Nothing Special   »   [go: up one dir, main page]

JP2004361195A - Electron beam irradiation device and its monitoring system - Google Patents

Electron beam irradiation device and its monitoring system Download PDF

Info

Publication number
JP2004361195A
JP2004361195A JP2003158883A JP2003158883A JP2004361195A JP 2004361195 A JP2004361195 A JP 2004361195A JP 2003158883 A JP2003158883 A JP 2003158883A JP 2003158883 A JP2003158883 A JP 2003158883A JP 2004361195 A JP2004361195 A JP 2004361195A
Authority
JP
Japan
Prior art keywords
electron beam
irradiation
electron
monitoring system
irradiation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003158883A
Other languages
Japanese (ja)
Inventor
Tetsuya Hirakawa
川 哲 也 平
Yoichi Sato
藤 洋 一 佐
Teruyuki Hakoda
田 照 幸 箱
Takuji Kojima
嶋 拓 治 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Electric Co Ltd
Japan Atomic Energy Agency
Original Assignee
Iwasaki Electric Co Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Electric Co Ltd, Japan Atomic Energy Research Institute filed Critical Iwasaki Electric Co Ltd
Priority to JP2003158883A priority Critical patent/JP2004361195A/en
Publication of JP2004361195A publication Critical patent/JP2004361195A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Measurement Of Radiation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】複数の電子ビームを互いに重ね合わすように連ねて大きな照射処理幅を得るようにした電子ビーム照射装置に関して、その照射処理幅の全体にわたって均整度の良い照射強度分布が得られるようにする。
【解決手段】夫々に電子発生部(3)を内装した複数本の電子ビーム管(2、2…)が、その管端開口部(4)から放出される電子ビームを一括的に透過させる照射窓(6)を設けたヘッド部(5)に対して並列状態で気密に取り付けられている。
【選択図】 図1
An electron beam irradiation apparatus in which a plurality of electron beams are connected so as to overlap each other to obtain a large irradiation processing width is to obtain an irradiation intensity distribution with good uniformity over the entire irradiation processing width. .
A plurality of electron beam tubes (2, 2,...) Each containing an electron generating unit (3) are irradiated so as to collectively transmit electron beams emitted from the tube end openings (4). It is airtightly mounted in a side-by-side state with respect to a head portion (5) provided with a window (6).
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビーム照射装置とその稼動状況を監視する放射線照射装置の監視システムに関する。
【0002】
【従来の技術】
近時は、電子ビーム照射装置の小型化を図るために、カソードとグリッドとを有する電子発生部が内装されたガラス管で成る電子ビーム管と、その電子発生部と対向する位置に電子ビームを透過させる照射窓が設けられたヘッド部とを分離不能に合体させて、真空管の如き高真空の気密容器に形成された真空管タイプの電子ビーム放出管が使用されている(特許文献1参照)。
【0003】この真空管タイプの電子ビーム放出管は、小型で交換作業等が容易であるという利点を有する反面、照射窓やカソードのいずれかが故障あるいは劣化を生ずると廃棄処分せざるを得ない再生利用不能な使い捨て商品であり、省資源・省コストに資することができないという不利があると共に、それ1本で電子ビームの照射処理が可能な処理幅は最大でも数cm程度であるから、ごく小さな被処理物のみしか処理できないという欠点を有していた。
【0004】なお、電子ビーム管とヘッド部とを大型化してヘッド部に設ける照射窓のサイズも大きくすれば、処理幅を大きくすることができるが、ガラス製の電子ビーム管は、その全体サイズを大きくすると割れやすくなるという問題がある。
【0005】このため、被処理物を照射処理する処理室に複数本の電子ビーム放出管を並設して、それら各電子ビーム放出管から放出される電子ビーム同士を互いに重ね合わせることによって大きな照射処理幅を得ようとする提案がなされている(特許文献2参照)。
【0006】
【特許文献1】
特表平10−512092号公報
【特許文献2】
特開2002−182000号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記の如く複数本の電子ビーム放出管を並設して大きな照射処理幅を得ようとした場合に、各電子ビーム放出管は、そのヘッド部に設ける照射窓のサイズが電子ビーム管の径よりも小さいうえ、電子ビーム管で発生した電子ビームが各々の照射窓を透過して照射されるため、それら電子ビーム同士を互いに重ね合わせて全体的に均整化された照射強度分布を得ることが難しく、照射強度分布の均整度を高めるにも限度があるので、被処理物に処理ムラを生ずるおそれがあった。
【0008】そこで請求項1に係る発明は、電子ビーム同士が互いに重なり合って大きな照射処理幅が得られると同時に、その照射処理幅の全体にわたって均整度の良い照射強度分布を得ることが可能な電子ビーム照射装置を提供することを技術的課題としている。
【0009】また、上記の如く複数本の電子ビーム放出管から照射される電子ビームを互いに重ね合わせて被処理物の照射処理幅を大きくする場合は、その電子ビーム放出管の一つに故障や劣化が生ずると照射強度分布の均整度が損なわれ、また、例えば高真空に排気される真空チャンバ内にカソードとなるフィラメントが複数本並列に設けられた大型の電子ビーム照射装置は、そのフィラメントの1本が断線を生ずると照射強度分布の均整度が損なわれ、いずれの場合もこれを放置すると被処理物の製品不良率が高まるおそれがある。
【0010】そこで請求項7に係る発明は、電子ビーム照射装置から照射される電子ビームの照射強度を簡易で安価な手段によって正確に検出し、その照度強度が変化したときに電子ビーム照射装置の稼動を停止させたり、警報装置を作動させることができる放射線照射装置の監視システムを提供することを技術的課題としている。
【0011】
【課題を解決するための手段】
上記課題を解決するために、請求項1に係る発明は、夫々に電子発生部を内装した複数本の電子ビーム管が、その管端開口部から放出される電子ビームを一括的に透過させる照射窓を設けたヘッド部に対して並列状態で気密に取り付けられていることを特徴とする電子ビーム照射装置である。
【0012】本発明の電子ビーム照射装置は、夫々に電子発生部を内装した各電子ビーム管の管端開口部から電子ビームが放出されて、それらの電子ビームが、電子ビーム管を並列状態で気密に取り付けたヘッド部に設けられている照射窓を一括的に透過して外部に照射される。このとき、各電子ビーム管の管端開口部から放出される電子ビームは、その放出域を大きくすることが容易であるから、隣接する電子ビーム管から放出される電子ビーム同士を互いに重ね合わせて大きな照射処理幅を得ることも容易であると同時に、その照射処理幅の全体にわたって照射強度を均整化させるように電子ビーム同士の重なり具合を調整することも容易であり、しかも、それら電子ビームは、個々別々の照射窓を透過せずに、ヘッド部に設けられた照射窓を一括的に透過して照射されるので、すこぶる均整な照射強度分布を得ることができる。
【0013】次に、請求項7に係る発明は、電子ビーム照射装置等の放射線照射装置の稼動状況を監視する監視システムであって、放射線照射装置から照射される放射線によりその照射域の気体分子が励起されて生ずるプラズマ発光を検出する光学センサと、該光学センサで検出したプラズマ発光の光量に応じて制御信号を出力するコントローラとを備えていることを特徴とする。
【0014】本発明の監視システムは、電子ビーム照射装置から照射される電子ビームの照射強度を比較的安価な光学センサで簡単且つ正確に検出して、例えばその照射強度が一定値以下に低下したときに、コントローラから電子ビーム照射装置の稼動を停止させたり、警報装置等の各種報知装置を作動させる制御信号を出力して被処理物の製品不良率を著しく低減することができる。
【0015】すなわち、本発明によれば、電子ビーム照射装置から照射される電子ビームにより気体分子が励起されて生ずるプラズマ発光の光量によって電子ビームの照射強度を検出し、その照射照度が一定以上低下したときに、コントローラから電子ビーム照射装置の稼動を停止させる制御信号等を出力して、電子ビームの照射強度低下による処理不良の発生を確実に防止することができる。また、プラズマ発光の検出ポイントが異なる光学センサを二以上備えると、照射強度分布の均整度を監視して、その均整度が損なわれたときに電子ビーム照射装置の稼動を停止させることもできる。
【0016】なお、電子ビーム照射装置から照射される電子ビームの照射強度を検出する従来技術としては、電子ビームが照射窓に当たったときに発生するX線の量を計測する手段や、電子ビームが被処理物に照射されたときに被処理物が発する蛍光の量を計測する手段が提案されているが、前者の手段は著しくコストが嵩むので実用的でなく、また、後者の手段は被処理物の形状や位置によって蛍光の発生量が異なるためその蛍光量によって電子ビームの照射強度を正確に検出することは困難であった。これに対し、本発明は、電子ビーム照射装置から照射される電子ビームにより気体分子が励起されて生ずるプラズマ発光の光量を光学センサで検出するので、コストが嵩まず、しかも、電子ビームの照射強度を簡単且つ正確に計測することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態を図面によって具体的に説明する。
図1は本発明に係る電子ビーム照射装置の一例とその照射強度分布を示す図、図2は電子ビーム照射装置の稼動状況を監視する監視システムの一例を示す図である。
【0018】図1の電子ビーム照射装置1は、夫々に電子発生部3を内装した複数本の電子ビーム管2、2…が、その管端開口部4から放出される電子ビームを一括的に透過させる照射窓6を設けたヘッド部5に対して並列状態で気密に取り付けられている。
【0019】電子ビーム管2は、ガラス等の電気絶縁性材料で成形され、カソードとグリッドとを有した電子発生部3に高電圧を供給する高電圧ケーブル7を接続するための配線口となる片端側が溶封等により気密封止されると共に、その片端側に高電圧ケーブル7と電子発生部3とを切り離し可能に接続するためのコネクタ8を取付支持するブラケット9が設けられている。
【0020】ヘッド部5は、電子ビームを透過させ難いステンレス等の金属で形成され、図で見てその上面側に、電子ビーム管2の取付穴10、10…が一定のピッチで複数並んで穿設されると共に、その取付穴10に電子ビーム管2を気密に且つ脱着可能に取り付けるO−リング11とO−リング押さえ12が設けられている。一方、ヘッド部5の下面側は、略全面的に開口せられ、その開口部が各電子ビーム管2、2…の管端開口部4、4…から放出される電子ビームを一括的に透過させる照射窓6によって気密封止されている。なお、照射窓6は、ヘッド部5に対して脱着可能に取り付けられ、また、ヘッド部5に取り付ける各電子ビーム管2は、隣接する電子ビーム管2と互いの電子ビーム放出域が照射窓6の面上で一部重なり合うように配置されている。
【0021】また、ヘッド部5の側面には、ヘッド部5と該ヘッド部5に気密に取り付けられた電子ビーム管2、2…とで形成される内部空間13を高真空に排気する真空排気装置(図示せず)への配管接続口14が設けられると共に、その配管接続口14に、該配管接続口14を開閉する気密バルブ15が介装されている。
【0022】また、ヘッド部5の上面には、その上面に取り付けられた電子ビーム管2、2…を一括して収容する絶縁油ケース16が取り付けられている。該ケース16は、高電圧ケーブル7から電子ビーム管2の電子発生部3に供給する高電圧が電子ビーム管2の表面を伝ってヘッド部5へリークすることを防止するための絶縁油を充填するケース本体17と、該ケース本体17を密閉する蓋体18とで成り、蓋体18には、その蓋体18を貫通して高電圧ケーブル7、7…を配線するための絶縁ブッシング19が設けられている。
【0023】以上の如く構成された電子ビーム照射装置1は、ヘッド部5に設けられた配管接続口14から真空排気して内部空間13を高真空とし、各高電圧ケーブル7から各電子ビーム管2の電子発生部3に高電圧を供給して、電子ビーム管2、2…の管端開口部4から一斉に電子ビームを放出させると、それら電子ビームが電子ビーム管2、2…の並ぶ方向に沿って途切れなく連なるように重なり合ってヘッド部5の照射窓6を一括的に透過し、図1に示すように照射処理幅が広くて照射強度分布の均整度が良好な電子ビームが得られるので、大きな被処理物を照射処理することができると同時に、処理ムラによる製品不良率を著しく低減することができる。
【0024】また、電子ビーム照射装置1は、例えばその製造メーカにおいて、上記と同様の手順で試験的に稼動させてコンディショニング等の前処理を行った後、配管接続口10に介装された気密バルブ15を閉鎖して内部空間13を真空状態に保持した状態、あるいは内部空間13内に不活性ガスを導入して気密バルブ15を閉鎖した状態で出荷することにより、ユーザーは、面倒なコンディショニング作業を行うことなく直ちに使用することができるという利点がある。
【0025】また、電子ビーム照射装置の故障原因の殆どは、照射窓とカソードの故障や劣化によるものであるが、一般に、カソードの耐久寿命は約5000時間程度であるのに対し、照射窓のそれは約2000時間程度であるから、図1の照射窓6が故障や劣化を生じても、電子発生部3のカソードは未だ使用可能な場合が多い。この場合は、気密バルブ15を閉鎖して、内部空間13を真空状態に保持した状態、あるいは不活性ガス雰囲気に保持した状態で、電子ビーム照射装置1をその製造メーカ等に持ち込み、故障や劣化を生じた照射窓6だけを新品と交換し、電子発生部3のカソードは交換せずにそのまま再使用することにより、省資源・省コストに資することができる。つまり、電子ビーム照射装置1は、ヘッド部5と各電子ビーム管2、2…とで形成される内部空間13が、真空管のように高真空の気密空間に形成されたものであっても良いが、図1の如く内部空間13を真空排気して使用するものであれば、再生利用が可能であるという利点を有する。
【0026】そして、電子ビーム照射装置1の稼動中に、電子ビーム管2、2…のいずれかが電子発生部3のカソードに故障を生ずるなどの異常が発生したときは、その異常を図2に示す監視システムによって検知し、電子ビーム照射装置1の稼動を即座に停止させることができる。
【0027】すなわち、図2は、電子ビーム照射装置1等の放射線照射装置から照射される放射線によりその照射域の気体分子が励起されて生ずるプラズマ発光を検出する光学センサ20と、該光学センサ20で検出したプラズマ発光の光量に応じて制御信号を出力するコントローラ21とを備えた放射線照射装置の監視システムである。
【0028】この監視システムは、電子ビーム照射装置に限らずガンマ線照射装置その他高エネルギー放射線を照射する装置に広く適用可能なものであるが、これを例えば図1の電子ビーム照射装置1に適用する場合は、図2の如く該装置1の照射窓3を透過して照射される電子ビームによりその照射域の気体分子が励起されて生ずるプラズマ発光PをフォトダイオードやCMOS等の光学センサ20で検出し、該センサ20で検出したプラズマ発光の光量が一定範囲を超えると、コントローラ21から電子ビーム照射装置1に対して該装置の稼動を即座に停止させる制御信号等を出力するようになっている。
【0029】また、図2の監視システムは、特に、図1の如く電子ビーム管2、2…から放出される複数の電子ビームを連ねて成る照射強度分布の均整度を監視するもので、プラズマ発光Pの検出ポイントA〜Cが異なる二以上の光学センサ20、20…を備え、コントローラ21が、各光学センサ20、20…の検出値と、当該各センサごとに予め設定された設定値とを比較して、その差値が一定範囲を超えたときに電子ビーム照射装置1の稼動を停止させる制御信号もしくは警報装置を作動させる制御信号を出力するようになっている。
【0030】各光学センサ20、20…ごとに予め設定する各設定値は、電子ビーム照射装置1の照射強度分布が所望の分布を成しているときの各検出ポイントA〜Cにおけるプラズマ発光Pの光量に相当する値とし、いずれかの電子ビーム管2に設けられた電子発生部3のカソードが劣化するなどして照射強度分布が崩れ、上記各設定値と各光学センサ20、20…の検出値との差値が一定範囲を超えたときに、コントローラ21から電子ビーム照射装置1の稼動を停止させる制御信号が出力される。
【0031】なお、各光学センサ20、20…は、プラズマ発光Pの検出ポイントA〜Cに直接対峙させるように設置しても良いが、図2の如く各検出ポイントA〜Cにおけるプラズマ発光Pを反射ミラー22、22…を介して検出するようにすれば、その設置場所の自由度が著しく高まり、より多くの光学センサ20を使用して照射強度分布の微細な変化も正確に検出することが可能となる。なお、反射ミラーに限らず、プラズマ発光Pをプリズムや光ファイバを介して光学センサ20で検出する場合であってもよい。
【0032】また、光学センサ20やコントローラ21等の機器類と、電子ビーム照射装置1等の放射線照射装置との間を、光学センサ20によるプラズマ発光Pの検出を妨げない放射線遮蔽ガラス23で隔絶して、光学センサ20やコントローラ21等の機器類の設置場所を放射線遮蔽ガラス23で防護すれば、電子ビームが照射窓6に当たったときに生ずるX線等によって、それら機器類が劣化することを防止することができると同時に、それら機器類の点検調整作業等を安全に行うことができる。
【0033】なお、反射ミラー22、22…や放射線遮蔽ガラス23を使用する場合は、それらの表面に付着した汚れによって光学センサ20の検出精度が損なわれないようにするため、定期的に圧縮エアーや窒素ガスを吹き付けて表面に付着する汚れを払拭させることが望ましい。
【0034】
【発明の効果】
本発明によれば、複数の電子ビーム同士が互いに重なり合うように連なって大きな照射処理幅が得られると同時に、その照射処理幅の全体にわたって均整度の良い照射強度分布が得られる小型の電子ビーム照射装置を提供することができ、また、その照射強度や照射強度分布の均整度を監視して被処理物の処理ムラを防止し、被処理物の製品不良率を著しく低減することができるという大変優れた効果がある。
【図面の簡単な説明】
【図1】本発明に係る電子ビーム照射装置の一例とその照射強度分布を示す図
【図2】本発明に係る放射線照射装置の監視システムの一例を示す図
【符号の説明】
1………………電子ビーム照射装置
2………………電子ビーム管
3………………電子発生部
4………………電子ビーム管の管端開口部
5………………ヘッド部
6………………照射窓
13………………内部空間
14………………配管接続口
15………………気密バルブ
20………………光学センサ
21………………コントローラ
22………………反射ミラー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electron beam irradiation device and a radiation irradiation device monitoring system that monitors the operation status of the device.
[0002]
[Prior art]
Recently, in order to reduce the size of the electron beam irradiation device, an electron beam tube consisting of a glass tube containing an electron generation unit having a cathode and a grid, and an electron beam placed at a position facing the electron generation unit. 2. Description of the Related Art A vacuum tube type electron beam emission tube formed in a high vacuum hermetic container such as a vacuum tube by inseparably combining a head portion provided with an irradiation window through which light is transmitted (see Patent Document 1).
This vacuum tube type electron beam emission tube has the advantages of being small in size and easy to replace, etc., but has to be disposed of if any of the irradiation window or the cathode is broken down or deteriorated. It is an unusable disposable product, which has the disadvantage of not contributing to resource and cost savings, and the processing width of electron beam irradiation that can be used alone is only a few cm at most, so it is extremely small. There is a drawback that only the object can be processed.
The processing width can be increased by enlarging the size of the electron beam tube and the head portion and increasing the size of the irradiation window provided in the head portion, but the electron beam tube made of glass has the entire size. There is a problem that when the size is increased, it is easily broken.
For this reason, a plurality of electron beam emitting tubes are juxtaposed in a processing chamber for irradiating an object to be processed, and the electron beams emitted from the electron beam emitting tubes are superimposed on each other to provide a large irradiation. There has been a proposal to obtain a processing width (see Patent Document 2).
[0006]
[Patent Document 1]
Japanese Patent Publication No. 10-512092 [Patent Document 2]
JP 2002-182000 A
[Problems to be solved by the invention]
However, when a plurality of electron beam emission tubes are juxtaposed to obtain a large irradiation processing width as described above, the size of the irradiation window provided in the head portion of each electron beam emission tube is smaller than that of the electron beam tube. Since the electron beam generated by the electron beam tube is smaller than the diameter and transmitted through each irradiation window, the electron beams are superimposed on each other to obtain an overall uniform irradiation intensity distribution. However, there is a limit in increasing the uniformity of the irradiation intensity distribution.
Therefore, the invention according to claim 1 provides an electron beam capable of obtaining a large irradiation processing width by overlapping the electron beams with each other, and obtaining a uniform irradiation intensity distribution over the entire irradiation processing width. It is a technical object to provide a beam irradiation device.
When the electron beam emitted from a plurality of electron beam emission tubes is overlapped with each other as described above to increase the irradiation processing width of an object to be processed, one of the electron beam emission tubes may fail. When the deterioration occurs, the uniformity of the irradiation intensity distribution is impaired, and for example, a large-sized electron beam irradiation apparatus in which a plurality of filaments serving as cathodes are provided in parallel in a vacuum chamber evacuated to a high vacuum, the If one of the wires breaks, the uniformity of the irradiation intensity distribution is impaired, and in any case, if left unchecked, the product defect rate of the workpiece may increase.
Therefore, the invention according to claim 7 accurately detects the irradiation intensity of the electron beam emitted from the electron beam irradiation device by simple and inexpensive means, and when the illuminance intensity changes, the electron beam irradiation device is used. An object of the present invention is to provide a monitoring system for a radiation irradiation apparatus that can stop operation or activate an alarm device.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a method in which a plurality of electron beam tubes each containing an electron generating unit are used to collectively transmit an electron beam emitted from a tube end opening. An electron beam irradiating apparatus characterized in that the electron beam irradiating apparatus is hermetically mounted in a side-by-side state with respect to a head section provided with a window.
In the electron beam irradiation apparatus of the present invention, the electron beams are emitted from the tube end openings of the electron beam tubes each containing the electron generating section, and the electron beams are passed through the electron beam tubes in parallel. The light is collectively transmitted through an irradiation window provided in a head portion which is hermetically attached, and is irradiated to the outside. At this time, since it is easy to enlarge the emission area of the electron beam emitted from the tube end opening of each electron beam tube, the electron beams emitted from the adjacent electron beam tubes are overlapped with each other. At the same time, it is easy to obtain a large irradiation width, and it is also easy to adjust the degree of overlap between the electron beams so as to equalize the irradiation intensity over the entire irradiation width. In addition, since irradiation is performed through the irradiation windows provided in the head unit without being transmitted through the individual irradiation windows, the irradiation intensity distribution can be extremely uniform.
A seventh aspect of the present invention is a monitoring system for monitoring the operation status of a radiation irradiating apparatus such as an electron beam irradiating apparatus. Is characterized by comprising an optical sensor for detecting plasma emission generated by excitation of the light emitting device, and a controller for outputting a control signal in accordance with the amount of plasma emission detected by the optical sensor.
According to the monitoring system of the present invention, the irradiation intensity of the electron beam irradiated from the electron beam irradiation device is easily and accurately detected by a relatively inexpensive optical sensor, and for example, the irradiation intensity is reduced to a certain value or less. In some cases, the controller can stop the operation of the electron beam irradiation device or output a control signal for activating various notification devices such as an alarm device, thereby significantly reducing the product defect rate of the workpiece.
That is, according to the present invention, the irradiation intensity of the electron beam is detected based on the amount of plasma emission generated by exciting gas molecules by the electron beam irradiated from the electron beam irradiation device, and the irradiation illuminance is reduced by a certain amount or more. At this time, a control signal or the like for stopping the operation of the electron beam irradiation device is output from the controller, so that it is possible to reliably prevent the occurrence of processing failure due to a decrease in the irradiation intensity of the electron beam. If two or more optical sensors having different plasma emission detection points are provided, the uniformity of the irradiation intensity distribution can be monitored, and the operation of the electron beam irradiation device can be stopped when the uniformity is impaired.
As a conventional technique for detecting the irradiation intensity of the electron beam irradiated from the electron beam irradiation apparatus, there are known means for measuring the amount of X-rays generated when the electron beam hits the irradiation window, There has been proposed a means for measuring the amount of fluorescence emitted from the object when the object is irradiated with the object, but the former means is not practical because the cost is remarkably increased, and the latter means is not practical. Since the amount of fluorescence generated varies depending on the shape and position of the processed object, it has been difficult to accurately detect the irradiation intensity of the electron beam based on the amount of fluorescence. On the other hand, according to the present invention, the optical sensor detects the amount of plasma emission generated when gas molecules are excited by the electron beam irradiated from the electron beam irradiation apparatus, so that the cost is not increased and the irradiation intensity of the electron beam is increased. Can be easily and accurately measured.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a diagram showing an example of an electron beam irradiation device according to the present invention and an irradiation intensity distribution thereof, and FIG. 2 is a diagram showing an example of a monitoring system for monitoring an operation state of the electron beam irradiation device.
In the electron beam irradiation apparatus 1 shown in FIG. 1, a plurality of electron beam tubes 2, 2... Each containing an electron generating section 3 collectively emit an electron beam emitted from a tube end opening 4. It is air-tightly mounted in a side-by-side state with respect to the head section 5 provided with an irradiation window 6 for transmitting light.
The electron beam tube 2 is formed of an electrically insulating material such as glass, and serves as a wiring port for connecting a high voltage cable 7 for supplying a high voltage to the electron generating section 3 having a cathode and a grid. One end is hermetically sealed by sealing or the like, and a bracket 9 is provided on one end of the bracket 9 for mounting and supporting a connector 8 for detachably connecting the high-voltage cable 7 and the electron generator 3.
The head section 5 is formed of a metal such as stainless steel which is difficult to transmit an electron beam. A plurality of mounting holes 10, 10... An O-ring 11 and an O-ring retainer 12 are provided in the mounting hole 10 so as to hermetically and detachably attach the electron beam tube 2 to the mounting hole 10. On the other hand, the lower surface side of the head portion 5 is opened almost entirely, and the opening collectively transmits electron beams emitted from the tube end openings 4, 4,... Of the electron beam tubes 2, 2,. It is hermetically sealed by the irradiation window 6. The irradiation window 6 is detachably attached to the head unit 5, and each electron beam tube 2 attached to the head unit 5 has an electron beam emission area between the adjacent electron beam tube 2 and each other. Are arranged so as to partially overlap each other.
On the side surface of the head portion 5, there is evacuated to evacuate an internal space 13 formed by the head portion 5 and the electron beam tubes 2, 2,. A pipe connection port 14 for an apparatus (not shown) is provided, and an airtight valve 15 that opens and closes the pipe connection port 14 is interposed in the pipe connection port 14.
Further, an insulating oil case 16 for collectively housing the electron beam tubes 2, 2,... Mounted on the upper surface of the head portion 5 is mounted. The case 16 is filled with insulating oil for preventing a high voltage supplied from the high-voltage cable 7 to the electron generating unit 3 of the electron beam tube 2 from leaking to the head unit 5 along the surface of the electron beam tube 2. , And a cover 18 that seals the case body 17. The cover 18 has an insulating bushing 19 through which the high-voltage cables 7 are routed. Is provided.
The electron beam irradiating apparatus 1 having the above structure is evacuated from the pipe connection port 14 provided in the head section 5 to make the internal space 13 a high vacuum, and connect the electron beam tubes from the high voltage cables 7 to the respective electron beam tubes. When a high voltage is supplied to the electron generating units 3 to emit electron beams simultaneously from the tube end openings 4 of the electron beam tubes 2, 2,..., The electron beams are arranged in the electron beam tubes 2, 2,. The electron beams are overlapped so as to be continuously connected along the direction and collectively pass through the irradiation window 6 of the head unit 5 to obtain an electron beam having a wide irradiation processing width and a good uniformity of the irradiation intensity distribution as shown in FIG. Therefore, it is possible to irradiate a large object to be processed, and at the same time, it is possible to significantly reduce the product defect rate due to uneven processing.
The electron beam irradiating apparatus 1 is, for example, operated by a manufacturer in a trial manner in the same procedure as described above to perform pretreatments such as conditioning, and then to perform an airtight operation provided at the pipe connection port 10. By shipping the valve with the valve 15 closed and the internal space 13 kept in a vacuum state, or by introducing an inert gas into the internal space 13 and closing the airtight valve 15, the user can perform a troublesome conditioning operation. There is an advantage that it can be used immediately without performing.
Most of the causes of failure of the electron beam irradiation apparatus are caused by failure or deterioration of the irradiation window and the cathode. In general, the durability life of the cathode is about 5000 hours, whereas the durability of the irradiation window is about 5000 hours. Since it takes about 2000 hours, even if the irradiation window 6 shown in FIG. 1 breaks down or deteriorates, the cathode of the electron generating unit 3 is still often usable. In this case, the electron beam irradiating apparatus 1 is brought to a maker or the like in a state where the airtight valve 15 is closed and the internal space 13 is maintained in a vacuum state or in an inert gas atmosphere, and failure or deterioration is caused. By replacing only the irradiation window 6 that has caused the problem with a new one and reusing the cathode of the electron generating unit 3 without replacing it, it is possible to contribute to resource saving and cost saving. That is, in the electron beam irradiation apparatus 1, the internal space 13 formed by the head unit 5 and the electron beam tubes 2, 2,... May be formed in a high vacuum hermetic space like a vacuum tube. However, as long as the internal space 13 is evacuated and used as shown in FIG. 1, there is an advantage that it can be recycled.
If any of the electron beam tubes 2, 2,... Causes a failure in the cathode of the electron generating unit 3 while the electron beam irradiation device 1 is operating, the abnormality is determined as shown in FIG. And the operation of the electron beam irradiation apparatus 1 can be immediately stopped.
That is, FIG. 2 shows an optical sensor 20 for detecting plasma emission generated when gas molecules in the irradiation area are excited by radiation irradiated from a radiation irradiation apparatus such as the electron beam irradiation apparatus 1, and the like. And a controller 21 that outputs a control signal in accordance with the amount of plasma emission detected by the controller 21.
This monitoring system is widely applicable not only to an electron beam irradiation apparatus but also to a gamma ray irradiation apparatus and other apparatuses for irradiating high-energy radiation. This monitoring system is applied to, for example, the electron beam irradiation apparatus 1 shown in FIG. In this case, as shown in FIG. 2, a plasma emission P generated by exciting gas molecules in the irradiation area by an electron beam irradiated through the irradiation window 3 of the apparatus 1 is detected by an optical sensor 20 such as a photodiode or a CMOS. When the amount of plasma emission detected by the sensor 20 exceeds a certain range, the controller 21 outputs a control signal or the like to the electron beam irradiation device 1 to immediately stop the operation of the device. .
The monitoring system shown in FIG. 2 monitors the uniformity of the irradiation intensity distribution formed by connecting a plurality of electron beams emitted from the electron beam tubes 2, 2,... As shown in FIG. Are provided with two or more optical sensors 20, 20... Having different detection points A to C of the light emission P, and a controller 21 detects the detected values of the optical sensors 20, 20,. And outputs a control signal for stopping the operation of the electron beam irradiation device 1 or a control signal for activating the alarm device when the difference value exceeds a certain range.
Each set value preset for each of the optical sensors 20, 20... Corresponds to the plasma emission P at each of the detection points A to C when the irradiation intensity distribution of the electron beam irradiation apparatus 1 has a desired distribution. ., The irradiation intensity distribution collapses due to the deterioration of the cathode of the electron generating unit 3 provided in any one of the electron beam tubes 2, and the above set values and the optical sensors 20, 20,... When the difference value from the detected value exceeds a certain range, the controller 21 outputs a control signal for stopping the operation of the electron beam irradiation device 1.
The optical sensors 20, 20,... May be installed so as to directly face the detection points A to C of the plasma light emission P. However, as shown in FIG. Is detected via the reflection mirrors 22, 22,..., The degree of freedom of the installation location is remarkably increased, and more changes in the irradiation intensity distribution can be accurately detected using more optical sensors 20. Becomes possible. Note that the present invention is not limited to the reflection mirror, and the plasma light emission P may be detected by the optical sensor 20 via a prism or an optical fiber.
Further, a radiation shielding glass 23 which does not hinder the detection of plasma emission P by the optical sensor 20 is provided between devices such as the optical sensor 20 and the controller 21 and a radiation irradiating device such as the electron beam irradiating device 1. If the installation location of the devices such as the optical sensor 20 and the controller 21 is protected by the radiation shielding glass 23, the devices may be deteriorated by X-rays or the like generated when the electron beam hits the irradiation window 6. Can be prevented, and at the same time, the inspection and adjustment work of those devices can be performed safely.
When the reflection mirrors 22, 22,... And the radiation shielding glass 23 are used, compressed air is periodically used so that the detection accuracy of the optical sensor 20 is not impaired by dirt attached to the surfaces. It is desirable to blow dirt or nitrogen gas to wipe off dirt attached to the surface.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while a several irradiation electron beam continues so that it may mutually overlap, a large irradiation processing width is obtained and the small-sized electron beam irradiation which can obtain the irradiation intensity distribution with good uniformity over the whole irradiation processing width is obtained. It is possible to provide an apparatus, and to monitor the irradiation intensity and the uniformity of the irradiation intensity distribution to prevent the processing unevenness of the processing target and to significantly reduce the product defect rate of the processing target. Has an excellent effect.
[Brief description of the drawings]
FIG. 1 shows an example of an electron beam irradiation apparatus according to the present invention and an irradiation intensity distribution thereof. FIG. 2 shows an example of a monitoring system of the irradiation apparatus according to the present invention.
1 Electron beam irradiation device 2 Electron beam tube 3 Electron generator 4 Tube end opening 5 of electron beam tube … Head part 6… Irradiation window 13… Internal space 14… Piping connection port 15… Airtight valve 20… Optical Sensor 21 Controller 22 Reflecting mirror

Claims (10)

夫々に電子発生部を内装した複数本の電子ビーム管が、その管端開口部から放出される電子ビームを一括的に透過させる照射窓を設けたヘッド部に対して並列状態で気密に取り付けられていることを特徴とする電子ビーム照射装置。A plurality of electron beam tubes each containing an electron generating unit are air-tightly mounted in parallel with a head unit provided with an irradiation window through which electron beams emitted from the tube end openings are collectively transmitted. An electron beam irradiation apparatus, comprising: 前記ヘッド部と前記各電子ビーム管とで形成される内部空間が、高真空の気密空間に形成されている請求項1記載の電子ビーム照射装置。The electron beam irradiation apparatus according to claim 1, wherein an internal space formed by the head section and each of the electron beam tubes is formed in a high vacuum hermetic space. 前記ヘッド部に、該ヘッド部と前記各電子ビーム管とで形成される内部空間を高真空に排気する真空排気装置への配管接続口が設けられている請求項1記載の電子ビーム照射装置。2. The electron beam irradiation apparatus according to claim 1, wherein the head section is provided with a pipe connection port to a vacuum exhaust device for exhausting an internal space formed by the head section and the electron beam tubes to a high vacuum. 前記配管接続口に、該配管接続口を開閉する気密バルブが介装されている請求項3記載の電子ビーム照射装置。The electron beam irradiation apparatus according to claim 3, wherein an airtight valve that opens and closes the pipe connection port is interposed at the pipe connection port. 前記各電子ビーム管が、前記ヘッド部に対して脱着可能に取り付けられている請求項3又は4記載の電子ビーム照射装置。The electron beam irradiation device according to claim 3, wherein each of the electron beam tubes is detachably attached to the head unit. 前記各電子ビーム管が、隣接する電子ビーム管と互いの電子ビーム放出域が前記照射窓の面上で一部重なり合うように配置されている請求項1、2、3、4又は5記載の電子ビーム照射装置。The electron according to claim 1, 2, 3, 4, or 5, wherein each of the electron beam tubes is arranged such that an adjacent electron beam tube and an electron beam emission area of each other partially overlap on the surface of the irradiation window. Beam irradiation device. 電子ビーム照射装置等の放射線照射装置の稼動状況を監視する監視システムであって、放射線照射装置から照射される放射線によりその照射域の気体分子が励起されて生ずるプラズマ発光を検出する光学センサと、該光学センサで検出したプラズマ発光の光量に応じて制御信号を出力するコントローラとを備えていることを特徴とする放射線照射装置の監視システム。A monitoring system for monitoring the operation status of a radiation irradiation apparatus such as an electron beam irradiation apparatus, and an optical sensor for detecting plasma emission generated by exciting gas molecules in the irradiation area by radiation irradiated from the radiation irradiation apparatus, A monitoring system for a radiation irradiation apparatus, comprising: a controller that outputs a control signal according to the amount of plasma emission detected by the optical sensor. 前記プラズマ発光の検出ポイントが異なる二以上の前記光学センサを備え、前記コントローラが、前記各光学センサの検出値と当該各光学センサごとに予め設定された設定値とを比較して、その差値が一定範囲を超えたときに放射線照射装置の稼動を停止させる制御信号もしくは警報装置を作動させる制御信号を出力する請求項7記載の監視システム。The apparatus further comprises two or more optical sensors having different plasma emission detection points, wherein the controller compares a detection value of each of the optical sensors with a preset value set for each of the optical sensors, and calculates a difference value between the values. The monitoring system according to claim 7, wherein a control signal for stopping operation of the radiation irradiation device or a control signal for activating an alarm device is output when the value exceeds a predetermined range. 前記プラズマ発光を反射ミラー、プリズムもしくは光ファイバを介して前記光学センサで検出する請求項7又は8記載の監視システム。9. The monitoring system according to claim 7, wherein the plasma emission is detected by the optical sensor via a reflection mirror, a prism, or an optical fiber. 前記光学センサ及び前記コントローラと、前記放射線照射装置との間が、前記光学センサによる前記プラズマ発光の検出を妨げない放射線遮蔽ガラスによって隔絶されている請求項7、8又は9記載の監視システム。The monitoring system according to claim 7, wherein the optical sensor and the controller are separated from the radiation irradiation device by a radiation shielding glass that does not prevent the optical sensor from detecting the plasma emission.
JP2003158883A 2003-06-04 2003-06-04 Electron beam irradiation device and its monitoring system Pending JP2004361195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158883A JP2004361195A (en) 2003-06-04 2003-06-04 Electron beam irradiation device and its monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158883A JP2004361195A (en) 2003-06-04 2003-06-04 Electron beam irradiation device and its monitoring system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007240461A Division JP4130694B2 (en) 2007-09-18 2007-09-18 Radiation irradiation device monitoring system

Publications (1)

Publication Number Publication Date
JP2004361195A true JP2004361195A (en) 2004-12-24

Family

ID=34052106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158883A Pending JP2004361195A (en) 2003-06-04 2003-06-04 Electron beam irradiation device and its monitoring system

Country Status (1)

Country Link
JP (1) JP2004361195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524281A (en) * 2009-04-21 2012-10-11 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for monitoring the intensity of electron radiation
JP7153783B1 (en) * 2021-10-15 2022-10-14 浜松ホトニクス株式会社 Electron beam monitoring device and electron beam irradiation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524281A (en) * 2009-04-21 2012-10-11 カーハーエス・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method and apparatus for monitoring the intensity of electron radiation
JP7153783B1 (en) * 2021-10-15 2022-10-14 浜松ホトニクス株式会社 Electron beam monitoring device and electron beam irradiation system
WO2023062871A1 (en) * 2021-10-15 2023-04-20 浜松ホトニクス株式会社 Electron beam monitoring device and electron beam irradiation system

Similar Documents

Publication Publication Date Title
JP4322470B2 (en) X-ray generator
JP4387573B2 (en) Process exhaust gas monitoring apparatus and method, semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus management system and method
US8688246B2 (en) Operation monitoring system for processing apparatus
US6562186B1 (en) Apparatus for plasma processing
US10820399B2 (en) X-ray inspection device and method for determining degree of consumption of target of X-ray tube in X-ray inspection device
US6894248B2 (en) Laser beam machining apparatus
JP2006501620A (en) Apparatus and method for using an optical system with a plasma processing system
US20140084186A1 (en) EUV-Strahlungserzeugungsvorrichtung und Betriebsverfahren Dafuer
US20200013596A1 (en) Plasma process monitoring apparatus and plasma processing apparatus comprising the same
JP2004361195A (en) Electron beam irradiation device and its monitoring system
US20090090854A1 (en) Mass Spectrometer and Method of Using the Same
JP2004214298A (en) Plasma treatment apparatus and observation window thereof
JP4130694B2 (en) Radiation irradiation device monitoring system
KR102600286B1 (en) Plasma processing apparatus and method for fabricating semiconductor device using the same
KR101124795B1 (en) Plasma process apparatus, component within the chamber and method for detecting the life of the same
KR20140103663A (en) A residual gas analizer of the plasma process chamber
KR102287469B1 (en) High speed Vacuum Leak Monitoring System
JP2000065887A (en) Fault locator for electric power equipment
KR100688980B1 (en) Plasma monitoring device and plasma monitoring method
KR102001777B1 (en) A Process Monitoring Equipment Using Monitoring Plasma Cell And Method Of Process Monitoring Method Using The Same
US7170602B2 (en) Particle monitoring device and processing apparatus including same
KR102734657B1 (en) Gas analysis apparatus and substrate processing system having the same
KR102734665B1 (en) Gas analysis apparatus and substrate processing system having the same
KR20210091641A (en) System and method for detecting operation failure of plasma generating device
JPH0715056A (en) Window for excimer laser

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120