JP2004303863A - Flexible printed-wiring board - Google Patents
Flexible printed-wiring board Download PDFInfo
- Publication number
- JP2004303863A JP2004303863A JP2003093452A JP2003093452A JP2004303863A JP 2004303863 A JP2004303863 A JP 2004303863A JP 2003093452 A JP2003093452 A JP 2003093452A JP 2003093452 A JP2003093452 A JP 2003093452A JP 2004303863 A JP2004303863 A JP 2004303863A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- metal
- flexible printed
- film
- wiring board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、金属蒸着層/導電性金属層積層フィルムによるフレキシブルプリント配線用基板に関するものである。
【0002】
【従来の技術】
従来、フレキシブルプリント配線用基板として、プラスチックフィルムに接着剤層を介して導体層としての銅箔を貼り合せた3層構造のフレキシブルプリント配線用基板が知られている。この3層構造タイプのフレキシブルプリント配線用基板は、用いられる接着剤の耐熱性がプラスチックフィルムより劣るため、加工後の寸法精度が低下するという問題があり、また用いられる銅箔の厚さが通常10μm以上であるため、ピッチの狭い高密度配線用のパターニングが難しいという欠点もあった。
【0003】
一方、プラスチックフィルム上に接着剤を用いることなく、湿式めっき法や乾式めっき法(例えば、真空蒸着法、スパッタリング法、イオンプレーティング法など)により、導体層としての金属層を形成させた2層構造タイプのフレキシブルプリント配線用基板も知られている(特許文献1および特許文献2参照。)。
【0004】
この2層構造タイプのフレキシブルプリント配線用基板は、導体層を10μmよりも薄くすることができるため高密度配線が可能であるが、過酷な熱負荷試験(例えば、温度85℃、湿度85%、1000時間)を行ったり、スズ、ニッケル、はんだ、または金などの無電解めっき処理を行うと、プラスチックフィルムと導体層との間の密着力が低下してしまったり、無電解めっき被膜からウィスカまたはホイスカと呼ばれる微小な針状の結晶が生じ、時には導体間の短絡につながるという欠点があった。
【0005】
【特許文献1】
特公平06−009308号公報
【0006】
【特許文献2】
特公平08−008400号公報
【0007】
【発明が解決しようとする課題】
そこで本発明は、プラスチックフィルムと該プラスチックフィルム上の導体層、およびこれらの界面が、無電解めっき等の工程で使用される薬品の作用や熱負荷に十分に耐え得るように形成され、熱負荷後の密着耐久性はもとより、無電解めっき後における導体層(導電性金属層)と基板との間の界面の密着性が優れており、かつ無電解めっき被膜からウィスカの生じることのない、またはウィスカの大きさが問題にならないほど小さい、優れたフレキシブルプリント配線用基板を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を解決するため本発明に係るフレキシブル配線用基板は、すなわち、プラスチックフィルムの片面または両面に、金属蒸着層を設け、該金属蒸着層上に導電性金属層を積層してなるフレキシブルプリント配線用基板において、該金属蒸着層がNiとCrを主成分とする層と低抵抗金属を主成分とする層からなり、NiとCrを主成分とする層の膜厚をX(オングストローム)、Crの含有率をY(%)としたとき、XとYが以下の式(1)(2)を共に満たす範囲にあることを特徴とするフレキシブルプリント配線用基板である。
【0009】
式(1)40≦X≦250
式(2)5.5≦XY/100≦16
【0010】
【発明の実施の形態】
以下、本発明のフレキシブルプリント配線用基板について詳述する。
【0011】
本発明のフレキシブルプリント配線用基板の好適例の構造を図1に示す。図1において、プラスチックフィルム1の片側の面にNiとCrを主成分とする金属蒸着層2が積層され、さらにその上に低抵抗金属を主成分とする金属蒸着層3が積層されている。そして、その上にさらに導電性金属層4が積層されている。
【0012】
本発明で用いられる基材としてのプラスチックフィルムを例示すると、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリエチレン−α,β−ビス(2−クロルフェノキシエタン−4,4′−ジカルボキシレート)などのポリエステル、ポリフェニレンサルファイド、ポリエーテルスルホン、ポリエーテルエーテルケトン、芳香族ポリアミド、ポリアリレート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリパラジン酸、ポリオキサジアゾールおよびこれらのハロゲン基あるいはメチル基置換体からなるフィルム等が挙げられる。特に、耐熱性、難燃性および剛性が高く寸法安定性に優れることから、ポリイミド、ポリアミドイミドおよびポリエーテルイミドが好ましく用いられる。また、プラスチックフィルムは、これらの共重合体や、他の有機重合体を含有するものであっても良い。これらのプラスチックフィルムに公知の添加剤、たとえば、滑剤や可塑剤などが添加されていても良い。
【0013】
本発明では、上記のプラスチック中、下記式で示される繰返し単位を85モル%以上含むポリマーを溶融押出しして得られる未延伸フィルムを、二軸方向に延伸配向して機械特性を向上せしめたフィルムが特に好ましく使用される。
【0014】
【化1】
【0015】
(但し、XはH、CH3基、F、Clを表す)。また、下記式で示される繰返し単位を50モル%以上含むポリマーからなり、湿式あるいは乾湿式製膜したフィルム、あるいは該フィルムを二軸延伸および/または熱処理せしめたフィルムも好ましく使用される。
【0016】
【化2】
【0017】
(ここで、XはH、CH3基、F、Cl、mとnは0〜3の整数を表す)。
【0018】
上記のような繰返し単位を含むポリマーからなるプラスチックフィルムは、特に耐熱安定性と耐湿安定性に優れウエットエッチング工程における寸法変化が小さい。 基材であるプラスチックフィルムの厚さは、好ましくは6〜125μm程度のものが多用され、12〜50μmの厚さが好適である。プラスチックフィルムが薄すぎると、強度が足りなくて金属蒸着や配線加工が困難になったり補強フィルムを必要とする問題が起こりやすく、また、厚すぎると折り曲げ性が損なわれることで好ましくない。
【0019】
本発明では、電気めっき法等で厚膜の導電性金属層を形成するに先立って、プラスチックフィルムの片面または両面に、真空蒸着またはスパッタ法等により金属蒸着層を形成する。前記金属蒸着層は、NiとCrを主成分とする層と、低抵抗金属を主成分とする層からなる。前記2層の金属蒸着層は、プラスチックフィルム/NiとCrを主成分とする層/低抵抗金属を主成分とする層、の順に積層されている。これによって低抵抗でしかも屈曲性に富む層を形成することができる。
【0020】
本発明では、NiとCrを主成分とする層の膜厚をX(オングストローム)、Crの含有率をY(%)としたとき、XとYが以下の式(1)(2)を共に満たす範囲にあることが必要である。
式(1)40≦X≦250
式(2)5.5≦XY/100≦16
より好ましくは、以下の式(3)(2)を共に満たす範囲にあることである。
式(3)40≦X<130
式(2)5.5≦XY/100≦16
更に好ましくは、以下の式(3)(4)を共に満たす範囲にあることである。
式(3)40≦X<130
式(4)5.5≦XY/100≦11
これによってプラスチックフィルムと導電性金属層との間の密着力の低下や、配線を施した2層タイプ基板に、ICを実装するためにスズ、はんだ、金などの無電解めっき被膜を形成した際にウィスカの発生を抑制することができる。図2に、本発明の課題を解決する手段であるXとYの範囲を示す。
【0021】
NiとCrを主成分とする層は、前記したように、真空蒸着法やスパッタ法などで形成することができる。層の厚さXは成膜速度とフィルムの搬送速度を調節することで制御することができる。Crの比率Yについては、真空蒸着の場合はNiとCrそれぞれの蒸着源の蒸発速度を制御することで自由に決定することができる。また、スパッタ法の場合は、NiとCrのターゲットを別々に用意してそれぞれのスパッタ速度を制御しても良いし、任意の組成比を持つ混合ターゲットを用意しても制御することができる。安定した層厚・層内の組成比が得られることから、組成比を決めた混合ターゲットでスパッタ法を用いることが好ましい。以上から、本発明におけるXとY、ひいてはXとXY/100の値は任意に設定することが可能である。
【0022】
本発明においては、Xの値が式(1)の範囲を下回ると、耐熱負荷後の密着力の低下が大きくなるおそれがある。また、Xの値が式(1)の範囲を上回ると、NiとCrを主成分とする金属蒸着層と低抵抗金属を主成分とする金属蒸着層の間で剥離が起こりやすくなったり、スズ、はんだ、金などの無電解めっき被膜を形成した際に密着力が低下しやすくなる。従って、Xの値はより好ましくは式(3)の範囲である。
【0023】
XY/100が式(2)の範囲を下回ると、ウィスカが発生しやすくなること、金めっきに対する耐久性が低下すること、および純Niに近くなるので、スパッタ法の場合はターゲットが磁性を持つためにスパッタリング工程が困難になる。また、式(2)のXY/100の値が大きくなると、配線パターンを作製した際に配線間にCrが残りやすく、絶縁信頼性が低下するおそれがあるが、配線パターンを作成した後にさらにCrを除去する工程を行うことでこれを防ぐことができるが、式(2)の範囲を上回ると、Crを除去する工程でもCrが除去しきれずに残留したり、プラスチックフィルムへのダメージが大きくなりすぎて配線パターンの信頼性が低下することがあり、好ましくない。Crを除去する工程としては、例えば、特開平7−228984号公報に記載されているような過マンガン酸カリウム等を用いた過マンガン酸処理などが挙げられるが、それに限定されない。また、Crを除去する工程を行えない場合は、式(4)の範囲内であることが好ましい。
【0024】
式(4)5.5≦XY/100≦11
なお、NiとCrを主成分とする金属蒸着層の厚みおよびCrの含有率であるXとYの値は、たとえば蛍光X線式膜厚計や誘導結合高周波プラズマ分光分析(ICP分析)法等で測定することができる。
【0025】
XとXY/100を式(1)および式(2)の範囲となる金属蒸着層を得るためには、Crの含有率であるYを決定した後、その値になるようにNiとCrを成膜する手法を決定する。この手法には、前記したように、それぞれの蒸発源の蒸発速度を決定しても良いし、Yを実現できる混合ターゲットを用意してスパッタ法を用いても良い。その後、決定したXの値を実現できるよう、NiとCrの成膜速度と成膜対象であるフィルムの搬送速度とを調節すれば良い。
【0026】
前記NiとCrを主成分とする金属蒸着層の次に、低抵抗金属を主成分とした金属蒸着層を設ける。該金属蒸着層の厚みは、好ましくは10〜300nm、より好ましくは30〜120nm、さらに好ましくは40〜100nmである。低抵抗金属を主成分とした金属蒸着層の膜厚が10nmよりも薄い場合は、金属の電気めっき工程で銅膜が溶出しやすく、300nmよりも厚い場合は、金属の電気めっき工程後に膜がはがれやすく、また生産効率も良くないので好ましくない。
【0027】
低抵抗金属を主成分とする金属蒸着層の金属の種類は、この後の導電性金属が積層できれば特に制限はないが、導電性金属層の種類と同じであることが好ましい。低抵抗金属には、配線パターンの電圧降下が小さく、抵抗発熱が小さくなることから、バルクの抵抗率が3μΩcm以下の金属元素を用いることが好ましい。具体的には、低抵抗が実現できることから、銅、金、銀、アルミニウムなどが好ましい。特に、低抵抗と低コストが両立できること、従来の三層タイプが銅を用いていることから加工設備や加工方法が流用できる、銅が最も好ましい。
【0028】
前記金属蒸着層上に、より厚膜の導電性金属層(金属めっき層)を積層する。導電性金属層の積層方法には、湿式めっき、乾式めっき等があり、湿式めっきには電気めっき、無電解めっき等がある。また、乾式めっきには、真空蒸着法やスパッタ法およびそれらの改良方法等がある。中でも、数μmの厚さを持つ導電性金属層を効率よく積層できることから電気めっき法が好ましい。電気めっき工程は、密着性を向上させるための脱脂および酸活性処理、金属ストライク、金属めっきの各工程からなる。金属蒸着層を蒸着した直後に電気めっき工程に入る場合には、脱脂および酸活性処理、金属ストライクを省略してもよい。金属蒸着層に給電する電流密度は0.2〜10A/dm2が好適で、0.5〜5A/dm2がより好適である。
【0029】
形成される導電性金属層(金属めっき層)の厚さは、0.5〜35μmとすることが好ましく、1.0〜20μmがより好適である。金属めっき層の層厚さが0.5μm未満では金属めっき層の信頼性が十分とはいえない。また、厚さが35μmを超えると膜形成に時間がかかり経済性が劣るほか、エッチング加工時に回路パターンの端部エッチングが進行しやすく、また、折り曲げによる断線の恐れがあるなど品質面でも好ましくない。目的とする回路の幅や電流密度によっても異なるが、加工作業性、品質の面から厚さは1.0〜20μm程度がより好適である。また、より細かいピッチの回路を形成するためには導電性金属層の厚さが薄い方が有利なことから、細かいピッチの回路に適用する際には1.0以上10μm未満が特に好ましい。
【0030】
めっきの条件は、めっき浴の組成、電流密度、浴温、撹拌条件などにより異なるが、特に制限はない。めっき浴は、硫酸銅浴、ピロりん酸銅浴、シアン化銅浴、スルファミン酸ニッケル浴、スズ−ニッケル合金めっき浴、銅−スズ−亜鉛合金めっき浴、スズ−ニッケル−銅合金めっき浴などが好ましいが、これらに限られるものではない。エッチング後、端子部にシアン化金めっき、シアン化銀めっき、ロジウムめっき、パラジュウムめっきなどの貴金属めっきを補足形成させても良い。
【0031】
次いで、本発明のフレキシブルプリント配線用基板には、エッチングによってパターンがを形成されるが、具体的には金属の不要部分を化学反応で溶解除去し、所定の電気回路図形を形成する。エッチング液としては、塩化第二銅、塩化第二鉄、過硫酸塩類、過酸化水素/硫酸、アルカリエンチャントなどの水溶液などが使用できる。また、パターンとして残すべき金属の必要部分は、写真法やスクリーン印刷法で有機化合物系レジストを被覆させるか、または異種金属系レジストをめっきし保護して、金属の溶解を防止する。本発明の特徴は、よりファインなパターンを形成でき、しかも製品の繰返し屈曲、各種環境試験に十耐えるものを形成できる。
【0032】
本発明のフレキシブルプリント配線用基板は、電子計算機、端末機器、電話機、通信機器、計測制御機器、カメラ、時計、自動車、事務機器、家電製品、航空機計器、医療機器などのあらゆるエレクトロニクスの分野に活用できる。またコネクター、フラット電極などへの適用も可能である。
【0033】
【実施例】
以下、実施例によって本発明のフレキシブルプリント配線用基板について詳述する。実施例中の各特性値の測定は、次の測定法に従って行なった。
(a) 引きはがし強度:JIS・C6481(180度ピール)に準じて評価を行なった。
(b) 常態引き剥がし密着力:上記評価を、パターン形成後100℃で15分乾燥させ、常温常湿下で測定した。
(c) 耐熱引き剥がし密着力:上記評価を、パターン形成後150℃で10日間放置し、取り出した後、常温常湿下で測定した。
(d) 高温高湿引き剥がし密着力:上記評価を、パターン形成後121℃100%RHで4日間放置し、取り出した後、常温常湿下で測定した。
(e) ウィスカの長さ:回路パターン形成後、無電解スズめっきを行い、5000倍の光学顕微鏡で観察し、ウィスカが発見された場合はその長さを測定した。
【0034】
(実施例1)
厚さ38μmのポリイミドフィルム“カプトン”EN(米国デュポン社の登録商標)の片面に、プラズマ処理を実施した。プラズマ処理は、2mPaの真空度にした真空チャンバー中で、窒素ガスを1.6Paまで導入し、1.1kWのRF電力で行った。次いで、クロム10%ニッケル90%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し厚さ60オングストロームのニッケルクロム蒸着層を形成し、NiとCrを主成分とする金属蒸着層とした。さらに純度99.99%の銅を、NiとCrを主成分とする金属蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成した。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成した。ここで、X=60、XY/100=6.0であった。得られたフレキシブルプリント配線用基板の引き剥がし密着力の測定結果を表1に示した。常態密着力、耐熱引き剥がし密着力、高温高湿引き剥がし密着力において、良好な結果を示した。また、このフレキシブルプリント配線用基板の金属層をエッチングし、幅30μm、スペース40μmの配線パターンを作製した。この配線パターンに対して、無電解Snめっきを施し、厚さ0.2μmのSnめっき層を形成した。ウィスカの有無を5000倍の顕微鏡で観察したところ、ウィスカの発生は見られなかった。以上の結果も表1に示す。
【0035】
(実施例2)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム5%ニッケル95%のターゲットを用いてスパッタ蒸着し、厚さ115オングストロームのニッケルクロム蒸着層を形成しNiとCrを主成分とする金属蒸着層とした。さらに純度99.99%の銅をNiとCrを主成分とする金属蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=115、XY/100=5.75であった。実施例1と同様に、引き剥がし密着力の測定を行ったところ、実施例1と同様に良好な結果となった。また、実施例1と同様にして配線パターン作製後スズめっきを施し、ウィスカを観察したところ、実施例1と同様にウィスカの発生は見られなかった。以上の結果を表1に示す。
【0036】
(実施例3)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム5%ニッケル95%のターゲットとクロム20%ニッケル80%のターゲットを用いて順次スパッタ蒸着し、合計厚さ105オングストロームのニッケルクロム蒸着層を形成しNiとCrを主成分とする金属蒸着層とした。さらに純度99.99%の銅をNiとCrを主成分とする金属蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=105、XY/100=10.5であった。実施例1と同様に、引き剥がし密着力の測定を行ったところ、表1の結果を得た。実施例1と同様に良好な結果となった。また、実施例1と同様にして配線パターン作製後スズめっきを施し、ウィスカを観察したところ、実施例1と同様にウィスカの発生は見られなかった。以上の結果を表1に示す。
【0037】
(実施例4)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム5%ニッケル95%のターゲットを用いてスパッタ蒸着し、厚さ150オングストロームのニッケルクロム蒸着層を形成しNiとCrを主成分とする金属蒸着層とした。さらに純度99.99%の銅をNiとCrを主成分とする金属蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=150、XY/100=7.5であった。実施例1と同様に、引き剥がし密着力の測定を行ったところ、表1の結果を得た。実施例1と同様に良好な結果となった。また、実施例1と同様にして配線パターン作製後スズめっきを施し、ウィスカを観察したところ、実施例1と同様にウィスカの発生は見られなかった。以上の結果を表1に示す。
【0038】
(実施例5)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム20%ニッケル80%のターゲットを用いてスパッタ蒸着し、厚さ70オングストロームのニッケルクロム蒸着層を形成し、さらに純度99.99%の銅をニッケルクロム蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=70、XY/100=14であった。このフレキシブルプリント配線用基板の金属層をエッチングし、幅1mmの配線パターンを作製したところ、配線間にクロムが残留し、配線パターン間の絶縁が取れなかった。そこで、クロムを除去するため、過マンガン酸処理を施し、配線パターン間の絶縁を確保した。実施例1と同様に、引き剥がし密着力の測定を行ったところ、表1の結果を得た。耐熱密着力の非常に高い、良好な結果となった。また、実施例1と同様にして配線パターンを作製し、さらに過マンガン酸処理を施してクロムを除去した後、スズめっきを施し、ウィスカを観察したところ、実施例1と同様にウィスカの発生は見られなかった。以上の結果を表1に示す。
【0039】
(比較例1)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム20%ニッケル80%のターゲットを用いてスパッタ蒸着し、厚さ19オングストロームのニッケルクロム蒸着層を形成し、さらに純度99.99%の銅をニッケルクロム蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=19、XY/100=3.8であった。実施例1と同様に引き剥がし密着力の測定を行ったところ、表1の結果を得た。実施例と比較して、全体的に低い密着力で、特に耐熱引き剥がし密着力が低い結果となった。また、実施例1と同様にして配線パターン作製後スズめっきを施し、ウィスカを観察したところ、ウィスカの発生が認められ、その長さは15μmであった。以上の結果を表1に示す。
【0040】
(比較例2)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム3%ニッケル97%のターゲットを用いてスパッタ蒸着し、厚さ150オングストロームのニッケルクロム蒸着層を形成し、さらに純度99.99%の銅をニッケルクロム蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=150、XY/100=4.5であった。実施例1と同様に引き剥がし密着力の測定を行ったところ、表1の結果を得た。各実施例と比較して、ほぼ同等の結果となり、密着力は良好だった。一方、実施例1と同様にして配線パターン作製後スズめっきを施し、ウィスカを観察したところ、ウィスカの発生が認められ、その長さは10μmであった。以上の結果を表1に示す。
【0041】
(比較例3)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム5%ニッケル95%のターゲットを用いてスパッタ蒸着し、厚さ60オングストロームのニッケルクロム蒸着層を形成し、さらに純度99.99%の銅をニッケルクロム蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=60、XY/100=3であった。実施例1と同様に引き剥がし密着力の測定を行ったところ、表1の結果を得た。各実施例と比較して、ほぼ同等の結果となり、密着力は良好だった。しかしながら、実施例1と同様にして配線パターン作製後スズめっきを施し、ウィスカを観察したところ、ウィスカの発生が認められ、その長さは3μmであった。以上の結果を表1に示す。
【0042】
(比較例4)
実施例1と同様にプラズマ処理したポリイミドフィルム上に、クロム10%ニッケル90%のターゲットを用いてスパッタ蒸着し、厚さ53オングストロームのニッケルクロム蒸着層を形成しNiとCrを主成分とする金属蒸着層とした。さらに純度99.99%の銅をNiとCrを主成分とする金属蒸着層の上にスパッタ蒸着し厚さ800オングストロームの銅蒸着層を形成し、金属蒸着層とした。その後、厚さ9μmの電気銅めっきを行い、金属蒸着層上に導電性金属層を形成し、フレキシブルプリント配線用基板を作製した。ここで、X=53、XY/100=5.3であった。実施例1と同様に、引き剥がし密着力の測定を行ったところ、表1の結果を得た。実施例1と比較してほぼ同じ結果となった。しかしながら、実施例1と同様にして配線パターン作製後スズめっきを施し、ウィスカを観察したところ、ウィスカの発生が認められ、その長さは5μmであった。以上の結果を表1に示す。
【0043】
【表1】
【0044】
また、図2に、本発明の課題を解決する手段であるXとXY/100の範囲の関係、および、実施例1〜5と比較例1〜4のXとXY/100の値をそれぞれ示した。
【0045】
【発明の効果】
本発明によれば、プラスチックフィルムの上に金属層を約0.5〜35μmの厚みに形成することができ、パターン形成、エッチング、配線、IC実装などの工程を経ても、さらに厳しい環境試験を経ても、はくり、はがれがなく密着性に優れ、またウィスカの発生の無いFPC基板、COF基板等のフレキシブルプリント配線用基板が得られる。しかも、従来は、例えば、銅箔の厚さの限界により12μm未満のものは生産されていなかったが、0.5〜11μmのより薄い銅層を形成できることにより、パターン精度が向上し、より高密度、高精度の配線が可能となる。しかも、銅箔ラミネート時に発生していた折れきずやピンホールが少なく、経済性と高い品質を兼ね備えたフレキシブルプリント配線用基板が得られる。
【図面の簡単な説明】
【図1】図1は、本発明のフレキシブルプリント配線用基板の好適例を示す断面図である。
【図2】図2は、本発明の課題を解決する手段であるXとXY/100の範囲を示している図(グラフ)である。
【符号の説明】
1:プラスチックフィルム
2:金属蒸着層(NiとCrを主成分とする層)
3:金属蒸着層(低抵抗金属を主成分とする層)
4:導電性金属層[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a substrate for flexible printed wiring using a metal-deposited layer / conductive metal layer laminated film.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a flexible printed wiring board having a three-layer structure in which a copper foil as a conductor layer is bonded to a plastic film via an adhesive layer is known as a flexible printed wiring board. This three-layer structure type flexible printed wiring board has a problem that the heat resistance of the adhesive used is inferior to that of the plastic film, so that the dimensional accuracy after processing is reduced, and the thickness of the copper foil used is usually Since the thickness is 10 μm or more, there is also a disadvantage that patterning for high-density wiring with a narrow pitch is difficult.
[0003]
On the other hand, a metal layer as a conductor layer is formed on a plastic film by a wet plating method or a dry plating method (for example, a vacuum deposition method, a sputtering method, an ion plating method, etc.) without using an adhesive. A structure type flexible printed wiring board is also known (see
[0004]
The flexible printed wiring board of this two-layer structure type can perform high-density wiring because the conductor layer can be made thinner than 10 μm. However, a severe heat load test (for example, temperature 85 ° C., humidity 85%, 1000 hours) or electroless plating of tin, nickel, solder, gold, etc., the adhesion between the plastic film and the conductor layer is reduced, or whiskers or There is a disadvantage that fine needle-like crystals called whiskers are formed and sometimes lead to a short circuit between conductors.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 06-009308
[0006]
[Patent Document 2]
Japanese Patent Publication No. 08-008400
[0007]
[Problems to be solved by the invention]
Accordingly, the present invention provides a plastic film, a conductor layer on the plastic film, and an interface between the plastic film and the conductive layer, which are formed so as to sufficiently withstand the action and heat load of a chemical used in a process such as electroless plating. It has excellent adhesion at the interface between the conductor layer (conductive metal layer) and the substrate after electroless plating, as well as the adhesion durability after electroless plating, and does not generate whiskers from the electroless plating film, or An object of the present invention is to provide an excellent flexible printed wiring board in which the size of a whisker is so small that it does not matter.
[0008]
[Means for Solving the Problems]
In order to solve the above object, a flexible wiring substrate according to the present invention is a flexible printed wiring formed by providing a metal deposition layer on one or both surfaces of a plastic film and laminating a conductive metal layer on the metal deposition layer. In the substrate for use, the metal deposition layer is composed of a layer mainly composed of Ni and Cr and a layer mainly composed of a low-resistance metal, and the layer mainly composed of Ni and Cr has a film thickness of X (angstrom), Is a range in which X and Y satisfy both of the following expressions (1) and (2), where Y (%) is used.
[0009]
Formula (1) 40 ≦ X ≦ 250
Formula (2) 5.5 ≦ XY / 100 ≦ 16
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the flexible printed wiring board of the present invention will be described in detail.
[0011]
FIG. 1 shows the structure of a preferred example of the flexible printed wiring board of the present invention. In FIG. 1, a
[0012]
Examples of the plastic film as the substrate used in the present invention include polyethylene terephthalate, polyethylene-2,6-naphthalate, polyethylene-α, β-bis (2-chlorophenoxyethane-4,4′-dicarboxylate) and the like. Consisting of polyester, polyphenylene sulfide, polyether sulfone, polyether ether ketone, aromatic polyamide, polyarylate, polyimide, polyamideimide, polyetherimide, polyparazic acid, polyoxadiazole and halogen- or methyl-substituted products thereof Films and the like. In particular, polyimide, polyamideimide and polyetherimide are preferably used because they have high heat resistance, flame retardancy and rigidity and are excellent in dimensional stability. Further, the plastic film may contain these copolymers or other organic polymers. Known additives such as a lubricant and a plasticizer may be added to these plastic films.
[0013]
In the present invention, a film obtained by melt-extruding a polymer containing a repeating unit represented by the following formula in an amount of 85 mol% or more in the above-mentioned plastic is stretched and oriented biaxially to improve mechanical properties. Is particularly preferably used.
[0014]
Embedded image
[0015]
(However, X is H, CH 3 Group, F, Cl). Further, a film made of a polymer containing 50 mol% or more of a repeating unit represented by the following formula and formed by a wet or dry-wet method, or a film obtained by biaxially stretching and / or heat-treating the film is also preferably used.
[0016]
Embedded image
[0017]
(Where X is H, CH 3 Group, F, Cl, m and n represent an integer of 0 to 3).
[0018]
A plastic film made of a polymer containing a repeating unit as described above is particularly excellent in heat stability and moisture stability, and has a small dimensional change in a wet etching step. The thickness of the plastic film as the base material is preferably about 6 to 125 μm, and a thickness of 12 to 50 μm is suitable. If the plastic film is too thin, the strength is insufficient, and it becomes difficult to perform metal deposition or wiring processing, or a problem that requires a reinforcing film is likely to occur. If the plastic film is too thick, the bendability is impaired, which is not preferable.
[0019]
In the present invention, prior to forming a thick conductive metal layer by an electroplating method or the like, a metal deposition layer is formed on one or both surfaces of a plastic film by a vacuum deposition or sputtering method. The metal deposition layer includes a layer mainly composed of Ni and Cr and a layer mainly composed of a low-resistance metal. The two metal deposition layers are laminated in the following order: plastic film / layer mainly composed of Ni and Cr / layer mainly composed of low resistance metal. Thus, a layer having low resistance and high flexibility can be formed.
[0020]
In the present invention, when the thickness of the layer containing Ni and Cr as main components is X (angstrom) and the content of Cr is Y (%), X and Y both satisfy the following equations (1) and (2). It is necessary to be within the range to satisfy.
Formula (1) 40 ≦ X ≦ 250
Formula (2) 5.5 ≦ XY / 100 ≦ 16
More preferably, it is within a range that satisfies both the following expressions (3) and (2).
Formula (3) 40 ≦ X <130
Formula (2) 5.5 ≦ XY / 100 ≦ 16
More preferably, it is within a range that satisfies both of the following expressions (3) and (4).
Formula (3) 40 ≦ X <130
Formula (4) 5.5 ≦ XY / 100 ≦ 11
This reduces the adhesion between the plastic film and the conductive metal layer, and when an electroless plating film such as tin, solder, or gold is formed on a two-layer type board with wiring to mount an IC. The generation of whiskers can be suppressed. FIG. 2 shows ranges of X and Y which are means for solving the problem of the present invention.
[0021]
As described above, the layer mainly containing Ni and Cr can be formed by a vacuum evaporation method, a sputtering method, or the like. The layer thickness X can be controlled by adjusting the film forming speed and the film conveying speed. In the case of vacuum deposition, the ratio Y of Cr can be freely determined by controlling the evaporation rates of the Ni and Cr deposition sources. In the case of the sputtering method, Ni and Cr targets may be separately prepared to control the respective sputtering rates, or the control may be performed by preparing a mixed target having an arbitrary composition ratio. It is preferable to use a sputtering method with a mixed target having a determined composition ratio because a stable layer thickness and a composition ratio within the layer can be obtained. From the above, it is possible to arbitrarily set the values of X and Y, and furthermore, X and XY / 100 in the present invention.
[0022]
In the present invention, when the value of X is below the range of the formula (1), there is a possibility that the decrease in adhesion after a heat-resistant load becomes large. Further, when the value of X exceeds the range of the formula (1), peeling is likely to occur between the metal deposited layer mainly composed of Ni and Cr and the metal deposited layer mainly composed of a low-resistance metal, When an electroless plating film of solder, gold, or the like is formed, the adhesion tends to decrease. Therefore, the value of X is more preferably in the range of Expression (3).
[0023]
If XY / 100 is below the range of the expression (2), whiskers are likely to be generated, durability against gold plating is reduced, and it becomes close to pure Ni. Therefore, in the case of sputtering, the target has magnetism. This makes the sputtering process difficult. Also, when the value of XY / 100 in the equation (2) is large, Cr is likely to remain between the wirings when the wiring pattern is formed, and the insulation reliability may be reduced. This can be prevented by performing the step of removing Cr. However, if the value exceeds the range of the expression (2), even in the step of removing Cr, Cr remains without being completely removed, and damage to the plastic film becomes large. This is not preferable because the reliability of the wiring pattern may be reduced. Examples of the step of removing Cr include, but are not limited to, permanganic acid treatment using potassium permanganate or the like as described in JP-A-7-228984. Further, when the step of removing Cr cannot be performed, it is preferable to be within the range of the expression (4).
[0024]
Formula (4) 5.5 ≦ XY / 100 ≦ 11
The thickness of the metal deposition layer containing Ni and Cr as main components and the values of X and Y, which are the contents of Cr, can be determined by, for example, a fluorescent X-ray film thickness meter, an inductively coupled high-frequency plasma spectroscopy (ICP analysis) method, etc. Can be measured.
[0025]
In order to obtain a metal deposition layer in which X and XY / 100 fall within the ranges of Expressions (1) and (2), after determining Y, which is the content of Cr, Ni and Cr are adjusted so as to become the values. A method for forming a film is determined. In this method, as described above, the evaporation rate of each evaporation source may be determined, or a mixed target capable of realizing Y may be prepared and the sputtering method may be used. Thereafter, the film forming speed of Ni and Cr and the transport speed of the film to be formed may be adjusted so as to realize the determined value of X.
[0026]
Next to the metal deposited layer mainly composed of Ni and Cr, a metal deposited layer mainly composed of a low-resistance metal is provided. The thickness of the metal deposition layer is preferably 10 to 300 nm, more preferably 30 to 120 nm, and still more preferably 40 to 100 nm. When the thickness of the metal deposition layer containing a low-resistance metal as a main component is smaller than 10 nm, the copper film is easily eluted in the metal electroplating step, and when the thickness is larger than 300 nm, the film is formed after the metal electroplating step. It is not preferable because it is easy to peel off and the production efficiency is not good.
[0027]
There is no particular limitation on the type of metal in the metal deposition layer containing a low-resistance metal as a main component, as long as a conductive metal can be laminated thereon, but it is preferable that the metal is the same as the type of conductive metal layer. As the low-resistance metal, it is preferable to use a metal element having a bulk resistivity of 3 μΩcm or less, since the voltage drop of the wiring pattern is small and the resistance heat generation is small. Specifically, copper, gold, silver, aluminum, and the like are preferable because low resistance can be realized. In particular, copper is most preferable, since low resistance and low cost can be compatible, and processing equipment and a processing method can be used since conventional three-layer type uses copper.
[0028]
A thicker conductive metal layer (metal plating layer) is laminated on the metal deposition layer. Examples of the method for laminating the conductive metal layer include wet plating and dry plating, and wet plating includes electroplating and electroless plating. The dry plating includes a vacuum deposition method, a sputtering method and a method for improving them. Among them, the electroplating method is preferred because a conductive metal layer having a thickness of several μm can be efficiently laminated. The electroplating step includes the steps of degreasing and acid activation for improving adhesion, metal strike, and metal plating. When the electroplating step is started immediately after the metal deposition layer is deposited, the degreasing and acid activation treatment and the metal strike may be omitted. The current density for supplying power to the metal deposition layer is 0.2 to 10 A / dm. 2 Is preferred, and 0.5 to 5 A / dm. 2 Is more preferable.
[0029]
The thickness of the formed conductive metal layer (metal plating layer) is preferably 0.5 to 35 μm, and more preferably 1.0 to 20 μm. If the thickness of the metal plating layer is less than 0.5 μm, the reliability of the metal plating layer cannot be said to be sufficient. On the other hand, if the thickness exceeds 35 μm, it takes a long time to form a film, which is inferior in economical efficiency. In addition, the etching of the end portion of the circuit pattern is apt to proceed during the etching process, and there is a possibility of disconnection due to bending. . Although it varies depending on the width and current density of the target circuit, the thickness is more preferably about 1.0 to 20 μm in terms of processing workability and quality. Further, in order to form a circuit with a finer pitch, it is advantageous that the thickness of the conductive metal layer is thin. Therefore, when applied to a circuit with a fine pitch, the thickness is particularly preferably 1.0 to less than 10 μm.
[0030]
Plating conditions vary depending on the composition of the plating bath, current density, bath temperature, stirring conditions, and the like, but are not particularly limited. Plating baths include copper sulfate bath, copper pyrophosphate bath, copper cyanide bath, nickel sulfamate bath, tin-nickel alloy plating bath, copper-tin-zinc alloy plating bath, tin-nickel-copper alloy plating bath, and the like. Preferred, but not limited to. After the etching, noble metal plating such as gold cyanide plating, silver cyanide plating, rhodium plating, and palladium plating may be additionally formed on the terminal portion.
[0031]
Next, a pattern is formed on the flexible printed wiring board of the present invention by etching. Specifically, an unnecessary portion of a metal is dissolved and removed by a chemical reaction to form a predetermined electric circuit figure. As the etching solution, an aqueous solution of cupric chloride, ferric chloride, persulfates, hydrogen peroxide / sulfuric acid, alkali enchant, or the like can be used. A necessary portion of the metal to be left as a pattern is coated with an organic compound-based resist by a photographic method or a screen printing method, or is protected by plating a different metal-based resist to prevent dissolution of the metal. A feature of the present invention is that a finer pattern can be formed, and a product that can withstand repeated bending of a product and various environmental tests can be formed.
[0032]
The flexible printed wiring board of the present invention is used in all fields of electronics such as computers, terminal equipment, telephones, communication equipment, measurement and control equipment, cameras, watches, automobiles, office equipment, home appliances, aircraft instruments, and medical equipment. it can. It can also be applied to connectors, flat electrodes, and the like.
[0033]
【Example】
Hereinafter, the substrate for flexible printed wiring of the present invention will be described in detail with reference to examples. Each characteristic value in the examples was measured according to the following measurement method.
(A) Peeling strength: Evaluation was performed according to JIS C6481 (180 degree peel).
(B) Peeling adhesion in normal condition: The above evaluation was measured at 100 ° C. for 15 minutes after pattern formation, and measured at normal temperature and normal humidity.
(C) Heat-peeling adhesion: The above-mentioned evaluation was measured at room temperature and normal humidity after the pattern was left at 150 ° C. for 10 days, taken out, and taken out.
(D) High-temperature, high-humidity peeling adhesion: The above evaluation was measured at room temperature and normal humidity after the pattern was formed and left at 121 ° C. and 100% RH for 4 days.
(E) Whisker length: After forming a circuit pattern, electroless tin plating was performed, and observed with a 5000-power optical microscope. If a whisker was found, its length was measured.
[0034]
(Example 1)
Plasma treatment was performed on one side of a 38 μm-thick polyimide film “Kapton” EN (registered trademark of DuPont, USA). The plasma treatment was performed in a vacuum chamber having a degree of vacuum of 2 mPa by introducing nitrogen gas up to 1.6 Pa and using RF power of 1.1 kW. Next, using a target of
[0035]
(Example 2)
A nickel-chromium vapor-deposited layer having a thickness of 115 angstroms is formed on a polyimide film which has been plasma-treated in the same manner as in Example 1 by using a target of 5% chromium and 95% nickel to form a 115 angstrom thick nickel-chromium vapor-deposited layer. It was an evaporation layer. Further, copper having a purity of 99.99% was sputter-deposited on the metal-deposited layer mainly composed of Ni and Cr to form a copper-deposited layer having a thickness of 800 Å, thereby forming a metal-deposited layer. Thereafter, a 9 μm-thick electrolytic copper plating was performed, a conductive metal layer was formed on the metal deposition layer, and a flexible printed wiring board was manufactured. Here, X = 115 and XY / 100 = 5.75. When the peel adhesion was measured in the same manner as in Example 1, good results were obtained as in Example 1. In addition, tin plating was performed after the wiring pattern was produced in the same manner as in Example 1, and whiskers were observed. As a result, no whiskers were generated as in Example 1. Table 1 shows the above results.
[0036]
(Example 3)
A nickel-chromium vapor-deposited layer having a total thickness of 105 angstroms was successively vapor-deposited on a polyimide film subjected to plasma treatment in the same manner as in Example 1 using a target of chromium 5% nickel 95% and a target of
[0037]
(Example 4)
A 150-Å-thick nickel-chromium vapor-deposited layer is formed on a polyimide film that has been plasma-treated in the same manner as in Example 1 by using a target of 5% chromium and 95% nickel to form a nickel-chromium vapor-deposited layer having a thickness of 150 Å. It was an evaporation layer. Further, copper having a purity of 99.99% was sputter-deposited on the metal-deposited layer mainly composed of Ni and Cr to form a copper-deposited layer having a thickness of 800 Å, thereby forming a metal-deposited layer. Thereafter, a 9 μm-thick electrolytic copper plating was performed, a conductive metal layer was formed on the metal deposition layer, and a flexible printed wiring board was manufactured. Here, X = 150 and XY / 100 = 7.5. When the peel adhesion was measured in the same manner as in Example 1, the results shown in Table 1 were obtained. Good results were obtained as in Example 1. In addition, tin plating was performed after the wiring pattern was produced in the same manner as in Example 1, and whiskers were observed. As a result, no whiskers were generated as in Example 1. Table 1 shows the above results.
[0038]
(Example 5)
A 70-Å-thick nickel-chromium vapor-deposited layer was formed on a polyimide film subjected to plasma treatment in the same manner as in Example 1 by using a target of 20% chromium and 80% nickel to form a nickel-chromium vapor-deposited layer having a thickness of 70 Å. Was deposited on the nickel-chromium vapor-deposited layer by sputtering to form a copper-deposited layer having a thickness of 800 Å, which was used as a metal-deposited layer. Thereafter, a 9 μm-thick electrolytic copper plating was performed, a conductive metal layer was formed on the metal deposition layer, and a flexible printed wiring board was manufactured. Here, X = 70 and XY / 100 = 14. When the metal layer of the flexible printed wiring board was etched to form a wiring pattern having a width of 1 mm, chromium remained between the wirings and insulation between the wiring patterns could not be obtained. Therefore, in order to remove chromium, a permanganate treatment was performed to secure insulation between wiring patterns. When the peel adhesion was measured in the same manner as in Example 1, the results shown in Table 1 were obtained. Very good heat resistance adhesion results. Further, a wiring pattern was prepared in the same manner as in Example 1, and further subjected to a permanganic acid treatment to remove chromium, and then subjected to tin plating and observation of whiskers. I couldn't see it. Table 1 shows the above results.
[0039]
(Comparative Example 1)
On a polyimide film that was plasma-treated in the same manner as in Example 1, a nickel-chromium vapor-deposited layer having a thickness of 19 angstroms was formed by sputtering using a target of 20% chromium and 80% of nickel, and copper having a purity of 99.99% was further formed. Was deposited on the nickel-chromium vapor-deposited layer by sputtering to form a copper-deposited layer having a thickness of 800 Å, which was used as a metal-deposited layer. Thereafter, a 9 μm-thick electrolytic copper plating was performed, a conductive metal layer was formed on the metal deposition layer, and a flexible printed wiring board was manufactured. Here, X = 19 and XY / 100 = 3.8. When the peel adhesion was measured in the same manner as in Example 1, the results shown in Table 1 were obtained. Compared with the example, the result was a lower adhesion force as a whole, especially a lower heat-peeling adhesion force. In addition, tin plating was performed after the wiring pattern was prepared in the same manner as in Example 1, and whiskers were observed. As a result, generation of whiskers was observed, and the length was 15 μm. Table 1 shows the above results.
[0040]
(Comparative Example 2)
On a polyimide film that was plasma-treated in the same manner as in Example 1, a nickel-chromium vapor-deposited layer having a thickness of 150 Å was formed by sputtering using a target of 3% chromium and 97% nickel, and further, 99.99% pure copper Was deposited on the nickel-chromium vapor-deposited layer by sputtering to form a copper-deposited layer having a thickness of 800 Å, which was used as a metal-deposited layer. Thereafter, a 9 μm-thick electrolytic copper plating was performed, a conductive metal layer was formed on the metal deposition layer, and a flexible printed wiring board was manufactured. Here, X = 150 and XY / 100 = 4.5. When the peel adhesion was measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The results were almost the same as those of the examples, and the adhesion was good. On the other hand, when the wiring pattern was prepared and tin-plated and the whiskers were observed in the same manner as in Example 1, generation of whiskers was observed, and the length was 10 μm. Table 1 shows the above results.
[0041]
(Comparative Example 3)
On a polyimide film that was plasma-treated in the same manner as in Example 1, a nickel-chromium vapor-deposited layer having a thickness of 60 Å was formed by sputtering using a target of 5% chromium and 95% of nickel, and further, copper having a purity of 99.99% was formed. Was deposited on the nickel-chromium vapor-deposited layer by sputtering to form a copper-deposited layer having a thickness of 800 Å, which was used as a metal-deposited layer. Thereafter, a 9 μm-thick electrolytic copper plating was performed, a conductive metal layer was formed on the metal deposition layer, and a flexible printed wiring board was manufactured. Here, X = 60 and XY / 100 = 3. When the peel adhesion was measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The results were almost the same as those of the examples, and the adhesion was good. However, tin plating was applied after the wiring pattern was produced in the same manner as in Example 1, and whiskers were observed. As a result, generation of whiskers was observed, and the length was 3 μm. Table 1 shows the above results.
[0042]
(Comparative Example 4)
A nickel-chromium vapor-deposited layer having a thickness of 53 angstrom is formed on a polyimide film which has been plasma-treated in the same manner as in Example 1 by using a target of 10% chromium and 90% nickel to form a nickel-chromium vapor-deposited layer having a thickness of 53 Å. It was an evaporation layer. Further, copper having a purity of 99.99% was sputter-deposited on the metal-deposited layer mainly composed of Ni and Cr to form a copper-deposited layer having a thickness of 800 Å, thereby forming a metal-deposited layer. Thereafter, a 9 μm-thick electrolytic copper plating was performed, a conductive metal layer was formed on the metal deposition layer, and a flexible printed wiring board was manufactured. Here, X = 53 and XY / 100 = 5.3. When the peel adhesion was measured in the same manner as in Example 1, the results shown in Table 1 were obtained. The result was almost the same as that of Example 1. However, tin plating was performed after the wiring pattern was prepared in the same manner as in Example 1, and whiskers were observed. As a result, generation of whiskers was observed, and the length was 5 μm. Table 1 shows the above results.
[0043]
[Table 1]
[0044]
FIG. 2 shows the relationship between the ranges of X and XY / 100, which are means for solving the problem of the present invention, and the values of X and XY / 100 in Examples 1 to 5 and Comparative Examples 1 to 4, respectively. Was.
[0045]
【The invention's effect】
According to the present invention, a metal layer can be formed on a plastic film to a thickness of about 0.5 to 35 μm, and even after a process such as pattern formation, etching, wiring, and IC mounting, a more severe environmental test can be performed. Even after passing, a flexible printed wiring board such as an FPC board or a COF board which is excellent in adhesion without peeling or peeling and free of whiskers can be obtained. In addition, conventionally, for example, a copper foil having a thickness of less than 12 μm has not been produced due to a limit of the thickness of the copper foil. However, since a thinner copper layer of 0.5 to 11 μm can be formed, pattern accuracy is improved, and High-density, high-precision wiring becomes possible. Moreover, a flexible printed wiring board having both economical efficiency and high quality can be obtained with less breakage and pinholes generated during copper foil lamination.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a preferred example of a flexible printed wiring board according to the present invention.
FIG. 2 is a diagram (graph) showing a range of X and XY / 100 which is means for solving the problem of the present invention.
[Explanation of symbols]
1: plastic film
2: Metal deposition layer (layer mainly composed of Ni and Cr)
3: Metal deposited layer (layer mainly composed of low resistance metal)
4: Conductive metal layer
Claims (7)
式(1)40≦X≦250
式(2)5.5≦XY/100≦16One or both surfaces of a plastic film, a metal deposition layer is provided, and a conductive metal layer is laminated on the metal deposition layer, in a flexible printed wiring board, wherein the metal deposition layer is mainly composed of Ni and Cr. When the thickness of the layer mainly composed of Ni and Cr is X (angstrom) and the content of Cr is Y (%), X and Y are as follows. A substrate for a flexible printed wiring, characterized in that the range satisfies both the expressions (1) and (2).
Formula (1) 40 ≦ X ≦ 250
Formula (2) 5.5 ≦ XY / 100 ≦ 16
式(3)40≦X<130
式(2)5.5≦XY/100≦16One or both surfaces of a plastic film, a metal deposition layer is provided, and a conductive metal layer is laminated on the metal deposition layer, in a flexible printed wiring board, wherein the metal deposition layer is mainly composed of Ni and Cr. When the thickness of the layer mainly composed of Ni and Cr is X (angstrom) and the content of Cr is Y (%), X and Y are as follows. A substrate for a flexible printed wiring, characterized in that it satisfies both the expressions (3) and (2).
Formula (3) 40 ≦ X <130
Formula (2) 5.5 ≦ XY / 100 ≦ 16
式(3)40≦X<130
式(4)5.5≦XY/100≦11One or both surfaces of a plastic film, a metal deposition layer is provided, and a conductive metal layer is laminated on the metal deposition layer, in a flexible printed wiring board, wherein the metal deposition layer is mainly composed of Ni and Cr. When the thickness of the layer mainly composed of Ni and Cr is X (angstrom) and the content of Cr is Y (%), X and Y are as follows. A flexible printed wiring board, characterized by satisfying both of the expressions (3) and (4).
Formula (3) 40 ≦ X <130
Formula (4) 5.5 ≦ XY / 100 ≦ 11
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003093452A JP2004303863A (en) | 2003-03-31 | 2003-03-31 | Flexible printed-wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003093452A JP2004303863A (en) | 2003-03-31 | 2003-03-31 | Flexible printed-wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004303863A true JP2004303863A (en) | 2004-10-28 |
Family
ID=33406245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003093452A Pending JP2004303863A (en) | 2003-03-31 | 2003-03-31 | Flexible printed-wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004303863A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007042945A (en) * | 2005-08-04 | 2007-02-15 | Japan Gore Tex Inc | Method of preventing deterioration of liquid crystal polymer in circuit substrate and circuit substrate |
JP2007105955A (en) * | 2005-10-12 | 2007-04-26 | Toyobo Co Ltd | Laminated polyimide film and its production method |
JP2007223312A (en) * | 2006-02-02 | 2007-09-06 | Ls Cable Ltd | Flexible metal laminated plate and method for manufacturing the same |
JP2008162245A (en) * | 2007-01-05 | 2008-07-17 | Toray Advanced Film Co Ltd | Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same |
JP2008284869A (en) * | 2007-05-15 | 2008-11-27 | Ls Cable Ltd | Flexible metal laminated plate having high visible ray transmittance |
JP2010030304A (en) * | 2009-08-28 | 2010-02-12 | Mitsubishi Shindoh Co Ltd | Metallized polyimide film |
WO2012108264A1 (en) * | 2011-02-10 | 2012-08-16 | Jx日鉱日石金属株式会社 | Two-layered copper-clad laminate material, and method for producing same |
JP2018135561A (en) * | 2017-02-21 | 2018-08-30 | 住友金属鉱山株式会社 | Copper-clad laminated substrate, method for manufacturing the same, and wiring board |
-
2003
- 2003-03-31 JP JP2003093452A patent/JP2004303863A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007042945A (en) * | 2005-08-04 | 2007-02-15 | Japan Gore Tex Inc | Method of preventing deterioration of liquid crystal polymer in circuit substrate and circuit substrate |
JP2007105955A (en) * | 2005-10-12 | 2007-04-26 | Toyobo Co Ltd | Laminated polyimide film and its production method |
JP2007223312A (en) * | 2006-02-02 | 2007-09-06 | Ls Cable Ltd | Flexible metal laminated plate and method for manufacturing the same |
JP2008162245A (en) * | 2007-01-05 | 2008-07-17 | Toray Advanced Film Co Ltd | Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same |
JP2008284869A (en) * | 2007-05-15 | 2008-11-27 | Ls Cable Ltd | Flexible metal laminated plate having high visible ray transmittance |
JP2010030304A (en) * | 2009-08-28 | 2010-02-12 | Mitsubishi Shindoh Co Ltd | Metallized polyimide film |
WO2012108264A1 (en) * | 2011-02-10 | 2012-08-16 | Jx日鉱日石金属株式会社 | Two-layered copper-clad laminate material, and method for producing same |
JP2018135561A (en) * | 2017-02-21 | 2018-08-30 | 住友金属鉱山株式会社 | Copper-clad laminated substrate, method for manufacturing the same, and wiring board |
JP7043731B2 (en) | 2017-02-21 | 2022-03-30 | 住友金属鉱山株式会社 | Copper-clad laminated board and its manufacturing method, as well as wiring board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4968266B2 (en) | Two-layer flexible substrate, manufacturing method thereof, and flexible printed wiring board obtained from the two-layer flexible substrate | |
WO2006025240A1 (en) | Double layer flexible board and method for manufacturing the same | |
JP4341023B2 (en) | Method for producing metal-coated liquid crystal polymer film | |
JP3888587B2 (en) | Etching method of flexible substrate | |
JPH08156176A (en) | Novel flexible copper clad laminated sheet | |
JP2008162245A (en) | Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same | |
JP2004031588A (en) | Flexible printed wiring board | |
JP2007262493A (en) | Material for flexible printed board and method of manufacturing the same | |
JP2004303863A (en) | Flexible printed-wiring board | |
JP2010005800A (en) | Two-layered flexible substrate, its method of manufacturing, printed-wiring board using the two-layered flexible substrate, and its method of manufacturing | |
JP4525682B2 (en) | Two-layer flexible substrate and manufacturing method thereof | |
JP2004009357A (en) | Metal vapor-deposited/metal plated laminated film and electronic part using the same | |
JP2005041049A (en) | Wide copper clad laminated board | |
JP7043731B2 (en) | Copper-clad laminated board and its manufacturing method, as well as wiring board | |
KR101357141B1 (en) | Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same | |
JP2003127275A (en) | Copper-clad laminated substrate | |
JPH069308B2 (en) | Flexible printed wiring board | |
JP5671902B2 (en) | Method for manufacturing resistive thin film element with copper conductor layer | |
JP2006283023A (en) | Polyimide film for forming metallic thin film by vapor deposition | |
JP2005262707A (en) | Copper-clad laminated film and material for flexible circuit board | |
JP2007158182A (en) | Laminate for flexible printed wiring board | |
JP2004158493A (en) | Copper-coated plastic board | |
JP2003332702A (en) | Flexible printed circuit board | |
JP4228405B2 (en) | Metal thin film laminate film and flexible printed wiring board using the film | |
JP2003318532A (en) | Flexible printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060105 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070529 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071016 |