【0001】
【発明の属する技術分野】
本発明は、プリンタ、ファクシミリ及び複写機等の電子写真方式を採用した画像形成装置における帯電部材、現像剤担持部材、転写部材、クリーニング部材及び除電部材等の被接触物を電気的にコントロールする導電性弾性部材、それを用いたプロセスカートリッジ及び画像形成装置に関する。
【0002】
【従来の技術】
従来、電子写真画像形成装置の帯電装置としてはコロナ帯電器が使用されてきたが、近年、これに代って接触帯電装置が実用化されてきている。
【0003】
これは、低オゾン及び低電力を目的としており、中でも特に帯電部材として導電性ローラを用いたローラ帯電方式が、帯電の安定性という点で好ましく、広く用いられている。
【0004】
ローラ帯電方式では、導電性の弾性ローラを被帯電体に加圧当接させ、これに電圧を印加することによって放電により被帯電体への帯電を行う。
【0005】
具体的には、放電開始電圧(有機感光体(OPC感光体)に対して帯電ローラを加圧当接させた場合には、約550V)に、必要とされる感光体表面電位Vdを足したDC電圧を印加することで帯電を行うDC帯電方式、あるいは、環境・耐久変動等による電位の変動を改善する目的として、必要とされる感光体表面電位Vdに相当するDC電圧に放電開始電圧の2倍以上のピーク間電圧を持つAC成分を重畳した電圧を接触帯電部材に印加することで帯電を行うAC帯電方式がある。
【0006】
しかしながら、AC帯電方式では直流電圧印加時における放電開始電圧(VTH)の2倍以上のピーク間電圧である高圧の交流電圧を重畳させるため、直流電源とは別に交流電源が必要となり、装置自体のコストアップを招く。更には、交流電流を多量に消費することにより、帯電ローラ及び感光体の耐久性が低下し易いという問題点があった。
【0007】
これらの問題点は、帯電ローラに直流電圧のみを印加して帯電を行うDC帯電方式により解消されるものの、帯電ローラに直流電圧のみを印加すると、以下の問題点が発生し易かった。
【0008】
【発明が解決しようとする課題】
前記従来の帯電部材に直流電圧のみを印加すると、帯電処理された被帯電体表面の帯電電位がムラになり易く、また、微小のスジ状の画像欠陥が生じ易く、帯電の均一性が得られ難い。
【0009】
この問題に対し、帯電部材の表面を粗すことにより、帯電の均一性を向上させるという技術がある。しかし、接触ローラ帯電方式においては、感光ドラムに接触させるという性格上、クリーニングブレードをすり抜けてくる微粉トナー、外添剤などにより帯電ローラ表面が汚染され、特に低温低湿環境において付着物の抵抗アップによる帯電不良が発生し、画像に濃度ムラ(斑点状、スジ状及び帯状)や白部へのトナーの付着(カブリ)などが発生する場合があり、帯電部材の表面を粗すことにより、表面の凹部に微粉トナー、外添剤などが堆積し易くなり、上記の不良が起こり易くなるという問題がある。これは、帯電部材表面の粗さをできるだけ小さくすることにより解決するが、最近の電子写真技術においては高画質化及びカラー化の要求が高く、これらの要求を満足するためには更なるレベルアップが必要である。
【0010】
本発明の目的は、上記に鑑みてなされたものであって、直流電圧のみを印加して被帯電体の帯電処理を行った場合でも、良好な均一帯電性が得られる導電性弾性部材、それを用いたプロセスカートリッジ及び画像形成装置を提供することにある。
【0011】
本発明の別の目的は、導電性弾性部材の汚れに起因した帯電不良が発生せず、長期にわたって良好な帯電特性を維持することが可能である導電性弾性部材、それを用いたプロセスカートリッジ及び画像形成装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、導電性支持体と、その外周に形成された被覆層とから構成され、少なくとも、該被覆層中に、比重が3.8以下の粒子の表面が導電性材料でコートされた粒子を含有することを特徴とする導電性弾性部材。
【0013】
また、本発明は、該導電性弾性部材を有するプロセスカートリッジ及び画像形成装置である。
【0014】
【発明の実施の形態】
図1に、本発明の導電性弾性部材を接触帯電部材(帯電ローラ)として用いる電子写真装置を示す。この帯電部材に電圧を印加すると、帯電部材と感光体との微少な空間で放電が起こって感光体表面が帯電される。
【0015】
本発明においては、導電性材料と比重が3.8以下の粒子を用いることが相乗的に作用し、導電部材の帯電均一性を向上させることができるだけではなく、抵抗変化を抑えることができ、また導電部材表面に汚れが付着し難くなり帯電部材の汚れに起因した帯電不良が発生せず、非常に優れた画像を得ることができる。特に図1のように、独立したクリーニング手段を有さず、転写後に感光体に残留したトナーを現像手段により回収する、いわゆる現像兼クリーニング(クリーナレス)方式を採用した画像形成装置の複数枚プリントを可能にするのに極めて有効である。
【0016】
本発明のメカニズムは明らかになっていないが、本発明者等の鋭意検討により、以下のことは解明できた。
【0017】
まず、被覆層に比重が3.8以下の粒子の表面を導電性材料でコートした粒子を含有させることによって、画質が良化することが分かった。このメカニズムは明確ではないが、まず、粒子の比重を3.8以下にすることにより、被覆層中での粒子の分散性が向上し、被覆層中に粒子を均一に分散することができる。それにより、粒子の凝集による導電性弾性部材の微小な硬度ムラがないため、被帯電体を汚染することもしくは欠陥を発生させることなく、長期に渡って、良好な画像が得られる。また、被覆層を形成する材料として、液状のものを用いた場合には、粒子の沈降が抑えられ、長期に渡って安定した特性が得られる。コート前の比重が3.8以下の粒子を用いることにより、上記の効果がより得られやすくなる。
【0018】
また、導電性材料でコートすることにより、コートされる粒子が絶縁性物質であっても、導電性を得られるため、コートされる粒子に高分散性の粒子を用いることができるため、粒子が導電性材料として被覆層中に均一に分散することにより、部材の電気抵抗のばらつきに対して与える影響が小さくなり、部材として安定した電気抵抗が得られる。
【0019】
また、粒子にコートする導電性材料の量を調整することにより、任意に粉体の抵抗を調整することが可能であるため、導電性弾性部材の電気抵抗特性を容易に調整することができる。
【0020】
上記のような様々な検討により、導電性弾性部材の被覆層に比重が3.8以下の粒子の表面を導電性材料でコートした粒子を含有することで、帯電の安定性に優れた、本発明の帯電部材に至ったものである。
【0021】
次に、本発明の画像形成装置の概略構成について説明する。
【0022】
(1)画像形成装置
図1は、本発明のプロセスカートリッジを具備する画像形成装置例の概略構成図である。本例の画像形成装置は、転写式電子写真利用の反転現像方式、現像兼クリーニング方式(クリーナレス)の装置である。
【0023】
1は像担持体としての回転ドラム型の電子写真感光体であり、矢印の方向に所定の周速度(プロセススピード)で回転駆動される。
【0024】
2は電子写真感光体の帯電手段としての帯電ローラ(本発明の導電性弾性部材)であり、電子写真感光体1に所定の押圧力で接触させてあり、本例では帯電ローラを駆動し、電子写真感光体1と等速回転する。この帯電ローラ2に対して帯電バイアス印加電源S1から所定の直流電圧(この場合−1180Vとした)が印加されることで電子写真感光体1の表面が所定の極性電位(暗部電位−600Vとした)に一様に接触帯電方式・DC帯電方式で帯電処理される。
【0025】
3は露光手段であり、例えばレーザービームスキャナーである。電子写真感光体1の帯電処理面に露光手段3により目的の画像情報に対応した露光Lがなされることにより、電子写真感光体の表面電位が露光明部の電位(明部電位−120Vとした)に選択的に低下(減衰)して静電潜像が形成される。
【0026】
4は反転現像手段であり、電子写真感光体の静電潜像の露光明部に、電子写真感光体の帯電極性と同極性に帯電(現像バイアス−350V)しているトナー(ネガトナー)を選択的に付着させて静電潜像をトナー画像として可視化する。図中、4aは現像ローラ、4bはトナー供給ローラ、4cはトナー層厚規制部材を示す。
【0027】
5は転写手段としての転写ローラであり、電子写真感光体1に所定の押圧力で接触させて転写部を形成させてあり、電子写真感光体の回転と順方向に電子写真感光体の回転周速度とほぼ同じ周速度で回転する。また、転写バイアス印加電源S2からトナーの帯電極性とは逆極性の転写電圧が印加される。転写部に対して不図示の給紙機構部から転写材Pが所定の制御タイミングで給紙され、その給紙された転写材Pの裏面が転写電圧を印加した転写ローラ5によりトナーの帯電極性とは逆極性に帯電されることにより、転写部において電子写真感光体1上のトナー画像が転写材Pに静電転写される。
【0028】
転写部でトナー画像の転写を受けた転写材は、電子写真感光体から分離されて、不図示のトナー画像定着手段へ導入されてトナー画像の定着処理を受けて画像形成物として出力される。両面画像形成モードや多重画像形成モードの場合は、この画像形成物が不図示の再循環搬送機構に導入されて転写部へ再導入される。
【0029】
転写残余トナー等の電子写真感光体上の残留物は、帯電ローラ2により電子写真感光体の帯電極性と同極性に帯電される。そしてその転写残余トナーは、露光部を通って現像手段4に至って、バックコントラストにより電気的に現像装置内に回収され、現像兼クリーニング(クリーナレス)が達成されている。
【0030】
本例では、電子写真感光体1、帯電ローラ2、現像手段4を一体に支持し、画像形成装置本体に着脱自在のプロセスカートリッジ6としている。この際現像手段4は別体としてもよい。
【0031】
(2)導電部材
例えば、帯電部材は図2に示すようにローラ形状であり、導電性支持体2aと被覆層として、その外周に一体に形成された弾性層2bから構成されている。
【0032】
本発明の帯電部材の他の構成を図3に示す。図3に示すように帯電部材は、被覆層が弾性層2bと表面層2cからなる2層であってもよいし、弾性層2b及び抵抗層2dと表面層2cからなる3層及び、抵抗層2dと表面層2cの間に第2の抵抗層2eを設けた、4層以上を導電性支持体2aの上に形成した構成としてもよい。
【0033】
本発明に用いられる導電性支持体2aは、鉄、銅、ステンレス、アルミニウム及びニッケル等の金属材料の丸棒を用いることができる。更に、これらの金属表面に防錆や耐傷性付与を目的としてメッキ処理を施しても構わないが、導電性を損なわないことが必要である。
【0034】
帯電ローラ2において、弾性層2bは被帯電体としての電子写真感光体に対する給電や、電子写真感光体1に対する良好な均一密着性を確保するために適当な導電性と弾性を持たせてある。また、帯電ローラ2と電子写真感光体1の均一密着性を確保するために弾性層2bを研磨によって中央部を一番太く、両端部に行くほど細くなる形状、いわゆるクラウン形状に形成することが好ましい。一般に使用されている帯電ローラ2が、支持体2aの両端部に所定の押圧力を与えて電子写真感光体1と当接されているので、中央部の押圧力が小さく、両端部ほど大きくなっているために、帯電ローラ1の真直度が十分であれば問題ないが、十分でない場合には中央部と両端部に対応する画像に濃度ムラが生じてしまう場合がある。クラウン形状は、これを防止するために形成する。
【0035】
弾性層2bの導電性は、ゴム等の弾性材料中にカーボンブラック、グラファイト及び導電性金属酸化物等の電子伝導機構を有する導電剤、及びアルカリ金属塩や四級アンモニウム塩等のイオン伝導機構を有する導電剤を適宜添加することにより1010Ωcm未満に調整されるのがよい。弾性層2bの具体的弾性材料としては、例えば、天然ゴム、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、シリコンーンゴム、ウレタンゴム、エピクロルヒドリンゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、ニトリルブタジエンゴム(NBR)及びクロロプレンゴム(CR)等の合成ゴム、更にはポリアミド樹脂、ポリウレタン樹脂及びシリコーン樹脂等も挙げられる。
【0036】
直流電圧のみを印加して、被帯電体の帯電処理を行う帯電部材においては、帯電均一性を達成するために、特に中抵抗の極性ゴム(例えば、エピクロルヒドリンゴム、NBR、CR及びウレタンゴム等)やポリウレタン樹脂を弾性材料として用いるのが好ましい。これらの極性ゴムやポリウレタン樹脂は、ゴムや樹脂中の水分や不純物がキャリアとなり、僅かではあるが導電性をもつと考えられ、これらの導電機構はイオン伝導であると考えられる。但し、これらの極性ゴムやポリウレタン樹脂に導電剤を全く添加しないで弾性層を作製し、得られた帯電部材は低温低湿環境(L/L)において、抵抗値が高くなり1010Ωcm以上となってしまうものもあるため帯電部材に高電圧を印加しなければならなくなる。
【0037】
そこで、L/L環境で帯電部材の抵抗値が1010Ωcm未満になるように、前述した電子導電機構を有する導電剤やイオン導電機構を有する導電剤を適宜添加して調整するのが好ましい。イオン伝導機構を有する導電剤の方が抵抗調整がしやすく製法上好ましい。しかしながら、イオン導電機構を有する導電剤は抵抗値を低くする効果が小さく、特にL/L環境でその効果が小さい。そのため、イオン導電機構を有する導電剤の添加と併せて電子導電機構を有する導電剤を補助的に添加して抵抗調整を行ってもよい。
【0038】
また、弾性層2bはこれらの弾性材料を発泡成型した発泡体であってもよい。
【0039】
抵抗層2d(e)は、弾性層に接した位置に形成されるため弾性層中に含有される軟化油や可塑剤等の帯電部材表面へのブリードアウトを防止する目的で設けたり、帯電部材全体の電気抵抗を調整する目的で設ける。
【0040】
本発明に用いる抵抗層を構成する材料としては、例えば、エピクロルヒドリンゴム、NBR、ポリオレフィン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、エチレン酢酸ビニル系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー及び塩素化ポリエチレン系熱可塑性エラストマー等を挙げることができる。これらの材料は、単独または2種類以上を混合してもよく、共重合体であってもよい。
【0041】
本発明に用いる抵抗層2d(e)は、導電性もしくは半導電性を有している必要がある。導電性、半導電性の発現のためには、各種電子伝導機構を有する導電剤(導電性カーボン、グラファイト、導電性金属酸化物、銅、アルミニウム、ニッケル等)あるいはイオン導電剤(アルカリ金属塩及びアンモニウム塩等)を適宜用いることができる。この場合、所望の電気抵抗を得るためには、前記各種導電剤を2種以上併用してもよい。
【0042】
また、表面層2cは、帯電部材の表面を構成し、被帯電体である感光体と接触するため感光体を汚染してしまう材料構成であってはならない。
【0043】
本発明の特性を発揮させるための表面層2cの結着樹脂材料としては、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン−オレフィン共重合体(CEBC)等が挙げられる。本発明における表面層の材料としては、特にはフッ素樹脂、アクリル樹脂及びシリコーン樹脂等が好ましい。
【0044】
これらの結着樹脂に静摩擦係数を小さくする目的で、グラファイト、雲母、二硫化モリブテン及びフッ素樹脂粉末等の固体潤滑剤、あるいはフッ素系界面活性剤、あるいはワックス、及びシリコーンオイル等を添加してもよい。
【0045】
表面層には、各種導電剤(導電性カーボン、グラファイト、銅、アルミニウム、ニッケル及び金属酸化物である導電性酸化錫や導電性酸化チタン等)を適宜用いる。本発明においては、所望の電気抵抗を得るためには、前記各種導電剤を2種以上併用してもよい。導電剤の粒径は平均粒径で1.0μm以下であることが好ましい。平均粒径が1.0μmを超えると感光ドラム上にピンホールが存在した場合、ピンホールリークが発生し易くなるため好ましくない。また、平均粒径が1.0μmを超えると塗料分散安定性が悪くなり、塗料中で沈降し易いので好ましくない。
【0046】
ここでいう平均粒径とは、10万倍の透過電子顕微鏡像から任意の一次粒子400個の粒子径を実測し、個数平均径を算出したものである。粒子径としては、粒子の長軸を測定し、長軸/短軸比が2以上の場合にはその平均値をもって測定値とし、これらの値から算出する。
【0047】
また、導電剤と結着樹脂の割合は質量比で0.1:1.0〜2.0:1.0であることが好ましい。導電剤が0.1に満たないと導電剤を含有させたことによる効果を得にくくなり、2.0を超えると表面層の機械的強度が低下し、層がもろくなったり、硬度がアップし、柔軟性がなくなり易い。
【0048】
本発明の被覆層に含有される導電性材料でコートされた粒子を構成する粒子としては、酸化物、複酸化物、金属酸化物、炭素、炭素化合物、フラーレン、ホウ素化合物、炭化物、窒化物、セラミックス、カルコゲン化合物、高分子材料等の粒子が挙げられる。これらの中でも、本発明においては比重が3.8以下のものが用いられる。また、その中でも、良好な分散性を得るために、比重が3.5以下のものが特に好ましい。更に、その中でも、感光体の帯電電位の飽和値が適度で、しかも環境による帯電性が安定している珪素化合物が最も好ましい。
【0049】
本発明の被覆層に含有される導電性材料でコートされた粒子を構成する導電性材料としては、各種電子伝導機構を有する導電剤(導電性カーボン、グラファイト、導電性金属酸化物、銅、アルミニウム、ニッケル、アルカリ金属塩及びアンモニウム塩等)あるいはイオン導電剤等が挙げられる。これらの中でも、コートされる粒子の良好な分散性を損なわないために、比重が3.8以下のものが好ましい。また、その中でも、比重が小さく、良好な導電性を有する導電性カーボンブラック、グラファイトが特に好ましい。
【0050】
本発明の被覆層に含有される粒子としては、導電性材料をコートした後の粒子の平均粒径が20μm以下のものを用いることが好ましい。20μmを越える場合は帯電部材の表面粗さに影響を与え、凹凸に起因した斑点状の画像不良が発生するので好ましくない。
【0051】
表面層の抵抗値は、104〜1015Ωcmであることが好ましい。また、厚さは1〜500μmであることが好ましい。特には1〜50μmであることが好ましい。
【0052】
(3)電子写真感光体
本発明に用いられる電子写真感光体は特に限定されるものではない。
【0053】
【実施例】
以下、本発明を実施例を用いて更に詳細に説明する。
【0054】
(実施例1)
下記の要領で本発明の帯電部材としての帯電ローラを作製した。
エピクロルヒドリンゴム 100質量部
四級アンモニウム塩 2質量部
炭酸カルシウム 30質量部
酸化亜鉛 5質量部
脂肪酸 5質量部
【0055】
以上の材料を60℃に調節した密閉型ミキサーにて10分間混練した後、エピクロルヒドリンゴム100質量部に対してエーテルエステル系可塑剤15質量部を加え、20℃に冷却した密閉型ミキサーで更に20分間混練し、原料コンパウンドを調製した。このコンパウンドに原料ゴムのエピクロルヒドリンゴム100質量部に対し加硫剤としての硫黄1質量部、加硫促進剤としてのノクセラーDM1質量部及びノクセラーTS0.5質量部を加え、20℃に冷却した2本ロール機にて10分間混練した。得られたコンパウンドを、φ6mmステンレス製支持体の周囲にローラ状になるように押出成型機にて成型し、加熱加硫成型した後、外径φ12mmになるように研磨処理して弾性層を得た。
【0056】
上記弾性層の上に以下に示すような表面層を被覆形成した。表面層2cの材料として、
アクリルポリオール溶液 (有効成分70質量%) 100質量部
イソシアネートA(IPDI) (有効成分60質量%) 40質量部
イソシアネートB(HDI) (有効成分80質量%) 30質量部
カーボンブラックでコートされたシリカ粒子 40質量部
(平均粒径:0.02μm、比重:1.9、コート量:50wt%)
メチルイソブチルケトン 340質量部
をミキサーを用いて攪拌し混合溶液を作製した。次いで、その混合溶液をビーズミル分散機を用いて分散処理を行い、ディッピング用塗料を作製し、ディッピング法にて塗布して膜厚が20μmの表面層を被覆形成し、ローラ形状の帯電部材を得た。
【0057】
なお、カーボンブラックでコートされたシリカ粒子は、シリカ(比重:2.0)とカーボンブラック(比重:1.9)をハイブリダイゼーションシステムNHS−0型(奈良機械製作所製)にて処理し、得た。
【0058】
「帯電ローラに直流電圧のみを印加した時の画像評価」
図1に示す電子写真方式の画像形成装置に上記で得られた帯電ローラを取り付けて、環境1(温度23℃、湿度55%)、環境2(温度32.5℃、湿度80%)、環境3(温度15℃、湿度10%)の各環境下において、画像出しを行い、帯電ローラの抵抗値ムラに起因した画像濃度ムラ及び微小領域での画像不良(ポチやガサツキ)の発生について画像評価を行った。結果を表1に示す。
【0059】
表中のAは得られた画像が非常に良い、Bは良い、Cはハーフトーン画像にやや濃度ムラあり、Dはハーフトーン画像に濃度ムラ、濃度のガサツキがあることを示す。
【0060】
「帯電ローラに直流電圧のみを印加した時の連続複数枚画像出し耐久試験」
図1に示す電子写真方式の画像形成装置に上記で得られた帯電ローラを取り付けて、環境1(温度23℃/湿度55%)、環境2(温度32.5℃/湿度80%)及び環境3(温度15℃/湿度10%)の各環境下において、印字率4%のA4画像連続15000枚の画像出しを行い、500枚ごとにハーフトーン画像をプリントし、被帯電体の汚染・欠陥による画像不良の発生について、目視にて画像評価を行った。結果を表2に示す。但し、電子写真感光体の暗部電位Vdが画像出し耐久試験初期に、−600V付近となるように印字電圧(直流電圧のみ)を各環境で設定して画像出し耐久試験を行った。
【0061】
表中のAは得られた画像が非常に良い、Bは良い、Cはハーフトーン画像にやや濃度ムラあり、Dはハーフトーン画像に濃度ムラ、濃度のガサツキ及びスジ状の画像欠陥があることを示す。
【0062】
また、画像出し耐久試験を始める前(初期)と連続15000枚の画像出し直後、それぞれについて、帯電ローラの抵抗測定を図4に示すような方法で行った。結果を表2に示す。図中、2は導電部材、11はステンレス製の円筒電極、12は抵抗、13はレコーダーを示す。これらの間の押圧力は用いられる画像形成装置と同様にし、外部電源S3から−250Vを印加した際の抵抗値を測定する。
【0063】
(実施例2)
下記の要領で本発明の帯電部材としての帯電ローラを作製した。
NBR 100質量部
四級アンモニウム塩 3質量部
エステル系可塑剤 25質量部
炭酸カルシウム 30質量部
酸化亜鉛 5質量部
脂肪酸 2質量部
【0064】
以上の材料を60℃に調節した密閉型ミキサーにて10分間混練した後、20℃に冷却した密閉型ミキサーで更に20分間混練し、原料コンパウンドを調製した。このコンパウンドに原料ゴムのNBR100質量部に対し加硫剤としての硫黄1質量部、加硫促進剤としてのノクセラーTS3質量部を加え、20℃に冷却した2本ロール機にて10分間混練した。得られたコンパウンドを、φ6mmステンレス製支持体の周囲にローラ状になるように押出成型機にて成型し、加熱加硫成型した後、外径φ12mmになるように研磨処理して弾性層を得た。
【0065】
上記弾性層の上に以下に示すような表面層を被覆形成した。
【0066】
表面層2cの材料として、
アクリルポリオール溶液 (有効成分70質量%) 100質量部
イソシアネートA(IPDI) (有効成分60質量%) 40質量部
イソシアネートB(HDI) (有効成分80質量%) 30質量部
カーボンブラックでコートされたシリカ粒子 40質量部
(平均粒径:0.02μm、比重:1.9、コート量:50wt%)
ポリブチルメタクリレート(PBMA)樹脂粒子 50質量部
(平均粒径:5.1μm)
メチルイソブチルケトン 340質量部
をミキサーを用いて攪拌し混合溶液を作製した。次いで、その混合溶液をビーズミル分散機を用いて分散処理を行い、ディッピング用塗料を作製し、ディッピング法にて塗布して膜厚が25μmの表面層を被覆形成しローラ形状の帯電部材を得た。
【0067】
なお、カーボンブラックでコートされたシリカ粒子は、実施例1と同一の物を用いた。
【0068】
この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
【0069】
(実施例3)
帯電部材の表面にカーボンブラックでコートされたシリカ粒子の代わりに、酸化マグネシウム(比重:3.5)とカーボンブラック(比重:1.9)を同様の方法で処理して得られたカーボンブラックでコートされた酸化マグネシウム粒子(平均粒径1.0μm、比重:3.4、コート量:50wt%)を加えた以外は、実施例1と同様にして帯電部材を作製した。
【0070】
この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
【0071】
(比較例1)
帯電部材の表面にカーボンブラックでコートされたシリカ粒子の代わりに酸化スズ(比重6.6)をリン(比重:1.8)でコートした粒子(平均粒径:0.09μm、比重:6.6、コート量:20wt%)100質量部を加えた以外は、実施例1と同様にして帯電部材を作製した。
【0072】
この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
【0073】
(比較例2)
帯電部材の表面にカーボンブラックでコートされたシリカ粒子の代わりに酸化チタン(比重3.9)をアンチモン(比重:6.7)でコートした粒子(平均粒径:0.2μm、比重:3.9、コート量:12wt%)70質量部を加えた以外は、実施例1と同様にして帯電部材を作製した。
【0074】
この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
【0075】
【表1】
【0076】
【表2】
以上本発明の実施例について説明したが、本発明の好適な実施の態様を以下のとおり列挙する。
[実施態様1]
導電性支持体と、その外周に形成された被覆層とから構成され、少なくとも、該被覆層中に、比重が3.8以下の粒子の表面が導電性材料でコートされた粒子を含有することを特徴とする導電性弾性部材。
【0077】
[実施態様2]
前記粒子の導電性材料でコートされた後の比重が3.8以下である実施態様1に記載の導電性弾性部材。
【0078】
[実施態様3]
前記粒子がシリカである実施態様1または2に記載の導電性弾性部材。
【0079】
[実施態様4]
前記導電性材料がカーボンブラックである実施態様1〜3のいずれかに記載の導電性弾性部材。
【0080】
[実施態様5]
前記被覆層が二層以上の積層構成からなる実施態様1〜4のいずれかに記載の導電性弾性部材。
【0081】
[実施態様6]
前記導電性弾性部材の被覆層のうち、最外層を構成する層が、少なくとも、比重が3.8以下の粒子の表面が導電性材料でコートされた粒子を含有する実施態様5に記載の導電性弾性部材。
【0082】
[実施態様7]
前記被覆層のうち導電性支持体のその上に形成された層が弾性層である実施態様1〜6のいずれかに記載の導電性弾性部材。
【0083】
[実施態様8]
前記導電性弾性部材が一次帯電部材である実施態様1〜7のいずれかに記載の導電性弾性部材。
【0084】
[実施態様9]
前記導電性弾性部材がローラ形状である実施態様1〜8のいずれかに記載の導電性弾性部材。
【0085】
[実施態様10]
前記導電性弾性部材が直流電圧を印加される実施態様1〜9のいずれかに記載の導電性弾性部材。
【0086】
[実施態様11]
少なくとも被帯電体である電子写真感光体及び実施態様1〜10のいずれかに記載の導電性弾性部材とを一体に支持し、画像形成装置本体に着脱自在であることを特徴とするプロセスカートリッジ。
【0087】
[実施態様12]
少なくとも被帯電体である電子写真感光体、該電子写真感光体に当接させて電子写真感光体面を帯電する帯電手段、該帯電手段によって帯電された電子写真感光体表面を露光する露光手段、該露光手段によって形成された潜像を現像剤によって可視像化する現像手段及び可視像化された潜像を転写材に転写する転写手段とを具備する画像形成装置において、前記帯電手段を構成する導電性部材が実施態様1〜10のいずれかに記載の導電性弾性部材であることを特徴とする画像形成装置。
【0088】
[実施態様13]
現像手段が接触現像方式である実施態様12に記載の画像形成装置。
【0089】
[実施態様14]
転写手段が中間転写方式である実施態様12に記載の画像形成装置。
【0090】
【発明の効果】
以上のように、本発明によれば、被覆層に含有される粒子の凝集による、部材の微小な硬度ムラがなく、均一な弾性が得られるため、被帯電体を汚染する、もしくは欠陥を発生させることがないため、長期にわたり安定した高画質を維持することができる導電性弾性部材及び該導電性弾性部材を有するプロセスカートリッジ及び画像形成装置が可能となった。
【図面の簡単な説明】
【図1】本発明の画像形成装置の概略構成図である。
【図2】帯電ローラの概略図である。
【図3】他の実施例を示す帯電ローラの概略図である。
【図4】帯電部材の抵抗測定装置の概略図である。
【符号の説明】
1;像担持体(電子写真感光体)
2;帯電部材(帯電ローラ)
3;像露光手段
4;現像手段
5;転写手段(転写ローラ)
6;プロセスカートリッジ
S1,S2,S3;バイアス印加電源
P;転写材
11;円筒電極(金属ローラ)
12;固定抵抗器
13;レコーダー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive member for electrically controlling contacted objects such as a charging member, a developer carrying member, a transfer member, a cleaning member, and a static elimination member in an electrophotographic image forming apparatus such as a printer, a facsimile, and a copying machine. The present invention relates to a flexible elastic member, a process cartridge using the same, and an image forming apparatus.
[0002]
[Prior art]
Conventionally, a corona charger has been used as a charging device of an electrophotographic image forming apparatus, but in recent years, a contact charging device has been put into practical use instead.
[0003]
This is intended for low ozone and low power, and among them, a roller charging method using a conductive roller as a charging member is particularly preferable in terms of charging stability and widely used.
[0004]
In the roller charging method, a conductive elastic roller is brought into pressure contact with a member to be charged, and a voltage is applied thereto to charge the member by discharging.
[0005]
Specifically, the required photoconductor surface potential Vd is added to the discharge start voltage (about 550 V when the charging roller is pressed against the organic photoconductor (OPC photoconductor)). A DC charging method in which charging is performed by applying a DC voltage, or a DC voltage corresponding to a required photoconductor surface potential Vd for the purpose of improving potential fluctuations due to environmental and endurance fluctuations. There is an AC charging system in which charging is performed by applying a voltage obtained by superimposing an AC component having a voltage between peaks of twice or more to a contact charging member.
[0006]
However, in the AC charging method, a high-voltage AC voltage that is a peak-to-peak voltage that is twice or more the discharge starting voltage (VTH) when a DC voltage is applied is superimposed. Therefore, an AC power supply is required separately from the DC power supply. This leads to higher costs. Further, there is a problem that the durability of the charging roller and the photoreceptor is easily reduced by consuming a large amount of the alternating current.
[0007]
These problems can be solved by a DC charging method in which only the DC voltage is applied to the charging roller to perform charging. However, if only the DC voltage is applied to the charging roller, the following problems are likely to occur.
[0008]
[Problems to be solved by the invention]
When only a DC voltage is applied to the conventional charging member, the charging potential of the surface of the charged member that has been subjected to the charging process is likely to be uneven, and minute streak-like image defects are likely to occur, and uniform charging is obtained. hard.
[0009]
To solve this problem, there is a technique for improving the uniformity of charging by roughening the surface of the charging member. However, in the contact roller charging method, the surface of the charging roller is contaminated by fine powder toner and external additives that pass through the cleaning blade due to the property of contacting the photosensitive drum, and particularly due to an increase in resistance of attached matter in a low-temperature and low-humidity environment. Poor charging may occur, causing uneven density (spots, streaks, and bands) on the image, and toner adhesion (fogging) to the white portion, and the like. There is a problem that the fine powder toner, the external additive, and the like are easily deposited in the concave portions, and the above-described failure is likely to occur. This can be solved by minimizing the surface roughness of the charging member, but in recent electrophotography technology, there is a high demand for higher image quality and color, and to meet these demands, the level is further improved. is necessary.
[0010]
An object of the present invention has been made in view of the above, and is a conductive elastic member capable of obtaining a good uniform charging property even when a charging process is performed on a member to be charged by applying only a DC voltage. And a process cartridge and an image forming apparatus using the same.
[0011]
Another object of the present invention is to provide a conductive elastic member capable of maintaining good charging characteristics for a long time without causing charging failure due to contamination of the conductive elastic member, a process cartridge using the conductive elastic member, and a process cartridge using the conductive elastic member. An object of the present invention is to provide an image forming apparatus.
[0012]
[Means for Solving the Problems]
The present invention comprises a conductive support and a coating layer formed on the outer periphery thereof, and at least particles having a specific gravity of 3.8 or less in the coating layer are coated with a conductive material. A conductive elastic member comprising:
[0013]
Further, the present invention is a process cartridge and an image forming apparatus having the conductive elastic member.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an electrophotographic apparatus using the conductive elastic member of the present invention as a contact charging member (charging roller). When a voltage is applied to the charging member, discharge occurs in a minute space between the charging member and the photoconductor, and the surface of the photoconductor is charged.
[0015]
In the present invention, the use of the conductive material and particles having a specific gravity of 3.8 or less acts synergistically to not only improve the charging uniformity of the conductive member, but also suppress a resistance change, Further, dirt hardly adheres to the surface of the conductive member, and poor charging due to dirt on the charging member does not occur, so that a very excellent image can be obtained. In particular, as shown in FIG. 1, a plurality of prints of an image forming apparatus adopting a so-called developing and cleaning (cleanerless) method in which a developing means collects toner remaining on a photoreceptor after transfer without an independent cleaning means. Is extremely effective in enabling
[0016]
Although the mechanism of the present invention has not been clarified, the following has been elucidated through intensive studies by the present inventors.
[0017]
First, it was found that the image quality was improved by including particles in which the surface of the particles having a specific gravity of 3.8 or less was coated with a conductive material in the coating layer. Although the mechanism is not clear, first, by setting the specific gravity of the particles to 3.8 or less, the dispersibility of the particles in the coating layer is improved, and the particles can be uniformly dispersed in the coating layer. Thereby, since there is no minute unevenness in hardness of the conductive elastic member due to aggregation of particles, a good image can be obtained for a long period without contaminating the member to be charged or generating defects. Further, when a liquid material is used as the material for forming the coating layer, sedimentation of particles is suppressed, and stable characteristics can be obtained for a long period of time. By using particles having a specific gravity of 3.8 or less before coating, the above effects can be more easily obtained.
[0018]
In addition, by coating with a conductive material, even if the particles to be coated are an insulating substance, conductivity can be obtained, and thus highly dispersed particles can be used as the particles to be coated. By uniformly dispersing the conductive material in the coating layer, the influence on the variation in electric resistance of the member is reduced, and a stable electric resistance is obtained as the member.
[0019]
Further, by adjusting the amount of the conductive material coated on the particles, the resistance of the powder can be arbitrarily adjusted, so that the electric resistance characteristics of the conductive elastic member can be easily adjusted.
[0020]
According to various studies as described above, the coating layer of the conductive elastic member contains particles having a specific gravity of 3.8 or less coated with a conductive material, thereby improving the charging stability. This has led to the charging member of the present invention.
[0021]
Next, a schematic configuration of the image forming apparatus of the present invention will be described.
[0022]
(1) Image Forming Apparatus FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus including the process cartridge of the present invention. The image forming apparatus of this embodiment is a reversal developing system using a transfer type electrophotography and a developing and cleaning system (cleanerless).
[0023]
Reference numeral 1 denotes a rotating drum type electrophotographic photosensitive member as an image carrier, which is driven to rotate at a predetermined peripheral speed (process speed) in the direction of an arrow.
[0024]
Reference numeral 2 denotes a charging roller (conductive elastic member of the present invention) as charging means for the electrophotographic photosensitive member, which is brought into contact with the electrophotographic photosensitive member 1 with a predetermined pressing force. In this example, the charging roller is driven. It rotates at the same speed as the electrophotographic photosensitive member 1. When a predetermined DC voltage (−1180 V in this case) is applied to the charging roller 2 from a charging bias application power source S 1, the surface of the electrophotographic photosensitive member 1 has a predetermined polarity potential (dark portion potential −600 V). The charging process is uniformly performed by the contact charging method and the DC charging method.
[0025]
Reference numeral 3 denotes an exposure unit, for example, a laser beam scanner. Exposure L corresponding to the target image information is performed on the charged surface of the electrophotographic photoreceptor 1 by the exposing means 3 so that the surface potential of the electrophotographic photoreceptor is set to the potential of the exposed light portion (the potential of the light portion is -120 V). ) Is selectively reduced (attenuated) to form an electrostatic latent image.
[0026]
Reference numeral 4 denotes a reversal developing unit that selects a toner (negative toner) charged to the same polarity as the charging polarity of the electrophotographic photosensitive member (developing bias -350 V) in the exposed portion of the electrostatic latent image on the electrophotographic photosensitive member. The electrostatic latent image is visualized as a toner image. In the figure, 4a is a developing roller, 4b is a toner supply roller, and 4c is a toner layer thickness regulating member.
[0027]
Reference numeral 5 denotes a transfer roller as a transfer unit, which is in contact with the electrophotographic photosensitive member 1 with a predetermined pressing force to form a transfer portion, and which rotates in the forward direction with the rotation of the electrophotographic photosensitive member. It rotates at the same peripheral speed as the speed. Further, a transfer voltage having a polarity opposite to the charge polarity of the toner is applied from the transfer bias application power source S2. The transfer material P is fed to the transfer portion from a paper feed mechanism (not shown) at a predetermined control timing, and the back surface of the fed transfer material P is charged by the transfer roller 5 to which a transfer voltage is applied. The toner image on the electrophotographic photoreceptor 1 is electrostatically transferred to the transfer material P in the transfer portion by being charged to the opposite polarity.
[0028]
The transfer material that has received the transfer of the toner image in the transfer unit is separated from the electrophotographic photosensitive member, introduced into a toner image fixing unit (not shown), subjected to a toner image fixing process, and output as an image formed product. In the case of the double-sided image forming mode or the multiple image forming mode, this image-formed product is introduced into a recirculation transport mechanism (not shown) and is re-introduced into the transfer section.
[0029]
Residues on the electrophotographic photosensitive member, such as transfer residual toner, are charged by the charging roller 2 to the same polarity as the charged polarity of the electrophotographic photosensitive member. Then, the transfer residual toner reaches the developing unit 4 through the exposure unit, and is electrically collected in the developing device by the back contrast, and the developing and cleaning (cleanerless) is achieved.
[0030]
In this embodiment, the electrophotographic photosensitive member 1, the charging roller 2, and the developing unit 4 are integrally supported, and the process cartridge 6 is detachable from the image forming apparatus main body. At this time, the developing means 4 may be provided separately.
[0031]
(2) Conductive member For example, the charging member has a roller shape as shown in FIG. 2, and is composed of a conductive support 2a and an elastic layer 2b integrally formed on its outer periphery as a coating layer.
[0032]
FIG. 3 shows another configuration of the charging member of the present invention. As shown in FIG. 3, in the charging member, the coating layer may be two layers composed of the elastic layer 2b and the surface layer 2c, or three layers composed of the elastic layer 2b, the resistance layer 2d and the surface layer 2c, and the resistance layer. A configuration in which four or more layers in which the second resistance layer 2e is provided between 2d and the surface layer 2c are formed on the conductive support 2a may be adopted.
[0033]
As the conductive support 2a used in the present invention, a round bar made of a metal material such as iron, copper, stainless steel, aluminum and nickel can be used. Further, these metal surfaces may be subjected to plating treatment for the purpose of rust prevention and imparting scratch resistance, but it is necessary that the conductivity is not impaired.
[0034]
In the charging roller 2, the elastic layer 2 b has appropriate conductivity and elasticity to supply power to the electrophotographic photosensitive member as a member to be charged and to ensure good uniform adhesion to the electrophotographic photosensitive member 1. In order to ensure uniform adhesion between the charging roller 2 and the electrophotographic photoreceptor 1, the elastic layer 2b may be polished so as to be formed into a shape in which the center portion is thickest and becomes thinner toward both ends, that is, a so-called crown shape. preferable. Since the generally used charging roller 2 is brought into contact with the electrophotographic photosensitive member 1 by applying a predetermined pressing force to both ends of the support 2a, the pressing force at the central portion is small, and the pressing force at the both ends becomes large. Therefore, if the straightness of the charging roller 1 is sufficient, there is no problem. However, if the straightness is not sufficient, density unevenness may occur in images corresponding to the center and both ends. The crown shape is formed to prevent this.
[0035]
The conductivity of the elastic layer 2b is determined by using a conductive agent having an electron conduction mechanism such as carbon black, graphite and a conductive metal oxide in an elastic material such as rubber, and an ion conduction mechanism such as an alkali metal salt or a quaternary ammonium salt. It is preferable to adjust to less than 10 10 Ωcm by appropriately adding a conductive agent. Specific elastic materials of the elastic layer 2b include, for example, natural rubber, ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), silicone rubber, urethane rubber, epichlorohydrin rubber, isoprene rubber (IR), butadiene rubber (BR), Synthetic rubbers such as nitrile butadiene rubber (NBR) and chloroprene rubber (CR), as well as polyamide resins, polyurethane resins and silicone resins are also included.
[0036]
In a charging member that applies a DC voltage only to perform charging processing on a member to be charged, in order to achieve charging uniformity, in particular, a polar rubber having a medium resistance (for example, epichlorohydrin rubber, NBR, CR, urethane rubber, and the like). Or a polyurethane resin is preferably used as the elastic material. These polar rubbers and polyurethane resins are considered to have a small amount of conductivity due to moisture and impurities in the rubbers and resins serving as carriers, and it is considered that their conductive mechanism is ion conduction. However, an elastic layer was formed without adding any conductive agent to these polar rubbers or polyurethane resins, and the obtained charging member had a resistance value of 10 10 Ωcm or more in a low-temperature and low-humidity environment (L / L). Therefore, a high voltage must be applied to the charging member.
[0037]
Therefore, it is preferable that the conductive agent having an electronic conductive mechanism or the conductive agent having an ionic conductive mechanism be appropriately added and adjusted so that the resistance value of the charging member becomes less than 10 10 Ωcm in the L / L environment. A conductive agent having an ion conduction mechanism is preferable in terms of the manufacturing method because the resistance can be easily adjusted. However, a conductive agent having an ionic conduction mechanism has a small effect of lowering the resistance value, especially in an L / L environment. Therefore, the resistance may be adjusted by supplementarily adding a conductive agent having an electronic conductive mechanism together with adding a conductive agent having an ionic conductive mechanism.
[0038]
The elastic layer 2b may be a foam obtained by foaming and molding these elastic materials.
[0039]
Since the resistance layer 2d (e) is formed at a position in contact with the elastic layer, the resistance layer 2d (e) is provided for the purpose of preventing bleed-out of the softening oil, plasticizer, or the like contained in the elastic layer to the surface of the charging member. Provided for the purpose of adjusting the overall electric resistance.
[0040]
Examples of the material constituting the resistance layer used in the present invention include epichlorohydrin rubber, NBR, polyolefin-based thermoplastic elastomer, urethane-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, fluororubber-based thermoplastic elastomer, and polyester-based thermoplastic elastomer. And thermoplastic polyamide elastomers, polybutadiene thermoplastic elastomers, ethylene vinyl acetate thermoplastic elastomers, polyvinyl chloride thermoplastic elastomers, and chlorinated polyethylene thermoplastic elastomers. These materials may be used alone or as a mixture of two or more, and may be a copolymer.
[0041]
The resistance layer 2d (e) used in the present invention needs to have conductivity or semi-conductivity. In order to develop conductivity and semiconductivity, a conductive agent having various electron conduction mechanisms (conductive carbon, graphite, conductive metal oxide, copper, aluminum, nickel, etc.) or an ionic conductive agent (alkali metal salt and Ammonium salt) can be used as appropriate. In this case, in order to obtain a desired electric resistance, two or more of the above-mentioned various conductive agents may be used in combination.
[0042]
Further, the surface layer 2c constitutes the surface of the charging member, and must not be made of a material composition that contacts the photoreceptor, which is the charged member, and contaminates the photoreceptor.
[0043]
Examples of the binder resin material of the surface layer 2c for exhibiting the characteristics of the present invention include fluororesin, polyamide resin, acrylic resin, polyurethane resin, silicone resin, butyral resin, styrene-ethylene / butylene-olefin copolymer (SEBC) ) And olefin-ethylene-butylene-olefin copolymer (CEBC). As the material of the surface layer in the present invention, a fluororesin, an acrylic resin, a silicone resin and the like are particularly preferable.
[0044]
For the purpose of reducing the coefficient of static friction to these binder resins, a solid lubricant such as graphite, mica, molybdenum disulfide and a fluororesin powder, or a fluorine-based surfactant, or a wax, and a silicone oil may be added. Good.
[0045]
For the surface layer, various conductive agents (conductive carbon, graphite, copper, aluminum, nickel, and conductive metal oxides such as conductive tin oxide and conductive titanium oxide) are appropriately used. In the present invention, in order to obtain a desired electric resistance, two or more of the above-mentioned various conductive agents may be used in combination. The average particle size of the conductive agent is preferably 1.0 μm or less. If the average particle size exceeds 1.0 μm, if pinholes exist on the photosensitive drum, pinhole leaks are likely to occur, which is not preferable. On the other hand, when the average particle size exceeds 1.0 μm, the dispersion stability of the coating material is deteriorated, and it is easy to settle in the coating material.
[0046]
Here, the average particle diameter is obtained by actually measuring the particle diameter of 400 arbitrary primary particles from a transmission electron microscope image of 100,000 times and calculating the number average diameter. As the particle diameter, the major axis of the particle is measured, and when the ratio of the major axis to the minor axis is 2 or more, the average value is used as the measured value, and the value is calculated from these values.
[0047]
Further, the ratio of the conductive agent to the binder resin is preferably 0.1: 1.0 to 2.0: 1.0 by mass ratio. If the conductive agent is less than 0.1, it is difficult to obtain the effect of including the conductive agent, and if it exceeds 2.0, the mechanical strength of the surface layer decreases, the layer becomes brittle, and the hardness increases. , Tend to lose flexibility.
[0048]
As particles constituting the particles coated with the conductive material contained in the coating layer of the present invention, oxides, double oxides, metal oxides, carbon, carbon compounds, fullerenes, boron compounds, carbides, nitrides, Examples include particles of ceramics, chalcogen compounds, polymer materials, and the like. Among them, those having a specific gravity of 3.8 or less are used in the present invention. Among them, those having a specific gravity of 3.5 or less are particularly preferable for obtaining good dispersibility. Further, among them, a silicon compound which has an appropriate saturation value of the charging potential of the photoreceptor and has a stable charging property depending on the environment is most preferable.
[0049]
Examples of the conductive material constituting the particles coated with the conductive material contained in the coating layer of the present invention include a conductive agent having various electron conduction mechanisms (conductive carbon, graphite, conductive metal oxide, copper, aluminum , Nickel, alkali metal salts and ammonium salts) or ionic conductive agents. Among these, those having a specific gravity of 3.8 or less are preferable so as not to impair the good dispersibility of the particles to be coated. Among them, conductive carbon black and graphite having low specific gravity and good conductivity are particularly preferable.
[0050]
As the particles contained in the coating layer of the present invention, it is preferable to use particles having an average particle diameter of 20 μm or less after coating the conductive material. When the thickness exceeds 20 μm, the surface roughness of the charging member is affected, and a spot-like image defect due to unevenness occurs, which is not preferable.
[0051]
The surface layer preferably has a resistance of 10 4 to 10 15 Ωcm. Further, the thickness is preferably 1 to 500 μm. In particular, the thickness is preferably 1 to 50 μm.
[0052]
(3) Electrophotographic photosensitive member The electrophotographic photosensitive member used in the present invention is not particularly limited.
[0053]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0054]
(Example 1)
A charging roller as a charging member of the present invention was produced in the following manner.
Epichlorohydrin rubber 100 parts by mass Quaternary ammonium salt 2 parts by mass Calcium carbonate 30 parts by mass Zinc oxide 5 parts by mass Fatty acid 5 parts by mass
After kneading the above materials for 10 minutes in a closed mixer adjusted to 60 ° C., 15 parts by mass of an ether ester plasticizer was added to 100 parts by mass of epichlorohydrin rubber, and the mixture was further cooled to 20 ° C. in a closed mixer. The mixture was kneaded for a minute to prepare a raw material compound. To this compound was added 1 part by mass of sulfur as a vulcanizing agent, 1 part by mass of Noxerer DM as a vulcanization accelerator and 0.5 part by mass of Noxerer TS per 100 parts by mass of raw material epichlorohydrin rubber, and cooled to 20 ° C. The mixture was kneaded with a roll machine for 10 minutes. The obtained compound is molded by an extrusion molding machine so as to form a roller around a support made of stainless steel having a diameter of 6 mm, and then subjected to heat vulcanization molding, and then a polishing treatment is performed so that the outer diameter becomes 12 mm to obtain an elastic layer. Was.
[0056]
A surface layer as shown below was formed on the elastic layer by coating. As a material of the surface layer 2c,
Acrylic polyol solution (Active ingredient 70% by weight) 100 parts by weight Isocyanate A (IPDI) (Active ingredient 60% by weight) 40 parts by weight Isocyanate B (HDI) (Active ingredient 80% by weight) 30 parts by weight Silica coated with carbon black 40 parts by mass of particles (average particle size: 0.02 μm, specific gravity: 1.9, coating amount: 50 wt%)
340 parts by mass of methyl isobutyl ketone was stirred using a mixer to prepare a mixed solution. Next, the mixed solution is subjected to dispersion treatment using a bead mill disperser to prepare a dipping coating material, which is applied by a dipping method to form a 20 μm-thick surface layer so as to obtain a roller-shaped charging member. Was.
[0057]
The silica particles coated with carbon black were obtained by treating silica (specific gravity: 2.0) and carbon black (specific gravity: 1.9) with a hybridization system NHS-0 (manufactured by Nara Kikai Seisakusho). Was.
[0058]
"Evaluation of image when only DC voltage is applied to charging roller"
The charging roller obtained above was attached to the electrophotographic image forming apparatus shown in FIG. 1, and environment 1 (temperature 23 ° C., humidity 55%), environment 2 (temperature 32.5 ° C., humidity 80%), environment 2 3 (temperature of 15 ° C., humidity of 10%), images are obtained, and image evaluation is performed on image density unevenness caused by unevenness of the resistance value of the charging roller and occurrence of image defects (pocks and roughness) in a minute area. Was done. Table 1 shows the results.
[0059]
A in the table indicates that the obtained image is very good, B is good, C indicates that the halftone image has slightly uneven density, and D indicates that the halftone image has uneven density and rough density.
[0060]
"Continuous multiple image output durability test when only DC voltage is applied to the charging roller"
The charging roller obtained above was attached to the electrophotographic image forming apparatus shown in FIG. 1, and the environment 1 (temperature 23 ° C./humidity 55%), environment 2 (temperature 32.5 ° C./humidity 80%) and environment 3 (temperature 15 ° C./humidity 10%), 15,000 continuous A4 images with a print rate of 4% were printed, and halftone images were printed every 500 sheets. The occurrence of image defects was evaluated by visual observation. Table 2 shows the results. However, the image output durability test was performed by setting the printing voltage (only DC voltage) in each environment so that the dark portion potential Vd of the electrophotographic photosensitive member was around -600 V at the beginning of the image output durability test.
[0061]
A in the table indicates that the obtained image is very good, B is good, C has a slight density unevenness in the halftone image, and D has a density unevenness, density roughness and streak-like image defects in the halftone image. Is shown.
[0062]
Before starting the image output durability test (initial stage) and immediately after outputting 15,000 continuous images, the resistance of the charging roller was measured by the method shown in FIG. Table 2 shows the results. In the figure, 2 is a conductive member, 11 is a cylindrical electrode made of stainless steel, 12 is a resistor, and 13 is a recorder. The pressing force between them is the same as that of the image forming apparatus used, and the resistance value when -250 V is applied from the external power supply S3 is measured.
[0063]
(Example 2)
A charging roller as a charging member of the present invention was produced in the following manner.
NBR 100 parts by mass Quaternary ammonium salt 3 parts by mass Ester plasticizer 25 parts by mass Calcium carbonate 30 parts by mass Zinc oxide 5 parts by mass Fatty acid 2 parts by mass
The above materials were kneaded for 10 minutes in a closed mixer adjusted to 60 ° C., and then further kneaded in a closed mixer cooled to 20 ° C. to prepare a raw material compound. To this compound, 1 part by mass of sulfur as a vulcanizing agent and 3 parts by mass of Noxeller TS as a vulcanization accelerator were added to 100 parts by mass of NBR of the raw rubber, and kneaded for 10 minutes by a two-roll machine cooled to 20 ° C. The obtained compound is molded by an extrusion molding machine so as to form a roller around a support made of stainless steel having a diameter of 6 mm, and then subjected to heat vulcanization molding, and then a polishing treatment is performed so that the outer diameter becomes 12 mm to obtain an elastic layer. Was.
[0065]
A surface layer as shown below was formed on the elastic layer by coating.
[0066]
As a material of the surface layer 2c,
Acrylic polyol solution (Active ingredient 70% by weight) 100 parts by weight Isocyanate A (IPDI) (Active ingredient 60% by weight) 40 parts by weight Isocyanate B (HDI) (Active ingredient 80% by weight) 30 parts by weight Silica coated with carbon black 40 parts by mass of particles (average particle size: 0.02 μm, specific gravity: 1.9, coating amount: 50 wt%)
50 parts by mass of polybutyl methacrylate (PBMA) resin particles (average particle size: 5.1 μm)
340 parts by mass of methyl isobutyl ketone was stirred using a mixer to prepare a mixed solution. Next, the mixed solution was subjected to dispersion treatment using a bead mill disperser to prepare a dipping coating material, which was applied by a dipping method to coat and form a surface layer having a thickness of 25 μm, thereby obtaining a roller-shaped charging member. .
[0067]
The same silica particles as in Example 1 were used as the silica particles coated with carbon black.
[0068]
This charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.
[0069]
(Example 3)
Instead of silica particles coated on the surface of the charging member with carbon black, carbon black obtained by treating magnesium oxide (specific gravity: 3.5) and carbon black (specific gravity: 1.9) in the same manner. A charging member was produced in the same manner as in Example 1, except that coated magnesium oxide particles (average particle size: 1.0 μm, specific gravity: 3.4, coating amount: 50 wt%) were added.
[0070]
This charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.
[0071]
(Comparative Example 1)
Particles coated with tin oxide (specific gravity: 6.6) and phosphorus (specific gravity: 1.8) instead of silica particles coated on the surface of the charging member with carbon black (average particle size: 0.09 μm, specific gravity: 6. 6, coating amount: 20 wt%) A charging member was produced in the same manner as in Example 1 except that 100 parts by mass was added.
[0072]
This charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.
[0073]
(Comparative Example 2)
Particles obtained by coating titanium oxide (specific gravity: 3.9) with antimony (specific gravity: 6.7) instead of silica particles coated on the surface of the charging member with carbon black (average particle size: 0.2 μm, specific gravity: 3. 9, coating amount: 12 wt%) A charging member was produced in the same manner as in Example 1 except that 70 parts by mass was added.
[0074]
This charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.
[0075]
[Table 1]
[0076]
[Table 2]
The embodiments of the present invention have been described above. Preferred embodiments of the present invention are listed below.
[Embodiment 1]
Consisting of a conductive support and a coating layer formed on the outer periphery thereof, wherein at least particles having a specific gravity of 3.8 or less are coated with a conductive material in the coating layer. A conductive elastic member characterized by the above-mentioned.
[0077]
[Embodiment 2]
The conductive elastic member according to embodiment 1, wherein the specific gravity of the particles after being coated with the conductive material is 3.8 or less.
[0078]
[Embodiment 3]
3. The conductive elastic member according to claim 1, wherein the particles are silica.
[0079]
[Embodiment 4]
The conductive elastic member according to any one of Embodiments 1 to 3, wherein the conductive material is carbon black.
[0080]
[Embodiment 5]
The conductive elastic member according to any one of embodiments 1 to 4, wherein the coating layer has a laminated structure of two or more layers.
[0081]
[Embodiment 6]
The conductive layer according to embodiment 5, wherein the layer constituting the outermost layer among the coating layers of the conductive elastic member contains at least particles having a specific gravity of 3.8 or less whose surfaces are coated with a conductive material. Elastic member.
[0082]
[Embodiment 7]
The conductive elastic member according to any one of embodiments 1 to 6, wherein a layer formed on the conductive support in the coating layer is an elastic layer.
[0083]
[Embodiment 8]
The conductive elastic member according to any one of embodiments 1 to 7, wherein the conductive elastic member is a primary charging member.
[0084]
[Embodiment 9]
The conductive elastic member according to any one of embodiments 1 to 8, wherein the conductive elastic member has a roller shape.
[0085]
[Embodiment 10]
The conductive elastic member according to any one of embodiments 1 to 9, wherein the conductive elastic member is applied with a DC voltage.
[0086]
[Embodiment 11]
A process cartridge which integrally supports at least an electrophotographic photosensitive member as a member to be charged and a conductive elastic member according to any one of Embodiments 1 to 10, and is detachable from an image forming apparatus main body.
[0087]
[Embodiment 12]
An electrophotographic photosensitive member that is at least a member to be charged, charging means for contacting the electrophotographic photosensitive member to charge the surface of the electrophotographic photosensitive member, exposing means for exposing the surface of the electrophotographic photosensitive member charged by the charging means, An image forming apparatus comprising: a developing unit configured to visualize the latent image formed by the exposure unit with a developer; and a transfer unit configured to transfer the visualized latent image to a transfer material. An image forming apparatus, wherein the conductive member to be formed is the conductive elastic member according to any one of the first to tenth embodiments.
[0088]
[Embodiment 13]
The image forming apparatus according to embodiment 12, wherein the developing unit is a contact developing system.
[0089]
[Embodiment 14]
The image forming apparatus according to embodiment 12, wherein the transfer unit is an intermediate transfer system.
[0090]
【The invention's effect】
As described above, according to the present invention, there is no minute hardness unevenness of the member due to aggregation of particles contained in the coating layer, and uniform elasticity is obtained, thereby contaminating the member to be charged or generating defects. As a result, a conductive elastic member capable of maintaining stable high image quality for a long period of time, a process cartridge having the conductive elastic member, and an image forming apparatus have become possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an image forming apparatus of the present invention.
FIG. 2 is a schematic diagram of a charging roller.
FIG. 3 is a schematic view of a charging roller showing another embodiment.
FIG. 4 is a schematic diagram of a charging member resistance measuring device.
[Explanation of symbols]
1: image carrier (electrophotographic photoreceptor)
2: Charging member (charging roller)
3: image exposure means 4: developing means 5; transfer means (transfer roller)
6; process cartridges S1, S2, S3; bias application power supply P; transfer material 11; cylindrical electrode (metal roller)
12; fixed resistor 13; recorder