Nothing Special   »   [go: up one dir, main page]

JP2004351927A - Multilayered container - Google Patents

Multilayered container Download PDF

Info

Publication number
JP2004351927A
JP2004351927A JP2004131597A JP2004131597A JP2004351927A JP 2004351927 A JP2004351927 A JP 2004351927A JP 2004131597 A JP2004131597 A JP 2004131597A JP 2004131597 A JP2004131597 A JP 2004131597A JP 2004351927 A JP2004351927 A JP 2004351927A
Authority
JP
Japan
Prior art keywords
polyamide resin
resin
multilayer container
layer
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004131597A
Other languages
Japanese (ja)
Other versions
JP4720102B2 (en
Inventor
Katsuya Maruyama
勝也 丸山
Kazuo Maruo
和生 丸尾
Tomonori Kato
智則 加藤
Hiroyuki Nanba
寛行 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004131597A priority Critical patent/JP4720102B2/en
Publication of JP2004351927A publication Critical patent/JP2004351927A/en
Application granted granted Critical
Publication of JP4720102B2 publication Critical patent/JP4720102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • B29C2949/3038Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected having more than three components being injected

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayered container allowing wider design freedom, nearly free from peeling due to a fall or impact and without the need for forming a shape having as little unevenness and bending as possible for the prevention of peeling. <P>SOLUTION: The multilayered container comprises an outermost layer, an innermost layer and at least one intermediate layer between the outermost and innermost layers. The outermost and innermost layers are mainly composed of a thermoplastic polyester resin A obtained from the polymerization of a dicarboxylic acid component containing not less than 80 mol% of terephthalic acid and a diol component containing not less than 80 mol% of ethylene glycol. At least one layer of the intermediate layers is mainly composed of a polyamide resin C obtained from the polymerization of a diamine component containing not less than 70 mol% of methaxylene diamine and a dicarboxylic acid component containing not less than 70 mol% of an adipic acid and a mixture of resins B containing a polyamide resin D wherein the glass transition temperature is not higher than 130°C but higher than that of the polyamide resin C with the solubility index being greater than that of the thermoplastic polyester resin A and lower than that of the polyamide resin C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は多層容器の層間剥離防止に係る発明であり、詳しくは多層容器の輸送時、または落下時に衝撃を受けた際の最内層および最外層と中間層との間の層間密着性を改良して多層容器の層間剥離を防止するとともに、凹凸部、屈曲部の少ない形状にしなくても層間剥離を回避することができ、デザイン自由度が大きい多層容器に関するものである。   The present invention relates to the prevention of delamination of a multilayer container, and more specifically, to improve the interlayer adhesion between the innermost layer and the outermost layer and the intermediate layer when receiving an impact when transporting or dropping the multilayer container. The present invention relates to a multilayer container which can prevent delamination of a multilayer container and can avoid delamination without having a shape having a small number of uneven portions and bent portions, and has a large degree of freedom in design.

現在、ポリエチレンテレフタレート(PET)等のポリエステルを主体とするプラスチック容器(ボトルなど)がお茶、果汁飲料、炭酸飲料等に広く使用されている。また、プラスチック容器の中で、小型プラスチックボトルの占める割合が年々大きくなっている。ボトルは小型化するに従い単位体積当たりの表面積の割合が大きくなるため、ボトルを小型化した場合、内容物の賞味期限は短くなる傾向にある。また、近年、酸素や光の影響を受けやすいビールのプラスチックボトルでの販売やプラスチックボトル入りお茶のホット販売が行なわれ、プラスチック容器の利用範囲が広がる中、プラスチック容器に対するガスバリア性の更なる向上が要求されている。   At present, plastic containers (such as bottles) mainly composed of polyester such as polyethylene terephthalate (PET) are widely used for tea, fruit juice drinks, carbonated drinks and the like. The proportion of small plastic bottles in plastic containers is increasing year by year. Since the ratio of the surface area per unit volume increases as the bottle becomes smaller, the expiration date of the contents tends to be shorter when the bottle is made smaller. In addition, in recent years, beer that is easily affected by oxygen and light is sold in plastic bottles, and tea in plastic bottles is sold hot, and the range of use of plastic containers is expanding. Is required.

上記要求に対し、ボトルにガスバリア性を付与する方法として熱可塑性ポリエステル樹脂とガスバリア性樹脂を用いた多層ボトル、ブレンドボトル、熱可塑性ポリエステル樹脂単層ボトルにカーボンコート、蒸着、バリア樹脂の塗布を施したバリアコーティングボトル等が開発されている。   In response to the above requirements, as a method for imparting gas barrier properties to bottles, carbon coat, vapor deposition, and application of barrier resin are applied to multilayer bottles, blend bottles, and thermoplastic polyester resin single-layer bottles using thermoplastic polyester resin and gas barrier resin. Barrier-coated bottles and the like have been developed.

多層ボトルの一例としては、最内層および最外層を形成するPET等の熱可塑性ポリエステル樹脂とポリメタキシリレンアジパミド(ポリアミドMXD6)等の熱可塑性ガスバリア性樹脂とを射出して金型キャビティーを満たすことにより得られる3層または5層構造を有するパリソンを2軸延伸ブロー成形したボトルが実用化されている。   As an example of a multi-layer bottle, a thermoplastic resin such as PET and a thermoplastic gas barrier resin such as polymetaxylylene adipamide (polyamide MXD6) which form the innermost layer and the outermost layer are injected to form a mold cavity. A bottle obtained by biaxially stretch-blow-molding a parison having a three-layer or five-layer structure obtained by filling has been put to practical use.

更に、容器外からの酸素を遮断しながら容器内の酸素を捕捉する酸素捕捉機能を有する樹脂が開発され、多層ボトルに応用されている。酸素捕捉性ボトルとしては、酸素吸収速度、透明性、強度、成形性等の面で、遷移金属系触媒を混合したポリアミドMXD6をガスバリア層として使用した多層ボトルが好適である。   Further, a resin having an oxygen capturing function of capturing oxygen in a container while blocking oxygen from outside the container has been developed and applied to a multilayer bottle. As the oxygen-scavenging bottle, a multilayer bottle using polyamide MXD6 mixed with a transition metal-based catalyst as a gas barrier layer is preferable in terms of oxygen absorption rate, transparency, strength, moldability, and the like.

上記多層ボトルは、その良好なガスバリア性からビール、お茶、炭酸飲料等の容器に利用されている。多層ボトルがこれら用途に使用されることにより、内容物の品質維持、シェルフライフの改善がなされる一方、異なる樹脂間、例えば、最内層および最外層と中間層の間で層間剥離が起こり、商品価値を損ねてしまう問題がある。   The multilayer bottle is used for containers for beer, tea, carbonated drinks, etc. due to its good gas barrier properties. By using the multilayer bottle for these applications, the quality of the content is maintained and the shelf life is improved.On the other hand, delamination occurs between different resins, for example, between the innermost layer and the outermost layer and the intermediate layer, and the product There is a problem that loses value.

このような問題点を改良する方法として、最内層および最外層を構成する樹脂を最後に金型キャビティー内に射出する際に、ガスバリア層側に一定量逆流させることが可能な逆流調節装置を使用し層間に粗混合樹脂を介在させることによって耐層間剥離性を改善することが開示記載されているが、特殊な装置を使用するという問題点がある(特許文献1参照)。
特開2000−254963号公報
As a method of improving such a problem, when a resin constituting the innermost layer and the outermost layer is finally injected into the mold cavity, a backflow adjusting device capable of causing a certain amount of backflow to the gas barrier layer side. It is disclosed to improve the delamination resistance by interposing a coarse mixed resin between layers used, but there is a problem that a special device is used (see Patent Document 1).
JP 2000-254963 A

本発明の目的は、上記課題を解決し、多層容器において、落下や衝撃による剥離が起こりにくく、かつ、剥離防止のために凹凸部、屈曲部の少ない形状にする必要がなく、デザイン自由度が大きい多層容器を提供することにある。   An object of the present invention is to solve the above problems, and in a multilayer container, peeling due to drop or impact hardly occurs, and in order to prevent peeling, it is not necessary to make the shape with few irregularities and bent parts, and the degree of design freedom is small. It is to provide a large multilayer container.

本発明者らは、多層容器の耐層間剥離性について鋭意研究を重ねた結果、最内層および最外層を構成する樹脂と中間層を構成する樹脂の親和性を高め、かつ、ガラス転移温度の高い樹脂をブレンドすることで層間の密着性が改善され、落下時等の層間剥離を防止できることを見出した。即ち、中間層を構成する樹脂の溶解度指数と最内層および最外層を構成する樹脂の溶解度指数を近づけ、さらに中間層を構成する樹脂のブロー成形後のひずみを大きくすることにより、層間剥離が抑制された多層容器が得られることを見出し本発明に到った。   The present inventors have conducted intensive studies on the delamination resistance of the multilayer container, and as a result, increased the affinity between the resin constituting the innermost layer and the outermost layer and the resin constituting the intermediate layer, and have a high glass transition temperature. It has been found that by blending a resin, the adhesion between layers is improved, and delamination at the time of dropping or the like can be prevented. That is, by bringing the solubility index of the resin constituting the intermediate layer close to the solubility index of the resin constituting the innermost layer and the outermost layer, and further increasing the strain after blow molding of the resin constituting the intermediate layer, delamination is suppressed. The present inventors have found that a multilayered container is obtained, and arrived at the present invention.

即ち本発明は、最外層、最内層および最外層と最内層との間に位置する少なくとも1層の中間層からなる多層容器であって、該最外層および最内層が、テレフタル酸を80モル%以上含むジカルボン酸成分およびエチレングリコールを80モル%以上含むジオール成分を重合して得た熱可塑性ポリエステル樹脂Aにより主として構成され、該中間層の少なくとも1層が、メタキシリレンジアミンを70モル%以上含むジアミン成分およびアジピン酸を70モル%以上含むジカルボン酸成分を重合して得たポリアミド樹脂Cと下記式(1):
Sa<Sd<Sc (1)
(式中、Saは熱可塑性ポリエステル樹脂Aの溶解度指数、Scはポリアミド樹脂Cの溶解度指数、Sdはポリアミド樹脂Dの溶解度指数であり、各溶解度指数は、Small法により計算される。)を満たすポリアミド樹脂Dを99.5/0.5〜80/20の重量比で含有する混合樹脂Bにより主として構成され、該ポリアミド樹脂Dのガラス転移温度が該ポリアミド樹脂Cのガラス転移温度より高く、かつ、130℃以下であることを特徴とする多層容器を提供する。
さらに、本発明は、スキン側射出シリンダーおよびコア側射出シリンダーを有する射出成形機を用いて、最外層、最内層および該最外層と該最内層との間に位置する少なくとも1層の中間層からなる多層容器を製造する方法であって、該スキン側射出シリンダーから、テレフタル酸を80モル%以上含むジカルボン酸成分およびエチレングリコールを80モル%以上含むジオール成分を重合して得た熱可塑性ポリエステル樹脂Aを射出して該最内層および該最外層を形成し、該コア側射出シリンダーから、メタキシリレンジアミンを70モル%以上含むジアミン成分およびアジピン酸を70モル%以上含むジカルボン酸成分を重合して得たポリアミド樹脂Cと下記式(1):
Sa<Sd<Sc (1)
(式中、Saは熱可塑性ポリエステル樹脂Aの溶解度指数、Scはポリアミド樹脂Cの溶解度指数、Sdはポリアミド樹脂Dの溶解度指数であり、各溶解度指数は、Small法により計算される。)
を満たすポリアミド樹脂Dを99.5/0.5〜80/20の重量比で含有する混合樹脂Bを射出して該中間層の少なくとも1層を形成して多層パリソンを製造する工程を含むことを特徴とする多層容器の製造方法を提供する。
That is, the present invention provides a multilayer container comprising an outermost layer, an innermost layer, and at least one intermediate layer located between the outermost layer and the innermost layer, wherein the outermost layer and the innermost layer contain 80 mol% of terephthalic acid. It is mainly composed of a thermoplastic polyester resin A obtained by polymerizing a dicarboxylic acid component containing above and a diol component containing ethylene glycol of 80 mol% or more, and at least one of the intermediate layers contains meta-xylylenediamine of 70 mol% or more. A polyamide resin C obtained by polymerizing a diamine component and a dicarboxylic acid component containing at least 70 mol% of adipic acid with the following formula (1):
Sa <Sd <Sc (1)
(Wherein, Sa is the solubility index of the thermoplastic polyester resin A, Sc is the solubility index of the polyamide resin C, Sd is the solubility index of the polyamide resin D, and each solubility index is calculated by the Small method). Mainly composed of a mixed resin B containing a polyamide resin D in a weight ratio of 99.5 / 0.5 to 80/20, wherein the glass transition temperature of the polyamide resin D is higher than the glass transition temperature of the polyamide resin C; , 130 ° C. or lower.
Furthermore, the present invention uses an injection molding machine having a skin-side injection cylinder and a core-side injection cylinder to form an outermost layer, an innermost layer, and at least one intermediate layer located between the outermost layer and the innermost layer. A thermoplastic polyester resin obtained by polymerizing a dicarboxylic acid component containing at least 80 mol% of terephthalic acid and a diol component containing at least 80 mol% of ethylene glycol from the skin-side injection cylinder. A is injected to form the innermost layer and the outermost layer, and a diamine component containing at least 70 mol% of metaxylylenediamine and a dicarboxylic acid component containing at least 70 mol% of adipic acid are polymerized from the injection cylinder on the core side. And the following formula (1):
Sa <Sd <Sc (1)
(In the formula, Sa is the solubility index of the thermoplastic polyester resin A, Sc is the solubility index of the polyamide resin C, Sd is the solubility index of the polyamide resin D, and each solubility index is calculated by the Small method.)
Producing a multilayer parison by injecting a mixed resin B containing a polyamide resin D satisfying the above at a weight ratio of 99.5 / 0.5 to 80/20 to form at least one of the intermediate layers. And a method for producing a multilayer container characterized by the following.

本発明によれば、層間剥離が起こりにくく、かつ、ガスバリア性に優れた多層容器を得ることができ、本発明の工業的意義は大きい。   ADVANTAGE OF THE INVENTION According to this invention, the delamination does not easily occur and a multilayer container excellent in gas barrier properties can be obtained, and the industrial significance of the present invention is great.

本発明の多層容器の最外層、最内層、および場合によっては中間層の少なくとも1層を形成することもある熱可塑性ポリエステル樹脂A(以下、“ポリエステル樹脂A”と略称する)は、80モル%以上、好ましくは90モル%以上がテレフタル酸であるジカルボン酸成分と、80モル%以上、好ましくは90モル%以上がエチレングリコールであるジオール成分を重合反応させて得られたポリエステルである。   The thermoplastic polyester resin A (hereinafter, abbreviated as “polyester resin A”) which may form at least one of the outermost layer, the innermost layer, and in some cases, the intermediate layer of the multilayer container of the present invention is 80 mol%. As described above, a polyester obtained by a polymerization reaction of a dicarboxylic acid component having preferably 90 mol% or more of terephthalic acid and a diol component having 80 mol% or more, preferably 90 mol% or more of ethylene glycol.

ポリエステル樹脂Aとしては、ポリエチレンテレフタレートが好適に使用される。ポリエチレンテレフタレートの持つ透明性、機械的強度、射出成形性、延伸ブロー成形性の全てにおいて優れた特性を発揮することが可能となる。   As the polyester resin A, polyethylene terephthalate is preferably used. Polyethylene terephthalate can exhibit excellent properties in all of transparency, mechanical strength, injection moldability, and stretch blow moldability.

テレフタル酸以外の他のジカルボン酸成分としては、イソフタル酸、ジフェニルエーテル−4,4−ジカルボン酸、ナフタレン−1,4又は2,6−ジカルボン酸、アジピン酸、セバシン酸、デカン−1,10−カルボン酸、ヘキサヒドロテレフタル酸を使用することができる。またエチレングリコール以外の他のジオール成分としてはプロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、シクロヘキサンジメタノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン等を使用することが出来る。更に、ポリエステル樹脂Aの原料モノマーとして、p−オキシ安息香酸等のオキシ酸を使用することもできる。   Other dicarboxylic acid components other than terephthalic acid include isophthalic acid, diphenyl ether-4,4-dicarboxylic acid, naphthalene-1,4 or 2,6-dicarboxylic acid, adipic acid, sebacic acid, decane-1,10-carboxylic acid. An acid, hexahydroterephthalic acid, can be used. Other diol components other than ethylene glycol include propylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, cyclohexanedimethanol, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis ( 4-Hydroxyethoxyphenyl) propane and the like can be used. Further, an oxyacid such as p-oxybenzoic acid can be used as a raw material monomer of the polyester resin A.

ポリエステル樹脂Aの固有粘度は、0.55〜1.50、好ましくは0.65〜1.40である。固有粘度が上記0.55以上であると多層パリソンを透明な非晶状態で得ることが可能であり、また得られる多層容器の機械的強度も満足するものとなる。また固有粘度が前記1.50以下の場合、粘度上昇による成形のトラブルを回避することができる。   The intrinsic viscosity of the polyester resin A is 0.55 to 1.50, preferably 0.65 to 1.40. When the intrinsic viscosity is 0.55 or more, the multilayer parison can be obtained in a transparent amorphous state, and the obtained multilayer container also satisfies the mechanical strength. When the intrinsic viscosity is 1.50 or less, it is possible to avoid molding problems due to an increase in viscosity.

また、本発明の特徴を損なわない範囲でポリエステル樹脂Aに他の熱可塑性樹脂を配合して使用することができる。他の熱可塑性樹脂としては、ポリエチレン−2,6−ナフタレンジカルボキシレート等の熱可塑性ポリエステル樹脂、ポリオレフィン系樹脂、ポリカーボネート、ポリアクリロニトリル、ポリ塩化ビニル、ポリスチレン等が例示できる。他の熱可塑性樹脂の配合量は、ポリエステル樹脂Aの10重量%以下であるのが好ましい。   Further, other thermoplastic resins can be used in combination with the polyester resin A as long as the characteristics of the present invention are not impaired. Examples of other thermoplastic resins include thermoplastic polyester resins such as polyethylene-2,6-naphthalenedicarboxylate, polyolefin resins, polycarbonate, polyacrylonitrile, polyvinyl chloride, and polystyrene. The blending amount of the other thermoplastic resin is preferably 10% by weight or less of the polyester resin A.

本発明の多層容器の中間層の少なくとも1層は、下記ポリアミド樹脂Cとポリアミド樹脂Dとの混合樹脂Bにより形成される。
ポリアミド樹脂Cは、メタキシリレンジアミンを70モル%以上含むジアミン成分およびアジピン酸を70モル%以上含むジカルボン酸成分を重合して得られる。ジアミン成分中のメタキシリレンジアミンが70モル%以上であると、優れたガスバリア性が維持できる。ジカルボン酸成分中のアジピン酸が70モル%以上であると、ガスバリア性の低下や結晶性の低下を防止することができる。
At least one of the intermediate layers of the multilayer container of the present invention is formed of a mixed resin B of the following polyamide resin C and polyamide resin D.
The polyamide resin C is obtained by polymerizing a diamine component containing at least 70 mol% of meta-xylylenediamine and a dicarboxylic acid component containing at least 70 mol% of adipic acid. When the amount of meta-xylylenediamine in the diamine component is 70 mol% or more, excellent gas barrier properties can be maintained. When the adipic acid content in the dicarboxylic acid component is 70 mol% or more, a decrease in gas barrier properties and a decrease in crystallinity can be prevented.

ポリエステル樹脂A(ポリエチレンテレフタレート)との共射出成形性、共延伸ブロー成形性において優れた特性を発揮するので、ポリアミド樹脂Cとしては、ポリメタキシリレンアジパミド(ポリアミドMXD6)が好適に使用される。   Polymetaxylylene adipamide (polyamide MXD6) is preferably used as polyamide resin C because it exhibits excellent properties in co-injection moldability and co-stretch blow moldability with polyester resin A (polyethylene terephthalate). .

メタキシリレンジアミン以外に使用できるジアミン成分として、テトラメチレンジアミン、ペンタメチレンジアミン、2−メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン等の脂肪族ジアミン;1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環族ジアミン;ビス(4−アミノフェニル)エーテル、パラフェニレンジアミン、パラキシリレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン類等が例示できるが、これらに限定されるものではない。   As diamine components that can be used other than meta-xylylenediamine, tetramethylene diamine, pentamethylene diamine, 2-methylpentanediamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, dodecamethylene diamine, Aliphatic diamines such as 2,2,4-trimethylhexamethylenediamine and 2,4,4-trimethylhexamethylenediamine; 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 2,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) decalin, bis (amido) Alicyclic diamines such as methyl) tricyclodecane; diamines having an aromatic ring such as bis (4-aminophenyl) ether, paraphenylenediamine, paraxylylenediamine, and bis (aminomethyl) naphthalene; It is not limited to these.

アジピン酸以外に使用できるジカルボン酸成分として、スベリン酸、アゼライン酸、セバシン酸、1,10−デカンジカルボン酸、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸等が例示できるが、これらに限定されるものではない。
また、ポリアミド樹脂Cは、製造時に分子量調節剤として使用される少量のモノアミン、モノカルボン酸を含んでいても良い。
Examples of the dicarboxylic acid component that can be used other than adipic acid include suberic acid, azelaic acid, sebacic acid, 1,10-decanedicarboxylic acid, terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, but are not limited thereto. It is not done.
Further, the polyamide resin C may contain a small amount of a monoamine or a monocarboxylic acid used as a molecular weight regulator at the time of production.

上記のポリアミド樹脂Cは、ジアミン成分とジカルボン酸成分とを溶融重縮合することにより、又は溶融重縮合後更に固相重合することにより製造される。
溶融重縮合法としては、例えばメタキシリレンジアミンとアジピン酸からなるナイロン塩を水の存在下に、加圧下で昇温し、加えた水および縮合水を除きながら溶融状態で重合させる方法がある。また、メタキシリレンジアミンを溶融状態のアジピン酸に直接加えて、重縮合する方法によっても製造される。この場合、反応系を均一な液状状態に保つために、メタキシリレンジアミンをアジピン酸に連続的に加え、その間、反応温度が生成するオリゴアミドおよびポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
The above polyamide resin C is produced by melt polycondensation of a diamine component and a dicarboxylic acid component or by solid phase polymerization after melt polycondensation.
As the melt polycondensation method, for example, there is a method in which a nylon salt composed of metaxylylenediamine and adipic acid is heated in the presence of water under pressure and polymerized in a molten state while removing added water and condensed water. . It is also produced by a method in which meta-xylylenediamine is directly added to adipic acid in a molten state and polycondensed. In this case, in order to keep the reaction system in a uniform liquid state, meta-xylylenediamine is continuously added to adipic acid, and during this time, the reaction system is raised so that the reaction temperature does not fall below the melting points of the resulting oligoamide and polyamide. While heating, the polycondensation proceeds.

溶融重縮合により得られる比較的低分子量のポリアミドの相対粘度(ポリアミド樹脂1gを96%硫酸100mlに溶解し、25℃で測定した値、以下同じ)は通常、2.28程度である。溶融重縮合後の相対粘度が2.28以下であると、ゲル状物の生成が少なく、色調が良好な高品質のポリアミドが得られる。溶融重縮合により得られた比較的低分子量のポリアミドは次いで固相重合してもよい。固相重合は、溶融重縮合により得られた比較的低分子量のポリアミドをペレットあるいは粉末にし、これを減圧下あるいは不活性ガス雰囲気下に、150℃以上、かつ、ポリアミドの融点以下の温度に加熱することにより実施される。固相重合ポリアミドの相対粘度は2.3〜4.2が望ましい。この範囲であると、中空容器、フィルム、シートへの成形が良好で、且つ得られる中空容器、フィルム、シートの性能、特に機械的性能が良好である。溶融重縮合後の比較的低分子量のポリアミドを用いても本発明の効果は一部得られるが、機械的強度、特に耐衝撃性が十分ではなく、中空容器用材料として実用的ではない。   The relative viscosity of a polyamide having a relatively low molecular weight obtained by melt polycondensation (a value obtained by dissolving 1 g of a polyamide resin in 100 ml of 96% sulfuric acid and measuring at 25 ° C., the same applies hereinafter) is usually about 2.28. When the relative viscosity after the melt polycondensation is 2.28 or less, a high-quality polyamide having a low color tone and a good color tone can be obtained. The relatively low molecular weight polyamide obtained by melt polycondensation may then be subjected to solid state polymerization. Solid phase polymerization is a process in which a polyamide having a relatively low molecular weight obtained by melt polycondensation is pelletized or powdered, and heated to a temperature of 150 ° C. or higher and a temperature lower than the melting point of the polyamide under reduced pressure or an inert gas atmosphere. It is implemented by doing. The relative viscosity of the solid-phase polymerized polyamide is preferably 2.3 to 4.2. Within this range, the hollow container, film, and sheet can be formed into a good shape, and the resulting hollow container, film, and sheet have good performance, particularly good mechanical performance. Although some effects of the present invention can be obtained by using a polyamide having a relatively low molecular weight after melt polycondensation, the mechanical strength, particularly the impact resistance, is not sufficient, and is not practical as a material for hollow containers.

ポリアミド樹脂Dは、下記式(1)を満たす樹脂である。
Sa<Sd<Sc (1)
(式中、Saは熱可塑性ポリエステル樹脂Aの溶解度指数、Scはポリアミド樹脂Cの溶解度指数、Sdはポリアミド樹脂Dの溶解度指数である。)
溶解度指数はSmall法により計算される(日本接着協会誌、Vol.22、No.10、p.51(1986)参照)。
ポリアミド樹脂Dは、最内外層(ポリエステル樹脂A層)と中間層(ガスバリア層)の親和性を高めるためSdの値がSaとScの間にあることが重要である。Sdがこの範囲を超えると、最内層および最外層を構成するポリエステル樹脂Aと中間層を構成する混合樹脂Bの親和性が低くなり、層間の密着性が低下し層間剥離性防止に好ましくない。
このようなポリアミド樹脂Dは、Small法による計算から求めたポリエステル樹脂Aとポリアミド樹脂Cの溶解度指数から、上記式(1)を満たすようにポリマー中の骨格セグメントを設計することにより得ることができる。
The polyamide resin D is a resin satisfying the following formula (1).
Sa <Sd <Sc (1)
(In the formula, Sa is the solubility index of the thermoplastic polyester resin A, Sc is the solubility index of the polyamide resin C, and Sd is the solubility index of the polyamide resin D.)
The solubility index is calculated by the Small method (see Journal of the Adhesion Society of Japan, Vol. 22, No. 10, p. 51 (1986)).
It is important that the value of Sd of the polyamide resin D is between Sa and Sc in order to increase the affinity between the innermost and outermost layers (polyester resin A layer) and the intermediate layer (gas barrier layer). If Sd exceeds this range, the affinity between the polyester resin A constituting the innermost layer and the outermost layer and the mixed resin B constituting the intermediate layer will be low, and the adhesion between the layers will be reduced, which is not preferable for preventing delamination.
Such a polyamide resin D can be obtained by designing a skeleton segment in a polymer so as to satisfy the above formula (1) from the solubility index of the polyester resin A and the polyamide resin C obtained by calculation by the Small method. .

ポリアミド樹脂Dのガラス転移温度は、ポリアミド樹脂Cのガラス転移温度より高く、かつ、130℃以下である。ポリアミド樹脂Dのガラス転移温度がポリアミド樹脂Cのガラス転移温度より高いとブロー成形後の中間層を構成するポリアミド樹脂Bの応力ひずみが大きくなり、そのひずみを緩和しようとする作用により層間剥離性防止が改善すると考えられる。ポリアミド樹脂Dのガラス転移温度が130℃を超えると、剥離防止効果は認められるが、多層容器の成形が難しくなり好ましくない。   The glass transition temperature of the polyamide resin D is higher than the glass transition temperature of the polyamide resin C and is 130 ° C. or less. If the glass transition temperature of the polyamide resin D is higher than the glass transition temperature of the polyamide resin C, the stress distortion of the polyamide resin B constituting the intermediate layer after blow molding becomes large, and the effect of relaxing the distortion prevents delamination. Is thought to improve. If the glass transition temperature of the polyamide resin D exceeds 130 ° C., the effect of preventing peeling is recognized, but molding of the multilayer container becomes difficult, which is not preferable.

上記したように、本発明においては、透明性、機械的強度、射出成形性、延伸ブロー成形性が優れているので、ポリエステル樹脂Aとしてポリエチレンテレフタレートが好適に使用される。また、ポリエチレンテレフタレートとの共射出成形性、共延伸ブロー成形性が優れているので、ポリアミド樹脂CとしてはポリアミドMXD6が好適に使用される。ポリエステル樹脂Aとしてポリエチレンテレフタレートを、ポリアミド樹脂CとしてポリアミドMXD6を使用する場合、ポリアミド樹脂Dとしては、芳香族ジカルボン酸に由来する単位を含むものが好ましく、該芳香族ジカルボン酸がテレフタル酸及び/又はイソフタル酸であるものがより好ましい。具体的には、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等が挙げられ、この中でもナイロン6ITが特に好ましい。また、ポリアミド樹脂Dとしては、溶解度指数が11〜13のポリアミド樹脂が好ましく、12.0 〜12.9のポリアミド樹脂がより好ましい。   As described above, in the present invention, polyethylene terephthalate is preferably used as the polyester resin A because of its excellent transparency, mechanical strength, injection moldability, and stretch blow moldability. Further, polyamide MXD6 is suitably used as polyamide resin C because of its excellent co-injection moldability and co-stretch blow moldability with polyethylene terephthalate. When polyethylene terephthalate is used as the polyester resin A and polyamide MXD6 is used as the polyamide resin C, the polyamide resin D preferably contains a unit derived from an aromatic dicarboxylic acid, and the aromatic dicarboxylic acid is terephthalic acid and / or Those which are isophthalic acid are more preferred. Specific examples include nylon 6IT and nylon 6I6T (I represents isophthalic acid and T represents terephthalic acid), among which nylon 6IT is particularly preferred. As the polyamide resin D, a polyamide resin having a solubility index of 11 to 13 is preferable, and a polyamide resin having a solubility index of 12.0 to 12.9 is more preferable.

混合樹脂Bは、ポリアミド樹脂Cとポリアミド樹脂Dのペレットを乾式で混合して射出成形機ホッパーにより再ペレット化するドライブレンド法、もしくは、ポリアミド樹脂Cとポリアミド樹脂Dを溶融押出しして再ペレット化するメルトブレンド法のいずれによっても製造することができる。なお、用途、使用条件、機械的性能等に応じて適切な配合処方が選択される。   The mixed resin B is a dry blending method in which the pellets of the polyamide resin C and the polyamide resin D are dry-mixed and re-pelletized by an injection molding machine hopper, or the polyamide resin C and the polyamide resin D are melt-extruded and re-pelletized. It can be produced by any of the following melt blending methods. It should be noted that an appropriate compounding recipe is selected according to the application, use conditions, mechanical performance, and the like.

混合樹脂B中のポリアミド樹脂Cとポリアミド樹脂Dの重量比は、99.5/0.5〜80/20、好ましくは99/1〜85/15、さらに好ましくは95/5〜90/10である。ポリアミド樹脂Dの重量比が0.5%より小さいと、顕著な耐剥離性改善効果が得られない。また、ポリアミド樹脂Dの重量比が20%を超えると耐剥離性改善に効果は見られるがポリアミド樹脂Cの良好なバリア性が多層容器に寄与されず実用的ではない。   The weight ratio between the polyamide resin C and the polyamide resin D in the mixed resin B is 99.5 / 0.5 to 80/20, preferably 99/1 to 85/15, and more preferably 95/5 to 90/10. is there. If the weight ratio of the polyamide resin D is less than 0.5%, a remarkable effect of improving peel resistance cannot be obtained. When the weight ratio of the polyamide resin D exceeds 20%, the effect of improving the peeling resistance can be seen, but the good barrier property of the polyamide resin C does not contribute to the multilayer container and is not practical.

混合樹脂Bは、層状珪酸塩を含んでいてもよい。層状珪酸塩は、0.25〜0.6の電荷密度を有する2−八面体型や3−八面体型の層状珪酸塩であり、2−八面体型としては、モンモリロナイト、バイデライト等、3−八面体型としてはヘクトライト、サボナイト等が挙げられる。これらの中でも、モンモリロナイトが好ましい。   The mixed resin B may contain a layered silicate. The layered silicate is a 2-octahedral or 3-octahedral layered silicate having a charge density of 0.25 to 0.6. Examples of the 2-octahedral type include montmorillonite and beidellite. Hectorite, savonite, etc. are mentioned as an octahedron type. Among these, montmorillonite is preferred.

高分子化合物や有機系化合物等の有機膨潤化剤を予め層状珪酸塩に接触させて、層状珪酸塩の層間を拡げることが好ましい。有機膨潤化剤としては、第4級アンモニウム塩が好ましく使用できるが、より好ましくは、炭素数12以上のアルキル基又はアルケニル基を少なくとも一つ以上有する第4級アンモニウム塩が用いられる。   It is preferable that an organic swelling agent such as a polymer compound or an organic compound is brought into contact with the layered silicate in advance to expand the interlayer of the layered silicate. As the organic swelling agent, a quaternary ammonium salt can be preferably used, and more preferably, a quaternary ammonium salt having at least one alkyl group or alkenyl group having 12 or more carbon atoms is used.

有機膨潤化剤の具体例として、トリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、トリメチルエイコシルアンモニウム塩等のトリメチルアルキルアンモニウム塩;トリメチルオクタデセニルアンモニウム塩、トリメチルオクタデカジエニルアンモニウム塩等のトリメチルアルケニルアンモニウム塩;トリエチルドデシルアンモニウム塩、トリエチルテトラデシルアンモニウム塩、トリエチルヘキサデシルアンモニウム塩、トリエチルオクタデシルアンモニウム塩等のトリエチルアルキルアンモニウム塩;トリブチルドデシルアンモニウム塩、トリブチルテトラデシルアンモニウム塩、トリブチルヘキサデシルアンモニウム塩、トリブチルオクタデシルアンモニウム塩等のトリブチルアルキルアンモニウム塩;ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩等のジメチルジアルキルアンモニウム塩;ジメチルジオクタデセニルアンモニウム塩、ジメチルジオクタデカジエニルアンモニウム塩等のジメチルジアルケニルアンモニウム塩;ジエチルジドデジルアンモニウム塩、ジエチルジテトラデシルアンモニウム塩、ジエチルジヘキサデシルアンモニウム塩、ジエチルジオクタデシルアンモニウム塩等のジエチルジアルキルアンモニウム塩;ジブチルジドデシルアンモニウム塩、ジブチルジテトラデシルアンモニウム塩、ジブチルジヘキサデシルアンモニウム塩、ジブチルジオクタデシルアンモニウム塩等のジブチルジアルキルアンモニウム塩;メチルベンジルジヘキサデシルアンモニウム塩等のメチルベンジルジアルキルアンモニウム塩;ジベンジルジヘキサデシルアンモニウム塩等のジベンジルジアルキルアンモニウム塩;トリドデシルメチルアンモニウム塩、トリテトラデシルメチルアンモニウム塩、トリオクタデシルメチルアンモニウム塩等のトリアルキルメチルアンモニウム塩;トリドデシルエチルアンモニウム塩等のトリアルキルエチルアンモニウム塩;トリドデシルブチルアンモニウム塩等のトリアルキルブチルアンモニウム塩;4−アミノ−n−酪酸、6−アミノ−n−カプロン酸、8−アミノカプリル酸、10−アミノデカン酸、12−アミノドデカン酸、14−アミノテトラデカン酸、16−アミノヘキサデカン酸、18−アミノオクタデカン酸等のω−アミノ酸などが挙げられる。また、水酸基及び/又はエーテル基含有のアンモニウム塩、中でも、メチルジヒドロキシエチル水素化牛脂アンモニウム塩、および、メチルジアルキル(PAG)アンモニウム塩、エチルジアルキル(PAG)アンモニウム塩、ブチルジアルキル(PAG)アンモニウム塩、ジメチルビス(PAG)アンモニウム塩、ジエチルビス(PAG)アンモニウム塩、ジブチルビス(PAG)アンモニウム塩、メチルアルキルビス(PAG)アンモニウム塩、エチルアルキルビス(PAG)アンモニウム塩、ブチルアルキルビス(PAG)アンモニウム塩、メチルトリ(PAG)アンモニウム塩、エチルトリ(PAG)アンモニウム塩、ブチルトリ(PAG)アンモニウム塩、テトラ(PAG)アンモニウム塩(ただし、アルキルはドデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシルなどの炭素数12以上のアルキル基を表し、PAGはポリアルキレングリコール残基、好ましくは、炭素数20以下のポリエチレングリコール残基またはポリプロピレングリコール残基を表す)などの少なくとも一のアルキレングリコール残基を含有する4級アンモニウム塩も有機膨潤化剤として使用することができる。中でもトリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩、メチルジヒドロキシエチル水素化牛脂アンモニウム塩が好ましい。なお、これらの有機膨潤化剤は、単独でも複数種類の混合物としても使用できる。   Specific examples of the organic swelling agent include trimethyl alkyl ammonium salts such as trimethyl dodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt and trimethyl eicosyl ammonium salt; trimethyl octadecenyl ammonium salt Triethylalkenyl ammonium salts such as trimethyl octadecadienylammonium salt; triethyl alkyl ammonium salts such as triethyl dodecyl ammonium salt, triethyl tetradecyl ammonium salt, triethyl hexadecyl ammonium salt, triethyl octadecyl ammonium salt; tributyl dodecyl ammonium salt, tributyl tetra Decyl ammonium salt, tributyl hexadecyl ammonium salt, Tributyl alkyl ammonium salts such as butyl octadecyl ammonium salt; dimethyl dialkyl ammonium salts such as dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl ditallow ammonium salt; dimethyl Dimethyldialkenyl ammonium salts such as dioctadecenyl ammonium salt and dimethyldioctadecadienylammonium salt; diethyldidodecylammonium salt, diethylditetradecylammonium salt, diethyldihexadecylammonium salt, diethyldioctadecylammonium salt and the like A diethyldialkylammonium salt; dibutyldidodecylammonium salt, dibutylditetradecylammonium salt, Dibutyl dialkyl ammonium salts such as butyl dihexadecyl ammonium salt and dibutyl dioctadecyl ammonium salt; methyl benzyl dialkyl ammonium salts such as methyl benzyl dihexadecyl ammonium salt; dibenzyl dialkyl ammonium salts such as dibenzyl dihexadecyl ammonium salt; Trialkylmethylammonium salts such as dodecylmethylammonium salt, tritetradecylmethylammonium salt and trioctadecylmethylammonium salt; trialkylethylammonium salts such as tridodecylethylammonium salt; trialkylbutylammonium salts such as tridodecylbutylammonium salt 4-amino-n-butyric acid, 6-amino-n-caproic acid, 8-aminocaprylic acid, 10-aminodecanoic acid, 12-amino Ω-amino acids such as dodecanoic acid, 14-aminotetradecanoic acid, 16-aminohexadecanoic acid and 18-aminooctadecanoic acid. Further, a hydroxyl group and / or an ether group-containing ammonium salt, in particular, methyl dihydroxyethyl hydrogenated tallow ammonium salt, and methyl dialkyl (PAG) ammonium salt, ethyl dialkyl (PAG) ammonium salt, butyl dialkyl (PAG) ammonium salt, Dimethylbis (PAG) ammonium salt, diethylbis (PAG) ammonium salt, dibutylbis (PAG) ammonium salt, methylalkylbis (PAG) ammonium salt, ethylalkylbis (PAG) ammonium salt, butylalkylbis (PAG) ammonium salt, methyltrimethylbis (PAG) ammonium salt (PAG) ammonium salt, ethyltri (PAG) ammonium salt, butyltri (PAG) ammonium salt, tetra (PAG) ammonium salt (where alkyl is dodecyl or tetradecyl) , Hexadecyl, octadecyl, eicosyl, etc., represents an alkyl group having 12 or more carbon atoms, and PAG represents a polyalkylene glycol residue, preferably a polyethylene glycol residue or a polypropylene glycol residue having 20 or less carbon atoms. A quaternary ammonium salt containing an alkylene glycol residue of can also be used as an organic swelling agent. Among them, trimethyl dodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl Ditallow ammonium salts and methyldihydroxyethyl hydrogenated tallow ammonium salts are preferred. In addition, these organic swelling agents can be used alone or as a mixture of plural kinds.

混合樹脂B中の有機膨潤化剤で処理した層状珪酸塩の配合割合は、ポリアミド樹脂Cとポリアミド樹脂Dの合計量に対して0.5〜8重量%が好ましく、1.5〜5重量%がさらに好ましい。有機膨潤化剤で処理した層状珪酸塩の配合割合が上記範囲内であれば、炭酸ガス、酸素等のガスバリア性の向上効果を得ることができ、かつ透明性を損なうことはない。   The compounding ratio of the layered silicate treated with the organic swelling agent in the mixed resin B is preferably 0.5 to 8% by weight, more preferably 1.5 to 5% by weight based on the total amount of the polyamide resin C and the polyamide resin D. Is more preferred. When the mixing ratio of the layered silicate treated with the organic swelling agent is within the above range, the effect of improving the gas barrier properties of carbon dioxide, oxygen and the like can be obtained, and the transparency is not impaired.

有機膨潤化剤で処理した層状珪酸塩は、局所的に凝集することなく混合樹脂B中に均一に分散していることが好ましい。ここでいう均一分散とは、混合樹脂B中において層状珪酸塩が平板状に分離し、それらの50%以上が5nm以上の層間距離を有することをいう。ここで層間距離とは平板状物の重心間距離のことをいう。この距離が大きい程分散状態が良好となり、成形品の透明性等の外観が良好になり、かつ酸素、炭酸ガス等のガス状物質に対する遮断性が向上する。   It is preferable that the layered silicate treated with the organic swelling agent is uniformly dispersed in the mixed resin B without local aggregation. The term “uniform dispersion” as used herein means that the layered silicate is separated into a plate shape in the mixed resin B, and 50% or more of them has an interlayer distance of 5 nm or more. Here, the interlayer distance refers to the distance between the centers of gravity of the flat objects. The greater the distance, the better the dispersion state, the better the appearance such as the transparency of the molded product, and the better the barrier property against gaseous substances such as oxygen and carbon dioxide.

有機膨潤化剤で処理した層状珪酸塩を混合樹脂B中に分散させる方法としては、特に制限はない。例えば、ポリアミド樹脂C及び/又はポリアミド樹脂D製造のための重縮合中に有機膨潤化剤で処理した層状珪酸塩を添加し攪拌する方法、単軸もしくは2軸押出機等の通常用いられる種々の押出機を用いてポリアミド樹脂C及び/又はポリアミド樹脂Dと有機膨潤化剤で処理した層状珪酸塩を溶融混練する方法等の公知の方法を利用することができる。これらのなかでも、2軸押出機を用いて溶融混練する方法が本発明において好ましい方法である。   The method for dispersing the layered silicate treated with the organic swelling agent in the mixed resin B is not particularly limited. For example, a method of adding and stirring a layered silicate treated with an organic swelling agent during polycondensation for the production of polyamide resin C and / or polyamide resin D, and various commonly used methods such as a single screw or twin screw extruder A known method such as a method of melting and kneading the layered silicate treated with the polyamide resin C and / or the polyamide resin D and the organic swelling agent using an extruder can be used. Among these, a method of melt-kneading using a twin-screw extruder is a preferred method in the present invention.

2軸押出機を使用して溶融混練する場合は、溶融混練温度をポリアミド樹脂の融点付近〜融点+60℃の範囲に設定し、できるだけ押出機内での樹脂の滞留時間を短くするのが好ましい。また、押出機内に設置されるスクリューにはポリアミド樹脂と有機膨潤化剤で処理した層状珪酸塩を混合する部位が設けられるが、その部分には逆目スクリューエレメントやニーディングディスク等の部品を組み合わせたものを使用すると効率良く層状珪酸塩が分散しやすくなる。   When melt-kneading using a twin-screw extruder, it is preferable to set the melt-kneading temperature in the range from the vicinity of the melting point of the polyamide resin to the melting point + 60 ° C. so as to minimize the residence time of the resin in the extruder. In addition, the screw installed in the extruder is provided with a part for mixing the layered silicate treated with the polyamide resin and the organic swelling agent, and this part is combined with parts such as a reverse screw element and a kneading disk. The use of such a material facilitates efficient dispersion of the layered silicate.

溶融混練法において、ポリアミド樹脂CまたはDの溶融粘度が低すぎると層状珪酸塩が分散しにくく、その凝集体が生じやすく、成形した際に外観が損なわれる。また、溶融粘度が高すぎると溶融混練を行う際に特別な装置を必要とすることがある。溶融粘度を適切に制御することで(例えば、ポリアミド樹脂Cの溶融粘度を200〜1000Pa・s、ポリアミド樹脂Dの溶融粘度を100〜900Pa・sに制御する)、押出混練時に樹脂に適度な圧力がかかるため層状珪酸塩の分散性が向上し、射出成形や押出成形時に成形しやすくなる。   In the melt kneading method, if the melt viscosity of the polyamide resin C or D is too low, the layered silicate is difficult to disperse, aggregates thereof are easily generated, and the appearance is impaired when molded. If the melt viscosity is too high, a special device may be required when performing melt kneading. By appropriately controlling the melt viscosity (for example, controlling the melt viscosity of the polyamide resin C to 200 to 1000 Pa · s and the melt viscosity of the polyamide resin D to 100 to 900 Pa · s), an appropriate pressure is applied to the resin during extrusion kneading. However, the dispersibility of the layered silicate is improved, and the silicate is easily formed at the time of injection molding or extrusion molding.

ポリアミド樹脂Cおよびポリアミド樹脂Dの水分率は0.2%未満であることが好ましい。水分率が0.2%以上であると、溶融混練時に有機膨潤化剤で処理した層状珪酸塩の分散性が低下するだけでなく、ポリアミド樹脂の分子量が大きく低下したり、成形品にゲル状物が生じやすくなるので好ましくない。   The moisture content of the polyamide resin C and the polyamide resin D is preferably less than 0.2%. When the water content is 0.2% or more, not only does the dispersibility of the layered silicate treated with the organic swelling agent during melt-kneading decrease, but also the molecular weight of the polyamide resin significantly decreases, or the molded product becomes gel-like. It is not preferable because a product is easily generated.

混合樹脂Bは、元素周期律表の第VIII族の遷移金属、マンガン、銅及び亜鉛から選択された一種以上の金属元素を含んでいてもよい。該金属元素を含むことにより、混合樹脂Bの酸化が促進され、酸素吸収機能が発現する。   The mixed resin B may include one or more metal elements selected from transition metals of Group VIII of the periodic table, manganese, copper, and zinc. By containing the metal element, the oxidation of the mixed resin B is promoted, and the oxygen absorbing function is exhibited.

金属元素は、該金属元素の低酸価数の無機酸塩、有機酸塩又は錯塩(以下、金属触媒化合物と総称する)としてポリアミド樹脂Cおよびポリアミド樹脂Dに添加することが好ましい。無機酸塩としては、塩化物や臭化物等のハロゲン化物、硫酸塩、硝酸塩、リン酸塩、ケイ酸塩等が挙げられる。有機酸塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩等が挙げられる。錯塩としては、β−ジケトン、β−ケト酸エステル等との遷移金属錯体が挙げられる。酸素吸収機能が良好であるので、前記金属元素のカルボン酸塩、ハロゲン化物、アセチルアセトネート錯体を使用することが好ましく、ステアリン酸塩、酢酸塩又はアセチルアセトネート錯体を使用することがさらに好ましい。また、金属元素としてはコバルトが特に酸素吸収機能に優れているので好ましい。上記金属触媒化合物は、1種または2種以上を添加することができる。   The metal element is preferably added to the polyamide resin C and the polyamide resin D as an inorganic acid salt, an organic acid salt or a complex salt having a low acid value of the metal element (hereinafter collectively referred to as a metal catalyst compound). Examples of the inorganic acid salts include halides such as chlorides and bromides, sulfates, nitrates, phosphates, silicates, and the like. Examples of the organic acid salt include carboxylate, sulfonate, phosphonate and the like. Examples of the complex salt include a transition metal complex with β-diketone, β-keto acid ester and the like. Since the oxygen absorbing function is good, it is preferable to use a carboxylate, halide or acetylacetonate complex of the metal element, and it is more preferable to use a stearate, acetate or acetylacetonate complex. Further, cobalt is preferable as the metal element because it is particularly excellent in the oxygen absorbing function. One or more kinds of the metal catalyst compounds can be added.

金属元素の添加量は、ポリアミド樹脂Cとポリアミド樹脂Dの合計量に対して0.01〜0.10重量%が好ましく、より好ましくは0.02〜0.08重量%である。添加量が0.01重量%より少ない場合、酸素吸収機能が十分に発現せず、多層容器の酸素バリア性の向上効果も低くなる。また0.10重量%より多く添加しても、多層容器の酸素バリア性効果はそれ以上向上せず、不経済である。   The addition amount of the metal element is preferably 0.01 to 0.10% by weight, more preferably 0.02 to 0.08% by weight, based on the total amount of the polyamide resin C and the polyamide resin D. When the addition amount is less than 0.01% by weight, the oxygen absorbing function is not sufficiently exhibited, and the effect of improving the oxygen barrier property of the multilayer container is reduced. Further, even if added in an amount of more than 0.10% by weight, the oxygen barrier effect of the multilayer container is not further improved, which is uneconomical.

本発明の多層容器では、パリソンと容器の形状によっては低延伸倍率(1〜2.5 倍)の部分が生じることがある。低延伸倍率部の中間層が吸水すると白化することがある。必要に応じて混合樹脂Bに白化防止剤を添加することにより白化が抑制され透明性の良好な多層容器が得られる。   In the multilayer container of the present invention, a portion having a low draw ratio (1 to 2.5 times) may be generated depending on the shape of the parison and the container. When the intermediate layer in the low stretch ratio portion absorbs water, it may be whitened. If necessary, by adding a whitening inhibitor to the mixed resin B, whitening is suppressed and a multilayer container having good transparency can be obtained.

本発明に用いる白化防止剤は、炭素数18〜50、好ましくは18〜34の脂肪酸金属塩である。炭素数が18以上で白化防止が期待できる。また、炭素数が50以下であると混合樹脂B中への均一分散が良好となる。脂肪酸は側鎖や二重結合があってもよいが、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)などの直鎖飽和脂肪酸が好ましい。脂肪酸と塩を形成する金属に特に制限はないが、ナトリウム、カリウム、リチウム、カルシウム、バリウム、マグネシウム、ストロンチウム、アルミニウム、亜鉛等が例示され、ナトリウム、カリウム、リチウム、カルシウム、アルミニウム、および亜鉛が特に好ましい。   The anti-whitening agent used in the present invention is a fatty acid metal salt having 18 to 50 carbon atoms, preferably 18 to 34 carbon atoms. Prevention of whitening can be expected with 18 or more carbon atoms. When the carbon number is 50 or less, the uniform dispersion in the mixed resin B becomes good. The fatty acid may have a side chain or a double bond, but may be a linear saturated fatty acid such as stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanic acid (C30). Fatty acids are preferred. There is no particular limitation on the metal forming a salt with the fatty acid, but sodium, potassium, lithium, calcium, barium, magnesium, strontium, aluminum, zinc and the like are exemplified, and sodium, potassium, lithium, calcium, aluminum, and zinc are particularly preferable. preferable.

脂肪酸金属塩は、1種類でもよいし、2種以上を併用してもよい。本発明では、脂肪酸金属塩の粒径に特に制限はないが、粒径が小さい方が混合樹脂B中に均一に分散することが容易になるため、粒径は0.2mm以下が好ましい。   The fatty acid metal salts may be used alone or in combination of two or more. In the present invention, the particle size of the fatty acid metal salt is not particularly limited, but the smaller the particle size, the easier it is to disperse uniformly in the mixed resin B, so the particle size is preferably 0.2 mm or less.

脂肪酸金属塩の添加量は、ポリアミド樹脂Cとポリアミド樹脂Dの合計量100重量部に対して好ましくは0.005〜1.0重量部、より好ましくは0.05〜0.5重量部、特に好ましくは0.12〜0.5重量部である。合計量100重量部に対して0.005重量部以上添加することにより白化防止効果が期待できる。また、添加量が合計量100重量部に対して1.0重量部以下であると得られる多層容器の曇価を低く保つことが可能となる。   The amount of the fatty acid metal salt to be added is preferably 0.005 to 1.0 part by weight, more preferably 0.05 to 0.5 part by weight, and particularly preferably 0.05 to 0.5 part by weight, based on 100 parts by weight of the total amount of the polyamide resin C and the polyamide resin D. Preferably it is 0.12-0.5 weight part. By adding 0.005 parts by weight or more to the total amount of 100 parts by weight, a whitening preventing effect can be expected. Further, when the added amount is 1.0 part by weight or less with respect to the total amount of 100 parts by weight, it is possible to keep the haze value of the obtained multilayer container low.

上記脂肪酸金属塩の代わりに、下記のジアミド化合物およびジエステル化合物から選ばれた化合物を白化防止剤として添加してもよい。1種または2種以上のジアミド化合物を添加してもよいし、1種または2種以上のジエステル化合物を添加してもよいし、1種または2種以上のジアミド化合物と1種または2種以上のジエステル化合物を併用してもよい。   Instead of the fatty acid metal salt, a compound selected from the following diamide compounds and diester compounds may be added as a whitening inhibitor. One or two or more diamide compounds may be added, one or two or more diester compounds may be added, and one or two or more diamide compounds and one or two or more diamide compounds may be added. May be used in combination.

ジアミド化合物は、炭素数8〜30の脂肪酸と炭素数2〜10のジアミンから得られる。脂肪酸の炭素数が8以上、ジアミンの炭素数が2以上であると白化防止効果が期待できる。また、脂肪酸の炭素数が30以下、ジアミンの炭素数が10以下であると混合樹脂B中への均一分散が良好となる。脂肪酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪酸が好ましい。   The diamide compound is obtained from a fatty acid having 8 to 30 carbon atoms and a diamine having 2 to 10 carbon atoms. When the fatty acid has 8 or more carbon atoms and the diamine has 2 or more carbon atoms, a whitening preventing effect can be expected. When the fatty acid has 30 or less carbon atoms and the diamine has 10 or less carbon atoms, the uniform dispersion in the mixed resin B is good. Fatty acids may have side chains or double bonds, but straight-chain saturated fatty acids are preferred.

ジアミド化合物の脂肪酸成分として、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)が例示できる。ジアミド化合物のジアミン成分として、エチレンジアミン、ブチレンジアミン、ヘキサンジアミン、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン等が例示できる。これらを組み合わせて得られるジアミド化合物が本発明に用いられる。炭素数8〜30の脂肪酸と主としてエチレンジアミンから成るジアミンから得られるジアミド化合物、または主としてモンタン酸からなる脂肪酸と炭素数2〜10のジアミンから得られるジアミド化合物が好ましい。
ジエステル化合物は、炭素数8〜30の脂肪酸と炭素数2〜10のジオールから得られる。脂肪酸の炭素数が8以上、ジオールの炭素数が2以上であると白化防止効果が期待できる。また、脂肪酸の炭素数が30以下、ジオールの炭素数が10以下であると混合樹脂B中への均一分散が良好となる。脂肪酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪酸が好ましい。
Examples of the fatty acid component of the diamide compound include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanic acid (C30). Examples of the diamine component of the diamide compound include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamide compound obtained by combining these is used in the present invention. A diamide compound obtained from a fatty acid having 8 to 30 carbon atoms and a diamine mainly composed of ethylenediamine, or a diamide compound obtained mainly from a fatty acid mainly composed of montanic acid and a diamine having 2 to 10 carbon atoms is preferable.
The diester compound is obtained from a fatty acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms. When the fatty acid has 8 or more carbon atoms and the diol has 2 or more carbon atoms, an anti-whitening effect can be expected. When the fatty acid has 30 or less carbon atoms and the diol has 10 or less carbon atoms, the uniform dispersion in the mixed resin B is good. Fatty acids may have side chains or double bonds, but straight-chain saturated fatty acids are preferred.

ジエステル化合物の脂肪酸成分として、ステアリン酸(C18)、エイコ酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。ジエステル化合物のジオール成分として、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、キシリレングリコール、シクロヘキサンジメタノール等が例示できる。これらを組み合わせて得られるジエステル化合物が本発明に用いられる。主としてモンタン酸からなる脂肪酸と主としてエチレングリコールおよび/または1,3−ブタンジオールからなるジオールから得られるジエステル化合物が特に好ましい。   Examples of the fatty acid component of the diester compound include stearic acid (C18), eicoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanic acid (C30). Examples of the diol component of the diester compound include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol. A diester compound obtained by combining these is used in the present invention. Diester compounds obtained mainly from fatty acids mainly consisting of montanic acid and diols mainly consisting of ethylene glycol and / or 1,3-butanediol are particularly preferred.

ジアミド化合物および/またはジエステル化合物の添加量は、ポリアミド樹脂Cとポリアミド樹脂Dの合計量100重量部に対して好ましくは0.005〜1.0重量部、より好ましくは0.05〜0.5重量部、特に好ましくは0.12〜0.5重量部である。合計量100重量部に対して0.005重量部以上添加することにより白化防止効果が期待できる。また、添加量が合計量100重量部に対して1.0重量部以下であると、得られる多層容器の曇価を低く保つことが可能となる。   The addition amount of the diamide compound and / or the diester compound is preferably 0.005 to 1.0 part by weight, more preferably 0.05 to 0.5 part by weight, based on 100 parts by weight of the total amount of the polyamide resin C and the polyamide resin D. Parts by weight, particularly preferably 0.12 to 0.5 parts by weight. By adding 0.005 parts by weight or more to the total amount of 100 parts by weight, a whitening preventing effect can be expected. When the added amount is 1.0 part by weight or less based on 100 parts by weight in total, it is possible to keep the haze value of the obtained multilayer container low.

混合樹脂Bへの白化防止剤の添加は従来から公知の混合法を適用できる。たとえば、回転中空容器内にポリアミド樹脂CおよびDのペレット、金属触媒化合物、白化防止剤を投入し混合して使用してもよい。また、高濃度の白化防止剤を含有するポリアミド樹脂組成物を製造した後、白化防止剤を含有しないポリアミド樹脂ペレットで所定の濃度で希釈し、これを溶融混練する方法、溶融混連後、引き続き、射出成形などにより成形する方法などが採用される。   A conventionally known mixing method can be applied to the addition of the whitening inhibitor to the mixed resin B. For example, pellets of the polyamide resins C and D, a metal catalyst compound, and a whitening inhibitor may be charged and mixed in a rotating hollow container. Also, after producing a polyamide resin composition containing a high concentration of anti-whitening agent, diluted with polyamide resin pellets containing no anti-whitening agent at a predetermined concentration, a method of melt-kneading this, after melt-blending, and subsequently And a method of molding by injection molding or the like.

白化防止剤を使用した場合、多層容器を製造した直後に混合樹脂Bからなる中間層が白化するのを防止することができる。また、白化しない、あるいは白化が増大しない条件で多層容器を長期保存した後に、混合樹脂Bからなる中間層が白化するのを防止することができる。すなわち、白化防止剤を添加しなくとも白化しない、あるいは白化が増大しない条件、たとえば温度23℃、湿度50%RH雰囲気下に長期保存した後に、多層容器を高湿度にさらしたり、水や沸騰水と接触させたり、あるいはガラス転移温度以上に加熱しても成形直後と同様に白化が抑制される。   When the whitening inhibitor is used, it is possible to prevent the intermediate layer made of the mixed resin B from whitening immediately after the production of the multilayer container. Further, it is possible to prevent the intermediate layer made of the mixed resin B from being whitened after the multilayer container is stored for a long time under the condition that the whitening does not occur or the whitening does not increase. That is, after the container is not whitened without adding a whitening inhibitor or does not increase whitening, for example, after long-term storage in an atmosphere at a temperature of 23 ° C. and a humidity of 50% RH, the multilayer container is exposed to high humidity, water or boiling water. , Or heating above the glass transition temperature suppresses whitening in the same manner as immediately after molding.

本発明の多層容器は2つの射出シリンダーを有する射出成形機を使用して、ポリエステル樹脂Aとガスバリア性を有する混合樹脂Bとをスキン側、コア側それぞれの射出シリンダーから金型ホットランナーを通して金型キャビティー内に射出して得られた多層パリソンを更に2軸延伸ブロー成形することにより得られる。多層パリソンのブロー成形は従来公知の方法で行えばよく、例えば、多層パリソンの表面を80〜120℃に加熱した後にブロー成形する方法、多層パリソンの口部を結晶化させ、表面を80〜120℃に加熱した後に90〜150℃の金型内でブロー成形する方法が採用される。ブロー圧は、通常、2〜4MPaである。   The multilayer container of the present invention uses an injection molding machine having two injection cylinders, and molds the polyester resin A and the mixed resin B having gas barrier properties from the injection cylinders on the skin side and the core side through a mold hot runner and a mold. The multilayer parison obtained by injecting into the cavity is further obtained by biaxially stretch blow molding. The blow molding of the multilayer parison may be performed by a conventionally known method. For example, a method of heating the surface of the multilayer parison to 80 to 120 ° C. followed by blow molding, crystallizing the mouth of the multilayer parison, and forming the surface of the multilayer parison to 80 to 120 A method of heating to 90 ° C. and then blow molding in a mold at 90 to 150 ° C. is employed. The blow pressure is usually 2 to 4 MPa.

スキン側射出シリンダーから最内層および最外層を構成するポリエステル樹脂Aを射出し、コア側射出シリンダーから中間層を構成する混合樹脂Bを射出する工程で、先ず、ポリエステル樹脂Aを射出し、次いで混合樹脂Bとポリエステル樹脂Aを同時に射出し、次にポリエステル樹脂Aを必要量射出して金型キャビティーを満たすことにより3層構造(ポリエステル樹脂A/混合樹脂B/ポリエステル樹脂A)の多層パリソンが製造できる。   In the step of injecting the polyester resin A constituting the innermost layer and the outermost layer from the skin side injection cylinder and injecting the mixed resin B constituting the intermediate layer from the core side injection cylinder, first inject the polyester resin A, and then mix The resin B and the polyester resin A are simultaneously injected, and then the required amount of the polyester resin A is injected to fill the mold cavity, thereby forming a multilayer parison having a three-layer structure (polyester resin A / mixed resin B / polyester resin A). Can be manufactured.

スキン側射出シリンダーから最内層および最外層を構成するポリエステル樹脂Aを射出し、コア側射出シリンダーから中間層を構成する混合樹脂Bを射出する工程で、先ずポリエステル樹脂Aを射出し、次いで混合樹脂Bを単独で射出し、最後にポリエステル樹脂Aを射出して金型キャビティーを満たすことにより、5層構造(ポリエステル樹脂A/混合樹脂B/ポリエステル樹脂A/混合樹脂B/ポリエステル樹脂A)の多層パリソンが製造できる。なお、多層パリソンを製造する方法は、上記方法だけに限定されるものではない。   In the step of injecting the polyester resin A constituting the innermost layer and the outermost layer from the skin-side injection cylinder and injecting the mixed resin B constituting the intermediate layer from the core-side injection cylinder, first inject the polyester resin A, then the mixed resin B alone is injected, and finally polyester resin A is injected to fill the mold cavity, thereby forming a five-layer structure (polyester resin A / mixed resin B / polyester resin A / mixed resin B / polyester resin A). Multi-layer parisons can be manufactured. The method for producing the multilayer parison is not limited to the above method.

多層容器中の、ポリエステル樹脂Aからなる層の厚さは0.01〜1.0mmであるのが好ましく、混合樹脂Bからなる層の厚さは0.005〜0.2mmであるのが好ましい。また、多層容器の厚さは容器全体で一定である必要はなく、通常、0.2〜1.0mmの範囲である。   In the multilayer container, the thickness of the layer made of the polyester resin A is preferably 0.01 to 1.0 mm, and the thickness of the layer made of the mixed resin B is preferably 0.005 to 0.2 mm. . Further, the thickness of the multilayer container does not need to be constant throughout the container, and is generally in the range of 0.2 to 1.0 mm.

多層パリソンを2軸延伸ブロー成形して得られる多層容器において、少なくとも多層容器の胴部に混合樹脂Bからなる中間層が存在していればガスバリア性能は発揮できるが、多層容器の口栓部先端付近まで中間層が延びている方がガスバリア性能は更に良好である。   In a multilayer container obtained by biaxially stretch-blow-molding a multilayer parison, gas barrier properties can be exhibited if at least an intermediate layer made of the mixed resin B is present in the body of the multilayer container. The gas barrier performance is better when the intermediate layer extends to the vicinity.

本発明の多層容器において混合樹脂Bからなる層の重量は、多層容器総重量に対して1〜20重量%とすることが好ましく、より好ましくは2〜15重量%である。混合樹脂Bからなる層の重量が1重量%より少ないと多層容器のガスバリア性が十分でなくなることがあるため好ましくない。また混合樹脂Bからなる層の重量が20重量%より多いと前駆体である多層パリソンを多層容器に成形しにくくなることがあるため好ましくない。   In the multilayer container of the present invention, the weight of the layer made of the mixed resin B is preferably 1 to 20% by weight, more preferably 2 to 15% by weight, based on the total weight of the multilayer container. If the weight of the layer made of the mixed resin B is less than 1% by weight, the gas barrier properties of the multilayer container may be insufficient, which is not preferable. On the other hand, if the weight of the layer composed of the mixed resin B is more than 20% by weight, it may be difficult to mold the multilayer parison as a precursor into a multilayer container, which is not preferable.

本発明の多層容器は、落下や衝撃による層間剥離が起こりにくい。また、凹凸部、屈曲部を含む形状であっても層間剥離が起こりにくいので、多層容器の形状は凹凸部、屈曲部の少ない形状に限定されず、デザイン自由度が大きくなる。本発明の多層容器は、例えば、炭酸飲料、ジュース、水、牛乳、日本酒、ウイスキー、焼酎、コーヒー、茶、ゼリー飲料、健康飲料等の液体飲料、調味液、ソース、醤油、ドレッシング、液体だし等の調味料、液体スープ等の液体系食品、液状の医薬品、化粧水、化粧乳液、整髪料、染毛剤、シャンプー等、種々の物品の収納、保存に好適である。   In the multilayer container of the present invention, delamination due to drop or impact hardly occurs. In addition, since delamination hardly occurs even in a shape including an uneven portion and a bent portion, the shape of the multilayer container is not limited to a shape having few uneven portions and bent portions, and the degree of freedom in design is increased. The multilayer container of the present invention includes, for example, liquid beverages such as carbonated beverages, juices, water, milk, sake, whiskey, shochu, coffee, tea, jelly beverages, health beverages, seasonings, sauces, soy sauce, dressings, liquid soups, and the like. It is suitable for storing and storing various articles such as liquid seasonings, liquid foods such as liquid soups, liquid medicines, lotions, lotions, hair styling agents, hair dyes, shampoos and the like.

以下実施例及び比較例により、本発明を更に詳細に説明するが本発明はこれら実施例に限定されるものではない。実施例等で測定した特性の測定法を以下に示す。
(1)ポリエチレンテレフタレートの固有粘度[η]:フェノール/テトラクロロエタン=6/4(重量比)の混合溶媒を使用。測定温度30℃。
(2)ポリアミドMXD6の相対粘度[ηrel]:樹脂1g/96%硫酸100ml、測定温度25℃。
(3)溶解度指数の算出:Small法により計算(日本接着協会誌、Vol.22、No.10、p.51(1986)参照。)。
(4)ガラス転移温度:島津製作所製の熱流束示差走査熱量計(型式:DSC−50)により測定。昇温速度10℃/min
(5)曇価:JIS K−7105、ASTM D1003に準じて、日本電色工業社製の曇価測定装置(型式:COH−300A)により測定した。
(6)層間剥離性:容器の落下試験により評価した。
落下試験方法:多層容器に水を満たしキャップをした後、24時間静置した多層容器を落下させ層間剥離の有無を目視で判定した。多層容器は底部が床に接触するように垂直落下させた。落下高さ75cm。50本落下させたときの層間剥離したボトルの本数で層間剥離性を評価。
(7)多層容器の酸素透過率: 23℃、多層容器内部の相対湿度100%、外部の相対湿度50%の雰囲気下にてASTM D3985に準じて測定した。測定は、モダンコントロールズ社製、OX-TRAN 10/50Aを使用した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The method for measuring the characteristics measured in the examples and the like will be described below.
(1) Intrinsic viscosity [η] of polyethylene terephthalate: A mixed solvent of phenol / tetrachloroethane = 6/4 (weight ratio) is used. Measurement temperature 30 ° C.
(2) Relative viscosity [η rel ] of polyamide MXD6: 1 g of resin / 100 ml of 96% sulfuric acid, measurement temperature 25 ° C.
(3) Calculation of solubility index: Calculated by the Small method (see Journal of the Adhesion Society of Japan, Vol. 22, No. 10, p. 51 (1986)).
(4) Glass transition temperature: measured by a heat flux differential scanning calorimeter (model: DSC-50) manufactured by Shimadzu Corporation. Heating rate 10 ° C / min
(5) Haze value: Measured with a haze value measuring device (model: COH-300A) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K-7105 and ASTM D1003.
(6) Delamination property: evaluated by a drop test of a container.
Drop test method: After the multilayer container was filled with water and capped, the multilayer container left standing for 24 hours was dropped, and the presence or absence of delamination was visually determined. The multilayer container was dropped vertically so that the bottom contacted the floor. Fall height 75cm. The delamination property was evaluated by the number of delaminated bottles when 50 bottles were dropped.
(7) Oxygen permeability of multilayer container: Measured according to ASTM D3985 in an atmosphere of 23 ° C., relative humidity of 100% inside the multilayer container, and 50% relative humidity outside. For the measurement, OX-TRAN 10 / 50A manufactured by Modern Controls was used.

実施例1〜5および比較例1〜2に用いた多層容器は下記の方法で製造した。
3層パリソン形状:全長95mm、外径22mm、肉厚4.2mm。なお、3層パリソンの製造には、名機製作所(株)製の射出成形機(型式:M200、4個取り)を使用した。
3層パリソン成形条件
スキン側射出シリンダー温度:280℃
コア側射出シリンダー温度 :260℃
金型内樹脂流路温度 :280℃
金型冷却水温度 :15℃
パリソン中の混合樹脂Bの割合:8重量%
多層容器形状:全長223mm、外径65mm、内容積500ml、ポリエステル樹脂A層/混合樹脂B層/ポリエステル樹脂A層=0.28mm/0.056mm/0.10mm、底部形状はシャンパンタイプ。なお、2軸延伸ブロー成形はブロー成形機(クルップ コーポプラスト(KRUPP CORPOPLAST)社製、型式:LB−01)を使用した。
2軸延伸ブロー成形条件
パリソン加熱温度:100℃
ブロー圧力 :2.7MPa
The multilayer containers used in Examples 1 to 5 and Comparative Examples 1 and 2 were manufactured by the following method.
Three-layer parison shape: total length 95 mm, outer diameter 22 mm, wall thickness 4.2 mm. For the production of the three-layer parison, an injection molding machine (model: M200, four pieces) manufactured by Meiki Seisakusho Co., Ltd. was used.
Three-layer parison molding conditions Skin-side injection cylinder temperature: 280 ° C
Core side injection cylinder temperature: 260 ° C
Resin channel temperature in mold: 280 ° C
Mold cooling water temperature: 15 ° C
Ratio of mixed resin B in parison: 8% by weight
Multilayer container shape: total length 223 mm, outer diameter 65 mm, inner volume 500 ml, polyester resin A layer / mixed resin B layer / polyester resin A layer = 0.28 mm / 0.056 mm / 0.10 mm, bottom shape is champagne type. For the biaxial stretch blow molding, a blow molding machine (Model: LB-01, manufactured by KRUPP CORPLAST) was used.
Biaxial stretch blow molding conditions Parison heating temperature: 100 ° C
Blow pressure: 2.7 MPa

<実施例1>
下記の材料を使用し、3層構成の多層容器を成形した。
最内層および最外層
ポリエステル樹脂A:固有粘度が0.75のポリエチレンテレフタレート(日本ユニペット製 RT543C)。溶解度指数は11.1。
中間層
混合樹脂B:ポリアミド樹脂Cとポリアミド樹脂Dの90/10(重量比)ドライブレンド
ポリアミド樹脂C:相対粘度が2.70のポリアミドMXD6(三菱ガス化学製 MXナイロン S6007)。溶解度指数は13.0、ガラス転移温度は80℃。
ポリアミド樹脂D:ナイロン6IT(三井・デュポンポリケミカル(株)製 Selar PA 3426)。溶解度指数は12.6、ガラス転移温度は125℃。
層間剥離性の評価結果を表1に示す。
<Example 1>
The following materials were used to form a three-layered multilayer container.
Innermost layer and outermost layer Polyester resin A: polyethylene terephthalate having an intrinsic viscosity of 0.75 (RT543C manufactured by Nippon Unipet). The solubility index is 11.1.
Intermediate layer Mixed resin B: 90/10 (weight ratio) dry blend of polyamide resin C and polyamide resin D Polyamide resin C: polyamide MXD6 having a relative viscosity of 2.70 (MX nylon S6007 manufactured by Mitsubishi Gas Chemical). The solubility index is 13.0 and the glass transition temperature is 80 ° C.
Polyamide resin D: Nylon 6IT (Selar PA 3426 manufactured by DuPont-Mitsui Polychemicals). The solubility index is 12.6 and the glass transition temperature is 125 ° C.
Table 1 shows the evaluation results of the delamination property.

<実施例2>
ポリアミド樹脂Cとポリアミド樹脂Dを95/5(重量比)で混合した以外は実施例1と同様にして3層構成の多層容器を成形した。得られた3層容器の層間剥離性評価の結果を表1に示す。
<Example 2>
A three-layered multilayer container was molded in the same manner as in Example 1 except that the polyamide resin C and the polyamide resin D were mixed at a ratio of 95/5 (weight ratio). Table 1 shows the results of evaluating the delamination property of the obtained three-layer container.

<実施例3>
ポリアミド樹脂Cとポリアミド樹脂Dを99/1(重量比)で混合した以外は実施例1と同様にして3層構成の多層容器を成形した。得られた3層容器の層間剥離性の評価結果を表1に示す。
<Example 3>
A three-layered multilayer container was molded in the same manner as in Example 1 except that the polyamide resin C and the polyamide resin D were mixed at a ratio of 99/1 (weight ratio). Table 1 shows the evaluation results of the delamination property of the obtained three-layer container.

<比較例1>
ポリアミド樹脂Dは使用せず、中間層をポリアミド樹脂C単独で構成した以外は実施例1と同様にして3層構成の多層容器を成形した。得られた3層容器の層間剥離性の評価結果を表1に示す。
<Comparative Example 1>
A multilayer container having a three-layer structure was formed in the same manner as in Example 1 except that the polyamide resin D was not used and the intermediate layer was formed of the polyamide resin C alone. Table 1 shows the evaluation results of the delamination property of the obtained three-layer container.

Figure 2004351927
Figure 2004351927

<実施例4>
相対粘度が2.70のポリアミドMXD6(三菱ガス化学製 MXナイロン S6007)と有機膨潤化剤で処理した層状珪酸塩(クニミネ工業製「クニピア」、有機膨潤化剤としてオクタデシルアンモニウムを30重量%含有する層状珪酸塩)を97/3(重量比)でドライブレンドした。得られた混合物を、逆エレメントによる滞留部を有するスクリューを設置した、シリンダー径20mmの同方向回転型2軸押出機に6kg/hrの速度で供給し、シリンダー温度270℃の条件で溶融混練し、押出機ヘッドからストランド状に押し出し、冷却後、ペレット化した。これを、ポリアミド樹脂Cとして使用した以外は実施例2と同様にして3層構成の多層容器を成形した。得られた3層容器の酸素透過率、層間剥離性の評価結果を表2に示す。
<Example 4>
Layered silicate ("Kunipia" manufactured by Kunimine Industries) treated with polyamide MXD6 having a relative viscosity of 2.70 (MX Nylon S6007 manufactured by Mitsubishi Gas Chemical) and an organic swelling agent, containing 30% by weight of octadecyl ammonium as an organic swelling agent Layered silicate) was dry-blended at 97/3 (weight ratio). The obtained mixture is supplied at a rate of 6 kg / hr to a co-rotating twin-screw extruder having a cylinder diameter of 20 mm and having a screw having a retaining portion by an inverse element, and is melt-kneaded at a cylinder temperature of 270 ° C. The mixture was extruded from an extruder head into a strand, cooled, and pelletized. A multilayer container having a three-layer structure was formed in the same manner as in Example 2 except that this was used as the polyamide resin C. Table 2 shows the evaluation results of the oxygen permeability and the delamination property of the obtained three-layer container.

<実施例5>
相対粘度が2.70のポリアミドMXD6(三菱ガス化学製 MXナイロン S6007)とステアリン酸コバルトを99.5/0.5(重量比)でドライブレンドした後、2軸押出機でシリンダー温度270℃の条件で溶融混練し、押出機ヘッドからストランド状に押し出し、冷却後、ペレット化した。これをポリアミド樹脂Cとして使用した以外は実施例2と同様にして3層構成の多層容器を成形した。得られた3層容器の酸素透過率、層間剥離性の評価結果を表2に示す。
<Example 5>
The polyamide MXD6 having a relative viscosity of 2.70 (MX Nylon S6007 manufactured by Mitsubishi Gas Chemical) and cobalt stearate were dry-blended at a ratio of 99.5 / 0.5 (weight ratio). The mixture was melt-kneaded under the conditions, extruded from an extruder head into a strand, cooled, and pelletized. A multilayer container having a three-layer structure was molded in the same manner as in Example 2 except that this was used as the polyamide resin C. Table 2 shows the evaluation results of the oxygen permeability and the delamination property of the obtained three-layer container.

<比較例2>
比較例1で成形した3層容器の酸素透過率を測定した。結果を表2に示す。
<Comparative Example 2>
The oxygen permeability of the three-layer container molded in Comparative Example 1 was measured. Table 2 shows the results.

Figure 2004351927
Figure 2004351927

<実施例6>
ポリアミド樹脂Cとポリアミド樹脂Dの混合時に白化防止剤としてモンタン酸ナトリウム塩(商品名ホスタモントNaV101、クラリアントジャパン(株)製)をポリアミド樹脂の合計量100重量部に対して0.2重量部添加し、また、容器の形状を下記のように変更した以外は実施例1と同様にして3層構成の多層容器を成形した。
多層容器形状:全長170mm、容積330ml、首径25mm、胴径66mm、ポリエステル樹脂A層/混合樹脂B層/ポリエステル樹脂A層=0.33mm/0.066mm/0.12mm、底部形状はシャンパンタイプ。
得られた3層容器の層間剥離性の評価結果、および、水を330ml充填した3層容器を40℃/80%RH下で6ヶ月間保存した後、容器の低延伸倍率部分(延伸倍率1〜1.5倍)より取り出した中間層の曇価を測定した結果を表3に示す。
<Example 6>
When mixing the polyamide resin C and the polyamide resin D, 0.2 parts by weight of sodium montanate (trade name: Hostamont NaV101, manufactured by Clariant Japan KK) was added as a whitening inhibitor to 100 parts by weight of the total amount of the polyamide resin. A three-layered multilayer container was formed in the same manner as in Example 1 except that the shape of the container was changed as described below.
Multilayer container shape: total length 170mm, volume 330ml, neck diameter 25mm, trunk diameter 66mm, polyester resin A layer / mixed resin B layer / polyester resin A layer = 0.33mm / 0.066mm / 0.12mm, bottom shape is champagne type .
After the evaluation results of the delamination property of the obtained three-layer container and the three-layer container filled with 330 ml of water were stored at 40 ° C./80% RH for 6 months, a low stretch ratio portion (stretch ratio of 1) of the container was used. Table 3 shows the results of measuring the haze value of the intermediate layer taken out from the sample (〜1.5 times).

<実施例7>
白化防止剤をエチレンビスステアリルアミド(商品名アルフローH−50T、日本油脂(株)製)に変更した以外は実施例6と同様にして3層構成の多層容器を成形した。
実施例6と同様にして得た評価結果を表3に示す。
<Example 7>
A multilayer container having a three-layer structure was formed in the same manner as in Example 6 except that the whitening inhibitor was changed to ethylene bisstearylamide (trade name: Alflow H-50T, manufactured by NOF Corporation).
Table 3 shows the evaluation results obtained in the same manner as in Example 6.

<比較例3>
ポリアミド樹脂Dは使用せず、中間層をポリアミド樹脂C単独で使用した以外は実施例6と同様にして3層構成の多層容器を成形した。実施例6と同様にして得た評価結果を表3に示す。
<Comparative Example 3>
A three-layer multilayer container was molded in the same manner as in Example 6, except that the polyamide resin D was not used and the polyamide resin C was used alone for the intermediate layer. Table 3 shows the evaluation results obtained in the same manner as in Example 6.

Figure 2004351927
Figure 2004351927

Claims (14)

最外層、最内層および最外層と最内層との間に位置する少なくとも1層の中間層からなる多層容器であって、
該最外層および最内層が、テレフタル酸を80モル%以上含むジカルボン酸成分およびエチレングリコールを80モル%以上含むジオール成分を重合して得た熱可塑性ポリエステル樹脂Aにより主として構成され、
該中間層の少なくとも1層が、メタキシリレンジアミンを70モル%以上含むジアミン成分およびアジピン酸を70モル%以上含むジカルボン酸成分を重合して得たポリアミド樹脂Cと下記式(1):
Sa<Sd<Sc (1)
(式中、Saは熱可塑性ポリエステル樹脂Aの溶解度指数、Scはポリアミド樹脂Cの溶解度指数、Sdはポリアミド樹脂Dの溶解度指数であり、各溶解度指数は、Small法により計算される。)
を満たすポリアミド樹脂Dを99.5/0.5〜80/20の重量比で含有する混合樹脂Bにより主として構成され、
該ポリアミド樹脂Dのガラス転移温度が該ポリアミド樹脂Cのガラス転移温度より高く、かつ、130℃以下であることを特徴とする多層容器。
An outermost layer, an innermost layer, and a multilayer container comprising at least one intermediate layer located between the outermost layer and the innermost layer,
The outermost layer and the innermost layer are mainly constituted by a thermoplastic polyester resin A obtained by polymerizing a dicarboxylic acid component containing at least 80 mol% of terephthalic acid and a diol component containing at least 80 mol% of ethylene glycol,
At least one of the intermediate layers has a polyamide resin C obtained by polymerizing a diamine component containing at least 70 mol% of meta-xylylenediamine and a dicarboxylic acid component containing at least 70 mol% of adipic acid with the following formula (1):
Sa <Sd <Sc (1)
(In the formula, Sa is the solubility index of the thermoplastic polyester resin A, Sc is the solubility index of the polyamide resin C, Sd is the solubility index of the polyamide resin D, and each solubility index is calculated by the Small method.)
Mainly composed of a mixed resin B containing a polyamide resin D satisfying 99.5 / 0.5 to 80/20 in a weight ratio of:
A multilayer container, wherein the glass transition temperature of the polyamide resin D is higher than the glass transition temperature of the polyamide resin C and is 130 ° C. or less.
前記ポリアミド樹脂Cが、メタキシリレンジアミンを70モル%以上含むジアミン成分およびアジピン酸を70モル%以上含むジカルボン酸成分とを溶融重縮合して得られたポリアミド樹脂を、更に固相重合することにより得られた固相重合ポリアミド樹脂であることを特徴とする請求項1記載の多層容器。 Solid-state polymerization of the polyamide resin obtained by melt-polycondensing the polyamide resin C with a diamine component containing at least 70 mol% of metaxylylenediamine and a dicarboxylic acid component containing at least 70 mol% of adipic acid; The multilayer container according to claim 1, wherein the container is a solid-phase-polymerized polyamide resin obtained by the following method. 前記ポリアミド樹脂Dの溶解度指数Sdが、11〜13であることを特徴とする請求項1または2記載の多層容器。 3. The multilayer container according to claim 1, wherein the polyamide resin D has a solubility index Sd of 11 to 13. 前記ポリアミド樹脂Dが芳香族ジカルボン酸に由来する単位を含むことを特徴とする請求項1〜3のいずれかに記載の多層容器。 The multilayer container according to any one of claims 1 to 3, wherein the polyamide resin D contains a unit derived from an aromatic dicarboxylic acid. 前記芳香族ジカルボン酸がテレフタル酸及び/又はイソフタル酸であることを特徴とする請求項4記載の多層容器。 The multilayer container according to claim 4, wherein the aromatic dicarboxylic acid is terephthalic acid and / or isophthalic acid. 前記混合樹脂Bが、さらに、有機膨潤化剤で処理した層状珪酸塩をポリアミド樹脂Cとポリアミド樹脂Dの合計量の0.5〜8重量%含有することを特徴とする請求項1〜5のいずれかに記載の多層容器。 The mixed resin B further contains a layered silicate treated with an organic swelling agent in an amount of 0.5 to 8% by weight of the total amount of the polyamide resin C and the polyamide resin D. The multilayer container according to any one of the above. 前記混合樹脂Bが、さらに、元素周期律表第VIII族の遷移金属、マンガン、銅及び亜鉛からなる群より選択された一種以上の金属元素をポリアミド樹脂Cとポリアミド樹脂Dの合計量の0.01〜0.10重量%含有することを特徴とする請求項1〜6のいずれかに記載の多層容器。 The mixed resin B further contains one or more metal elements selected from the group consisting of a transition metal belonging to Group VIII of the periodic table, manganese, copper, and zinc in an amount of 0.1% of the total amount of the polyamide resin C and the polyamide resin D. The multilayer container according to any one of claims 1 to 6, comprising 0.1 to 0.10% by weight. 前記混合樹脂Bが、さらに、白化防止剤をポリアミド樹脂Cおよびポリアミド樹脂Dの合計量100重量部に対して0.005〜1.0重量部含有することを特徴とする請求項1〜7のいずれかに記載の多層容器。 The mixed resin B further comprises 0.005 to 1.0 part by weight of a whitening inhibitor based on 100 parts by weight of the total amount of the polyamide resin C and the polyamide resin D. The multilayer container according to any one of the above. 多層容器総重量に対する前記混合樹脂Bの重量比が1〜20重量%であることを特徴とする請求項1〜8のいずれかに記載の多層容器。 The multilayer container according to any one of claims 1 to 8, wherein the weight ratio of the mixed resin B to the total weight of the multilayer container is 1 to 20% by weight. スキン側射出シリンダーおよびコア側射出シリンダーを有する射出成形機を用いて、最外層、最内層および該最外層と該最内層との間に位置する少なくとも1層の中間層からなる多層容器を製造する方法であって、該スキン側射出シリンダーから、テレフタル酸を80モル%以上含むジカルボン酸成分およびエチレングリコールを80モル%以上含むジオール成分を重合して得た熱可塑性ポリエステル樹脂Aを射出して該最内層および該最外層を形成し、該コア側射出シリンダーから、メタキシリレンジアミンを70モル%以上含むジアミン成分およびアジピン酸を70モル%以上含むジカルボン酸成分を重合して得たポリアミド樹脂Cと下記式(1):
Sa<Sd<Sc (1)
(式中、Saは熱可塑性ポリエステル樹脂Aの溶解度指数、Scはポリアミド樹脂Cの溶解度指数、Sdはポリアミド樹脂Dの溶解度指数であり、各溶解度指数は、Small法により計算される。)
を満たすポリアミド樹脂Dを99.5/0.5〜80/20の重量比で含有する混合樹脂Bを射出して該中間層の少なくとも1層を形成して多層パリソンを製造する工程を含むことを特徴とする多層容器の製造方法。
Using an injection molding machine having a skin-side injection cylinder and a core-side injection cylinder, a multilayer container including an outermost layer, an innermost layer, and at least one intermediate layer located between the outermost layer and the innermost layer is manufactured. A thermoplastic polyester resin A obtained by polymerizing a dicarboxylic acid component containing at least 80 mol% of terephthalic acid and a diol component containing at least 80 mol% of ethylene glycol from the skin-side injection cylinder. A polyamide resin C obtained by forming the innermost layer and the outermost layer and polymerizing a diamine component containing 70% by mole or more of metaxylylenediamine and a dicarboxylic acid component containing 70% by mole or more of adipic acid from the core-side injection cylinder. And the following equation (1):
Sa <Sd <Sc (1)
(In the formula, Sa is the solubility index of the thermoplastic polyester resin A, Sc is the solubility index of the polyamide resin C, Sd is the solubility index of the polyamide resin D, and each solubility index is calculated by the Small method.)
Producing a multilayer parison by injecting a mixed resin B containing a polyamide resin D satisfying the above at a weight ratio of 99.5 / 0.5 to 80/20 to form at least one of the intermediate layers. A method for producing a multilayer container.
スキン側射出シリンダーから熱可塑性ポリエステル樹脂Aを射出し、コア側射出シリンダーから混合樹脂Bをスキン側射出シリンダーから熱可塑性ポリエステル樹脂Aを同時に射出し、次にスキン側射出シリンダーから熱可塑性ポリエステル樹脂Aを射出して金型キャビティーを満たすことにより3層構造のパリソンを製造することを特徴とする請求項10記載の多層容器の製造方法。 The thermoplastic polyester resin A is injected from the skin-side injection cylinder, the mixed resin B is injected simultaneously from the core-side injection cylinder, the thermoplastic polyester resin A is injected from the skin-side injection cylinder, and then the thermoplastic polyester resin A is injected from the skin-side injection cylinder. The method for producing a multi-layer container according to claim 10, wherein a parison having a three-layer structure is produced by injecting the mold into the mold cavity. スキン側射出シリンダーから熱可塑性ポリエステル樹脂Aを射出し、コア側射出シリンダーから混合樹脂Bを射出し、次にスキン側射出シリンダーから熱可塑性ポリエステル樹脂Aを射出して金型キャビティーを満たすことにより5層構造のパリソンを製造することを特徴とする請求項10記載の多層容器の製造方法。 By injecting the thermoplastic polyester resin A from the skin side injection cylinder, injecting the mixed resin B from the core side injection cylinder, and then injecting the thermoplastic polyester resin A from the skin side injection cylinder to fill the mold cavity The method for producing a multilayer container according to claim 10, wherein a parison having a five-layer structure is produced. 前記パリソンの表面を80〜120℃に加熱した後にブロー成形する工程を含むことを特徴とする請求項10〜12のいずれかに記載の多層容器の製造方法。 The method for producing a multilayer container according to any one of claims 10 to 12, further comprising a step of heating the parison surface to 80 to 120 ° C and then performing blow molding. 前記パリソンの口部を結晶化させ、表面を80〜120℃に加熱した後に90〜150℃の金型内でブロー成形する工程を含むことを特徴とする請求項10〜12のいずれかに記載の多層容器の製造方法。
The method according to any one of claims 10 to 12, further comprising a step of crystallizing a mouth portion of the parison, heating the surface to 80 to 120 ° C, and then performing blow molding in a mold at 90 to 150 ° C. Method for producing a multilayer container.
JP2004131597A 2003-05-06 2004-04-27 Multi-layer container Expired - Fee Related JP4720102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004131597A JP4720102B2 (en) 2003-05-06 2004-04-27 Multi-layer container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003128372 2003-05-06
JP2003128372 2003-05-06
JP2004131597A JP4720102B2 (en) 2003-05-06 2004-04-27 Multi-layer container

Publications (2)

Publication Number Publication Date
JP2004351927A true JP2004351927A (en) 2004-12-16
JP4720102B2 JP4720102B2 (en) 2011-07-13

Family

ID=34066983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004131597A Expired - Fee Related JP4720102B2 (en) 2003-05-06 2004-04-27 Multi-layer container

Country Status (1)

Country Link
JP (1) JP4720102B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062846A (en) * 2005-08-02 2007-03-15 Mitsubishi Gas Chem Co Inc Multi-layer bottle
WO2007086331A1 (en) * 2006-01-24 2007-08-02 Mitsubishi Gas Chemical Company, Inc. Method for filling into multilayer bottle
JP2007210209A (en) * 2006-02-09 2007-08-23 Mitsubishi Gas Chem Co Inc Multi-layer bottle
JP2007223309A (en) * 2006-01-24 2007-09-06 Mitsubishi Gas Chem Co Inc Method of manufacturing multilayer bottle
JP2007276379A (en) * 2006-04-11 2007-10-25 Yachiyo Industry Co Ltd Blow molding equipment
EP1974901A1 (en) * 2006-01-18 2008-10-01 Mitsubishi Gas Chemical Company, Inc. Multi-layer bottle
JP2010506723A (en) * 2006-10-16 2010-03-04 ヴァルスパー・ソーシング・インコーポレーテッド Coating process and article
US10919273B2 (en) 2006-10-16 2021-02-16 Swimc Llc Multilayer thermoplastic film
CN114502376A (en) * 2019-09-26 2022-05-13 3M创新有限公司 Multilayer film and method for producing same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153444A (en) * 1987-12-08 1989-06-15 Toyo Seikan Kaisha Ltd Hollow container
JPH04120168A (en) * 1990-09-11 1992-04-21 Mitsubishi Gas Chem Co Inc Polyamide resin composition and polyamide film
JPH0781004A (en) * 1993-07-21 1995-03-28 Kuraray Co Ltd Multilayered packaging body
JP2543544B2 (en) * 1987-11-30 1996-10-16 三菱瓦斯化学株式会社 Gas barrier multi-layer structure
JPH1086291A (en) * 1995-12-27 1998-04-07 Mitsubishi Gas Chem Co Inc Deoxygenating multi-layered body and packaging vessel consisting of the same
JP2000297245A (en) * 1999-04-14 2000-10-24 Shin Etsu Polymer Co Ltd Electrically-conductive plastic coating composition
WO2001015900A1 (en) * 1999-08-27 2001-03-08 Toray Industries, Inc. Laminated film and vapor deposition film using the same
JP2001199024A (en) * 2000-01-21 2001-07-24 Mitsubishi Gas Chem Co Inc Multilayered container
JP2001354222A (en) * 2000-06-08 2001-12-25 Mitsubishi Gas Chem Co Inc Multilayer container
JP2002322350A (en) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc Hollow molding made of polyester composition and its manufacturing method
JP2003012944A (en) * 2001-04-26 2003-01-15 Toyo Seikan Kaisha Ltd Resin composition having excellent moldability and gas barrier property, and packaging material
JP2003020023A (en) * 2001-07-03 2003-01-21 Toyo Seikan Kaisha Ltd Plastic multi-layer container
JP2004352361A (en) * 2003-05-06 2004-12-16 Mitsubishi Gas Chem Co Inc Multilayered container

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543544B2 (en) * 1987-11-30 1996-10-16 三菱瓦斯化学株式会社 Gas barrier multi-layer structure
JPH01153444A (en) * 1987-12-08 1989-06-15 Toyo Seikan Kaisha Ltd Hollow container
JPH04120168A (en) * 1990-09-11 1992-04-21 Mitsubishi Gas Chem Co Inc Polyamide resin composition and polyamide film
JPH0781004A (en) * 1993-07-21 1995-03-28 Kuraray Co Ltd Multilayered packaging body
JPH1086291A (en) * 1995-12-27 1998-04-07 Mitsubishi Gas Chem Co Inc Deoxygenating multi-layered body and packaging vessel consisting of the same
JP2000297245A (en) * 1999-04-14 2000-10-24 Shin Etsu Polymer Co Ltd Electrically-conductive plastic coating composition
WO2001015900A1 (en) * 1999-08-27 2001-03-08 Toray Industries, Inc. Laminated film and vapor deposition film using the same
JP2001199024A (en) * 2000-01-21 2001-07-24 Mitsubishi Gas Chem Co Inc Multilayered container
JP2001354222A (en) * 2000-06-08 2001-12-25 Mitsubishi Gas Chem Co Inc Multilayer container
JP2002322350A (en) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc Hollow molding made of polyester composition and its manufacturing method
JP2003012944A (en) * 2001-04-26 2003-01-15 Toyo Seikan Kaisha Ltd Resin composition having excellent moldability and gas barrier property, and packaging material
JP2003020023A (en) * 2001-07-03 2003-01-21 Toyo Seikan Kaisha Ltd Plastic multi-layer container
JP2004352361A (en) * 2003-05-06 2004-12-16 Mitsubishi Gas Chem Co Inc Multilayered container

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062846A (en) * 2005-08-02 2007-03-15 Mitsubishi Gas Chem Co Inc Multi-layer bottle
EP1974901A1 (en) * 2006-01-18 2008-10-01 Mitsubishi Gas Chemical Company, Inc. Multi-layer bottle
US8778470B2 (en) 2006-01-18 2014-07-15 Mitsubishi Gas Chemical Company, Inc. Multi-layer bottle
EP1974901A4 (en) * 2006-01-18 2009-12-16 Mitsubishi Gas Chemical Co Multi-layer bottle
EP1977878A1 (en) * 2006-01-24 2008-10-08 Mitsubishi Gas Chemical Company, Inc. Method for filling into multilayer bottle
JP2007223309A (en) * 2006-01-24 2007-09-06 Mitsubishi Gas Chem Co Inc Method of manufacturing multilayer bottle
EP1977878A4 (en) * 2006-01-24 2010-11-03 Mitsubishi Gas Chemical Co METHOD FOR FILLING A MULTILAYER BOTTLE
JP5256742B2 (en) * 2006-01-24 2013-08-07 三菱瓦斯化学株式会社 Multi-layer bottle filling method
WO2007086331A1 (en) * 2006-01-24 2007-08-02 Mitsubishi Gas Chemical Company, Inc. Method for filling into multilayer bottle
JP2007210209A (en) * 2006-02-09 2007-08-23 Mitsubishi Gas Chem Co Inc Multi-layer bottle
JP2007276379A (en) * 2006-04-11 2007-10-25 Yachiyo Industry Co Ltd Blow molding equipment
JP2010506723A (en) * 2006-10-16 2010-03-04 ヴァルスパー・ソーシング・インコーポレーテッド Coating process and article
US8790787B2 (en) 2006-10-16 2014-07-29 Valspar Sourcing, Inc. Coating process
US10919273B2 (en) 2006-10-16 2021-02-16 Swimc Llc Multilayer thermoplastic film
CN114502376A (en) * 2019-09-26 2022-05-13 3M创新有限公司 Multilayer film and method for producing same

Also Published As

Publication number Publication date
JP4720102B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
CA2466451C (en) Multilayer container
JP5024050B2 (en) Multilayer bottle
KR101455565B1 (en) Polyamide resin composition
JP5104318B2 (en) Multilayer bottle
JP5315599B2 (en) Resin composition and multilayer structure
JP4821353B2 (en) Multilayer bottle
JP4930054B2 (en) Gas barrier multilayer structure and manufacturing method thereof
JP4720102B2 (en) Multi-layer container
JP5673010B2 (en) Multilayer bottle
JP4404188B2 (en) Multi-layer container with improved delamination
JP4561965B2 (en) Multi-layer container
JP2004160935A (en) Multilayered container
JP4830677B2 (en) Multilayer bottle
JP2001199024A (en) Multilayered container
JP4711040B2 (en) Multi-layer container
JP2004351716A (en) Multi-layer device
JP2004323053A (en) Multi-layered container improved in delamination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4720102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees