Nothing Special   »   [go: up one dir, main page]

JP2004361053A - Ice heat storage device, and ice heat storage method - Google Patents

Ice heat storage device, and ice heat storage method Download PDF

Info

Publication number
JP2004361053A
JP2004361053A JP2003162670A JP2003162670A JP2004361053A JP 2004361053 A JP2004361053 A JP 2004361053A JP 2003162670 A JP2003162670 A JP 2003162670A JP 2003162670 A JP2003162670 A JP 2003162670A JP 2004361053 A JP2004361053 A JP 2004361053A
Authority
JP
Japan
Prior art keywords
refrigerant
heat storage
chilled water
temperature
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162670A
Other languages
Japanese (ja)
Other versions
JP4381039B2 (en
Inventor
Yoshiteru Seki
義輝 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2003162670A priority Critical patent/JP4381039B2/en
Publication of JP2004361053A publication Critical patent/JP2004361053A/en
Application granted granted Critical
Publication of JP4381039B2 publication Critical patent/JP4381039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice heat storage device with superior temperature control of cold water, achieving further labor-saving of ice making, and capable of preventing freezing of a cold water passage and an ice water passage during ice water production by controlling preheating of the cold water. <P>SOLUTION: An ice heat storage tank 8, a cold water preheating device 3, and a supercooler 5 are respectively connected by the cold water passage 62, and a cold water bypass passage 68 is connected for sending the cold water from the ice heat storage tank 9 to the supercooler 5 without going through the cold water preheating device 3. In the cold water preheating device 3, a preheater 19, first and second expansion valves 27 and 28, an evaporator 21, a compressor 23, a condenser 25, and a refrigerant liquid tank 26 are connected by a refrigerant line 61, the evaporator 21, the supercooler 5 preheater are composed so as to share brine, and a refrigerant bypass line 66 is provided having a starting point in an upstream side of the preheater 19. A temperature of the cold water is controlled by existence or non existence of preheating and increase and decrease of preheating, and preheating of the cold water is carried out by controlling a liquid refrigerant amount so that the preheater 19 is filled with refrigerant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、過冷却水を利用して氷蓄熱を行う氷蓄熱装置及びそれに用いられる冷水予熱装置に関する。
【0002】
【従来の技術】
冷暖房等の空調設備の分野では、蓄熱媒体に蓄熱する蓄熱システムの一種として、蓄熱媒体に氷を採用し、この氷の製造にあたって、水を過冷却状態に冷却した後に過冷却状態を解除して氷水を生成する氷蓄熱装置及び氷蓄熱方法が従来より知られている。
【0003】
前記氷蓄熱装置においては、水及び氷を貯える氷蓄熱槽と、氷蓄熱槽から供給された冷水を過冷却状態に冷却する過冷却器とが用いられるが、過冷却器の伝熱管内で冷水が氷結することを防止するために、過冷却前の冷水の温度を調整する冷水予熱装置が用いられる。冷水予熱装置には、電気ヒータや空調負荷からの還水や冷却塔への往水を導く熱交換器のほか、ヒートポンプを利用したシステムが知られている。
【0004】
前述した冷水予熱装置を有する氷蓄熱装置としては、例えば、水及び氷を貯える氷蓄熱槽と、この氷蓄熱槽から供給された冷水の温度を調整する冷水予熱装置と、温度調整された冷水を過冷却状態に冷却する過冷却器とを有し、過冷却水の過冷却状態を解除して氷を生成する氷蓄熱装置において、前記冷水予熱装置は、冷媒を収容しこの冷媒及び前記冷水の間で熱交換させる予熱器と、予熱に用いられた冷媒を膨張させて冷媒の圧力を下げる減圧装置と、減圧状態の冷媒を蒸発させる蒸発器と、蒸気状態の冷媒を圧縮する圧縮機と、圧縮された冷媒を凝縮させ予熱器に収容される冷媒を生成する凝縮器と、前記予熱器よりも上流側及び下流側の流路を接続する冷媒バイパス流路とを有する氷蓄熱装置が知られている(例えば、特許文献1参照。)。
【0005】
この氷蓄熱装置は、予熱器及び冷媒バイパス流路への流れる冷媒を適切に分配し、予熱器への冷媒流量を調整することにより、前記冷水の温度を適切に調整しようとするものである。
【0006】
また氷蓄熱装置としては、例えば、過冷却器と冷水予熱装置との間においてブラインを共用して流通させることにより、過冷却器及び冷水予熱装置での冷熱を自己製造する氷蓄熱装置が知られている(例えば、特許文献2参照。)。この氷蓄熱装置は、過冷却前の冷水に含まれる氷を融解させるための熱源を独立して設ける必要がないことから、構造の複雑化やそれに伴うコストアップを抑制する上で優れた装置である。
【0007】
また氷蓄熱方法としては、例えば、過冷却解除後の氷水に氷点を越えた温度の冷水を注入する氷蓄熱方法が知られている(例えば、特許文献3参照。)。この氷蓄熱方法は、システム起動時などの不安定期に、過冷却の解除により生成する氷水が氷水流路において氷結することを防止する上で優れた方法である。
【0008】
【特許文献1】
特開平10−288361号公報
【特許文献2】
特開平10−185248号公報
【特許文献3】
特開平10−122610号公報
【0009】
【発明が解決しようとする課題】
特許文献1に記載の氷蓄熱装置は、冷水の温度調整に関して優れているものの、構造の複雑化及びそれに伴うコストアップやスペースファクタの改善等について検討の余地が残されている。また特許文献2に記載の氷蓄熱装置は、イニシャルコスト及びランニングコストの低減に関して優れているものの、冷水の温度調整及びそれに伴う製氷能力のさらなる向上等について検討の余地が残されている。
【0010】
また氷蓄熱装置では凝縮器で冷媒が凝縮されることから、予熱器に供給される冷媒は液体及びその温度における飽和状態の気体から構成される。気体状態の冷媒は、冷水の予熱に際して相変化し液状の冷媒になる。すなわち気体状態の冷媒は冷水の予熱に際して潜熱を利用できることから液体冷媒に比べて高い加熱能力を有するが、自己製造型の氷蓄熱装置ではこの潜熱は蒸発器で捨てられるべき熱(冷水の過冷却で用いられるべきエネルギー)であり、冷媒の潜熱が冷水の予熱に用いられることは、製氷及び冷熱の生成過程における省力化という観点から好ましくない。
【0011】
また前述したような氷蓄熱装置では過冷却水に落下エネルギー等の衝撃エネルギーを与えることにより過冷却水を相変化させてシャーベット状の氷水を生成するが、氷蓄熱装置の運転初期など過冷却器出口における冷水の過冷却度が小さい場合では、その後の過冷却解除が不十分であり、氷水流路で徐々に過冷却状態の解除が行われ、氷水流路で氷結することがある。
【0012】
特許文献3に記載の氷蓄熱方法では上記のような場面を回避することが可能であるが、生成した氷水に冷水を注入することにより氷結を防止することから生成した氷水のロスを含み、氷水の生成効率の観点から検討の余地が残されている。
【0013】
本発明は、自己製造型の氷蓄熱装置において、冷水の温度調整に優れ、かつ製氷のさらなる省力化を達成することを第一の課題とする。
また本発明は氷蓄熱方法において、氷水生成時に冷水の予熱を制御することにより、冷水流路及び氷水流路の氷結を防止することを第二の課題とする。
【0014】
【課題を解決するための手段】
<本発明の氷蓄熱装置>
本発明は少なくとも前記第一の課題を解決するための手段として、水を過冷却状態に冷却する過冷却器と、過冷却水の過冷却状態を解除して生成する氷及び水を貯える氷蓄熱槽と、この氷蓄熱槽から前記過冷却器に供給される冷水の温度を調整する冷水予熱装置と、前記冷水の温度を検出する温度検出手段とを有する氷蓄熱装置において、冷水予熱装置は、冷媒を収容しこの冷媒と冷水との間で熱交換させる予熱器と、冷媒を膨張させて冷媒の圧力を下げる減圧装置と、減圧状態の冷媒を蒸発させる蒸発器と、蒸気状態の冷媒を圧縮する圧縮機と、圧縮された冷媒を凝縮させ予熱器に収容される冷媒を生成する凝縮器と、予熱器が液状の冷媒で満たされるように予熱器における液状冷媒の量を制御する冷媒量制御手段とを有し、過冷却器は、蒸発器で冷却されたブラインにより冷水を過冷却状態に冷却することを特徴とする氷蓄熱装置を提供する。
【0015】
前記構成によれば、予熱器に供給される液状冷媒の流量を制御することが可能であることから、冷水の適切な温度調整が可能である。また前記構成によれば、液状冷媒で予熱器を満たすことが可能であることから、液状冷媒の顕熱による冷水の温度調整が可能であり、過冷却器に導かれる冷水の温度調整に気体状冷媒の潜熱が用いられないことから、自己製造型の氷蓄積装置において気体状の冷媒が含まれる冷媒によって冷水の予熱を行う場合に比べてよりエネルギー効率の良い冷水の予熱が実現でき、自己製造型の氷蓄熱装置において製氷のさらなる省力化の達成が可能である。
【0016】
本発明では、前記氷蓄熱槽としては従来より知られている種々の氷蓄熱槽を用いることができる。
【0017】
また本発明では、前記過冷却器としては冷水予熱装置において冷熱を生成できる構成の過冷却器であれば特に限定されない。このような過冷却器としては、従来より知られているように、冷水予熱装置における蒸発器とブラインを共有する過冷却器を挙げることができる。このような構成により、冷水の予熱(加熱)及び冷却(過冷却)に用いられる冷熱を装置内で生成可能な氷蓄熱装置が構成される。なお蒸発器と過冷却器がブラインを共有する構成については、前述した特開平10−185248号公報に記載されている構成を好適に用いることができる。
【0018】
また温度検出手段には温度計等の公知の手段を用いることができる。温度検出手段の配置については、一般に過冷却器での冷水の冷却温度差は一定であることから、冷水の温度を検出する位置であれば特に限定されず、氷蓄熱槽から過冷却状態前の冷水の温度を検出できる位置までの任意の位置に設けることができる。一般的には氷蓄熱槽の出口である。前記温度検出手段を設けることにより、冷水の温度に応じた冷水の適切な予熱を実現することが可能である。
以下、本発明で用いられる冷水予熱装置について説明する。
【0019】
本発明に用いられる冷水予熱装置は、前記冷媒量制御手段を有することを特徴とするが、それ以外の構成としては従来より知られているヒートポンプシステムを利用することができる。このようなシステムとしては、予熱器、減圧装置、蒸発器、圧縮機、及び凝縮器で構成される一連の装置が挙げられる。したがって本発明で用いられる予熱器、減圧装置、蒸発器、圧縮機及び凝縮器には、ヒートポンプの構成要素として従来より知られているもの、及びそれに準ずる構成要素(前述した作用を奏するもの)を用いることができる。また本発明では、上記予熱器等で冷水予熱装置を構成するに当たり、自動弁や各種センサを適宜用い、所望の運転条件を実現できるように構成することができる。
【0020】
また本発明に用いられる冷媒及びブラインには、前述した構成要素と同様に、ヒートポンプに適用される種々の冷媒及びブラインを用いることができる。また本発明に用いられる冷媒及びブラインの種類については、潜熱や顕熱等の熱力学的物性、安定性等の化学的物性、及び経済性等において本発明の氷蓄熱装置に適した諸条件により選択することが好ましい。
【0021】
以下、本発明に用いられる冷水予熱装置における冷媒量制御手段について説明する。
【0022】
前記冷媒量制御手段は、予熱器が液状の冷媒で満たされるように予熱器における液状冷媒の量を制御する手段であり、本発明ではこのような機能を有する手段であれば特に限定されず、上記機能を有する種々の構成を単独で又は複数を用いることができる。なお本発明において「予熱器が液状冷媒で満たされる」とは、冷媒と冷水との間で熱交換される予熱器における熱交換部位が液状冷媒で浸される状態を言う。
【0023】
本発明では上記のような冷媒量制御手段により予熱器における冷水の加熱量が制御できる。ここで冷水予熱装置による加熱量は、氷蓄熱装置の運転条件や周囲の環境等によっても異なるが、冷水予熱装置における予熱能力の20〜25%であることが好ましい。加熱量が予熱能力の20%を下回ると過冷却器前で冷水の氷結を生じるおそれがあり、加熱量が予熱能力の25%を上回ると製氷におけるさらなる省力化の未達や冷水の過冷却不足等を生じるおそれがある。
【0024】
上記のような冷媒量制御手段としては、例えば予熱器よりも下流側の冷媒流路に設けられた自動弁等の流量調整手段と、予熱器において冷媒が熱交換部位を浸すのに十分な冷媒の液面位置を検出する液面計とを有し、液面計での液面検出の有無によって流量調整手段により冷媒の流量を調整する構成を例示することができる。上記液面計は上記の液面位置(但し変動する)よりも上側で前記凝縮器よりも下側の流路における任意の位置に設けることができる。
【0025】
また冷媒量制御手段は、冷媒流路において予熱器を循環する冷媒の流路の二点を接続する冷媒バイパス流路と、凝縮された冷媒を予熱器及び冷媒バイパス流路に分配する冷媒分配手段とを有する構成であることが好ましい。このような構成によれば、冷水の予熱に要する冷媒の予熱器への流量をより適切に制御することが可能になる。
【0026】
なお冷媒バイパス流路は、凝縮器において冷媒が予熱器における熱交換部位を浸すのに十分な冷媒の液面位置よりも下流側で、かつ予熱器よりも冷媒の流れの上流側の流路における任意の位置に起点を有し、予熱器よりも下流側で減圧装置よりも上流側の流路における任意の位置に終点を有するものであれば良く、冷媒バイパス流路としては、例えば前述したように規定される冷媒の液面を確保するオーバーフロー流路を例示することができる。
【0027】
上記冷媒分配手段としては、例えば冷媒バイパス流路の起点に設けられ、冷媒の流路を所望の割合に分ける三方コックや、冷媒バイパス流路及び予熱器よりも下流側の流路に設けられる流量調整バルブ等を例示することができ、これらのバルブ類は自動弁であることが好ましい。冷媒分配手段は、前記の液面計と連動する構成が好ましく、少なくとも冷媒の液面が適切な液面位置であるか否かによって冷媒を分配する。なお前記減圧装置に自動制御の膨張弁を用いる場合等では、減圧装置を冷媒分配手段としても用いて構成を簡略化させることができる。
【0028】
また冷媒量制御手段は、予熱器よりも上方に設けられ凝縮器で凝縮された冷媒を収容する冷媒液タンクと、冷媒液タンクに収容された冷媒の液面を検出する液面計等のレベル検出手段とをさらに有することが好ましい。このような構成によれば、予熱器が液状の冷媒で満たされるように液状冷媒の量をより確実に制御することが可能である。なおこのような構成とする場合では、前記冷媒バイパス流路は冷媒液タンクよりも下流側で予熱器よりも上流側の冷媒流路における任意の位置に起点を有する。
【0029】
上記のレベル検出手段には前述した液面計を用いることができる。レベル検出手段は、冷媒液タンクにおける冷媒の液面位置を随時検出する手段であっても良いし、冷媒液タンクにおける所定の冷媒液面位置(例えば冷媒液タンクにおける冷媒の液面上限位置及び液面下限位置など)にあって接触の有無のみを検出する手段であっても良い。
【0030】
上記のような構成の冷水予熱装置によれば、予熱器における液状冷媒の量を制御することで冷水の適切な温度調整及び製氷のさらなる省力化が達成されるが、冷媒量の制御条件が設定当初の条件からずれることがある。このような場合に放置しておくと製氷能力が低下し支障を来すおそれがあることから、本発明では上記の場合に対応可能な構成を提供する。
【0031】
上記の場合のうち、液状冷媒の保有顕熱量が冷水予熱量に対して過多である場合に対応する構成として本発明では、氷蓄熱槽よりも下流側の冷水流路及び過冷却器よりも上流側の冷水流路を接続する冷水バイパス流路と、冷水の温度を温度検出手段によって検出しその検出結果に基づき冷水予熱装置及び冷水バイパス流路に冷水を分配する冷水分配手段とを有する構成を提供する。
【0032】
上記のような場合では冷水予熱装置における冷媒量の制御によって十分対応することが可能であるが、前記構成によれば、氷蓄熱槽→冷水予熱装置→過冷却器という冷水流路、及び氷蓄熱槽→過冷却器という冷水流路のいずれか一方又は両方を選択することができ、過剰な予熱により温度が上昇した冷水の供給を過冷却前に抑えることが可能となり、製氷に支障を来す場面を回避し、正常な運転へ早期に復旧する上で好ましい。なお前述した構成は、必ずしも予熱が過多な場合にのみ用いられるものではなく、冷水予熱装置による冷水の予熱制御を補助する構成として通常運転時に用いても良い。
【0033】
前記冷水バイパス流路、前記冷水分配手段及び温度検出手段には、前述した冷媒バイパス流路、冷媒分配手段及び温度検出手段と同様に構成することができる。また冷水バイパス流路については、氷蓄熱槽から冷水予熱装置に至る冷水流路(管路)における任意の位置に起点を有し、冷水予熱装置から過冷却器に至る冷水流路(管路)における任意の位置に終点を有するものであれば良い。
【0034】
また予熱が過多である場合では、冷水と冷媒との熱交換を停止することが有効である。熱交換の停止については、冷水予熱装置への冷水の送液停止や冷水予熱装置の運転停止等の態様がある。前述した手段や措置等により適切な対処がなされたら通常運転に復旧する。
【0035】
また前述した場合のうち、凝縮器に用いられる冷却手段における冷却能力の低下や冷媒の種類等の要因によって液状冷媒の保有顕熱量が冷水予熱量に対して不足する場合に対応可能な構成として本発明では、冷媒量制御手段は、液状の冷媒における顕熱が不足する場合では気体状の冷媒が予熱器に導入されるように予熱器における液状冷媒の量を制御する構成を提供する。上記の場合では冷媒量制御手段は、前述した流量調整手段や冷媒分配手段等を制御して予熱器から液状冷媒を流出させるように液状冷媒の量を制御する。
【0036】
このような構成によれば、製氷のさらなる省力化が損なわれることになるが、過冷却前における冷水の氷結を防止することが可能となり、製氷に支障を来す場面を回避することが可能となる。
【0037】
なお本発明の氷蓄熱装置には、気体状の冷媒を予熱器に導入したことをシステム管理者に知らせる警報装置や、氷蓄熱槽出口に設けられ上記の場合にのみ作動して冷水を加熱する加熱装置等を補助的な手段として設けても良い。
【0038】
<本発明の氷蓄熱方法>
本発明は少なくとも前記第二の課題を解決するための手段として、水及び氷を貯える氷蓄熱槽から供給される冷水の温度を冷水予熱装置で調整し、温度調整された冷水を過冷却器により過冷却状態に冷却し、冷却された冷水の過冷却状態を解除することにより氷を生成する氷蓄熱方法において、温度検出手段により冷水の温度を検出し、冷水予熱装置による予熱時において過冷却解除前の冷水の温度が過冷却解除不足温度域に達した場合に前記冷水の温度が過冷却器による冷却により過冷却解除不足温度域を脱するまで冷水予熱装置による冷水の予熱を停止することを特徴とする氷蓄熱方法を提供する。
【0039】
上記の氷蓄熱方法によれば、冷水の温度が過冷却解除不足温度域を素早く脱する(スキップする)ことから、過冷却解除不足の発生が抑制されて過冷却解除により氷水が生成するため、氷蓄熱装置の運転初期などにおいて過冷却度不足に起因する氷水流路の氷結を防止することが可能となる。また過冷却不足の解消が素早くなされることから氷水の生成効率をより向上させる上で有利である。
【0040】
なお前記過冷却解除不足温度域とは、過冷却解除によっても過冷却状態の冷水が氷結せず、氷水流路で徐々に過冷却状態が解除されて氷水流路で氷結するおそれのある氷水の温度域であり、環境の変動や冷水の状態等によって多少異なるが一般に−0.5〜0℃である。過冷却解除不足温度域到達後では、前記温度域における任意の温度から冷水の予熱を停止すれば良いが、前記温度域の上限で冷水の予熱を停止することが過冷却解除不足の発生を抑制する上で好ましい。
【0041】
ところで氷蓄熱装置の運転初期では冷水は過冷却器により冷却されるが、冷水の温度が氷点に対して高いことから冷水予熱装置を作動させる必要はない。しかし、そのまま冷水を過冷却状態まで冷却しようとすると、前記過冷却解除不足温度域をスキップさせる前に、冷水流路における氷結を生じる場合がある。一方で冷水流路における氷結を防止するために氷蓄熱装置の運転初期から冷水予熱装置を作動させることは製氷の省力化の観点から好ましくない。
【0042】
そこで本発明の氷蓄熱方法では、冷水予熱装置による予熱がなされずに過冷却解除前の冷水の温度が冷水不安定温度域まで降下した場合に前記冷水の温度が過冷却器による冷却により冷水不安定温度域を脱するまで冷水予熱装置により冷水を予熱することが好ましい。
【0043】
前記冷水不安定温度域とは、冷水中に核となり得る物体(例えば微小な氷の粒子や塵埃等の異物粒子など)の存在等の条件により容易に氷を生成するおそれのある冷水の温度域であり、環境の変動や冷水の状態等によって多少異なるが一般に0〜0.5℃である。
【0044】
上記の冷水の予熱によれば、冷水不安定温度域の冷水中で氷結が発生してもこれを融解させることが可能となる。冷水不安定温度域到達後では、前記温度域における任意の温度から冷水の予熱を行えば良く、前記温度域の上限付近の温度を維持するように冷水を予熱しても良い。
【0045】
本発明の氷蓄熱方法では、冷水の温度を検出することにより冷水の予熱を制御するが、ここで冷水温度の検出については、過冷却器による冷却前後での温度差が一般にほぼ一定であることから冷水の温度であれば前記温度差が反映されるため特に限定されないが、流路中における冷水の温度を検出することが冷水予熱装置による予熱や過冷却器による冷却の効果がすぐに反映されやすいことから好ましく、過冷却器出口における冷水の温度を検出することが過冷却水の温度を確認する上でより好ましい。
【0046】
本発明の氷蓄熱方法は、過冷却状態に冷却される前の冷水を予熱する冷水予熱装置を有する氷蓄熱装置であれば、従来より知られている様々な氷蓄熱装置を利用して実現することができるが、本発明の氷蓄熱方法には前述した本発明の氷蓄熱装置を用いることが経済性等の観点から好ましい。
【0047】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本実施の形態における氷蓄熱装置は図1に示すように、冷水15及び氷13を貯える氷蓄熱槽9と、氷蓄熱槽9から供給された冷水の温度を調整する冷水予熱装置3と、温度調整された冷水を過冷却状態に冷却する過冷却器5と、落下エネルギーにより過冷却水の過冷却状態を解除するための過冷却解除槽7とを有する。氷蓄熱槽9と冷水予熱装置3及び冷水予熱装置3と過冷却器5は冷水流路62で接続されており、過冷却解除槽7と氷蓄熱槽9は氷水流路64で接続されている。また冷水流路62には氷蓄熱槽9から冷水予熱装置3を介さずに過冷却器5へ通ずる冷水バイパス流路67が設けられている。
【0048】
冷水バイパス流路67の起点よりも上流側の冷水流路62には冷水の温度を検出するための第一の温度計37が設けられており、冷水バイパス流路67の終点よりも下流側で過冷却器5よりも上流側の冷水流路には冷水の温度を検出するための第二の温度計38が設けられている。また冷水バイパス流路67の起点よりも下流側で冷水予熱装置3よりも上流側の冷水流路62には予熱される冷水を冷水予熱装置3に送るための冷水予熱ポンプ17が設けられており、冷水バイパス流路67には冷水循環ポンプ18が設けられている。第一及び第二の温度計37、38は本発明における温度検出手段であり、冷水予熱ポンプ17及び冷水循環用ポンプ18は本発明における冷水分配手段である。なお、前記冷水分配手段は、図1において、第二の温度計38と過冷却器5との間にポンプを一台介装させ、冷水バイパス流路67と冷水流路62にバルブを設けることにより、冷水予熱ポンプ17及び冷水循環ポンプ18を省略して構成することができる。
【0049】
冷水予熱装置3は、例えばプレート型熱交換器やセルアンドチューブ型熱交換器等であり冷媒を収容し冷媒と冷水との間で熱交換させる予熱器19と、冷媒を膨張させて冷媒の圧力を下げる第一及び第二の膨張弁27、28と、減圧状態の冷媒を蒸発させる蒸発器21と、蒸気状態の冷媒を圧縮する圧縮機23と、圧縮された冷媒を凝縮させる凝縮器25と、凝縮された冷媒を収容する冷媒液タンク26とを有している。冷媒液タンク26は予熱器19よりも上方に設けられている。
【0050】
予熱器19と第一の膨張弁27と蒸発器21と圧縮機23と凝縮器25と冷媒液タンク26、さらに冷媒液タンク26と予熱器19は冷媒流路61で互いに接続されている。また予熱器19を循環する冷媒の冷媒流路61は、冷媒バイパス流路66で接続されている。冷媒バイパス流路66は冷媒液タンク26よりも下流側で予熱器19よりも上流側の冷媒流路61に起点を有し、予熱器19よりも下流側で蒸発器21よりも上流側の冷媒流路に終点を有する。冷媒バイパス流路66には第二の膨張弁28が設けられている。
【0051】
第一及び第二の膨張弁27、28は自動弁であり、本発明における減圧装置であり、冷媒量制御手段であり、かつ本発明における冷媒分配手段である。
【0052】
蒸発器21はブラインを過冷却器5と共有しており、蒸発器21と過冷却器5とはブライン流路63で接続されている。ブライン流路63にはブライン循環ポンプ30が設けられている。
【0053】
凝縮器25は冷却塔11を冷却熱源として蒸気状態の冷媒を冷却し凝縮させる。凝縮器と冷却塔11は冷却水流路65で接続されており、冷却水流路65には冷却水循環ポンプ33と、凝縮器25から出た冷却水の温度を検出する第三の温度計39とが設けられている。
【0054】
冷媒液タンク26には冷媒液タンク26に収容された冷媒の液面を検出する第一及び第二の液面計35、36が設けられている。第一及び第二の液面計35、36は本発明におけるレベル検出手段であり、第一の液面計35は冷媒液タンク26の低液面を検出し、第二の液面計36は冷媒液タンク26の高液面を検出する。
【0055】
なお第一、第二及び第三の温度計37、38、39は温度値収集パネル(TGP)と接続されており、TGPは温度指示調節計(TIC)と接続されており、TICは第一及び第二の膨張弁27、28に接続されている。また図示しないが第一及び第二の膨張弁27、28はそれぞれ第一及び第二の液面計35、36と接続されている。第一及び第二の膨張弁27、28は冷水の温度、冷却水の温度及び液状冷媒の量によって冷媒の減圧及び冷媒の分配を行う。
【0056】
以下、本実施形態における氷蓄熱装置の運転状況について説明する。まず冷水及び氷水の循環について説明する。
【0057】
冷水は氷蓄熱槽9から冷水流路62を通って予熱器19及び過冷却器5のいずれか一方又は両方に送られる。このときの冷水の供給先及びその割合については、冷水予熱ポンプ17と冷水循環ポンプ18の運転状況によって決まる。
【0058】
冷水を予熱器19に全量供給する場合では冷水循環ポンプ18を停止し、冷水予熱ポンプ17によって冷水を送液する。冷水を予熱せずに過冷却器5に全量供給する場合では冷水予熱ポンプ17を停止し、冷水循環ポンプ18によって冷水を送液する。冷水を氷蓄熱槽9から予熱器19及び過冷却器5の両方に供給する場合では冷水予熱ポンプ17及び冷水循環ポンプ18の両方によって冷水を送液する。なお予熱器19に供給された冷水は過冷却器5に送られる。
【0059】
過冷却器5に供給された冷水は冷却され、過冷却状態に冷却された冷水は過冷却解除槽7に投入されシャーベット状の氷水となる。生成した氷水は氷水流路64を通って氷蓄熱槽9に送られる。
【0060】
次に冷水予熱装置3における冷媒の循環について説明する。
冷媒液タンク26に収容されている冷媒は、起動時を除く定常運転時では、冷媒液タンク26から冷媒流路61を通って予熱器19に送られる。冷媒液タンク26が予熱器19及び冷媒バイパス流路66よりも上方に位置すること、及び第一及び第二の膨張弁27、28が設けられていることから、冷媒液タンク26に冷媒が収容されている場合では、予熱器19及び冷媒液タンク26から第一及び第二膨張弁27、28までの冷媒流路(冷媒バイパス流路66を含む)は冷媒で満たされている。
【0061】
冷媒液タンク26の冷媒を予熱器19に全量供給する場合では第二の膨張弁28を全閉にする。冷媒液タンク26の冷媒を第二の膨張弁28に全量供給する場合では第一の膨張弁27を全閉にする。予熱器19及び第二の膨張弁28の両方に冷媒を供給する場合では第一及び第二の膨張弁27、28の両方を開く。なお予熱器19に供給された冷媒は第一の膨張弁27に送られる。
【0062】
予熱器19及び第二の膨張弁28への冷媒の分配割合は両膨張弁の開度によって任意に設定される。また冷媒の分配割合は、第一及び第二の温度計37、38により検出される冷水温度、凝縮器25で用いられ第三の温度計39によって検出される冷却水温度、及び冷媒液タンク26に設けられた第一及び第二の液面計35、36の検出結果によって決定される。
【0063】
第一及び第二の膨張弁27、28に送られた冷媒は、膨張弁の通過に伴い圧力が低下し一部が気体に変わり、気体状に変化した冷媒が残りの液状冷媒を冷却し、この状態で蒸発器21に送られる。蒸発器21に送られた冷媒は過冷却器5から供給されるブラインから熱を奪い蒸発する。熱が奪われた(冷却されたブライン)は過冷却器5に送られて冷水の冷却に用いられる。
【0064】
蒸気状態の冷媒は蒸発器21から圧縮機23に送られる。圧縮機23では蒸気状態の冷媒が圧縮され、高い温度及び高い圧力の状態となって凝縮器25に送られる。凝縮器25に送られた冷媒は前記冷却水による冷却を受けて凝縮する。凝縮器25の中は圧力が十分高いため、気体状体の冷媒は比較的高い温度でも凝縮して液状になる。
【0065】
凝縮器25で凝縮された冷媒は冷媒液タンク26に送られる。冷媒液タンク26では液状冷媒が貯えられる。
【0066】
次に前記氷蓄熱装置の運転状況を種々の条件において説明し、本発明の氷蓄熱方法における実施の形態を説明する。
【0067】
<通常運転>
冷媒によって予熱される冷水の温度(過冷却器入口温度)を0.5℃とし、冷水予熱ポンプ17及び冷水循環ポンプ18の運転条件により予熱器19への冷水の流量を冷水全流量の1/10とした場合を例に説明する。冷水予熱装置3における冷媒の循環量は冷水予熱装置3の出力によって決まるが、本実施の形態では予熱器19の出口における冷媒温度は5℃となるように第一の膨張弁27の開度を調整するものとする。また過冷却器5前後における冷水の温度差は2.5℃と一定である。なお冷水温度が0℃以上である場合では冷水中に氷がないことから冷水の予熱を行わないこととし、冷水の予熱を行う場合について説明する。
【0068】
冷媒の保有顕熱量は予熱器19に送られる冷媒の量と凝縮温度によって決まる。冷媒による予熱が好適に行われている場合(冷媒液タンク26の液面が図1に示すように十分である場合)では、液状冷媒の液面低下が第一の液面計35によって検出されなければ、第一及び第二の液面計間に液状冷媒の液面がある状態を保ちつつ冷水予熱装置3における冷媒の循環が行われる。
【0069】
冷媒の保有顕熱が必要とする冷水予熱量に対して下回る場合では予熱器19に送られる冷媒量の増加及び凝縮温度の低下によって対応することができる。冷媒量の増加については第二の膨張弁28を閉じる方向で調整する。凝縮温度の低下については冷却水循環ポンプ33により冷却水の循環量を増やす方向で調整する。
【0070】
冷媒の保有顕熱が必要とする冷水予熱量に対して上回る場合では予熱器19に送られる冷媒量の減少、凝縮温度の上昇、及び予熱器19への冷水の供給量の増加によって対応することができる。冷媒量の減少については第一の膨張弁27を閉じる方向で調整する。凝縮温度の上昇については冷却水循環ポンプ33により冷却水の循環量を減らす方向で調整する。予熱器19への冷水の供給量増加については冷水予熱ポンプ17と冷水循環ポンプ18により予熱器19に供給される冷水の割合を増やす方向で調整する。
【0071】
第一の液面計35により液状冷媒の液面が検出される場合では、第一及び第二の膨張弁27、28のいずれか一方又は両方を閉じる方向で調整する。また凝縮器25における冷却水の循環量を増やす方向で調整する。
【0072】
第二の液面計36により液状冷媒の液面が検出される場合では、第一及び第二の膨張弁27、28のいずれか一方又は両方を開く方向で調整する。また凝縮器25における冷却水の循環量を減らす方向で調整する。
【0073】
なお予熱器19への液状冷媒の供給量は第二の膨張弁28の開閉によって微視的には変化するが、圧縮方式における冷水予熱装置の蒸発器は一種のアキュムレータであるので、冷媒液タンク26における両液面計間の容量を適切に(例えば蒸発器21が保有する液状冷媒量の2%程度に)選定することにより、予熱器19への液状冷媒供給量の微視的変化による蒸発温度の変動は許容値内に十分に収まる。
【0074】
このように氷蓄熱装置の運転を制御することにより、冷水流路62における冷水の氷結を防止することができ、過冷却器入口における冷水の温度が0.5℃に保たれ、過冷却器出口温度が−2℃に保たれ、過冷却状態の解除により氷水が生成する。なお予熱の停止については、冷水の急激な温度変化を防止するために、予熱器19への冷媒の供給を停止すると共に予熱器19への冷水の供給を停止することが望ましい。
【0075】
<起動運転>
次に氷蓄熱装置の起動時における運転状況を説明し、あわせて本発明の氷蓄熱方法における一実施の形態を説明する。なお起動運転時には氷蓄熱槽9における氷は融解しているものとして説明する。
【0076】
氷蓄熱装置の起動時では氷蓄熱槽出口温度が0.5℃以上である場合は予熱操作は行わない。予熱操作を行わないためには、冷水予熱ポンプ17を停止、又は第一の膨張弁27を全閉する。第一の膨張弁27を全閉する場合では、第二の膨張弁28を固定オリフィス(開度を一定)として冷水予熱装置3内を循環する冷媒の循環量を確保する。なお第二の膨張弁28を固定オリフィスとせず、冷媒液タンク26における液状冷媒の液面検出によって第二の膨張弁28を制御しても良い。
【0077】
冷水予熱装置3による冷水の予熱を行わない状態では、冷水の温度は図2に示すように過冷却器5による冷却で低下する。図2には過冷却器出口温度、氷蓄熱槽出口温度、及び過冷却器入口温度をそれぞれ示すが、説明をわかりやすくするために、以下では過冷却器出口温度に基づき氷蓄熱装置における起動時の運転を説明する。
【0078】
過冷却器出口温度が0〜0.5℃、すなわち冷水不安定温度域に達すると、過冷却器5内での冷水の氷結を生じるおそれがある。そこで冷水予熱装置3により過冷却出口温度が0.5℃になるまで冷水を予熱する。この操作により過冷却器5に供給される冷水の温度は急激に上昇し、冷水不安定温度域をスキップして0℃から0.5℃に上昇する。この操作により冷水中の氷は一旦融解し、再度温度を降下させた場合でも氷結しにくくなる。
【0079】
過冷却器出口温度を0.5℃まで上げたら冷水予熱装置3による予熱を続けながら過冷却器5による冷水の冷却を続ける。冷水予熱装置3における運転制御は前述した通常運転における適切な制御方法を選択して行う。この運転制御を冷水の温度が再び0℃に達するまで行う。
【0080】
過冷却器出口温度が−0.5〜0℃、すなわち過冷却解除不足温度域に達すると、過冷却解除槽7における過冷却解除が不十分となり、氷水流路64で徐々に過冷却状態が解除されることによる氷水流路64の氷結が生じ、又は過冷却器5の伝熱管内の凍結が生じるおそれがある。そこで過冷却器出口温度が再度0℃に達したら冷水予熱装置3による冷水の予熱を停止する。冷水予熱装置3における予熱の停止については前述した通りである。この操作により、予熱がなくなった一方で過冷却器5による冷水の冷却が変わらずに行われることから、過冷却器5に供給される冷水の温度は急激に低下し、過冷却解除不足温度域をスキップして0℃から−0.5℃に低下する。この操作により過冷却状態の冷水は過冷却解除槽7において過冷却解除されるのに十分な温度まで冷却され、過冷却解除不足による氷水流路64での過冷却状態解除が発生せず、氷水流路64の氷結が防止される。
【0081】
過冷却器出口温度が過冷却解除不足温度帯をスキップしたら、その条件を維持しつつ冷水を過冷却器5により冷却すれば良いが、過冷却器入口温度が0.5℃に達したら冷水予熱装置3による予熱を再度行う。この操作により過冷却器入口温度は1℃まで急激に上昇し、冷水不安定温度域から脱する。
【0082】
過冷却器入口温度が1℃に達したら冷水予熱装置3により予熱しつつ冷水の温度を再び下げる。過冷却器入口温度が再度0.5℃にまで低下したら0.5℃を維持するように通常運転に入る。この操作により過冷却器5入口までの冷水流路62における冷水の氷結が防止される。
【0083】
なお図2に示すように過冷却器による冷却能力に応じて冷水の温度差は一定となることから、過冷却器出口温度や過冷却器入口温度に限らず、冷水の温度を検出することが可能であればいずれの位置にある冷水の温度であっても良く、氷蓄熱槽出口温度を検出することでも上記の起動運転は可能である。
【0084】
<予熱優先運転>
前述した通常運転における制御によっても冷媒の保有顕熱量が冷水予熱量に対して不足する場合では、第一の膨張弁27を開く方向で調整し、冷媒液タンク26における冷媒液面を第一の液面計35よりも低下させ、予熱器19に気体状の冷媒を導入する。予熱器19には液状冷媒の顕熱不足分を補う気体状の冷媒が入り、冷水予熱量を満足することができる。また、冷媒液タンク26の液面が第一の液面計35よりも下がっていることから第二の膨張弁28は全閉となり、液状冷媒が予熱器19をバイパスして蒸発器21に流れることがなく、液状冷媒の顕熱を予熱器19において優先して活用することができる。
【0085】
本実施の形態によれば、前述した構成の氷蓄熱装置を構成したことから、自己製造型の氷蓄熱装置において予熱器19における液状冷媒の量を自在に制御でき、冷水の温度調整に優れ、かつ製氷のさらなる省エネルギー化を達成することができる。
【0086】
また本実施の形態によれば、冷水の冷却過程において冷水不安定温度域及び過冷却解除不足温度域をスキップするように冷水予熱装置3による冷水の予熱を制御することから、冷水流路及び氷水流路の氷結を防止することができる。また氷水流路での過冷却解除による氷水流路の氷結を防止することから、過冷却解除槽7での氷水の生成効率が良い。
【0087】
また本実施の形態では、第一及び第二の膨張弁27、28が液状冷媒の流量調整や、液状冷媒の分配手段を兼ねていることから、より簡易な構成で予熱器19における液状冷媒の好適な量を制御することができる。
【0088】
【発明の効果】
以上の説明からわかるように、本発明によれば自己製造型の氷蓄熱装置における冷水予熱装置において予熱器が液状の冷媒で満たされるように予熱器における液状冷媒の量を制御する冷媒量制御手段を有することから、予熱器における冷媒の量を自在に制御することができ、冷水の温度調整に優れる氷蓄熱装置を提供することができる。また本発明によれば、凝縮により生成する液状冷媒で冷水を予熱することから、冷媒による冷水の予熱とブラインによる冷水の冷却とのエネルギー収支に無駄がなく、かつ製氷のさらなる省エネルギー化を達成することができる。
【0089】
また本発明によれば、冷媒量制御手段は、予熱器よりも上流側及び下流側の流路を接続する冷媒バイパス流路と、凝縮された冷媒を前記予熱器及び冷媒バイパス流路に分配する冷媒分配手段とを有する構成とすると、液状冷媒の量を自在に制御する上でより効果的である。
【0090】
また本発明によれば、冷媒量調整手段は、予熱器よりも上方に設けられ凝縮器で凝縮された冷媒を収容する冷媒液タンクと、冷媒液タンクに収容された冷媒の液面を検出するレベル検出手段とを有する構成とすると、液状冷媒に量を自在に制御する上でより一層効果的である。
【0091】
また本発明によれば、氷蓄熱槽よりも下流側の流路及び過冷却器よりも上流側の流路を接続する冷水バイパス流路と、冷水の温度を温度検出手段によって検出しその検出結果に基づき冷水予熱装置及び冷水バイパス流路に冷水を分配する冷水分配手段とを有する構成とすると、予熱器に供給される冷水の量が自在に制御され、冷水の過剰な予熱を防止する上でより一層効果的である。
【0092】
また本発明によれば、冷媒量制御手段は、液状の冷媒における顕熱が不足する場合では気体状の冷媒が予熱器に導入されるように予熱器における液状冷媒の量を制御する構成とすると、予熱量不足による冷水の氷結に対しても対応することができる。
【0093】
また本発明によれば、水及び氷を貯える氷蓄熱槽から供給される冷水の温度を冷水予熱装置で調整し、温度調整された冷水を過冷却器により過冷却状態に冷却し、冷却された冷水の過冷却状態を解除することにより氷を生成する氷蓄熱方法において、温度検出手段により冷水の温度を検出し、冷水予熱装置による予熱時において過冷却解除前の冷水の温度が過冷却解除不足温度域(より具体的には−0.5〜0℃)に達した場合に冷水の温度が過冷却器による冷却により過冷却解除不足温度域を脱するまで冷水予熱装置による冷水の予熱を停止すると、冷水予熱装置による冷水の予熱を制御することにより過冷却不足に起因する氷水流路での氷結を防止することができ、かつ氷水の生成効率をより向上させることができる。
【0094】
また本発明によれば、冷水予熱装置による予熱がなされずに過冷却解除前の冷水の温度が冷水不安定温度域(より具体的には0〜0.5℃)まで降下した場合に前記冷水の温度が過冷却器による冷却により冷水不安定温度域を脱するまで冷水予熱装置により冷水を予熱すると、氷水スラリー搬送管路又は過冷却器での冷水の氷結を防止する上でより効果的である。
【0095】
また本発明によれば、前述した氷蓄熱方法を行うに当たり、前述した氷蓄熱装置を用いることが、より優れた製氷をより経済的に行う上でより一層効果的である。
【図面の簡単な説明】
【図1】本発明の一実施の形態における氷蓄熱装置を示す図である。
【図2】本発明の一実施の形態における氷蓄熱方法による冷水の温度変化を示す図である。
【符号の説明】
1 氷蓄熱装置
3 冷水予熱装置
5 過冷却器
7 過冷却解除槽
9 氷蓄熱槽
11 冷却塔
13 氷
15 冷水
17 冷水予熱ポンプ(冷水分配手段)
18 冷水循環ポンプ(冷水分配手段)
19 予熱器
21 蒸発器
23 圧縮機
25 凝縮器
26 冷媒液タンク
27 第一の膨張弁(減圧装置)
28 第二の膨張弁(減圧装置)
30 ブライン循環ポンプ
33 冷却水循環ポンプ
35 第一の液面計(レベル検出手段)
36 第二の液面計(レベル検出手段)
37 第一の温度計(温度検出手段)
38 第二の温度計(温度検出手段)
39 第三の温度計
61 冷媒流路
62 冷水流路
63 ブライン流路
64 氷水流路
65 冷却水流路
66 冷媒バイパス流路
67 冷水バイパス流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ice heat storage device that performs ice heat storage using supercooled water and a chilled water preheating device used for the ice heat storage device.
[0002]
[Prior art]
In the field of air conditioning equipment such as cooling and heating, ice is used as a heat storage medium as a type of heat storage system that stores heat in a heat storage medium.In the production of this ice, the water is cooled to a supercooled state and then released from the supercooled state. BACKGROUND ART An ice heat storage device and an ice heat storage method for generating ice water have been conventionally known.
[0003]
In the ice heat storage device, an ice heat storage tank for storing water and ice, and a supercooler for cooling cold water supplied from the ice heat storage tank to a supercooled state are used. A chilled water preheating device that adjusts the temperature of chilled water before supercooling is used to prevent freezing of the chilled water. As the chilled water preheating device, a system using a heat pump is known in addition to a heat exchanger that guides return water from an electric heater or an air conditioning load and water flowing to a cooling tower.
[0004]
As the ice heat storage device having the above-described cold water preheating device, for example, an ice heat storage tank for storing water and ice, a cold water preheating device for adjusting the temperature of the cold water supplied from the ice heat storage tank, and a temperature-controlled cold water A subcooler that cools to a supercooled state, wherein the ice water storage device that releases ice from the supercooled water to generate ice is provided. A preheater for exchanging heat between the preheating device, a decompression device that expands the refrigerant used for preheating to reduce the pressure of the refrigerant, an evaporator that evaporates the depressurized refrigerant, and a compressor that compresses the vapor refrigerant, There is known an ice heat storage device having a condenser that condenses compressed refrigerant to generate a refrigerant accommodated in a preheater, and a refrigerant bypass flow path that connects flow paths upstream and downstream of the preheater. (See, for example, Patent Document 1) ).
[0005]
This ice heat storage device is intended to appropriately adjust the temperature of the cold water by appropriately distributing the refrigerant flowing to the preheater and the refrigerant bypass flow path and adjusting the flow rate of the refrigerant to the preheater.
[0006]
Also, as an ice heat storage device, for example, an ice heat storage device that self-produces cold heat in a supercooler and a chilled water preheating device by sharing and circulating brine between a supercooler and a chilled water preheating device is known. (For example, see Patent Document 2). This ice heat storage device is an excellent device for suppressing the complexity of the structure and the accompanying cost increase, since there is no need to provide a separate heat source for melting ice contained in cold water before supercooling. is there.
[0007]
Further, as an ice heat storage method, for example, an ice heat storage method in which cold water having a temperature exceeding the freezing point is injected into ice water after supercooling is released (for example, see Patent Document 3). This ice heat storage method is an excellent method for preventing ice water generated by releasing supercooling from being frozen in an ice water flow path during an unstable period such as when the system is started.
[0008]
[Patent Document 1]
JP-A-10-288361
[Patent Document 2]
JP-A-10-185248
[Patent Document 3]
JP-A-10-122610
[0009]
[Problems to be solved by the invention]
The ice heat storage device described in Patent Literature 1 is excellent in temperature control of chilled water, but leaves room for study on complicating the structure, increasing the cost, and improving the space factor. Further, the ice heat storage device described in Patent Document 2 is excellent in reducing the initial cost and the running cost, but leaves room for study on the temperature adjustment of the chilled water and the further improvement of the ice-making ability.
[0010]
In the ice heat storage device, since the refrigerant is condensed in the condenser, the refrigerant supplied to the preheater is composed of a liquid and a gas in a saturated state at that temperature. The refrigerant in a gaseous state changes phase when preheating the cold water and becomes a liquid refrigerant. That is, the refrigerant in the gaseous state has a higher heating capacity than the liquid refrigerant because latent heat can be used for preheating the cold water. However, in a self-manufactured ice heat storage device, this latent heat is heat to be discarded by the evaporator (supercooling of the cold water). It is not preferable to use the latent heat of the refrigerant for the preheating of the cold water from the viewpoint of labor saving in the process of making ice and generating the cold heat.
[0011]
In the ice heat storage device described above, the supercooled water is subjected to impact energy such as falling energy to change the phase of the supercooled water to generate sherbet-shaped ice water. When the degree of supercooling of the cold water at the outlet is small, the subsequent supercooling release is insufficient, and the supercooled state is gradually released in the ice water flow path, and ice may be formed in the ice water flow path.
[0012]
Although the above-described scene can be avoided in the ice heat storage method described in Patent Literature 3, since ice water is prevented from freezing by injecting cold water into the generated ice water, loss of the generated ice water is included. There is still room for study from the viewpoint of the generation efficiency of.
[0013]
The first object of the present invention is to provide a self-manufacturing type ice heat storage device that is excellent in temperature control of cold water and achieves further labor saving in ice making.
A second object of the present invention is to prevent the freezing of the cold water flow path and the ice water flow path by controlling the preheating of the cold water at the time of ice water generation in the ice heat storage method.
[0014]
[Means for Solving the Problems]
<Ice heat storage device of the present invention>
The present invention provides at least a means for solving the first problem, a supercooler for cooling water to a supercooled state, and an ice heat storage for storing ice and water generated by releasing the supercooled state of the supercooled water. A tank, a cold water preheating device that adjusts the temperature of the cold water supplied from the ice heat storage tank to the subcooler, and an ice heat storage device that has a temperature detection unit that detects the temperature of the cold water. A preheater that contains the refrigerant and exchanges heat between the refrigerant and the cold water, a decompression device that expands the refrigerant to reduce the pressure of the refrigerant, an evaporator that evaporates the depressurized refrigerant, and compresses the vapor-state refrigerant Compressor that condenses the compressed refrigerant to generate refrigerant contained in the preheater, and refrigerant amount control that controls the amount of liquid refrigerant in the preheater so that the preheater is filled with liquid refrigerant Means, and the subcooler comprises: The brine cooled by the originating device to provide an ice thermal storage apparatus characterized by cooling the cold water supercooled state.
[0015]
According to the above configuration, since the flow rate of the liquid refrigerant supplied to the preheater can be controlled, appropriate temperature adjustment of the cold water can be performed. Further, according to the above configuration, since the preheater can be filled with the liquid refrigerant, the temperature of the chilled water can be adjusted by the sensible heat of the liquid refrigerant, and the temperature of the chilled water guided to the supercooler can be adjusted in a gaseous state. Since the latent heat of the refrigerant is not used, it is possible to achieve more energy-efficient preheating of the chilled water than in the case of preheating the chilled water with the refrigerant containing the gaseous refrigerant in the self-manufactured ice storage device, and the self-production In the ice storage device of the type, further labor saving of ice making can be achieved.
[0016]
In the present invention, various types of conventionally known ice heat storage tanks can be used as the ice heat storage tank.
[0017]
In the present invention, the subcooler is not particularly limited as long as it is a supercooler configured to generate cold heat in the chilled water preheating device. As such a subcooler, as conventionally known, a subcooler that shares a brine with an evaporator in a chilled water preheating device can be exemplified. With such a configuration, an ice heat storage device capable of generating cold heat used for preheating (heating) and cooling (supercooling) of cold water in the device is configured. As for the configuration in which the evaporator and the subcooler share brine, the configuration described in the above-mentioned Japanese Patent Application Laid-Open No. 10-185248 can be suitably used.
[0018]
Known means such as a thermometer can be used as the temperature detecting means. The arrangement of the temperature detecting means is not particularly limited as long as the temperature of the chilled water is detected, since the cooling temperature difference of the chilled water in the supercooler is generally constant. It can be provided at any position up to a position where the temperature of the cold water can be detected. Generally, this is the outlet of an ice thermal storage tank. By providing the temperature detecting means, it is possible to realize appropriate preheating of the cold water according to the temperature of the cold water.
Hereinafter, the cold water preheating device used in the present invention will be described.
[0019]
The chilled water preheating device used in the present invention is characterized by having the refrigerant amount control means, but a heat pump system conventionally known can be used as the other configuration. Such systems include a series of devices consisting of a preheater, a decompressor, an evaporator, a compressor, and a condenser. Therefore, the preheater, the decompression device, the evaporator, the compressor, and the condenser used in the present invention include those conventionally known as components of the heat pump, and components similar thereto (the components having the above-described functions). Can be used. In the present invention, when configuring the chilled water preheating device with the preheater or the like, an automatic valve or various sensors may be appropriately used to realize desired operating conditions.
[0020]
Further, as the refrigerant and the brine used in the present invention, various refrigerants and brine applied to the heat pump can be used as in the above-described constituent elements. In addition, the types of refrigerant and brine used in the present invention depend on various conditions suitable for the ice heat storage device of the present invention in terms of thermodynamic properties such as latent heat and sensible heat, chemical properties such as stability, and economic efficiency. It is preferable to select.
[0021]
Hereinafter, the refrigerant amount control means in the chilled water preheating device used in the present invention will be described.
[0022]
The refrigerant amount control means is a means for controlling the amount of the liquid refrigerant in the preheater so that the preheater is filled with the liquid refrigerant, the present invention is not particularly limited as long as it has such a function, Various configurations having the above functions can be used alone or in combination. In the present invention, "the preheater is filled with the liquid refrigerant" refers to a state in which a heat exchange portion of the preheater that exchanges heat between the refrigerant and the cold water is immersed in the liquid refrigerant.
[0023]
In the present invention, the heating amount of the cold water in the preheater can be controlled by the refrigerant amount control means as described above. Here, the amount of heating by the chilled water preheating device varies depending on the operating conditions of the ice heat storage device, the surrounding environment, and the like, but is preferably 20 to 25% of the preheating capability of the chilled water preheating device. If the heating amount is less than 20% of the preheating capacity, icing of cold water may occur before the supercooler. If the heating amount exceeds 25% of the preheating capacity, further labor saving in ice making is not achieved or the cooling of the cold water is insufficient. Etc. may occur.
[0024]
As the refrigerant amount control means as described above, for example, a flow rate adjusting means such as an automatic valve provided in a refrigerant flow path downstream of the preheater, and a refrigerant sufficient for the preheater to immerse the heat exchange portion in the refrigerant. And a liquid level meter for detecting the liquid level position of the refrigerant, wherein the flow rate of the refrigerant is adjusted by the flow rate adjusting means depending on whether or not the liquid level is detected by the liquid level meter. The liquid level gauge can be provided at an arbitrary position in the flow path above the liquid level position (but fluctuates) and below the condenser.
[0025]
Further, the refrigerant amount control means includes a refrigerant bypass flow path connecting two points of a refrigerant flow path circulating through the preheater in the refrigerant flow path, and a refrigerant distribution means for distributing the condensed refrigerant to the preheater and the refrigerant bypass flow path. It is preferable that the configuration has the following. According to such a configuration, it is possible to more appropriately control the flow rate of the refrigerant required for preheating the cold water to the preheater.
[0026]
Note that the refrigerant bypass flow path is downstream of the liquid level position of the refrigerant sufficient for the refrigerant to immerse the heat exchange site in the preheater in the condenser, and in the flow path on the upstream side of the flow of the refrigerant than the preheater. It may have a starting point at an arbitrary position, and may have an end point at an arbitrary position in a flow path downstream of the preheater and upstream of the pressure reducing device.The refrigerant bypass flow path may be, for example, as described above. An overflow flow channel that secures the liquid level of the refrigerant specified in (1) can be exemplified.
[0027]
As the refrigerant distribution means, for example, a three-way cock that is provided at the starting point of the refrigerant bypass flow path and divides the flow path of the refrigerant into a desired ratio, and a flow rate that is provided in the refrigerant bypass flow path and the flow path downstream of the preheater Adjustment valves and the like can be exemplified, and these valves are preferably automatic valves. The refrigerant distributing means preferably has a configuration interlocked with the liquid level gauge, and distributes the refrigerant at least based on whether or not the liquid level of the refrigerant is at an appropriate liquid level position. In the case where an automatically controlled expansion valve is used as the pressure reducing device, the configuration can be simplified by using the pressure reducing device also as a refrigerant distribution unit.
[0028]
The refrigerant amount control means includes a refrigerant liquid tank provided above the preheater for storing the refrigerant condensed by the condenser, and a liquid level meter for detecting the liquid level of the refrigerant stored in the refrigerant liquid tank. It is preferable to further include a detection unit. According to such a configuration, it is possible to more reliably control the amount of the liquid refrigerant so that the preheater is filled with the liquid refrigerant. In such a configuration, the refrigerant bypass flow path has a starting point at an arbitrary position in the refrigerant flow path downstream of the refrigerant liquid tank and upstream of the preheater.
[0029]
The above-described liquid level gauge can be used as the level detecting means. The level detecting means may be a means for detecting the liquid level position of the refrigerant in the refrigerant liquid tank at any time, or a predetermined refrigerant liquid level position in the refrigerant liquid tank (for example, the upper limit position and the liquid level of the refrigerant in the refrigerant liquid tank). (For example, at the lower limit position of the surface) to detect only the presence or absence of contact.
[0030]
According to the chilled water preheating device configured as described above, by controlling the amount of the liquid refrigerant in the preheater, appropriate temperature adjustment of the chilled water and further labor saving of ice making are achieved, but the control condition of the refrigerant amount is set. It may deviate from the original condition. If left unattended in such a case, there is a risk that the ice-making ability will be reduced and hindrance will be caused. Therefore, the present invention provides a configuration that can cope with the above case.
[0031]
Among the above cases, in the present invention as a configuration corresponding to the case where the retained sensible heat amount of the liquid refrigerant is excessive with respect to the chilled water preheat amount, the chilled water flow path downstream of the ice heat storage tank and the upstream of the supercooler A chilled water bypass passage connecting the chilled water flow passages on the side, and a chilled water distributing means for distributing the chilled water to the chilled water preheating device and the chilled water bypass flow passage based on the detection result by detecting the temperature of the chilled water by the temperature detecting means. provide.
[0032]
In the above case, it is possible to sufficiently cope with the control of the amount of refrigerant in the chilled water preheating device. However, according to the above configuration, the chilled water flow path of the ice heat storage tank → the chilled water preheating device → the supercooler, and the ice heat storage Either or both of the cold water flow path from the tank to the supercooler can be selected, and the supply of cold water whose temperature has increased due to excessive preheating can be suppressed before supercooling, which hinders ice making This is preferable for avoiding the scene and quickly returning to normal operation. Note that the above-described configuration is not necessarily used only when the preheating is excessive, and may be used during normal operation as a configuration that assists the preheating control of the chilled water by the chilled water preheating device.
[0033]
The chilled water bypass channel, the chilled water distribution unit, and the temperature detection unit can be configured in the same manner as the refrigerant bypass channel, the refrigerant distribution unit, and the temperature detection unit described above. The chilled water bypass passage has a starting point at an arbitrary position in the chilled water passage (pipe) from the ice storage tank to the chilled water preheating device, and the chilled water passage (pipe) from the chilled water preheating device to the supercooler. May have an end point at an arbitrary position in.
[0034]
When the preheating is excessive, it is effective to stop the heat exchange between the cold water and the refrigerant. As for the stop of the heat exchange, there are modes such as a stop of the supply of the cold water to the cold water preheating device and a stop of the operation of the cold water preheating device. When appropriate measures are taken by the means and measures described above, normal operation is restored.
[0035]
In addition, among the above-mentioned cases, the present invention has a configuration capable of coping with a case in which the sensible heat amount of the liquid refrigerant is insufficient with respect to the preheating amount of the chilled water due to a decrease in the cooling capacity of the cooling means used in the condenser or the type of the refrigerant. In the present invention, the refrigerant amount control means provides a configuration for controlling the amount of the liquid refrigerant in the preheater such that the gaseous refrigerant is introduced into the preheater when the sensible heat in the liquid refrigerant is insufficient. In the above case, the refrigerant amount control means controls the flow rate adjusting means, the refrigerant distribution means, and the like to control the amount of the liquid refrigerant so that the liquid refrigerant flows out of the preheater.
[0036]
According to such a configuration, further labor saving of ice making is impaired, but it is possible to prevent icing of cold water before supercooling, and it is possible to avoid a situation that hinders ice making. Become.
[0037]
The ice heat storage device of the present invention has a warning device that informs a system administrator that a gaseous refrigerant has been introduced into a preheater, and is provided at an ice heat storage tank outlet and operates only in the above case to heat cold water. A heating device or the like may be provided as auxiliary means.
[0038]
<The ice heat storage method of the present invention>
The present invention adjusts the temperature of cold water supplied from an ice heat storage tank that stores water and ice with a cold water preheating device as a means for solving at least the second problem, and uses a supercooler to cool the temperature-controlled cold water. In the ice heat storage method of generating ice by cooling to the supercooled state and releasing the cooled water in the supercooled state, the temperature of the cold water is detected by the temperature detecting means, and the supercooling is released at the time of preheating by the cold water preheating device. When the temperature of the previous chilled water reaches the subcooling release insufficient temperature range, the preheating of the chilled water by the chilled water preheating device is stopped until the temperature of the chilled water escapes the subcooling release insufficient temperature range by cooling by the subcooler. An ice heat storage method is provided.
[0039]
According to the ice heat storage method described above, since the temperature of the chilled water quickly escapes (skips) from the subcooling release insufficient temperature range, the occurrence of the undercooling release insufficient is suppressed, and ice water is generated by the subcooling release. It is possible to prevent freezing of the ice water flow path due to the insufficient degree of supercooling in the initial stage of operation of the ice heat storage device or the like. In addition, the shortage of supercooling is quickly eliminated, which is advantageous in further improving the efficiency of ice water generation.
[0040]
The subcooling release under-temperature range is defined as the temperature of the ice water in which the supercooled cold water does not freeze even after the supercooling is released, and the supercooled state is gradually released in the ice water flow path and may freeze in the ice water flow path. This is a temperature range, which is slightly different depending on environmental fluctuations, cold water conditions, and the like, but is generally −0.5 to 0 ° C. After reaching the undercooling release insufficient temperature range, the preheating of the chilled water may be stopped from an arbitrary temperature in the temperature range, but stopping the preheating of the chilled water at the upper limit of the temperature range suppresses the occurrence of the undercooling release shortage. It is preferable in doing.
[0041]
By the way, in the early stage of the operation of the ice heat storage device, the chilled water is cooled by the supercooler, but it is not necessary to operate the chilled water preheating device because the temperature of the chilled water is higher than the freezing point. However, if the chilled water is to be cooled to the supercooled state as it is, icing may occur in the chilled water flow path before skipping the subcooling release insufficient temperature range. On the other hand, operating the chilled water preheating device from the initial operation of the ice heat storage device in order to prevent icing in the chilled water flow path is not preferable from the viewpoint of saving labor in ice making.
[0042]
Therefore, in the ice heat storage method of the present invention, when the temperature of the chilled water before the supercooling is released falls to the chilled water unstable temperature range without being preheated by the chilled water preheating device, the temperature of the chilled water is reduced by the cooling by the subcooler to prevent the chilled water from being cooled. It is preferable to preheat the chilled water by the chilled water preheating device until the temperature falls out of the stable temperature range.
[0043]
The cold water unstable temperature range refers to a temperature range of cold water in which ice may easily be generated due to conditions such as the presence of an object that can be a nucleus (for example, fine ice particles or foreign particles such as dust) in the cold water. In general, the temperature is 0 to 0.5 ° C., although it slightly varies depending on environmental fluctuations, the state of cold water, and the like.
[0044]
According to the preheating of the cold water described above, even if freezing occurs in the cold water in the cold water unstable temperature range, it can be melted. After reaching the chilled water unstable temperature range, the chilled water may be preheated from an arbitrary temperature in the temperature range, and the chilled water may be preheated to maintain a temperature near the upper limit of the temperature range.
[0045]
In the ice heat storage method of the present invention, the preheating of the chilled water is controlled by detecting the temperature of the chilled water. Here, regarding the detection of the chilled water temperature, the temperature difference before and after cooling by the supercooler is generally substantially constant. If the temperature of the chilled water is not particularly limited because the temperature difference is reflected, the temperature of the chilled water in the flow channel is immediately reflected by the effect of preheating by the chilled water preheating device and cooling by the supercooler. Detecting the temperature of the chilled water at the outlet of the supercooler is more preferable in order to confirm the temperature of the supercooled water.
[0046]
The ice heat storage method of the present invention is realized by using various conventionally known ice heat storage devices as long as the ice heat storage device has a cold water preheating device that preheats cold water before being cooled to a supercooled state. However, it is preferable to use the above-described ice heat storage device of the present invention in the ice heat storage method of the present invention from the viewpoint of economy and the like.
[0047]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
As shown in FIG. 1, the ice heat storage device in the present embodiment includes an ice heat storage tank 9 for storing cold water 15 and ice 13, a cold water preheating device 3 for adjusting the temperature of the cold water supplied from the ice heat storage tank 9, It has a supercooler 5 for cooling the adjusted cold water to a supercooled state, and a supercooling release tank 7 for releasing the supercooled state of the supercooled water by falling energy. The ice heat storage tank 9 is connected to the cold water preheating device 3, and the cold water preheating device 3 and the supercooler 5 are connected by a cold water channel 62, and the supercool release tank 7 and the ice heat storage tank 9 are connected by an ice water channel 64. . The chilled water flow passage 62 is provided with a chilled water bypass flow passage 67 that leads from the ice heat storage tank 9 to the supercooler 5 without passing through the chilled water preheating device 3.
[0048]
A first thermometer 37 for detecting the temperature of the chilled water is provided in the chilled water channel 62 upstream of the starting point of the chilled water bypass channel 67, and is provided downstream of the end point of the chilled water bypass channel 67. A second thermometer 38 for detecting the temperature of the chilled water is provided in the chilled water channel upstream of the subcooler 5. A chilled water preheating pump 17 for sending chilled water to be preheated to the chilled water preheating device 3 is provided in the chilled water flow channel 62 downstream of the starting point of the chilled water bypass flow channel 67 and upstream of the chilled water preheating device 3. The chilled water circulation passage 18 is provided in the chilled water bypass passage 67. The first and second thermometers 37 and 38 are temperature detecting means in the present invention, and the cold water preheating pump 17 and the cold water circulation pump 18 are cold water distributing means in the present invention. The chilled water distributing means is such that one pump is interposed between the second thermometer 38 and the supercooler 5 in FIG. 1 and valves are provided in the chilled water bypass passage 67 and the chilled water passage 62. Thereby, the chilled water preheating pump 17 and the chilled water circulation pump 18 can be omitted.
[0049]
The chilled water preheating device 3 is, for example, a plate type heat exchanger, a cell and tube type heat exchanger, or the like, and stores a refrigerant and exchanges heat between the refrigerant and the chilled water. First and second expansion valves 27 and 28, an evaporator 21 for evaporating a refrigerant in a reduced pressure state, a compressor 23 for compressing a refrigerant in a vapor state, and a condenser 25 for condensing the compressed refrigerant. And a refrigerant liquid tank 26 for storing the condensed refrigerant. The refrigerant liquid tank 26 is provided above the preheater 19.
[0050]
The preheater 19, the first expansion valve 27, the evaporator 21, the compressor 23, the condenser 25, and the refrigerant liquid tank 26, and the refrigerant liquid tank 26 and the preheater 19 are connected to each other through the refrigerant flow path 61. Further, the refrigerant flow path 61 of the refrigerant circulating through the preheater 19 is connected by a refrigerant bypass flow path 66. The refrigerant bypass flow path 66 has a starting point in the refrigerant flow path 61 downstream of the refrigerant liquid tank 26 and upstream of the preheater 19, and refrigerant downstream of the preheater 19 and upstream of the evaporator 21. It has an end point in the channel. A second expansion valve 28 is provided in the refrigerant bypass passage 66.
[0051]
The first and second expansion valves 27 and 28 are automatic valves, are pressure reducing devices in the present invention, are refrigerant amount control means, and are refrigerant distribution means in the present invention.
[0052]
The evaporator 21 shares the brine with the subcooler 5, and the evaporator 21 and the subcooler 5 are connected by a brine channel 63. The brine circulation pump 30 is provided in the brine channel 63.
[0053]
The condenser 25 uses the cooling tower 11 as a cooling heat source to cool and condense the refrigerant in a vapor state. The condenser and the cooling tower 11 are connected by a cooling water passage 65, and the cooling water passage 65 is provided with a cooling water circulation pump 33 and a third thermometer 39 for detecting the temperature of the cooling water discharged from the condenser 25. Is provided.
[0054]
The refrigerant liquid tank 26 is provided with first and second liquid level gauges 35 and 36 for detecting the liquid level of the refrigerant stored in the refrigerant liquid tank 26. The first and second liquid level gauges 35 and 36 are level detecting means in the present invention. The first liquid level gauge 35 detects a low liquid level of the refrigerant liquid tank 26, and the second liquid level gauge 36 is The high liquid level of the refrigerant liquid tank 26 is detected.
[0055]
The first, second, and third thermometers 37, 38, and 39 are connected to a temperature value collection panel (TGP), and the TGP is connected to a temperature indicating controller (TIC). And the second expansion valves 27 and 28. Although not shown, the first and second expansion valves 27 and 28 are connected to the first and second liquid level gauges 35 and 36, respectively. The first and second expansion valves 27 and 28 reduce the pressure of the refrigerant and distribute the refrigerant according to the temperature of the chilled water, the temperature of the chilled water, and the amount of the liquid refrigerant.
[0056]
Hereinafter, an operation state of the ice heat storage device in the present embodiment will be described. First, circulation of cold water and ice water will be described.
[0057]
The cold water is sent from the ice heat storage tank 9 to one or both of the preheater 19 and the subcooler 5 through the cold water channel 62. At this time, the supply destination of the cold water and the ratio thereof are determined by the operation status of the cold water preheating pump 17 and the cold water circulation pump 18.
[0058]
When the whole amount of the cold water is supplied to the preheater 19, the cold water circulation pump 18 is stopped, and the cold water is supplied by the cold water preheating pump 17. In the case where the whole amount of the cold water is supplied to the supercooler 5 without preheating, the cold water preheating pump 17 is stopped and the cold water circulation pump 18 sends the cold water. When the cold water is supplied from the ice heat storage tank 9 to both the preheater 19 and the supercooler 5, the cold water is sent by both the cold water preheating pump 17 and the cold water circulation pump 18. Note that the cold water supplied to the preheater 19 is sent to the subcooler 5.
[0059]
The cold water supplied to the supercooler 5 is cooled, and the cold water cooled to the supercooled state is supplied to the subcooling release tank 7 to become sherbet-like ice water. The generated ice water is sent to the ice heat storage tank 9 through the ice water flow path 64.
[0060]
Next, circulation of the refrigerant in the cold water preheating device 3 will be described.
The refrigerant accommodated in the refrigerant liquid tank 26 is sent from the refrigerant liquid tank 26 to the preheater 19 through the refrigerant flow channel 61 during a steady operation other than the start-up. Since the refrigerant liquid tank 26 is located above the preheater 19 and the refrigerant bypass passage 66 and the first and second expansion valves 27 and 28 are provided, the refrigerant is stored in the refrigerant liquid tank 26. In this case, the refrigerant flow path (including the refrigerant bypass flow path 66) from the preheater 19 and the refrigerant liquid tank 26 to the first and second expansion valves 27 and 28 is filled with the refrigerant.
[0061]
When the entire amount of the refrigerant in the refrigerant liquid tank 26 is supplied to the preheater 19, the second expansion valve 28 is fully closed. When the entire amount of the refrigerant in the refrigerant liquid tank 26 is supplied to the second expansion valve 28, the first expansion valve 27 is fully closed. When supplying the refrigerant to both the preheater 19 and the second expansion valve 28, both the first and second expansion valves 27 and 28 are opened. The refrigerant supplied to the preheater 19 is sent to the first expansion valve 27.
[0062]
The distribution ratio of the refrigerant to the preheater 19 and the second expansion valve 28 is arbitrarily set depending on the degree of opening of both expansion valves. The distribution ratio of the refrigerant is determined by the cold water temperature detected by the first and second thermometers 37 and 38, the cooling water temperature detected by the third thermometer 39 used in the condenser 25, and the refrigerant liquid tank 26. Is determined by the detection results of the first and second liquid level gauges 35 and 36 provided in the first and second liquid level gauges.
[0063]
The refrigerant sent to the first and second expansion valves 27 and 28 has a pressure that decreases with passage of the expansion valves, and a part of the refrigerant changes to a gas, and the refrigerant that has changed to a gaseous state cools the remaining liquid refrigerant, In this state, it is sent to the evaporator 21. The refrigerant sent to the evaporator 21 removes heat from the brine supplied from the subcooler 5 and evaporates. The heat deprived (cooled brine) is sent to the supercooler 5 and used for cooling the cold water.
[0064]
The refrigerant in a vapor state is sent from the evaporator 21 to the compressor 23. In the compressor 23, the refrigerant in a vapor state is compressed and is sent to the condenser 25 in a state of high temperature and high pressure. The refrigerant sent to the condenser 25 is condensed by being cooled by the cooling water. Since the pressure in the condenser 25 is sufficiently high, the gaseous refrigerant condenses to a liquid state even at a relatively high temperature.
[0065]
The refrigerant condensed in the condenser 25 is sent to the refrigerant liquid tank 26. The refrigerant liquid tank 26 stores a liquid refrigerant.
[0066]
Next, the operation state of the ice heat storage device will be described under various conditions, and an embodiment of the ice heat storage method of the present invention will be described.
[0067]
<Normal operation>
The temperature of the chilled water preheated by the refrigerant (supercooler inlet temperature) is set to 0.5 ° C., and the flow rate of the chilled water to the preheater 19 is reduced to 1 / (the total flow rate of the chilled water) depending on the operating conditions of the chilled water preheating pump 17 and the chilled water circulation pump 18. The case where the number is 10 will be described as an example. The circulation amount of the refrigerant in the chilled water preheating device 3 is determined by the output of the chilled water preheating device 3. In the present embodiment, the opening degree of the first expansion valve 27 is adjusted so that the refrigerant temperature at the outlet of the preheater 19 becomes 5 ° C. Shall be adjusted. The temperature difference of the cold water before and after the supercooler 5 is constant at 2.5 ° C. When the temperature of the cold water is 0 ° C. or higher, preheating of the cold water is not performed because there is no ice in the cold water, and the case of performing the preheating of the cold water will be described.
[0068]
The amount of sensible heat held by the refrigerant is determined by the amount of refrigerant sent to the preheater 19 and the condensation temperature. When the preheating by the refrigerant is being performed appropriately (when the liquid level of the refrigerant liquid tank 26 is sufficient as shown in FIG. 1), the first liquid level gauge 35 detects a decrease in the liquid level of the liquid refrigerant. If not, the refrigerant is circulated in the chilled water preheating device 3 while maintaining the state of the liquid refrigerant level between the first and second liquid level gauges.
[0069]
If the sensible heat of the refrigerant is lower than the required amount of cold water preheating, it can be dealt with by increasing the amount of refrigerant sent to the preheater 19 and lowering the condensing temperature. The increase in the amount of the refrigerant is adjusted in a direction in which the second expansion valve 28 is closed. Regarding the decrease in the condensing temperature, the cooling water circulation pump 33 is adjusted to increase the circulation amount of the cooling water.
[0070]
If the sensible heat of the refrigerant exceeds the required amount of chilled water preheating, the reduction in the amount of refrigerant sent to the preheater 19, the increase in condensation temperature, and the increase in the amount of chilled water supplied to the preheater 19 must be handled. Can be. The amount of the refrigerant is adjusted in a direction in which the first expansion valve 27 is closed. The rise in the condensing temperature is adjusted by the cooling water circulation pump 33 so as to reduce the circulation amount of the cooling water. The supply amount of the cold water to the preheater 19 is adjusted in such a manner that the ratio of the cold water supplied to the preheater 19 by the cold water preheating pump 17 and the cold water circulation pump 18 is increased.
[0071]
When the liquid level of the liquid refrigerant is detected by the first liquid level gauge 35, the adjustment is performed in a direction to close one or both of the first and second expansion valves 27 and 28. Further, the adjustment is performed in a direction to increase the circulation amount of the cooling water in the condenser 25.
[0072]
When the liquid level of the liquid refrigerant is detected by the second liquid level gauge 36, the adjustment is performed in a direction in which one or both of the first and second expansion valves 27 and 28 are opened. In addition, adjustment is made in a direction to reduce the circulation amount of the cooling water in the condenser 25.
[0073]
The supply amount of the liquid refrigerant to the preheater 19 changes microscopically by opening and closing the second expansion valve 28. However, since the evaporator of the chilled water preheating device in the compression system is a kind of accumulator, the refrigerant liquid tank By appropriately selecting the capacity between the two liquid level gauges at 26 (for example, to about 2% of the liquid refrigerant amount held by the evaporator 21), evaporation due to a microscopic change in the liquid refrigerant supply amount to the preheater 19 is performed. Temperature fluctuations are well within acceptable limits.
[0074]
By controlling the operation of the ice heat storage device in this manner, freezing of cold water in the cold water channel 62 can be prevented, the temperature of the cold water at the subcooler inlet is maintained at 0.5 ° C., and the temperature of the subcooler outlet is maintained. The temperature is maintained at -2 ° C, and ice water is generated by releasing the supercooled state. Regarding the stop of the preheating, it is desirable to stop the supply of the refrigerant to the preheater 19 and the supply of the cold water to the preheater 19 in order to prevent a rapid change in the temperature of the cold water.
[0075]
<Start-up operation>
Next, an operation state of the ice heat storage device at the time of starting will be described, and an embodiment of the ice heat storage method of the present invention will be described. Note that the description will be made on the assumption that the ice in the ice heat storage tank 9 is melted during the start-up operation.
[0076]
When the ice heat storage device is started, if the outlet temperature of the ice heat storage tank is 0.5 ° C. or more, the preheating operation is not performed. In order not to perform the preheating operation, the cold water preheating pump 17 is stopped, or the first expansion valve 27 is fully closed. When the first expansion valve 27 is fully closed, the amount of the refrigerant circulating in the chilled water preheating device 3 is secured by using the second expansion valve 28 as a fixed orifice (a fixed opening). The second expansion valve 28 may be controlled by detecting the liquid level of the liquid refrigerant in the refrigerant liquid tank 26 without using the second expansion valve 28 as a fixed orifice.
[0077]
In a state where the preheating of the chilled water by the chilled water preheating device 3 is not performed, the temperature of the chilled water is reduced by cooling by the supercooler 5, as shown in FIG. FIG. 2 shows the subcooler outlet temperature, the ice heat storage tank outlet temperature, and the subcooler inlet temperature. For the sake of simplicity, the following description is based on the supercooler outlet temperature when starting up the ice heat storage device. Will be described.
[0078]
When the supercooler outlet temperature reaches 0 to 0.5 ° C., that is, the cold water unstable temperature range, freezing of cold water in the supercooler 5 may occur. Therefore, the cold water is preheated by the cold water preheating device 3 until the supercooling outlet temperature becomes 0.5 ° C. By this operation, the temperature of the chilled water supplied to the subcooler 5 rises rapidly, and rises from 0 ° C. to 0.5 ° C., skipping the chilled water unstable temperature range. By this operation, the ice in the cold water is once melted and hardly freezes even when the temperature is lowered again.
[0079]
When the supercooler outlet temperature is raised to 0.5 ° C., the cooling of the cold water by the supercooler 5 is continued while the preheating by the cold water preheating device 3 is continued. The operation control in the chilled water preheating device 3 is performed by selecting an appropriate control method in the normal operation described above. This operation control is performed until the temperature of the cold water reaches 0 ° C. again.
[0080]
When the subcooler outlet temperature reaches −0.5 to 0 ° C., that is, the subcooling release insufficient temperature range, the subcooling release in the subcooling release tank 7 becomes insufficient, and the supercooling state gradually becomes in the ice water flow path 64. There is a possibility that the ice water flow path 64 freezes due to the release, or the inside of the heat transfer tube of the supercooler 5 freezes. Therefore, when the supercooler outlet temperature reaches 0 ° C. again, the preheating of the chilled water by the chilled water preheating device 3 is stopped. The stop of preheating in the cold water preheating device 3 is as described above. By this operation, the cooling of the chilled water by the subcooler 5 is performed without change while the preheating is eliminated, so that the temperature of the chilled water supplied to the subcooler 5 rapidly decreases, and the temperature of the subcooling release is insufficient. And the temperature drops from 0 ° C. to −0.5 ° C. By this operation, the supercooled cold water is cooled to a temperature sufficient to release the supercooling in the supercooling release tank 7, and the supercooling state is not released in the ice water flow path 64 due to insufficient subcooling release. Freezing of the water channel 64 is prevented.
[0081]
If the subcooler outlet temperature skips the subcooling release insufficient temperature zone, the chilled water may be cooled by the subcooler 5 while maintaining the condition, but when the subcooler inlet temperature reaches 0.5 ° C, the chilled water preheats. The preheating by the device 3 is performed again. By this operation, the inlet temperature of the supercooler rapidly rises to 1 ° C., and escapes from the chilled water unstable temperature range.
[0082]
When the supercooler inlet temperature reaches 1 ° C., the temperature of the cold water is lowered again while being preheated by the cold water preheating device 3. When the subcooler inlet temperature drops again to 0.5 ° C, normal operation is started so as to maintain 0.5 ° C. This operation prevents freezing of cold water in the cold water channel 62 up to the inlet of the supercooler 5.
[0083]
Since the temperature difference of the chilled water is constant according to the cooling capacity of the subcooler as shown in FIG. If possible, the temperature of the cold water at any position may be used, and the above-described start-up operation can be performed by detecting the outlet temperature of the ice heat storage tank.
[0084]
<Preheating priority operation>
In the case where the amount of sensible heat of the refrigerant is insufficient with respect to the amount of preheated chilled water even by the control in the normal operation described above, the first expansion valve 27 is adjusted in the opening direction, and the refrigerant liquid level in the refrigerant liquid tank 26 is set to the first level. The temperature is lowered below the level gauge 35, and a gaseous refrigerant is introduced into the preheater 19. A gaseous refrigerant that compensates for the sensible heat shortage of the liquid refrigerant enters the preheater 19 and can satisfy the chilled water preheating amount. Further, since the liquid level of the refrigerant liquid tank 26 is lower than the first liquid level gauge 35, the second expansion valve 28 is fully closed, and the liquid refrigerant flows to the evaporator 21 by bypassing the preheater 19. Therefore, the sensible heat of the liquid refrigerant can be preferentially utilized in the preheater 19.
[0085]
According to the present embodiment, since the ice heat storage device having the above-described configuration is configured, the amount of the liquid refrigerant in the preheater 19 can be freely controlled in the self-manufactured ice heat storage device, and the temperature of the cold water is excellently adjusted. And further energy saving of ice making can be achieved.
[0086]
According to the present embodiment, the preheating of the chilled water by the chilled water preheating device 3 is controlled so as to skip the chilled water unstable temperature range and the subcooling release insufficient temperature range in the chilled water cooling process. Freezing of the water flow path can be prevented. Further, since the icing of the ice water flow path due to the release of the supercooling in the ice water flow path is prevented, the efficiency of generating the ice water in the supercool release tank 7 is good.
[0087]
Further, in the present embodiment, since the first and second expansion valves 27 and 28 also serve as a liquid refrigerant flow rate adjustment and liquid refrigerant distribution means, the liquid refrigerant in the preheater 19 can be simplified with a simpler configuration. Suitable amounts can be controlled.
[0088]
【The invention's effect】
As can be understood from the above description, according to the present invention, the refrigerant amount control means for controlling the amount of the liquid refrigerant in the preheater so that the preheater is filled with the liquid refrigerant in the chilled water preheating device in the self-manufactured ice heat storage device Therefore, it is possible to freely control the amount of the refrigerant in the preheater, and to provide an ice heat storage device excellent in adjusting the temperature of the cold water. Further, according to the present invention, since the cold water is preheated by the liquid refrigerant generated by the condensation, the energy balance between the preheating of the cold water by the refrigerant and the cooling of the cold water by the brine is not wasted, and further energy saving of ice making is achieved. be able to.
[0089]
Further, according to the present invention, the refrigerant amount control means distributes the condensed refrigerant to the preheater and the refrigerant bypass flow passage, which connects the flow paths on the upstream side and the downstream side with respect to the preheater. The configuration having the refrigerant distribution means is more effective in freely controlling the amount of the liquid refrigerant.
[0090]
Further, according to the present invention, the refrigerant amount adjusting unit detects the refrigerant liquid tank provided above the preheater and storing the refrigerant condensed by the condenser, and the liquid level of the refrigerant stored in the refrigerant liquid tank. The configuration having the level detecting means is more effective in freely controlling the amount of the liquid refrigerant.
[0091]
Further, according to the present invention, a chilled water bypass passage connecting the flow passage downstream of the ice heat storage tank and the flow passage upstream of the supercooler, and the temperature of the chilled water detected by the temperature detecting means, and the detection result is obtained. And a chilled water distributing means for distributing chilled water to the chilled water bypass passage based on the chilled water preheating device, the amount of chilled water supplied to the preheater is freely controlled to prevent excessive preheating of the chilled water. It is even more effective.
[0092]
Further, according to the present invention, the refrigerant amount control means is configured to control the amount of the liquid refrigerant in the preheater so that the gaseous refrigerant is introduced into the preheater when the sensible heat in the liquid refrigerant is insufficient. Also, it is possible to cope with freezing of cold water due to insufficient preheating.
[0093]
Further, according to the present invention, the temperature of the chilled water supplied from the ice heat storage tank that stores water and ice is adjusted by the chilled water preheating device, and the chilled water whose temperature has been adjusted is cooled to a supercooled state by the supercooler and cooled. In the ice heat storage method of generating ice by releasing the supercooled state of the cold water, the temperature of the cold water is detected by the temperature detecting means, and the temperature of the cold water before the supercooling is released is insufficient during the preheating by the cold water preheating device. When the temperature reaches the temperature range (more specifically, -0.5 to 0 ° C), the preheating of the chilled water by the chilled water preheating device is stopped until the temperature of the chilled water falls out of the undercooling release insufficient temperature range by cooling by the subcooler. Then, by controlling the preheating of the chilled water by the chilled water preheating device, it is possible to prevent icing in the ice water flow path due to insufficient subcooling, and to further improve the efficiency of ice water generation.
[0094]
According to the present invention, when the temperature of the chilled water before the supercooling is released falls to the chilled water unstable temperature range (more specifically, 0 to 0.5 ° C.) without being preheated by the chilled water preheating device, the chilled water is cooled. Preheating the chilled water by the chilled water preheating device until the temperature of the chilled water comes out of the chilled water unstable temperature range by cooling by the subcooler is more effective in preventing the icing of the chilled water in the ice water slurry conveying pipe or the subcooler. is there.
[0095]
Further, according to the present invention, in performing the above-described ice heat storage method, using the above-described ice heat storage device is more effective in performing more excellent ice making more economically.
[Brief description of the drawings]
FIG. 1 is a diagram showing an ice heat storage device according to an embodiment of the present invention.
FIG. 2 is a diagram showing a temperature change of cold water by an ice heat storage method according to one embodiment of the present invention.
[Explanation of symbols]
1 Ice heat storage device
3 Cold water preheating device
5 Subcooler
7 Subcooling release tank
9 Ice thermal storage tank
11 Cooling tower
13 Ice
15 cold water
17 Cold water preheating pump (cold water distribution means)
18 Cold water circulation pump (cold water distribution means)
19 Preheater
21 Evaporator
23 compressor
25 Condenser
26 Refrigerant liquid tank
27 First expansion valve (pressure reducing device)
28 Second expansion valve (pressure reducing device)
30 brine circulation pump
33 Cooling water circulation pump
35 First level gauge (level detection means)
36 Second level gauge (level detection means)
37 First thermometer (temperature detecting means)
38 Second thermometer (temperature detecting means)
39 Third thermometer
61 Refrigerant channel
62 Cold water channel
63 brine flow path
64 Ice water channel
65 Cooling water channel
66 Refrigerant bypass channel
67 Cold water bypass channel

Claims (10)

水を過冷却状態に冷却する過冷却器と、過冷却水の過冷却状態を解除して生成する氷及び水を貯える氷蓄熱槽と、この氷蓄熱槽から前記過冷却器に供給される冷水の温度を調整する冷水予熱装置と、前記冷水の温度を検出する温度検出手段とを有する氷蓄熱装置において、
前記冷水予熱装置は、冷媒を収容しこの冷媒と前記冷水との間で熱交換させる予熱器と、冷媒を膨張させて冷媒の圧力を下げる減圧装置と、減圧状態の冷媒を蒸発させる蒸発器と、蒸気状態の冷媒を圧縮する圧縮機と、圧縮された冷媒を凝縮させ予熱器に収容される冷媒を生成する凝縮器と、前記予熱器が液状の冷媒で満たされるように予熱器における液状冷媒の量を制御する冷媒量制御手段とを有し、
前記過冷却器は、前記蒸発器で冷却されたブラインにより前記冷水を過冷却状態に冷却することを特徴とする氷蓄熱装置。
A supercooler for cooling water to a supercooled state, an ice heat storage tank for storing ice and water generated by releasing the supercooled water from the supercooled state, and cold water supplied from the ice heat storage tank to the supercooler A cold water preheating device that adjusts the temperature of the ice heat storage device having a temperature detection unit that detects the temperature of the cold water,
The chilled water preheating device is a preheater that contains a refrigerant and exchanges heat between the refrigerant and the chilled water, a decompression device that expands the refrigerant to reduce the pressure of the refrigerant, and an evaporator that evaporates the depressurized refrigerant. A compressor that compresses a refrigerant in a vapor state, a condenser that condenses the compressed refrigerant to generate a refrigerant contained in a preheater, and a liquid refrigerant in the preheater such that the preheater is filled with a liquid refrigerant. Refrigerant amount control means for controlling the amount of
The said supercooler cools the said cold water to a supercooled state with the brine cooled by the said evaporator, The ice heat storage apparatus characterized by the above-mentioned.
前記冷媒量制御手段は、前記予熱器よりも上流側及び下流側の流路を接続する冷媒バイパス流路と、前記凝縮された冷媒を前記予熱器及び冷媒バイパス流路に分配する冷媒分配手段とを有することを特徴とする請求項1に記載の氷蓄熱装置。The refrigerant amount control means, a refrigerant bypass flow path that connects the upstream and downstream flow paths than the preheater, a refrigerant distribution means that distributes the condensed refrigerant to the preheater and the refrigerant bypass flow path, The ice heat storage device according to claim 1, comprising: 前記冷媒量制御手段は、前記予熱器よりも上方に設けられ前記凝縮器で凝縮された冷媒を収容する冷媒液タンクと、冷媒液タンクに収容された冷媒の液面を検出するレベル検出手段とを有することを特徴とする請求項1又は2に記載の氷蓄熱装置。The refrigerant amount control means is provided above the preheater, a refrigerant liquid tank for storing the refrigerant condensed in the condenser, and a level detection means for detecting the liquid level of the refrigerant stored in the refrigerant liquid tank The ice heat storage device according to claim 1, further comprising: 前記氷蓄熱槽よりも下流側の流路及び前記過冷却器よりも上流側の流路を接続する冷水バイパス流路と、前記冷水の温度を温度検出手段によって検出しその検出結果に基づき前記冷水予熱装置及び前記冷水バイパス流路に冷水を分配する冷水分配手段とを有することを特徴とする請求項1〜3のいずれか一項に記載の氷蓄熱装置。A chilled water bypass passage connecting a flow passage downstream of the ice heat storage tank and a flow passage upstream of the subcooler, and detecting the temperature of the chilled water by a temperature detecting means, The ice heat storage device according to any one of claims 1 to 3, further comprising: a preheating device and cold water distribution means for distributing cold water to the cold water bypass flow path. 前記冷媒量制御手段は、液状の冷媒における顕熱が不足する場合では気体状の冷媒が前記予熱器に導入されるように予熱器における液状冷媒の量を制御することを特徴とする請求項1〜4のいずれか一項に記載の氷蓄熱装置。2. The refrigerant amount control means controls the amount of the liquid refrigerant in the preheater such that the gaseous refrigerant is introduced into the preheater when the sensible heat in the liquid refrigerant is insufficient. The ice heat storage device according to any one of claims 1 to 4. 水及び氷を貯える氷蓄熱槽から供給される冷水の温度を冷水予熱装置で調整し、温度調整された冷水を過冷却器により過冷却状態に冷却し、冷却された冷水の過冷却状態を解除することにより氷を生成する氷蓄熱方法において、
温度検出手段により冷水の温度を検出し、冷水予熱装置による予熱時に過冷却解除前の冷水の温度が過冷却解除不足温度域に達した場合に前記冷水の温度が過冷却器による冷却により過冷却解除不足温度域を脱するまで冷水予熱装置による冷水の予熱を停止することを特徴とする氷蓄熱方法。
The temperature of the chilled water supplied from the ice heat storage tank that stores water and ice is adjusted by the chilled water preheating device, the chilled water whose temperature has been adjusted is cooled to a supercooled state by a supercooler, and the supercooled state of the cooled chilled water is released. In the ice heat storage method of producing ice by performing
The temperature of the chilled water is detected by the temperature detecting means, and the temperature of the chilled water is supercooled by cooling by the subcooler when the temperature of the chilled water before the release of the supercooling reaches the undercooling release insufficient temperature range during preheating by the chilled water preheating device. An ice heat storage method, wherein the preheating of the chilled water by the chilled water preheating device is stopped until the temperature of the chilled water is removed from the under-release temperature range.
前記過冷却解除不足温度域が−0.5〜0℃であることを特徴とする請求項6に記載の氷蓄熱方法。The ice heat storage method according to claim 6, wherein the subcooling release insufficient temperature range is -0.5 to 0C. 冷水予熱装置による予熱がなされずに過冷却解除前の冷水の温度が冷水不安定温度域まで降下した場合に前記冷水の温度が過冷却器による冷却により冷水不安定温度域を脱するまで冷水予熱装置により冷水を予熱することを特徴とする請求項6に記載の氷蓄熱方法。If the temperature of the chilled water before the supercooling is released falls to the chilled water unstable temperature range without being preheated by the chilled water preheating device, the chilled water is preheated until the temperature of the chilled water leaves the chilled water unstable temperature range by cooling by the supercooler. The ice heat storage method according to claim 6, wherein the cold water is preheated by the device. 前記冷水不安定温度域が0〜0.5℃であることを特徴とする請求項8に記載の氷蓄熱方法。The ice heat storage method according to claim 8, wherein the cold water unstable temperature range is 0 to 0.5C. 請求項1〜5のいずれか一項に記載の氷蓄熱装置を用いることを特徴とする請求項6〜9のいずれか一項に記載の氷蓄熱方法。The ice heat storage method according to any one of claims 6 to 9, wherein the ice heat storage device according to any one of claims 1 to 5 is used.
JP2003162670A 2003-06-06 2003-06-06 Ice heat storage device and ice heat storage method Expired - Fee Related JP4381039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162670A JP4381039B2 (en) 2003-06-06 2003-06-06 Ice heat storage device and ice heat storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162670A JP4381039B2 (en) 2003-06-06 2003-06-06 Ice heat storage device and ice heat storage method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009112239A Division JP2009168445A (en) 2009-05-01 2009-05-01 Ice thermal storage method

Publications (2)

Publication Number Publication Date
JP2004361053A true JP2004361053A (en) 2004-12-24
JP4381039B2 JP4381039B2 (en) 2009-12-09

Family

ID=34054747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162670A Expired - Fee Related JP4381039B2 (en) 2003-06-06 2003-06-06 Ice heat storage device and ice heat storage method

Country Status (1)

Country Link
JP (1) JP4381039B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287787A (en) * 2008-05-27 2009-12-10 Takasago Thermal Eng Co Ltd Ice-water slurry supplying method and ice heat storage device
CN102692108A (en) * 2011-12-19 2012-09-26 河南科技大学 Ice storage method for food fresh keeping and ice storage system thereof
CN103277855A (en) * 2013-05-29 2013-09-04 赖正伦 Distributed energy storage control method and energy storage device of distributed energy storage control method
CN103486787A (en) * 2013-09-29 2014-01-01 葛洲坝集团第一工程有限公司 Cold water recycling pipeline device and method for slice ice machine
JP2014016155A (en) * 2013-10-28 2014-01-30 Takasago Thermal Eng Co Ltd Ice-water slurry supply method and ice thermal storage device
CN107014017A (en) * 2017-05-19 2017-08-04 深圳佩尔优科技有限公司 Cold accumulation system and control method
CN107143954A (en) * 2017-05-19 2017-09-08 海南佩尔优科技有限公司 Cold accumulation system and control method
CN108180580A (en) * 2018-02-13 2018-06-19 南京工程学院 It is a kind of that there is the air-conditioning system across season accumulation of energy

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287787A (en) * 2008-05-27 2009-12-10 Takasago Thermal Eng Co Ltd Ice-water slurry supplying method and ice heat storage device
CN102692108A (en) * 2011-12-19 2012-09-26 河南科技大学 Ice storage method for food fresh keeping and ice storage system thereof
CN103277855A (en) * 2013-05-29 2013-09-04 赖正伦 Distributed energy storage control method and energy storage device of distributed energy storage control method
CN103277855B (en) * 2013-05-29 2016-06-08 赖正伦 A kind of distributed energy-accumulation control method and accumulation of energy device thereof
CN103486787A (en) * 2013-09-29 2014-01-01 葛洲坝集团第一工程有限公司 Cold water recycling pipeline device and method for slice ice machine
CN103486787B (en) * 2013-09-29 2015-07-29 葛洲坝集团第一工程有限公司 Slice ice machine circulating chilled water utilizes plumbing installation and method
JP2014016155A (en) * 2013-10-28 2014-01-30 Takasago Thermal Eng Co Ltd Ice-water slurry supply method and ice thermal storage device
CN107014017A (en) * 2017-05-19 2017-08-04 深圳佩尔优科技有限公司 Cold accumulation system and control method
CN107143954A (en) * 2017-05-19 2017-09-08 海南佩尔优科技有限公司 Cold accumulation system and control method
CN107143954B (en) * 2017-05-19 2024-01-23 海南佩尔优科技有限公司 Cold accumulation system and control method
CN108180580A (en) * 2018-02-13 2018-06-19 南京工程学院 It is a kind of that there is the air-conditioning system across season accumulation of energy
CN108180580B (en) * 2018-02-13 2024-02-09 南京工程学院 Air conditioning system with cross-season energy storage function

Also Published As

Publication number Publication date
JP4381039B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
US7503185B2 (en) Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability
KR102471584B1 (en) Phase Change Material-Based Enhancement Method for Reverse-Cycle Defrosting of Vapor Compression Refrigeration Systems
JP4770976B2 (en) Container refrigeration equipment
CN107110570A (en) Heat storage type air conditioner
KR20030029882A (en) Heat pump
US5381671A (en) Air conditioning apparatus with improved ice storage therein
JP2016156557A (en) Refrigeration cycle device
JP4381039B2 (en) Ice heat storage device and ice heat storage method
JP2006234238A (en) Refrigerating device and its control method
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP2009168445A (en) Ice thermal storage method
CN101344341A (en) Refrigeration equipment
US6311507B1 (en) Refrigeration system with minimum pre-set condensing pressure
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JP2009192187A (en) Ice storage type refrigeration system
DK181417B1 (en) A hydrogen refueling station with a solid phase cooling bank
JP2004132606A (en) Heat pump hot-water supplier
WO2023026344A1 (en) Heat pump device
JP3298477B2 (en) Ice storage refrigerator
JP2018179383A (en) Refrigeration cycle device
JP2010060257A (en) Heat source system and control method for the same
JP3053975B2 (en) Ice storage device
KR20200012165A (en) Heat pump system and method for using thermal storage energy
JP2012215370A (en) Defrosting device in carbon dioxide circulation and cooling system
JP2001012812A (en) Heat accumulator for refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141002

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees