を設けた場合の斜視図である。FIG. 2 is a perspective view when a sealing member is provided on the metal electrode shown in FIG. 1. 本発明に係る酸化物超電導電流リードの特性測定の概念図である。It is a conceptual diagram of the characteristic measurement of the oxide superconducting current lead which concerns on this invention. 酸化物超電導体と金属電極との接合体を金型中へ納めた際の斜視図である。It is a perspective view when the joined body of an oxide superconductor and a metal electrode is put in a metal mold. 従来の技術に係る、酸化物超電導体と金属電極との接合部分の横断面図である。FIG. 4 is a cross-sectional view of a joining portion between an oxide superconductor and a metal electrode according to a conventional technique. 前駆的な発明に係る酸化物超電導電流リードの斜視図である。1 is a perspective view of an oxide superconducting current lead according to a precursor invention. 実施例1〜4および比較例の、処理条件および評価結果の一覧表である。5 is a list of processing conditions and evaluation results of Examples 1 to 4 and Comparative Example.

符号の説明Explanation of reference numerals

1.(酸化物超電導体)電流リード
10.金属電極
31.(酸化物超電導体)設置溝
41.(酸化物超電導体設置溝の外縁)封止部材
42.脱気部
50.偏流抑制部材
60.酸化物超電導体
61.銀コート
70.被覆部材
1. (Oxide superconductor) Current lead 10. Metal electrode 31. (Oxide superconductor) Installation groove 41. (Outer edge of oxide superconductor installation groove) Sealing member 42. Deaeration unit 50. Drift preventing member 60. Oxide superconductor 61. Silver coat 70. Covering member

Claims (6)

酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードであって、
前記接合部分に設けられた前記接合用金属中の空孔の体積が、前記接合部分の容積の5%以下であることを特徴とする酸化物超電導電流リード。
A metal electrode is provided on both sides of the oxide superconductor, and a bonding metal is provided at a bonding portion formed by the oxide superconductor and the metal electrode. An oxide superconducting current lead joined to a metal electrode,
An oxide superconducting current lead, wherein the volume of holes in the joining metal provided at the joining portion is 5% or less of the volume of the joining portion.
請求項1に記載の酸化物超電導電流リードであって、
前記接合用金属により接合される前記酸化物超電導体の表面に、銀のコートが設けられていることを特徴とする酸化物超電導電流リード。
An oxide superconducting current lead according to claim 1,
An oxide superconducting current lead, wherein a silver coat is provided on a surface of the oxide superconductor joined by the joining metal.
請求項1または2に記載の酸化物超電導電流リードであって、
前記接合用金属とは、Cd、Zn、Sbのいずれか一種以上と、Pb、Sn、Inのいずれか一種以上とを含むハンダであることを特徴とする酸化物超電導電流リード。
The oxide superconducting current lead according to claim 1 or 2,
An oxide superconducting current lead characterized in that the bonding metal is a solder containing at least one of Cd, Zn, and Sb and at least one of Pb, Sn, and In.
酸化物超電導体の両側に金属電極が設けられ、且つ前記酸化物超電導体と前記金属電極とが形成する接合部分に接合用金属が設けられ、前記接合用金属によって、前記酸化物超電導体と前記金属電極とが接合されている酸化物超電導電流リードの製造方法であって、
前記接合用金属によって、前記酸化物超電導体と前記金属電極とを接合する際、前記接合部分を、前記接合用金属の融点以上に加熱した後、減圧して、前記接合用金属を脱気させる工程を有することを特徴とする酸化物超電導電流リードの製造方法。
A metal electrode is provided on both sides of the oxide superconductor, and a bonding metal is provided at a bonding portion formed by the oxide superconductor and the metal electrode. A method for manufacturing an oxide superconducting current lead in which a metal electrode is joined,
When joining the oxide superconductor and the metal electrode with the joining metal, the joining portion is heated to a temperature equal to or higher than the melting point of the joining metal, and then the pressure is reduced to degas the joining metal. A method for manufacturing an oxide superconducting current lead, comprising the steps of:
請求項4に記載の酸化物超電導電流リードの製造方法であって、
前記接合用金属の加熱および脱気の際、接合用金属が、前記接合部分より流れ出すのを抑制する封止部材を設けることを特徴とする酸化物超電導電流リードの製造方法。
It is a manufacturing method of the oxide superconducting current lead of Claim 4, Comprising:
A method for manufacturing an oxide superconducting current lead, comprising: providing a sealing member that suppresses the joining metal from flowing out of the joining portion when the joining metal is heated and degassed.
請求項1から3のいずれかに記載の酸化物超電導電流リードを用いたことを特徴とする超電導システム。   A superconducting system using the oxide superconducting current lead according to any one of claims 1 to 3.
JP2004028451A 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system Expired - Fee Related JP4857435B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004028451A JP4857435B2 (en) 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system
US10/771,381 US7394024B2 (en) 2003-02-06 2004-02-05 Oxide superconductor current lead and method of manufacturing the same, and superconducting system
EP07015642A EP1860736A3 (en) 2003-02-06 2004-02-06 Oxide superconductor current lead and method of manufacturing the same, and superconducting system
EP04002691A EP1445834B1 (en) 2003-02-06 2004-02-06 Oxide superconductor current lead and method of manufacturing the same, and superconducting system
DE602004014046T DE602004014046D1 (en) 2003-02-06 2004-02-06 Oxide superconductor fitting, manufacturing process and superconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003030057 2003-02-06
JP2003030057 2003-02-06
JP2003070507 2003-03-14
JP2003070507 2003-03-14
JP2004028451A JP4857435B2 (en) 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system

Publications (2)

Publication Number Publication Date
JP2004304163A true JP2004304163A (en) 2004-10-28
JP4857435B2 JP4857435B2 (en) 2012-01-18

Family

ID=33424748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028451A Expired - Fee Related JP4857435B2 (en) 2003-02-06 2004-02-04 Oxide superconducting current lead, manufacturing method thereof, and superconducting system

Country Status (1)

Country Link
JP (1) JP4857435B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250269A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Oxide superconductor conducting element
JP2008177245A (en) * 2007-01-16 2008-07-31 Nippon Steel Corp Oxide superconductor conducting element and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279140A (en) * 1992-03-31 1993-10-26 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Method for joining oxide superconductor
JPH0997637A (en) * 1995-09-29 1997-04-08 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Joint part of oxide superconductor and metal terminal, and its forming method
JP2000133067A (en) * 1998-10-30 2000-05-12 Fujikura Ltd Connection structure and connection method of oxide superconducting conductor
JP2002524833A (en) * 1998-09-09 2002-08-06 ピレリ・ケーブルス(2000)・リミテッド Superconducting wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279140A (en) * 1992-03-31 1993-10-26 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Method for joining oxide superconductor
JPH0997637A (en) * 1995-09-29 1997-04-08 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Joint part of oxide superconductor and metal terminal, and its forming method
JP2002524833A (en) * 1998-09-09 2002-08-06 ピレリ・ケーブルス(2000)・リミテッド Superconducting wire
JP2000133067A (en) * 1998-10-30 2000-05-12 Fujikura Ltd Connection structure and connection method of oxide superconducting conductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250269A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Oxide superconductor conducting element
JP4728847B2 (en) * 2006-03-14 2011-07-20 新日本製鐵株式会社 Oxide superconductor conducting element
JP2008177245A (en) * 2007-01-16 2008-07-31 Nippon Steel Corp Oxide superconductor conducting element and manufacturing method therefor

Also Published As

Publication number Publication date
JP4857435B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4568894B2 (en) Composite conductor and superconducting equipment system
EP2392036B1 (en) Low loss joint for superconducting wire
JP4985129B2 (en) Bonded body, electronic module, and bonding method
EP2724392B1 (en) Sealing assembly of battery, method of fabricating the same and lithium battery
EP3050169B1 (en) Method for forming a superconducting connection structure and superconducting connection structure
EP3220397B1 (en) Oxide superconducting bulk magnet
JP2012256744A (en) Superconductive coil
US10804624B2 (en) Joint portion of superconducting wires and method of joining superconducting wires
JP4857435B2 (en) Oxide superconducting current lead, manufacturing method thereof, and superconducting system
EP1445834B1 (en) Oxide superconductor current lead and method of manufacturing the same, and superconducting system
JP4857436B2 (en) Oxide superconducting current lead, superconducting system, and method for connecting metal conductor to metal superconducting conductor
EP1406317B1 (en) Metal-ceramic high temperature superconductor composite and process for bonding a ceramic high temperature superconductor to a metal
KR20140051142A (en) Joints with very low resistance between superconducting wires and methods for making such joints
JP4612311B2 (en) Oxide superconductor current lead
JP2016058608A (en) High temperature superconducting current lead
JP2004235367A (en) Thermoelectric module
EP1001472B1 (en) Production method of joints of superconducting oxide and normal conductor
EP3358581B1 (en) Oxide superconducting bulk magnet
JP2009170550A (en) Oxide superconducting magnet, its manufacturing method, and cooling method
JPH08186195A (en) Package for electronic part
JPH0782927B2 (en) Insulation anchor for low temperature equipment
JPH0645140A (en) Oxide superconductor current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees