Nothing Special   »   [go: up one dir, main page]

JP2004346794A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2004346794A
JP2004346794A JP2003143207A JP2003143207A JP2004346794A JP 2004346794 A JP2004346794 A JP 2004346794A JP 2003143207 A JP2003143207 A JP 2003143207A JP 2003143207 A JP2003143207 A JP 2003143207A JP 2004346794 A JP2004346794 A JP 2004346794A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
nox
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143207A
Other languages
Japanese (ja)
Other versions
JP4509495B2 (en
Inventor
Shinichi Saito
真一 斎藤
Yoshihisa Takeda
好央 武田
Satoshi Hiranuma
智 平沼
嘉則 ▲高▼橋
Yoshinori Takahashi
Kenji Kodama
健司 児玉
Ritsuko Shinozaki
律子 篠▲崎▼
Reiko Domeki
礼子 百目木
Hisao Haga
久夫 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003143207A priority Critical patent/JP4509495B2/en
Publication of JP2004346794A publication Critical patent/JP2004346794A/en
Application granted granted Critical
Publication of JP4509495B2 publication Critical patent/JP4509495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine wherein the NOx purification reaction is not inhibited. <P>SOLUTION: In the exhaust emission control device 1 equipped with an SCR catalyst 7 in an exhaust system of the engine 2 and an oxidation catalyst 8 in an upstream side of the SCR catalyst 7, an oxidation catalyst bypass 15 for bypassing the oxidation catalyst 8 and a selector valve 16 for switching an exhaust gas flow passage are provided. When a temperature of the SCR catalyst 7 is lower than a melting point of ammonium nitrate, the exhaust gas flow passage is switched from the oxidation catalyst 8 side to the oxidation catalyst bypass 15 side by the selector valve 16, so as to inhibit NOx oxidation (NO<SB>2</SB>production). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
ディーゼルエンジン等の内燃機関から排出される排気ガスには、HC(炭化水素)、CO(一酸化炭素)、NOx(窒素酸化物)及びPM(Particulate Matter:パティキュレート)等の汚染物質が含まれる。これらの汚染物質の中でもNOxは、酸化触媒やガソリン自動車で実用化されている三元触媒では浄化が難しく、NOxを浄化することができる有望な触媒として選択還元型NOx触媒(SCR触媒)の開発が行われている。
【0003】
SCR触媒はアンモニアなどの還元剤の存在下でNOxを浄化する触媒である。尿素タンクからSCR触媒の上流側の排気系に添加された尿素水は、排気ガスの熱により加水分解されアンモニアを生成する。このアンモニアがSCR触媒で排気ガス中のNOxと反応することにより排気ガス中のNOxが浄化される。
【0004】
このNOxの浄化反応については、排気ガス中のNOxにおけるNO(一酸化窒素)とNO(二酸化窒素)との比が1:1のときに、最もNOx浄化反応が良いことが知られている。しかしながら、内燃機関から排出されるNOxはほとんどがNOである。このため、SCR触媒の上流側に酸化触媒を設けてNOの一部をNOに酸化することにより、排気ガス中のNOとNOとの比を1:1に近づけるようにしている。
【0005】
しかしながら、この酸化触媒により発生させたNOは、ディーゼルエンジンのような比較的低温の排気ガス環境下においては、還元剤として供給されるアンモニアとの反応により、硝酸アンモニウムを生成することが分かっている。この硝酸アンモニウムは、融点である170℃より低温では触媒上に固形物として堆積し、触媒の細孔を詰まらせたり、触媒表面を覆ってしまうことにより、NOx浄化反応を阻害するおそれがある。
【0006】
本願発明は以下詳細に説明するが、本願発明に関連する文献公知発明としては、リーンNOx触媒をバイパスする触媒バイパス手段を設ける技術がある(下記、特許文献1参照。)。しかしながら、本技術はリーンNOx触媒の熱劣化を抑えつつ、高いNOx浄化率を得ることを目的としており、硝酸アンモニウムによるNOx浄化反応の阻害を解決する技術ではない。
【0007】
【特許文献1】
特開平5−312027号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記状況に鑑みてなされたものであり、硝酸アンモニウムによりNOx浄化反応が阻害されない内燃機関の排気浄化装置を提供することを目的とする。
【0009】
【課題解決するための手段】
上記課題を解決する第1の発明は、内燃機関の排気系に設けられアンモニアを還元剤にして排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる酸化触媒と、前記排気系のうち前記NOx触媒よりも上流側であり前記酸化触媒よりも下流側に前記還元剤を供給する還元剤供給手段とを有する内燃機関の排気浄化装置において、
前記NOx触媒の温度を検出又は推測する触媒温度検出手段と、
前記酸化触媒をバイパスする酸化触媒バイパスと、
前記内燃機関からの排気ガスの流路を前記酸化触媒または前記酸化触媒バイパスのいずれかに切り替える切替手段と、
前記触媒温度検出手段により検出又は推測されるNOx触媒の温度が所定温度より低いときに、前記内燃機関からの排気ガスが前記酸化触媒バイパスを通過するように前記切替手段を制御する切替制御手段とを備えたことを特徴とする内燃機関の排気浄化装置である。
【0010】
SCR触媒におけるNOx浄化率を向上させるため、NOx触媒の上流側に酸化触媒を設置してNOxの一部をNOに酸化しているが、NOx触媒の温度が所定温度よりも低い場合には、このNOと還元剤であるアンモニアとの反応により生成される硝酸アンモニウムがNOx浄化反応を阻害する。そこで、第1の発明では、NOx触媒の温度が所定温度より低い場合には、排気ガスの流路を酸化触媒側から酸化触媒バイパス側へ切り替えて、NOxの酸化(NOの生成)を行わないようにする。
【0011】
切替手段は、内燃機関からの排気ガスの流路を酸化触媒または酸化触媒バイパスのいずれかに切り替える機能を有するが、当該機能としては、流路を完全に切り替える機能のほかに、酸化触媒と酸化触媒バイパスとを流れる排気ガスの流量比を制御する機能であっても良い。
【0012】
上記課題を解決する第2の発明は、内燃機関の排気系に設けられアンモニアを還元剤にして排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる酸化触媒と、前記排気系のうち前記NOx触媒よりも上流側であり前記酸化触媒よりも下流側に前記還元剤を供給する還元剤供給手段とを有する内燃機関の排気浄化装置において、
前記NOx触媒の温度を検出又は推測する触媒温度検出手段と、
前記触媒温度検出手段により検出又は推測されるNOx触媒の温度が所定温度より低く、かつ当該所定温度より低い状況が所定時間以上継続したときに、前記NOx触媒の温度を前記所定温度以上となるよう制御する触媒再生制御手段とを備えたことを特徴とする内燃機関の排気浄化装置である。
【0013】
NOx触媒の温度が所定温度より低く、かつ当該所定温度より低い状況が所定時間以上継続した場合には、生成した硝酸アンモニウムによりNOx浄化率が低下しているおそれがある。そこで、第2の発明では、NOx触媒について所定温度より低い状況が所定時間以上継続した場合には、NOx触媒の温度を前記所定温度以上となるように制御して、NOx触媒上に生成した硝酸アンモニウムを除去する。NOx触媒の温度を制御する手段としては、ヒーター等により直接加熱する手段や、温度を上昇させた排気ガスにより加熱する手段(下記第3の発明を参照)が挙げられる。
【0014】
上記課題を解決する第3の発明は、第2の発明に係る内燃機関の排気浄化装置において、
前記触媒再生制御手段は、前記触媒温度検出手段により検出又は推測されるNOx触媒の温度が所定温度より低く、かつ当該所定温度より低い状況が所定時間以上継続したときに、前記内燃機関からの排気ガスの温度を上昇させて、前記NOx触媒の温度を前記所定温度以上となるように制御することを特徴とする内燃機関の排気浄化装置である。
【0015】
排気ガスの温度を上昇させる手段としては、例えば、EGR制御弁、吸気スロットル弁又は排気ブレーキ弁を閉じる、VG(Variable Geometry)ターボのノズルベーン開度を大きくする等してエンジン負荷を大きくしたり、燃料噴射系の制御、例えば、タイミングリタード、アフター噴射又はポスト噴射等の噴射制御等をすることが挙げられる。
【0016】
上記課題を解決する第4の発明は、第1ないし第3のいずれかの発明に係る内燃機関の排気浄化装置において、
前記所定温度は、硝酸アンモニウムが融解する温度であることを特徴とする内燃機関の排気浄化装置である。
【0017】
硝酸アンモニウムによるNOx浄化反応の阻害は、主として硝酸アンモニウムがNOx触媒上で固体状態となることにより起こるため、硝酸アンモニウムが融解する温度を所定温度とする。詳細には、硝酸アンモニウムの融点は約170℃であるが、排気系内の圧力等の影響により変化するため、160℃〜180℃の範囲を設定することが好ましい。
【0018】
また、固体状態から融解した液体状態の硝酸アンモニウムもNOx浄化反応を阻害するおそれがあり、NOx触媒上から完全に硝酸アンモニウムを除去可能な温度として、硝酸アンモニウムがガス化又は分解する温度を所定温度に設定しても良い。
【0019】
【発明の実施の形態】
以下、図面に基づき本発明の好適な実施例を例示的に詳しく説明する。
図1は、本発明の実施例に係る内燃機関の排気浄化装置を示した構成図である。同図に示すように、排気浄化装置1は、内燃機関としてのエンジン2の排気系に設けられたNOx触媒としてのSCR触媒7と、排気系のうちSCR触媒7よりも上流側に設けられた酸化触媒8と、排気系のうちSCR触媒7よりも上流側であり酸化触媒8よりも下流側に還元剤としてのアンモニアを供給する還元剤供給手段としての尿素添加装置9等と、酸化触媒8をバイパスする酸化触媒バイパス15と、酸化触媒バイパス15における上流側に設けられエンジン2からの排気ガスの酸化触媒バイパス15への流入を制御する切替手段としての切替弁16と、尿素添加装置9に内蔵され所定の条件によって切替弁16を制御する切替制御手段とから構成される。
【0020】
エアクリーナー3から吸引された空気は、ターボチャージャー4によって過給され、インタークーラー5を介してエンジン2に供給された後、エンジン2内で燃料と共に燃焼し、排気ガスとして排気系へ排出される。
【0021】
還元剤供給手段は、還元剤としてのアンモニアの素となる尿素水を貯蔵する尿素タンク10と、SCR触媒7の温度を検出又は推測する触媒温度検出手段としての触媒温度センサ13と、エア11と混合された尿素水を排気系におけるSCR触媒7の上流側に供給する尿素噴射ノズル12と、触媒温度センサ13により推測される温度により添加する尿素量を制御する尿素添加装置9とから構成される。
【0022】
触媒温度センサ13は、SCR触媒7の上流側と下流側とに設けられ、当該2つのポイントにおける排気ガスの温度の平均値をSCR触媒7の温度として推測している。なお、触媒温度センサとしては、SCR触媒7の温度を直接検出できるセンサであってもよい。
【0023】
また、SCR触媒7の下流側には、酸化触媒14が設けられ、過剰な尿素水の添加による余剰のアンモニア(アンモニアスリップの発生)を分解するようになっている。なお、アンモニアスリップを発生させない尿素水添加制御を行うことができる還元剤供給手段であれば、酸化触媒14を省略することができる。
【0024】
尿素添加装置9は、切替制御手段としての機能も有し、触媒温度センサ13により推測されるSCR触媒7の温度が所定温度よりも低い場合には、切替弁16を開弁し、エンジン2からの排気ガスを酸化触媒バイパス15へ流入させると共に、SCR触媒7の温度が所定温度以上の場合には、切替弁16を閉弁して排気ガスが酸化触媒8を通過するようにする。
【0025】
本実施形態では、切替手段として切替弁16を酸化触媒バイパス15にのみ設けている。このため、切替弁16を開弁すると酸化触媒8と酸化触媒バイパス15とが排気ガスの流路となるが、酸化触媒8側の流路は排気抵抗があるため、排気ガスは主として酸化触媒バイパス15を流れるようになる。また、切替弁16の開度を調整することにより、酸化触媒8と酸化触媒バイパス15とを流れる排気ガスの流量比を制御することができる。切替手段の他の例としては、排気系における酸化触媒8と酸化触媒バイパス15との分岐部分に切替弁を設けて、完全に流路を切り替えるタイプのものであってもよい。
【0026】
切替制御手段としての尿素添加装置9は、SCR触媒7の温度が所定温度以上か否かにより切替弁16の開閉制御を行うが、この所定温度としては、アンモニアとNOとの反応により生成する硝酸アンモニウムが融解する温度を設定してある。すなわち、切替制御手段は、SCR触媒7の温度が硝酸アンモニウムの融点よりも低い場合には、切替弁16を開弁し、エンジン2からの排気ガスを酸化触媒バイパス15へ流入させると共に、SCR触媒7の温度が硝酸アンモニウムの融点以上の場合には、切替弁16を閉弁して排気ガスが酸化触媒8を通過するように制御する。
【0027】
この結果、SCR触媒7の温度が硝酸アンモニウムの融点以上の場合には、切替弁16が閉弁して排気ガスの流路を酸化触媒8側へ切り替え、酸化触媒8によりNOxの一部を酸化してNOとすることにより、SCR触媒7におけるNOx浄化率を向上させることができる。この際にNOとアンモニアとの反応により硝酸アンモニウムが発生した場合であっても、硝酸アンモニウムは少なくとも固体状態となることはないため、SCR触媒7の浄化反応が阻害されるおそれはない。
【0028】
一方、SCR触媒7の温度が硝酸アンモニウムの融点より低い場合には、切替弁16が開弁して排気ガスの流路を酸化触媒バイパス15側へ切り替えることにより、硝酸アンモニウムの生成原因となるNO自体の生成を抑制する。この結果、硝酸アンモニウムの発生を抑制してSCR触媒7の浄化反応が阻害されることを防ぐことができる。
【0029】
次に、他の実施例について説明する。図2は、従来のSCR触媒におけるSCR触媒の温度とNOx浄化率との関係図である。従来のSCR触媒浄化システムを用いて、SCR触媒の温度が平均155℃、167℃、184℃となるような3つの条件で排気ガスのNOx浄化試験を行うと共に、各試験条件において同一のSCR触媒を再生せずに3回テストを繰り返した場合のNOx浄化率の変化を試験した。
【0030】
同図に示すように、SCR触媒の温度が高いほどNOx浄化率が高く、184℃では60%以上のNOx浄化率となることが分かる。更に、SCR触媒の温度が平均184℃の条件では、3回の繰り返し試験に対してNOx浄化率の変化が見られなかったのに対して、平均温度155℃、167℃の条件では、試験を繰り返すごとにNOx浄化率が低下することが分かる。
【0031】
この繰り返し試験によるNOx浄化率の低下は、低温時の硝酸アンモニウムの挙動によるものと考えられる。すなわち、NOとアンモニアとの反応により生成した硝酸アンモニウムが、試験の繰り返しによりSCR触媒上に固形物として堆積する結果、触媒機能が低下してNOx浄化率が低下したものと考えられる。
【0032】
そこで、他の実施例においては、図1に示した酸化触媒バイパス15、切替弁16及び切替制御手段の代わりに「触媒再生制御手段」を設けて、SCR触媒について所定温度(例えば、硝酸アンモニウムの融点)より低い状況が所定時間以上継続したときには、SCR触媒上に堆積した硝酸アンモニウムによりNOx浄化率が低下しているおそれがあるため、SCR触媒の温度を所定温度以上となるように制御する。
【0033】
SCR触媒の温度を所定温度以上とする制御は、SCR触媒上に堆積した硝酸アンモニウムを加熱除去する、言わば、SCR触媒の再生処理に相当する制御である。この制御により、図2のSCR平均温度155℃、157℃の試験例に示すようなNOx浄化率が低下したSCR触媒(例えば、試験3回目のデータを参照)を、当該触媒温度に見合ったNOx浄化率が得られるSCR触媒(例えば、試験1回目のデータを参照)に再生することができる。
【0034】
SCR触媒の温度が所定温度以上となるように制御する手段としては、ヒーター等により直接加熱する手段が挙げられる。この場合には、触媒再生制御手段は、例えば、触媒温度センサと、SCR触媒を加熱するヒーターと、等から構成される。
【0035】
また、SCR触媒の温度が所定温度以上となるように制御する他の手段としては、温度を上昇させた排気ガスにより加熱する手段が挙げられる。排気ガスの温度を上昇させる手段としては、例えば、EGR制御弁(図1の符号6参照)、排気ブレーキ(図1の符号17参照)を閉じる、VGターボ(図1の符号4参照)のノズルベーン開度を大きくする等してエンジン負荷を大きくすること等が挙げられる。この場合には、触媒再生制御手段は、例えば、触媒温度センサと、エンジンの種々の制御を行うエンジンECUと、等から構成される。
【0036】
SCR触媒の温度が所定温度以上になるように制御する際の制御時間は、例えば、堆積したと推定される硝酸アンモニウム量を完全に除去することができる時間(実験的に求められた時間)を設定する。
【0037】
SCR触媒について所定温度より低い状況が所定時間以上継続したと判断する際の「所定時間」としては、例えば、所定温度より低いある温度においてSCR触媒上に堆積する硝酸アンモニウムにより低下したNOx浄化率が許容限度となる時間を基準として設定する。すなわち、SCR触媒温度を一定として排気ガスを浄化したときの積算時間とNOx浄化率の変化との関係を予め調べておき、NOx浄化率が許容限度まで低下する時間を設定する。
【0038】
所定温度より低い状況が所定時間継続する前に、所定温度以上となった場合であっても、当該所定温度以上となった時間が短い(例えば一瞬)と、SCR触媒上に堆積した硝酸アンモニウムが排気熱により完全に除去しきれないまま、触媒再生制御手段は所定時間のカウントをリセットして再びゼロからカウントしてしまう。この場合には、完全に再生されたSCR触媒の状態をゼロとして時間計算ができなくなってしまうため、所定時間のカウントをリセットせずに、そのままカウントを継続してもよい。
【0039】
【発明の効果】
第1の発明によれば、NOx触媒の上流側に酸化触媒を設けた内燃機関の排気浄化装置において、NOx触媒の温度が所定温度より低いときには、内燃機関からの排気ガスが酸化触媒バイパスを通過するようにして、NOxの酸化(NOの生成)を行わないようにしたので、NOを素として生成される硝酸アンモニウムによるNOx浄化反応の阻害を防止することができると共に、所定温度以上のときには排気ガスが酸化触媒を通過するように制御するためSCR触媒のNOx浄化率を向上させることができる。
【0040】
第2の発明によれば、NOx触媒の上流側に酸化触媒を設けた内燃機関の排気浄化装置において、NOx触媒の温度が所定温度より低く、かつ当該所定温度より低い状況が所定時間以上継続したときには、NOx触媒の温度を前記所定温度以上となるように制御することとしたので、NOx触媒上に生成した硝酸アンモニウムを除去してSCR触媒を再生し、NOx浄化率を高い状態で維持することができる。
【0041】
第3の発明によれば、第2の発明に係る内燃機関の排気浄化装置において、内燃機関からの排気ガスの温度を上昇させて、NOx触媒の温度を前記所定温度以上となるように制御することとしたので、新たに加熱装置などを付加することなく、エンジン制御等の簡単な手段によりNOx浄化率を高い状態で維持することができる。
【0042】
第4の発明によれば、第1ないし第3のいずれかの発明に係る内燃機関の排気浄化装置において、硝酸アンモニウムが融解する温度を「所定温度」として設定したので、主として硝酸アンモニウムがNOx触媒上で固体状態となることにより引き起こされるNOx浄化反応の阻害を効果的に防止することができる。更に、硝酸アンモニウムがガス化又は分解する温度を「所定温度」として設定した場合には、NOx触媒から完全に硝酸アンモニウムを除去又は付着することを防止することができるため、より効果的にNOx浄化反応の阻害を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る内燃機関の排気浄化装置の概略構成図である。
【図2】SCR触媒の温度とNOx浄化率との関係図である。
【符号の説明】
1 排気浄化装置
2 エンジン
7 SCR触媒
8 酸化触媒(前段)
9 尿素添加装置
10 尿素タンク
12 尿素噴射ノズル
13 触媒温度センサ
14 酸化触媒(後段)
15 酸化触媒バイパス
16 切替弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purification device for an internal combustion engine.
[0002]
[Prior art]
Exhaust gas emitted from an internal combustion engine such as a diesel engine contains pollutants such as HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide), and PM (Particulate Matter). . Among these pollutants, NOx is difficult to purify with an oxidation catalyst or a three-way catalyst practically used in gasoline vehicles, and a selective reduction type NOx catalyst (SCR catalyst) has been developed as a promising catalyst that can purify NOx. Has been done.
[0003]
The SCR catalyst is a catalyst that purifies NOx in the presence of a reducing agent such as ammonia. Urea water added from the urea tank to the exhaust system on the upstream side of the SCR catalyst is hydrolyzed by the heat of the exhaust gas to produce ammonia. This ammonia reacts with NOx in the exhaust gas by the SCR catalyst to purify the NOx in the exhaust gas.
[0004]
The purification reaction of NOx, the ratio of NO in the NOx in the exhaust gas (nitrogen monoxide) and NO 2 (nitrogen dioxide) is 1: When 1, it is known that most NOx purification reaction is good . However, most of the NOx emitted from the internal combustion engine is NO. Thus, by oxidizing a portion of NO is provided an oxidation catalyst on the upstream side of the SCR catalyst NO 2, the ratio of NO to NO 2 in the exhaust gas 1: as close to 1.
[0005]
However, it has been found that NO 2 generated by this oxidation catalyst generates ammonium nitrate by reaction with ammonia supplied as a reducing agent in a relatively low-temperature exhaust gas environment such as a diesel engine. . At a temperature lower than the melting point of 170 ° C., the ammonium nitrate accumulates as a solid on the catalyst and may block the NOx purification reaction by clogging the pores of the catalyst or covering the catalyst surface.
[0006]
The invention of the present application will be described in detail below. As a publicly known invention related to the present invention, there is a technique of providing a catalyst bypass means for bypassing a lean NOx catalyst (see Patent Document 1 below). However, the present technology aims at obtaining a high NOx purification rate while suppressing thermal deterioration of a lean NOx catalyst, and is not a technology for solving the inhibition of the NOx purification reaction by ammonium nitrate.
[0007]
[Patent Document 1]
JP-A-5-312027
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine in which a NOx purification reaction is not inhibited by ammonium nitrate.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in exhaust gas using ammonia as a reducing agent, and an upstream side of the NOx catalyst in the exhaust system. An exhaust purification device for an internal combustion engine, comprising: an oxidation catalyst provided in the exhaust system; and a reducing agent supply unit that supplies the reducing agent upstream of the NOx catalyst and downstream of the oxidation catalyst in the exhaust system.
Catalyst temperature detecting means for detecting or estimating the temperature of the NOx catalyst;
An oxidation catalyst bypass for bypassing the oxidation catalyst;
Switching means for switching a flow path of exhaust gas from the internal combustion engine to either the oxidation catalyst or the oxidation catalyst bypass;
Switching control means for controlling the switching means so that exhaust gas from the internal combustion engine passes through the oxidation catalyst bypass when the temperature of the NOx catalyst detected or estimated by the catalyst temperature detecting means is lower than a predetermined temperature; An exhaust gas purifying apparatus for an internal combustion engine, comprising:
[0010]
To improve the NOx purification rate of the SCR catalyst, but installed upstream oxidation catalyst of the NOx catalyst is oxidizing a part of NOx in NO 2, when the temperature of the NOx catalyst is lower than a predetermined temperature Ammonium nitrate generated by the reaction between NO 2 and ammonia as a reducing agent inhibits the NOx purification reaction. Therefore, in the first invention, when the temperature of the NOx catalyst is lower than the predetermined temperature, the flow path of the exhaust gas is switched from the oxidation catalyst side to the oxidation catalyst bypass side, perform the oxidation of NOx (generation of NO 2) Not to be.
[0011]
The switching means has a function of switching the flow path of the exhaust gas from the internal combustion engine to either the oxidation catalyst or the oxidation catalyst bypass. In addition to the function of completely switching the flow path, the switching means includes an oxidation catalyst and an oxidation catalyst. It may have a function of controlling the flow ratio of the exhaust gas flowing through the catalyst bypass.
[0012]
According to a second aspect of the present invention, there is provided a NOx catalyst provided in an exhaust system of an internal combustion engine for selectively reducing NOx in exhaust gas using ammonia as a reducing agent, and an upstream side of the NOx catalyst in the exhaust system. An exhaust purification device for an internal combustion engine, comprising: an oxidation catalyst provided in the exhaust system; and a reducing agent supply unit that supplies the reducing agent upstream of the NOx catalyst and downstream of the oxidation catalyst in the exhaust system.
Catalyst temperature detecting means for detecting or estimating the temperature of the NOx catalyst;
When the temperature of the NOx catalyst detected or estimated by the catalyst temperature detecting means is lower than a predetermined temperature, and when the temperature lower than the predetermined temperature continues for a predetermined time or more, the temperature of the NOx catalyst becomes higher than the predetermined temperature. An exhaust gas purifying apparatus for an internal combustion engine, comprising: a catalyst regeneration control unit for controlling the exhaust gas.
[0013]
If the temperature of the NOx catalyst is lower than the predetermined temperature and the state where the temperature is lower than the predetermined temperature continues for a predetermined time or more, the NOx purification rate may be reduced by the generated ammonium nitrate. Thus, in the second aspect, when the condition of the NOx catalyst that is lower than the predetermined temperature continues for a predetermined time or more, the temperature of the NOx catalyst is controlled to be equal to or higher than the predetermined temperature, and the ammonium nitrate generated on the NOx catalyst is controlled. Is removed. Means for controlling the temperature of the NOx catalyst include a means for directly heating with a heater or the like, and a means for heating with an exhaust gas whose temperature has been raised (see the third invention described below).
[0014]
A third invention for solving the above-mentioned problems is an exhaust gas purification device for an internal combustion engine according to the second invention,
The catalyst regeneration control means, when the temperature of the NOx catalyst detected or estimated by the catalyst temperature detection means is lower than a predetermined temperature, and when the temperature lower than the predetermined temperature has continued for a predetermined time or more, the exhaust from the internal combustion engine. An exhaust gas purifying apparatus for an internal combustion engine, wherein a temperature of a gas is increased to control a temperature of the NOx catalyst to be equal to or higher than the predetermined temperature.
[0015]
Means for increasing the temperature of the exhaust gas include, for example, increasing an engine load by closing an EGR control valve, an intake throttle valve, or an exhaust brake valve, or increasing a nozzle vane opening of a VG (Variable Geometry) turbo. Control of the fuel injection system, for example, injection control such as timing retard, after injection, or post injection is performed.
[0016]
According to a fourth aspect of the present invention, there is provided an exhaust purification system for an internal combustion engine according to any one of the first to third aspects,
The exhaust gas purifying apparatus for an internal combustion engine, wherein the predetermined temperature is a temperature at which ammonium nitrate is melted.
[0017]
Since the inhibition of the NOx purification reaction by ammonium nitrate mainly occurs when ammonium nitrate becomes a solid state on the NOx catalyst, the temperature at which ammonium nitrate is melted is set to a predetermined temperature. More specifically, the melting point of ammonium nitrate is about 170 ° C., but it is preferably set in the range of 160 ° C. to 180 ° C. because it changes depending on the pressure in the exhaust system and the like.
[0018]
Also, ammonium nitrate in a liquid state melted from a solid state may inhibit the NOx purification reaction, and a temperature at which ammonium nitrate is gasified or decomposed is set to a predetermined temperature as a temperature at which ammonium nitrate can be completely removed from the NOx catalyst. May be.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram showing an exhaust gas purifying apparatus for an internal combustion engine according to an embodiment of the present invention. As shown in the figure, an exhaust gas purification device 1 is provided in an exhaust system of an engine 2 as an internal combustion engine, as an SCR catalyst 7 as a NOx catalyst, and provided in the exhaust system upstream of the SCR catalyst 7. An oxidation catalyst 8; a urea addition device 9 as a reducing agent supply means for supplying ammonia as a reducing agent upstream of the SCR catalyst 7 and downstream of the oxidation catalyst 8 in the exhaust system; An oxidation catalyst bypass 15 that is provided upstream of the oxidation catalyst bypass 15, a switching valve 16 as switching means that controls the flow of exhaust gas from the engine 2 into the oxidation catalyst bypass 15, and a urea addition device 9. And switching control means for controlling the switching valve 16 according to predetermined conditions.
[0020]
The air sucked from the air cleaner 3 is supercharged by the turbocharger 4, supplied to the engine 2 via the intercooler 5, burns with the fuel in the engine 2, and is discharged as exhaust gas to an exhaust system.
[0021]
The reducing agent supply means includes a urea tank 10 for storing urea water which is a source of ammonia as a reducing agent, a catalyst temperature sensor 13 as catalyst temperature detecting means for detecting or estimating the temperature of the SCR catalyst 7, and air 11. It comprises a urea injection nozzle 12 for supplying the mixed urea water to the upstream side of the SCR catalyst 7 in the exhaust system, and a urea addition device 9 for controlling the amount of urea to be added based on the temperature estimated by the catalyst temperature sensor 13. .
[0022]
The catalyst temperature sensors 13 are provided on the upstream and downstream sides of the SCR catalyst 7, and estimate the average value of the exhaust gas temperatures at the two points as the temperature of the SCR catalyst 7. Note that the catalyst temperature sensor may be a sensor that can directly detect the temperature of the SCR catalyst 7.
[0023]
On the downstream side of the SCR catalyst 7, an oxidation catalyst 14 is provided to decompose excess ammonia (generation of ammonia slip) due to the addition of excess urea water. Note that the oxidation catalyst 14 can be omitted as long as it is a reducing agent supply unit that can perform urea water addition control that does not generate ammonia slip.
[0024]
The urea addition device 9 also has a function as a switching control unit. When the temperature of the SCR catalyst 7 estimated by the catalyst temperature sensor 13 is lower than a predetermined temperature, the switching valve 16 is opened, and the engine 2 When the temperature of the SCR catalyst 7 is equal to or higher than the predetermined temperature, the switching valve 16 is closed so that the exhaust gas passes through the oxidation catalyst 8.
[0025]
In the present embodiment, the switching valve 16 is provided only in the oxidation catalyst bypass 15 as switching means. For this reason, when the switching valve 16 is opened, the oxidation catalyst 8 and the oxidation catalyst bypass 15 serve as an exhaust gas flow path. However, since the flow path on the oxidation catalyst 8 side has exhaust resistance, the exhaust gas is mainly used as the oxidation catalyst bypass. 15 will start flowing. Further, by adjusting the opening degree of the switching valve 16, the flow ratio of the exhaust gas flowing through the oxidation catalyst 8 and the oxidation catalyst bypass 15 can be controlled. As another example of the switching means, a switching valve may be provided in a branch portion between the oxidation catalyst 8 and the oxidation catalyst bypass 15 in the exhaust system to completely switch the flow path.
[0026]
The urea addition device 9 as a switching control means performs opening / closing control of the switching valve 16 depending on whether the temperature of the SCR catalyst 7 is equal to or higher than a predetermined temperature, and the predetermined temperature is generated by a reaction between ammonia and NO 2. The temperature at which ammonium nitrate melts is set. That is, when the temperature of the SCR catalyst 7 is lower than the melting point of ammonium nitrate, the switching control means opens the switching valve 16 so that the exhaust gas from the engine 2 flows into the oxidation catalyst bypass 15 and the SCR catalyst 7 Is higher than the melting point of ammonium nitrate, the switching valve 16 is closed to control the exhaust gas to pass through the oxidation catalyst 8.
[0027]
As a result, when the temperature of the SCR catalyst 7 is equal to or higher than the melting point of ammonium nitrate, the switching valve 16 is closed to switch the flow path of the exhaust gas to the oxidation catalyst 8 side, and the oxidation catalyst 8 oxidizes a part of NOx. with NO 2 Te, it is possible to improve the NOx purification rate of the SCR catalyst 7. At this time, even if ammonium nitrate is generated by the reaction between NO 2 and ammonia, the purification reaction of the SCR catalyst 7 will not be hindered because ammonium nitrate does not at least be in a solid state.
[0028]
On the other hand, when the temperature of the SCR catalyst 7 is lower than the melting point of ammonium nitrate, the switching valve 16 is opened to switch the flow path of the exhaust gas to the oxidation catalyst bypass 15 side, so that the NO 2 itself causing the generation of ammonium nitrate is reduced. Generation is suppressed. As a result, generation of ammonium nitrate can be suppressed to prevent the purification reaction of the SCR catalyst 7 from being hindered.
[0029]
Next, another embodiment will be described. FIG. 2 is a relationship diagram between the temperature of the SCR catalyst and the NOx purification rate in the conventional SCR catalyst. Using a conventional SCR catalyst purification system, the exhaust gas NOx purification test was performed under three conditions such that the average temperature of the SCR catalyst was 155 ° C., 167 ° C., and 184 ° C., and the same SCR catalyst was used under each test condition. The change in the NOx purification rate when the test was repeated three times without regeneration was tested.
[0030]
As shown in the figure, the higher the temperature of the SCR catalyst, the higher the NOx purification rate. At 184 ° C., the NOx purification rate is 60% or more. Further, under the condition that the temperature of the SCR catalyst was 184 ° C. on average, no change in the NOx purification rate was observed in the three repeated tests, whereas the test was performed under the conditions of 155 ° C. and 167 ° C. on average. It can be seen that the NOx purification rate decreases with each repetition.
[0031]
It is considered that the decrease in the NOx purification rate due to this repeated test is due to the behavior of ammonium nitrate at low temperatures. That is, it is considered that ammonium nitrate generated by the reaction between NO 2 and ammonia accumulates as a solid on the SCR catalyst by repeating the test, and as a result, the catalytic function is lowered and the NOx purification rate is lowered.
[0032]
Therefore, in another embodiment, a “catalyst regeneration control unit” is provided instead of the oxidation catalyst bypass 15, the switching valve 16 and the switching control unit shown in FIG. 1, and a predetermined temperature (for example, the melting point of ammonium nitrate) of the SCR catalyst is provided. If the lower state continues for a predetermined time or longer, the temperature of the SCR catalyst is controlled to be equal to or higher than a predetermined temperature because there is a possibility that the NOx purification rate may be reduced due to ammonium nitrate deposited on the SCR catalyst.
[0033]
The control of setting the temperature of the SCR catalyst to a predetermined temperature or higher is control corresponding to heating and removing ammonium nitrate deposited on the SCR catalyst, that is, a control corresponding to a regeneration process of the SCR catalyst. With this control, an SCR catalyst having a reduced NOx purification rate (for example, see the data of the third test) as shown in the test example of the SCR average temperatures of 155 ° C. and 157 ° C. in FIG. It can be regenerated to an SCR catalyst that provides a purification rate (for example, refer to the data of the first test).
[0034]
As means for controlling the temperature of the SCR catalyst to be equal to or higher than a predetermined temperature, there is a means for directly heating with a heater or the like. In this case, the catalyst regeneration control means includes, for example, a catalyst temperature sensor, a heater for heating the SCR catalyst, and the like.
[0035]
Further, as another means for controlling the temperature of the SCR catalyst to be equal to or higher than the predetermined temperature, a means for heating the exhaust gas with the temperature raised may be mentioned. As means for raising the temperature of the exhaust gas, for example, an EGR control valve (see reference numeral 6 in FIG. 1), an exhaust brake (see reference numeral 17 in FIG. 1), and a nozzle vane of a VG turbo (see reference numeral 4 in FIG. 1) Increasing the engine load by, for example, increasing the opening degree may be mentioned. In this case, the catalyst regeneration control means includes, for example, a catalyst temperature sensor, an engine ECU that performs various controls of the engine, and the like.
[0036]
The control time for controlling the temperature of the SCR catalyst to be equal to or higher than a predetermined temperature is, for example, a time (experimentally determined time) in which the amount of ammonium nitrate estimated to have accumulated can be completely removed. I do.
[0037]
As the “predetermined time” when it is determined that the situation where the temperature of the SCR catalyst is lower than the predetermined temperature has continued for the predetermined time or longer, for example, the NOx purification rate reduced by ammonium nitrate deposited on the SCR catalyst at a certain temperature lower than the predetermined temperature is allowable. Set based on the time limit. That is, the relationship between the accumulated time when the exhaust gas is purified with the SCR catalyst temperature kept constant and the change in the NOx purification rate is checked in advance, and the time during which the NOx purification rate falls to an allowable limit is set.
[0038]
Even if the temperature becomes equal to or higher than the predetermined temperature before the situation where the temperature is lower than the predetermined temperature continues for a predetermined time, if the time during which the temperature has exceeded the predetermined temperature is short (for example, momentarily), the ammonium nitrate deposited on the SCR catalyst is exhausted. Without being completely removed by heat, the catalyst regeneration control means resets the count for a predetermined time and starts counting from zero again. In this case, the state of the completely regenerated SCR catalyst is set to zero and time calculation cannot be performed. Therefore, the count may be continued without resetting the count of the predetermined time.
[0039]
【The invention's effect】
According to the first aspect, in the exhaust gas purification device for an internal combustion engine provided with an oxidation catalyst upstream of the NOx catalyst, when the temperature of the NOx catalyst is lower than a predetermined temperature, exhaust gas from the internal combustion engine passes through the oxidation catalyst bypass. As a result, the oxidation of NOx (the generation of NO 2 ) is not performed, so that it is possible to prevent the inhibition of the NOx purification reaction by ammonium nitrate generated by using NO 2 as an element. Since the exhaust gas is controlled to pass through the oxidation catalyst, the NOx purification rate of the SCR catalyst can be improved.
[0040]
According to the second aspect, in the exhaust gas purification device of the internal combustion engine provided with the oxidation catalyst on the upstream side of the NOx catalyst, the situation where the temperature of the NOx catalyst is lower than the predetermined temperature and which is lower than the predetermined temperature has continued for a predetermined time or more. Sometimes, the temperature of the NOx catalyst is controlled so as to be equal to or higher than the predetermined temperature. Therefore, it is necessary to remove the ammonium nitrate generated on the NOx catalyst and regenerate the SCR catalyst to maintain a high NOx purification rate. it can.
[0041]
According to the third invention, in the exhaust gas control apparatus for the internal combustion engine according to the second invention, the temperature of the exhaust gas from the internal combustion engine is increased to control the temperature of the NOx catalyst to be equal to or higher than the predetermined temperature. Therefore, the NOx purification rate can be maintained at a high level by a simple means such as engine control without newly adding a heating device or the like.
[0042]
According to the fourth invention, in the exhaust gas purification apparatus for an internal combustion engine according to any one of the first to third inventions, the temperature at which ammonium nitrate is melted is set as the "predetermined temperature". Inhibition of the NOx purification reaction caused by the solid state can be effectively prevented. Further, when the temperature at which ammonium nitrate is gasified or decomposed is set as the “predetermined temperature”, it is possible to prevent the complete removal or adhesion of ammonium nitrate from the NOx catalyst, so that the NOx purification reaction can be more effectively performed. Inhibition can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an exhaust gas purification device for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a relationship diagram between the temperature of an SCR catalyst and the NOx purification rate.
[Explanation of symbols]
1 Exhaust gas purification device 2 Engine 7 SCR catalyst 8 Oxidation catalyst (previous stage)
9 urea addition device 10 urea tank 12 urea injection nozzle 13 catalyst temperature sensor 14 oxidation catalyst (second stage)
15 Oxidation catalyst bypass 16 Switching valve

Claims (4)

内燃機関の排気系に設けられアンモニアを還元剤にして排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる酸化触媒と、前記排気系のうち前記NOx触媒よりも上流側であり前記酸化触媒よりも下流側に前記還元剤を供給する還元剤供給手段とを有する内燃機関の排気浄化装置において、
前記NOx触媒の温度を検出又は推測する触媒温度検出手段と、
前記酸化触媒をバイパスする酸化触媒バイパスと、
前記内燃機関からの排気ガスの流路を前記酸化触媒または前記酸化触媒バイパスのいずれかに切り替える切替手段と、
前記触媒温度検出手段により検出又は推測されるNOx触媒の温度が所定温度より低いときに、前記内燃機関からの排気ガスが前記酸化触媒バイパスを通過するように前記切替手段を制御する切替制御手段とを備えたことを特徴とする内燃機関の排気浄化装置。
A NOx catalyst provided in an exhaust system of the internal combustion engine for selectively reducing NOx in exhaust gas using ammonia as a reducing agent, an oxidation catalyst provided in the exhaust system upstream of the NOx catalyst, An exhaust purification device for an internal combustion engine, comprising: a reducing agent supply unit that supplies the reducing agent upstream of the NOx catalyst and downstream of the oxidation catalyst.
Catalyst temperature detecting means for detecting or estimating the temperature of the NOx catalyst;
An oxidation catalyst bypass for bypassing the oxidation catalyst;
Switching means for switching a flow path of exhaust gas from the internal combustion engine to either the oxidation catalyst or the oxidation catalyst bypass;
Switching control means for controlling the switching means so that exhaust gas from the internal combustion engine passes through the oxidation catalyst bypass when the temperature of the NOx catalyst detected or estimated by the catalyst temperature detecting means is lower than a predetermined temperature; An exhaust gas purification device for an internal combustion engine, comprising:
内燃機関の排気系に設けられアンモニアを還元剤にして排気ガス中のNOxを選択還元するNOx触媒と、前記排気系のうち当該NOx触媒よりも上流側に設けられる酸化触媒と、前記排気系のうち前記NOx触媒よりも上流側であり前記酸化触媒よりも下流側に前記還元剤を供給する還元剤供給手段とを有する内燃機関の排気浄化装置において、
前記NOx触媒の温度を検出又は推測する触媒温度検出手段と、
前記触媒温度検出手段により検出又は推測されるNOx触媒の温度が所定温度より低く、かつ当該所定温度より低い状況が所定時間以上継続したときに、前記NOx触媒の温度を前記所定温度以上となるよう制御する触媒再生制御手段とを備えたことを特徴とする内燃機関の排気浄化装置。
A NOx catalyst provided in an exhaust system of the internal combustion engine for selectively reducing NOx in exhaust gas using ammonia as a reducing agent, an oxidation catalyst provided in the exhaust system upstream of the NOx catalyst, An exhaust purification device for an internal combustion engine, comprising: a reducing agent supply unit that supplies the reducing agent upstream of the NOx catalyst and downstream of the oxidation catalyst.
Catalyst temperature detecting means for detecting or estimating the temperature of the NOx catalyst;
When the temperature of the NOx catalyst detected or estimated by the catalyst temperature detecting means is lower than a predetermined temperature, and when the temperature lower than the predetermined temperature continues for a predetermined time or more, the temperature of the NOx catalyst becomes higher than the predetermined temperature. An exhaust gas purifying apparatus for an internal combustion engine, comprising: a catalyst regeneration control unit for controlling the exhaust gas.
請求項2に記載する内燃機関の排気浄化装置において、
前記触媒再生制御手段は、前記触媒温度検出手段により検出又は推測されるNOx触媒の温度が所定温度より低く、かつ当該所定温度より低い状況が所定時間以上継続したときに、前記内燃機関からの排気ガスの温度を上昇させて、前記NOx触媒の温度を前記所定温度以上となるように制御することを特徴とする内燃機関の排気浄化装置。
The exhaust gas purification device for an internal combustion engine according to claim 2,
The catalyst regeneration control means, when the temperature of the NOx catalyst detected or estimated by the catalyst temperature detection means is lower than a predetermined temperature, and when the temperature lower than the predetermined temperature has continued for a predetermined time or more, the exhaust from the internal combustion engine. An exhaust gas purifying apparatus for an internal combustion engine, wherein a temperature of a gas is increased to control a temperature of the NOx catalyst to be equal to or higher than the predetermined temperature.
請求項1ないし3のいずれかに係る内燃機関の排気浄化装置において、
前記所定温度は、硝酸アンモニウムが融解する温度であることを特徴とする内燃機関の排気浄化装置。
The exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 3,
The exhaust gas purifying apparatus for an internal combustion engine, wherein the predetermined temperature is a temperature at which ammonium nitrate is melted.
JP2003143207A 2003-05-21 2003-05-21 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4509495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143207A JP4509495B2 (en) 2003-05-21 2003-05-21 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143207A JP4509495B2 (en) 2003-05-21 2003-05-21 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004346794A true JP2004346794A (en) 2004-12-09
JP4509495B2 JP4509495B2 (en) 2010-07-21

Family

ID=33531057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143207A Expired - Fee Related JP4509495B2 (en) 2003-05-21 2003-05-21 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4509495B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183628A (en) * 2004-12-28 2006-07-13 National Traffic Safety & Environment Laboratory Exhaust emission treatment method and urea scr type automobile exhaust emission treatment device
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP2007021422A (en) * 2005-07-20 2007-02-01 Hino Motors Ltd Selective reduction catalyst and engine exhaust control system using the same
JP2008121629A (en) * 2006-11-15 2008-05-29 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010513766A (en) * 2007-05-03 2010-04-30 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド Large turbocharged diesel engine with SCR reactor
US7735314B2 (en) 2007-05-25 2010-06-15 Southwest Research Institute Exhaust after-treatment system with flow control for optimum temperature conditions
JP2010133393A (en) * 2008-12-08 2010-06-17 Mitsubishi Heavy Ind Ltd Exhaust gas purifying device
JP2010172855A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Apparatus for purifying exhaust gas
JP2011050954A (en) * 2010-10-14 2011-03-17 Hino Motors Ltd Method for regenerating selective reduction type catalyst
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
JP2013015027A (en) * 2011-06-30 2013-01-24 Isuzu Motors Ltd Exhaust gas purifying apparatus and method for diesel engine
RU2481478C2 (en) * 2008-10-31 2013-05-10 Вольво Ластвагнар Аб Method and device for cold start of internal combustion engine
US20130263593A1 (en) * 2012-04-05 2013-10-10 GM Global Technology Operations LLC Exhaust Aftertreatment And Exahust Gas Recirculation Systems
WO2014073408A1 (en) 2012-11-07 2014-05-15 トヨタ自動車株式会社 Exhaust gas purification device for internal-combustion engine
JP2015200313A (en) * 2014-04-08 2015-11-12 コマツ アメリカ コーポレーション Selective catalyst reduction heat management method and system
JP2016044591A (en) * 2014-08-22 2016-04-04 いすゞ自動車株式会社 Internal combustion engine and exhaust emission control method of the internal combustion engine
JP2018100672A (en) * 2015-11-09 2018-06-28 マン・ディーゼル・アンド・ターボ,フィリアル・アフ・マン・ディーゼル・アンド・ターボ・エスイー,ティスクランド Cross head type large two-stroke internal combustion engine with turbocharger

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652047B2 (en) * 2004-12-28 2011-03-16 独立行政法人交通安全環境研究所 Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
JP2006183628A (en) * 2004-12-28 2006-07-13 National Traffic Safety & Environment Laboratory Exhaust emission treatment method and urea scr type automobile exhaust emission treatment device
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP2007021422A (en) * 2005-07-20 2007-02-01 Hino Motors Ltd Selective reduction catalyst and engine exhaust control system using the same
JP2008121629A (en) * 2006-11-15 2008-05-29 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010513766A (en) * 2007-05-03 2010-04-30 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド Large turbocharged diesel engine with SCR reactor
US7735314B2 (en) 2007-05-25 2010-06-15 Southwest Research Institute Exhaust after-treatment system with flow control for optimum temperature conditions
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
RU2481478C2 (en) * 2008-10-31 2013-05-10 Вольво Ластвагнар Аб Method and device for cold start of internal combustion engine
JP2010133393A (en) * 2008-12-08 2010-06-17 Mitsubishi Heavy Ind Ltd Exhaust gas purifying device
CN102245868A (en) * 2008-12-08 2011-11-16 三菱重工业株式会社 Exhaust gas purifying device
WO2010067760A1 (en) * 2008-12-08 2010-06-17 三菱重工業株式会社 Exhaust gas purifying device
KR101288784B1 (en) * 2008-12-08 2013-07-22 미츠비시 쥬고교 가부시키가이샤 Flue gas purifying device
US8607547B2 (en) 2008-12-08 2013-12-17 Mitsubishi Heavy Industries, Ltd. Flue gas purifying device
JP2010172855A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Apparatus for purifying exhaust gas
JP2011050954A (en) * 2010-10-14 2011-03-17 Hino Motors Ltd Method for regenerating selective reduction type catalyst
JP2013015027A (en) * 2011-06-30 2013-01-24 Isuzu Motors Ltd Exhaust gas purifying apparatus and method for diesel engine
US9003792B2 (en) * 2012-04-05 2015-04-14 GM Global Technology Operations LLC Exhaust aftertreatment and exhaust gas recirculation systems
US20130263593A1 (en) * 2012-04-05 2013-10-10 GM Global Technology Operations LLC Exhaust Aftertreatment And Exahust Gas Recirculation Systems
WO2014073408A1 (en) 2012-11-07 2014-05-15 トヨタ自動車株式会社 Exhaust gas purification device for internal-combustion engine
CN104769244A (en) * 2012-11-07 2015-07-08 丰田自动车株式会社 Exhaust gas purification device for internal-combustion engine
JP5880731B2 (en) * 2012-11-07 2016-03-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9593611B2 (en) 2012-11-07 2017-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP2015200313A (en) * 2014-04-08 2015-11-12 コマツ アメリカ コーポレーション Selective catalyst reduction heat management method and system
CN110617128A (en) * 2014-04-08 2019-12-27 小松美国公司 Selective catalytic reduction heat management system
JP2016044591A (en) * 2014-08-22 2016-04-04 いすゞ自動車株式会社 Internal combustion engine and exhaust emission control method of the internal combustion engine
JP2018100672A (en) * 2015-11-09 2018-06-28 マン・ディーゼル・アンド・ターボ,フィリアル・アフ・マン・ディーゼル・アンド・ターボ・エスイー,ティスクランド Cross head type large two-stroke internal combustion engine with turbocharger

Also Published As

Publication number Publication date
JP4509495B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
US7716918B2 (en) Method of exhaust gas purification and exhaust gas purification system
JP5714919B2 (en) Method for predicting the amount of nitrogen oxides and exhaust system using the same
JP5118331B2 (en) Exhaust purification device
WO2008126912A1 (en) Exhaust purification system for internal combustion engine
JP4509495B2 (en) Exhaust gas purification device for internal combustion engine
JP4178960B2 (en) Exhaust gas purification device for internal combustion engine
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP2005002968A (en) Exhaust emission control device of internal combustion engine
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP2007016713A (en) Nox eliminating system regenerating control method and nox eliminating system
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP5194590B2 (en) Engine exhaust purification system
JP2010209783A (en) Exhaust emission control device
JP3758389B2 (en) Diesel engine exhaust gas purification system
JP2016145532A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2009052408A (en) Exhaust emission control device of internal combustion engine
JP4052268B2 (en) Exhaust gas purification device for internal combustion engine
JP2016151183A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method
JP2008128212A (en) Exhaust emission control device of internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2008202409A (en) Exhaust emission control device of internal combustion engine
JP5332664B2 (en) Engine exhaust purification system
KR101040346B1 (en) System for emission reduce line of diesel vehicle and second injection control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090518

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees