JP2004346274A - Polyamide-based elastomer - Google Patents
Polyamide-based elastomer Download PDFInfo
- Publication number
- JP2004346274A JP2004346274A JP2003147732A JP2003147732A JP2004346274A JP 2004346274 A JP2004346274 A JP 2004346274A JP 2003147732 A JP2003147732 A JP 2003147732A JP 2003147732 A JP2003147732 A JP 2003147732A JP 2004346274 A JP2004346274 A JP 2004346274A
- Authority
- JP
- Japan
- Prior art keywords
- polyamide
- general formula
- carbon atoms
- acid
- elastomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 CC(C(C)(C)*(CC1)C1(C)N)N Chemical compound CC(C(C)(C)*(CC1)C1(C)N)N 0.000 description 1
Landscapes
- Polyamides (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明のポリアミド系エラストマーは、ポリアミドをハードセグメントとし、ポリエーテルをソフトセグメントとする透明性に優れたポリアミド系エラストマー及びその製造方法に関する。さらに詳しくは、脂肪族ポリアミドをハードセグメント、ABA型トリブロックポリエーテル及びポリオキシプロピレンジアミンをソフトセグメントとする強靭性、溶融成形性、低温柔軟性、低温耐衝撃性、伸長回復性、耐屈曲疲労性、反ぱつ弾性及び消音特性などに優れ、合わせて良好な透明性を示す脂肪族ポリアミド系エラストマーに関する。
【0002】
【従来の技術】
ポリアミド系エラストマーとして、脂肪族ポリアミドをハードセグメント、脂肪族ポリエーテルをソフトセグメントとし、脂肪族ジカルボン酸を鎖延長剤とするコポリマーが開示されている。
【0003】
両末端にカルボキシル基又はアミノ基を有するポリアミド又はそれらのオリゴマーと両末端にアミノ基又はカルボキシル基を有するポリエーテル又はそれらのオリゴマーとを溶融状態で重合させて得られるポリエーテルアミドブロックポリマーの製造法が開示されている(例えば、特許文献1を参照)。
特定のポリエーテルブロックを有するジアミンをソフトセグメントとし、これとほぼ当量のジカルボン酸及びハードセグメントを形成するポリアミド形成性化合物との重合によって得られるポリエーテルアミドの製法が開示されている(例えば、特許文献2を参照)。
ポリアミド形成性モノマーと炭素数14〜48の脂肪族ジカルボン酸との重縮合によって得られる両末端にカルボキシル基を有するポリアミド、及び特定の末端アミノポリオキシアルキレンを重縮合させることを特徴とするブロックポリエーテルアミドの製法が開示されている(例えば、特許文献3を参照)。
熱溶融接着剤として有用なポリアミドとして、6〜12個の炭素原子を含有するアルカンジカルボン酸及び非置換又はC1−C4アルキル置換ベンゼンジカルボン酸から選択される二塩基酸、ポリ(オキシテトラメチレン)ジアミン及び内部に2級アミノ基、末端に1級アミンを含有するポリ(オキシテトラメチレン)オリゴマーから得られるポリエーテルアミドが開示されている(例えば、特許文献4を参照)。
【0004】
ポリエーテルアミドが開示されている(例えば、特許文献5及び6を参照)。
エチレンオキシドを含むポリエーテル構造含むポリエーテルアミドが開示されている(例えば、特許文献7及び8を参照)。
【0005】
【特許文献1】
特公昭45−7559号公報
【特許文献2】
特公昭62−50495号公報
【特許文献3】
特公平2−48021号公報
【特許文献4】
特許第3199797号
【特許文献5】
特開平3−237131号公報
【特許文献6】
特開平4−91128号公報
【特許文献7】
特開平9−118750号公報
【特許文献8】
特開2000−7780号公報
【0006】
【発明が解決しようとする課題】
従来、ポリエーテルアミドにはポリエーテルとして両末端にアミノ基又はカルボキシル基を有するポリオキシエチレン、両末端にアミノ基を有するポリオキシプロピレン及びポリオキシテトラメチレンが用いられている。ポリエーテルとして、両末端にアミノ基又はカルボキシル基を有するポリオキシエチレンを用いた場合には、吸湿性及び帯電防止性などが向上したポリエーテルアミドが、ポリエーテルとして、両末端にアミノ基を有するポリオキシプロピレンを用いた場合には、柔軟性、透明性、耐水性、可とう性、ゴム弾性などに優れたポリエーテルアミドが、ポリエーテルとして両末端にアミノ基を有するポリオキシテトラメチレンを用いた場合には柔軟性、反ぱつ弾性、耐衝撃性、切り欠き靭性などに優れたポリエーテルアミドが得られる。しかしながら、それぞれのポリエーテルアミドの特性は、一長一短があり、エラストマーとしてバランスの優れた物が望まれている。
【0007】
本発明は、熱可塑性エラストマーの実用的な材料物性として重要な強靭性、低温柔軟性、伸長回復性、耐屈曲疲労性、反ぱつ弾性、透明性などに優れるポリアミド系エラストマー及びその製造方法を提供することを目的とする。特に、本発明は良好な透明性を示す脂肪族系のポリアミド系エラストマーを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、強靭性、低温柔軟性、伸長回復性、耐屈曲疲労性、反ぱつ弾性、透明性、溶融成形性などに優れ、かつ良好な透明性を有する新規ポリアミド系エラストマー及びその製造方法について鋭意検討を重ねた結果、ABA型トリブロックポリエーテル及びポリオキシプロピレンジアミンをソフトセグメントとするポリエーテルアミドは透明性と伸長回復性のようなエラストマー特性が良好にバランスしたエラストマー材料であることを見出し、本発明に至った。
【0009】
第一の発明は、ポリアミド形成性モノマー(A)、下記一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B)、下記一般式(2)で表されるポリオキシプロピレンジアミン(C)及びジカルボン酸(D)重合して得られることを特徴とするポリアミド系エラストマーを提供することである。
【化6】
(ここで、x及びzは1〜10であり、yは8〜30を示す。)
【化7】
(ここで、nは2〜10を示す。)
【0010】
本発明の好ましい様態は、
1:ポリアミド系エラストマーの全成分に対するABA型トリブロックポリエーテルジアミン(B)及びポリオキシプロピレンジアミン(C)割合が1〜67重量%であること。
2:一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B)と一般式(2)で表されるポリオキシプロピレンジアミン(C)の比率((B)/(C))が90/10〜10/90(重量比)であること。
【0011】
3:ポリアミド形成性モノマー(A)が、一般式(3)及び/又は一般式(4)で表され、ジカルボン酸(D)が一般式(5)で表されること。
【化8】
(ここで、R1は炭素数2〜20の炭化水素の分子鎖又は炭素原子2〜20を有するアルキレン基を示す。)
【化9】
(ここで、R2は炭素数3〜20の炭化水素の分子鎖又は炭素原子3〜20を有するアルキレン基を示す。)
【化10】
(ここで、R3は炭素数1〜20の炭化水素の分子鎖又は炭素原子1〜20を有するアルキレン基、mは0又は1を示す。)
【0012】
4:ポリアミド形成性モノマー(A)が、脂肪族ポリアミド形成性モノマー(A)であること。
5:ジカルボン酸(D)が脂肪族ジカルボン酸及び脂環族ジカルボン酸から選ばれる少なくとも1種のジカルボン酸であること。
【0013】
6:ポリアミド系エラストマーの相対粘度が1.2〜3.5(0.5重量/容量%メタクレゾール溶液、25℃)であること。
【0014】
【発明の実施の形態】
本発明のポリアミド系エラストマーは、ポリアミド形成性モノマー(A)、下記一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B:ポリオキシブチレン)、下記一般式(2)で表されるポリオキシプロピレンジアミン(C)及びジカルボン酸(D)を重合して得られることを特徴とするポリアミド系エラストマーである。
本発明のポリアミド系エラストマーは、ポリアミド形成性モノマー(A)、下記一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B:ポリオキシブチレン)、下記一般式(2)で表されるポリオキシプロピレンジアミン(C)及びジカルボン酸(D)からなる重合生成物である。
【化11】
(ここで、x及びzは1〜10、好ましくは1〜9、さらに好ましくは1〜8、より好ましくは1〜7、特に好ましくは1〜6であり、
yは8〜30、好ましくは8〜29、さらに好ましくは8〜28、より好ましくは8〜27、特に好ましくは8〜26を示す。)
【化12】
(ここで、nは好ましくは2〜10、さらに好ましくは2〜8、より好ましくは2〜7、特に好ましくは2〜6を示すを示す。)
【0015】
好ましくは、本発明のポリアミド系エラストマーは、下記一般式(3)及び/又は一般式(4)で表されるポリアミド形成性モノマー(A)、下記一般式(1)で表されるABA型トリブロックポリエーテルジアミン、下記一般式(2)で表されるポリオキシプロピレンジアミン及び下記一般式(5)で表されるジカルボン酸(D)を重合して得られることを特徴とするポリアミド系エラストマーが好ましい。
【化13】
(ここで、x及びzは1〜10、好ましくは1〜9、さらに好ましくは1〜8、より好ましくは1〜7、特に好ましくは1〜6であり、
yは8〜30、好ましくは8〜29、さらに好ましくは8〜28、より好ましくは8〜27、特に好ましくは8〜26を示す。)
【化14】
(ここで、nは好ましくは2〜10、さらに好ましくは2〜8、より好ましくは2〜7、特に好ましくは2〜6を示すを示す。)
【化15】
(ここで、R1は炭素数2〜20の炭化水素の分子鎖又は炭素原子2〜20を有するアルキレン基であり、好ましくは炭素数3〜18の炭化水素の分子鎖又は炭素原子3〜18を有するアルキレン基であり、さらに好ましくは炭素数4〜15の炭化水素の分子鎖又は炭素原子4〜15を有するアルキレン基であり、特に好ましくは炭素数10〜15の炭化水素の分子鎖又は炭素原子10〜15を有するアルキレン基を示す。)
【化16】
(ここで、R2は炭素数3〜20の炭化水素の分子鎖又は炭素原子3〜20を有するアルキレン基であり、好ましくは炭素数3〜18の炭化水素の分子鎖又は炭素原子3〜18を有するアルキレン基であり、さらに好ましくは炭素数4〜15の炭化水素の分子鎖又は炭素原子4〜15を有するアルキレン基であり、特に好ましくは炭素数10〜15の炭化水素の分子鎖又は炭素原子10〜15を有するアルキレン基を示す。)
【化17】
(ここで、R3は炭素数0〜20の炭化水素の分子鎖又は炭素原子0〜20を有するアルキレン基、さらに好ましくは炭素数1〜15の炭化水素の分子鎖又は炭素原子1〜15を有するアルキレン基であり、より好ましくは炭素数2〜12の炭化水素の分子鎖又は炭素原子2〜12を有するアルキレン基であり、特に好ましくは炭素数4〜10の炭化水素の分子鎖又は炭素原子4〜10を有するアルキレン基を示し、mは0又は1を示す。)
【0016】
ポリアミド系エラストマーの全成分に対するABA型トリブロックポリエーテルジアミン(B)及びポリオキシプロピレンジアミン(C)割合は、好ましくは1〜67重量%、さらに好ましくは2〜67重量%、より好ましくは2〜66重量%、特に好ましくは3〜65重量%が好ましい。ポリアミド系エラストマーの全成分に対するABA型トリブロックポリエーテルジアミン(B)及びポリオキシプロピレンジアミン(C)の割合が、上記範囲より少ない場合、柔軟性やゴム弾性などのエラストマーとしての機能、性能が発現しにくくなるために好ましくない場合がある。ポリアミド系エラストマーの全成分に対するABA型トリブロックポリエーテルジアミン(B)及びポリオキシプロピレンジアミン(C)の割合が、上記範囲より大きい場合、ポリアミドエラストマーの結晶性が低くなる場合があり、強度、弾性率などの機械的物性が低下するので好ましくない場合がある。
【0017】
一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B)と一般式(2)で表されるポリオキシプロピレンジアミン(C)中のポリオキシプロピレンジアミン(C)の割合=(C)×100/((B)+(C))は、好ましくは5〜80重量%、さらに好ましくは5〜70重量%、より好ましくは10〜70重量%、特に好ましくは10〜60重量%が好ましい。(C)の割合が上記より大きい場合ゴム弾性低くなり好ましくない。(C)の割合が上記より小さい場合透明性が低く好ましくない。
【0018】
本発明のポリアミド系エラストマーの硬度(ショアD)は、好ましくは37〜70の範囲、さらに好ましくは40〜70の範囲、より好ましくは43〜70の範囲、特に好ましくは45〜70の範囲が好ましい。
【0019】
本発明のポリアミド系エラストマーの応力緩和(t0.9)は、好ましくは2秒以上、さらに好ましくは2.2秒以上、より好ましくは2.5秒以上、特に好ましくは2.8秒以上であることが好ましい。応力緩和が上記範囲であるとゴム弾性に優れたエラストマーが得られる。
【0020】
本発明のポリアミド系エラストマーの伸長回復率は、好ましくは86〜100%の範囲、さらに好ましくは87〜100%の範囲、特に好ましくは88〜100%の範囲が好ましい。伸長回復率が上記範囲であることにより回復弾性、反ぱつ弾性に優れたエラストマーが得られる。
【0021】
本発明のポリアミド系エラストマーのヘイズは、好ましくは35以下、さらに好ましくは32以下、より好ましくは30以下、特に好ましくは27以下が好ましい。ヘイズが上記範囲以下であることにより透明性に優れるエラストマーが得られる。
【0022】
ポリアミド系エラストマーにおいて、ポリアミド形成性モノマー(A)、一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B)、一般式(2)で表されるポリオキシプロピレンジアミン(C)及びジカルボン酸(D)に含まれる末端のカルボン酸又はカルボキシル基と、末端のアミノ基とがほぼ等モルになるような割合が好ましい。
特に、ポリアミド形成性モノマー(A)の一方の末端がアミノ基で他方の末端がカルボン酸又はカルボキシル基の場合、(B)ABA型トリブロックポリエーテルジアミン、(C)ポリオキシプロピレンジアミン及び(D)ジカルボン酸は、(B)及び(C)のアミノ基と(D)のカルボキシル基がほぼ等モルになるような割合が好ましい。
【0023】
本発明のポリアミド系エラストマーが、一般式(3)及び/又は一般式(4)で表されるポリアミド形成性モノマー(A)、一般式(1)で表されるABA型トリブロックポリエーテルジアミン、一般式(2)で表されるポリオキシプロピレンジアミン(C)及び一般式(5)で表されるジカルボン酸(D)から合成される場合、一般式(1)で表されるABA型トリブロックポリエーテルジアミン及び一般式(2)で表されるポリオキシプロピレンジアミン(C)と一般式(4)で表されるジカルボン酸(D)がほぼ等モルになるような割合が好ましい。
【0024】
(A)ポリアミド形成性モノマーとしては、ω−アミノカルボン酸、ラクタム、或いはジアミンとジカルボン酸から合成されるもの及び/又はそれらの塩から選ばれる少なくとも一種の脂肪族、脂環族及び芳香族を含むポリアミド形成性モノマーが使用される。
【0025】
ジアミンとジカルボン酸から合成されるもの及び/又はそれらの塩において、ジアミンとしては、脂肪族ジアミン、脂環式ジアミン及び芳香族ジアミン又はこれらの誘導体から選ばれる少なくとも一種のジアミン化合物などを挙げることが出来、ジカルボン酸としては、脂肪族ジカルボン酸、脂環式ジカルボン酸及び芳香族ジカルボン酸又はこれらの誘導体から選ばれる少なくとも一種のジカルボン酸化合物などを挙げることが出来る。
特に、ジアミンとジカルボン酸から合成されるもの及び/又はそれらの塩において、脂肪族ジアミン化合物と脂肪族ジカルボン酸化合物の組合せを使用することにより、低比重で、引張り伸びが大きく、耐衝撃性に優れ、溶融成形性が良好なポリアミド系エラストマーを得ることが出来る。
【0026】
ジアミンとジカルボン酸のモル比(ジアミン/ジカルボン酸)は0.9〜1.1の範囲が好ましく、0.93〜1.07の範囲がさらに好ましく、0.95〜1.05の範囲がより好ましく、0.97〜1.03の範囲が特に好ましい。この範囲から外れると高分子量化しにくくなる場合があるため好ましくない。
【0027】
ジアミンとジカルボン酸から合成されるもの及び/又はそれらの塩において、ジアミンの具体例としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミンなどの炭素数2〜20の脂肪族ジアミンなどのジアミン化合物を挙げることが出来、ジカルボン酸の具体例としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸のような炭素数2〜20の脂肪族ジカルボン酸などのジカルボン酸化合物を挙げることが出来る。
【0028】
ラクタムとしては、ε−カプロラクタム、ω−エナントラクタム、ω−ウンデカラクタム、ω−ドデカラクタム、2−ピロリドンなどの炭素数5〜20の脂肪族ラクタムなどを挙げることが出来る。
【0029】
ω−アミノカルボン酸としては、6−アミノカプロン酸、7−アミノヘプタン酸、8−アミノオクタン酸、10−アミノカプリン酸、11−アミノウンデカン酸、12−アミノドデカン酸などの炭素数5〜20の脂肪族ω−アミノカルボン酸などを挙げることが出来る。
【0030】
下記一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B)は、ポリ(オキシテトラメチレン)グリコールなどの両末端にプロピレンオキシドを付加することによりポリプロピレングリコールとした後、このポリプロピレングリコールの末端にアンモニアなどを反応させることによって製造されるポリエーテルジアミンなどを用いることが出来る。
【0031】
下記一般式(1)で表されるABA型トリブロックポリエーテルジアミン(B)において、x及びzが下記範囲より小さい場合得られるエラストマーの透明性が劣り好ましくなく、yが下記範囲より小さい場合ゴム弾性が低くなるので好ましくない。また、x及びzが下記範囲より大きい場合又は、yが下記範囲より大きい場合ポリアミド成分との相溶性が低くなり透明性が低下するとともに強靭なエラストマーが得られにくいため好ましくない。
【化18】
(ここで、x及びzは1〜10、好ましくは1〜9、さらに好ましくは1〜8、より好ましくは1〜7、特に好ましくは1〜6であり、
yは8〜30、好ましくは8〜29、さらに好ましくは8〜28、より好ましくは8〜27、特に好ましくは8〜26を示す。)
【0032】
下記一般式(2)で表されるポリオキシプロピレンジアミン(C)としては、米国HUNTSMAN社製ジェファーミンD−230(nがおよそ2.6)、ジェファーミンD−400(nがおよそ5.6)などを用いることができる。
【0033】
下記一般式(2)で表されるポリオキシプロピレンジアミン(C)において、nが下記範囲より小さい場合エラストマーとしての柔軟性、ゴム弾性が劣り好ましくない。また、nが下記範囲より大きい場合ポリアミド成分との相溶性が低くなり透明性が低下するために好ましくない。
【化19】
(ここで、nは好ましくは2〜10、さらに好ましくは2〜8、より好ましくは2〜7、特に好ましくは2〜6を示すを示す。)
【0034】
ジカルボン酸(D)としては、脂肪族、脂環族及び芳香族ジカルボン酸から選ばれる少なくとも一種のジカルボン酸又はこれらの誘導体を用いることが出来る。
ジカルボン酸としては、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2〜25の直鎖脂肪族ジカルボン酸、又は、トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14〜48の二量化脂肪族ジカルボン酸(ダイマー酸)及びこれらの水素添加物(水添ダイマー酸)などの脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環族ジカルボン酸及び、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸を挙げることが出来る。
ダイマー酸及び水添ダイマー酸としては、ユニケマ社製商品名「プリポール1004」、「プリポール1098」、「プリポール1006」、「プリポール1009」、「プリポール1013」などを用いることが出来る。
【0035】
本発明のポリアミド系エラストマーの製造方法として、一例を挙げると、ポリアミド形成性モノマー(A)、ABA型トリブロックポリエーテルジアミン(B)、ポリオキシプロピレンジアミン(C)及びジカルボン酸(D)の4成分を同時に、加圧及び/又は常圧下で溶融重合し、又は必要に応じさらに減圧下で溶融重合する工程からなる方法を用いることが出来る。
製造に当たり原料の仕込む方法に特に制限はないが、ポリアミド形成性モノマー(A)、ABA型トリブロックポリエーテルジアミン(B)、ポリオキシプロピレンジアミン(C)及びジカルボン酸(D)の仕込み割合は、全成分に対してポリアミド形成性モノマー(A)が好ましくは40〜95重量%、特に好ましくは50〜95重量%の範囲、ABA型トリブロックポリエーテルジアミン(B)及びポリオキシプロピレンジアミン(C)が好ましくは4〜57重量%、特に好ましくは4〜56重量%の範囲である。
原料のうち、ABA型トリブロックポリエーテルジアミン(B)、ポリオキシプロピレンジアミン(C)及びジカルボン酸(D)は、ABA型トリブロックポリエーテルジアミン(B)及びポリオキシプロピレンジアミン(C)のアミノ基とジカルボン酸(D)のカルボキシル基がほぼ等モルになるように仕込むことが好ましい。
【0036】
本発明のポリアミド系エラストマーの製造は、重合温度が好ましくは150〜300℃、さらに好ましくは160〜280℃、特に好ましくは180〜250℃で行うことが出来る。重合温度が上記温度より低い場合重合反応が遅く、上記温度より大きい場合熱分解が起きやすく良好な物性のポリマーが得られない場合がある。
本発明のポリアミド系エラストマーは、ポリアミド形成性モノマー(A)としてω−アミノカルボン酸を使用する場合、常圧溶融重合又は常圧溶融重合とそれに続く減圧溶融重合での工程からなる方法で製造することができる。
一方、ポリアミド形成性モノマー(A)としてラクタム、又はジアミンとジカルボン酸から合成されるもの及び/又はそれらの塩を用いる場合には、適量の水を共存させ、0.1〜5MPaの加圧下での溶融重合とそれに続く常圧溶融重合及び/又は減圧溶融重合からなる方法で製造することができる。
【0037】
本発明のポリアミド系エラストマーの製造は、重合時間が通常0.5〜30時間で行うことが出来る。重合時間が上記範囲より短いと、分子量の上昇が十分でなく、長いと熱分解による着色などが起こり、いずれの場合も所望の物性を有するポリアミド系エラストマーが得られない場合があり好ましくない。
【0038】
本発明のポリアミド系エラストマーの製造は、回分式でも、連続式でも実施することができ、バッチ式反応釜、一槽式ないし多槽式の連続反応装置、管状連続反応装置などを単独であるいは組み合わせて用いることができる。
【0039】
本発明のポリアミド系エラストマーは、相対粘度(ηr)が1.2〜3.5(0.5重量/容量%メタクレゾール溶液、25℃)が好ましい。
【0040】
本発明のポリアミド系エラストマーの製造において、必要に応じて分子量調節や成形加工時の溶融粘度安定のために、ラウリルアミン、ステアリルアミン、ヘキサメチレンジアミン、メタキシリレンジアミンなどのモノアミン及びジアミン、酢酸、安息香酸、ステアリン酸、アジピン酸、セバシン酸、ドデカン二酸などのモノカルボン酸及びジカルボン酸などを添加することができる。これらの使用量は最終的に得られるエラストマーの相対粘度が1.2〜3.5(0.5重量/容量%メタクレゾール溶液、25℃)の範囲になるように適宜添加することができる。
本発明のポリアミド系エラストマーの製造において、上記のモノアミン及びジアミン、モノカルボン酸及びジカルボン酸などの添加量は、得られるポリアミド系エラストマーの特性を阻害されない範囲が好ましい。
【0041】
本発明のポリアミド系エラストマーの製造において、必要に応じて触媒として、リン酸、ピロリン酸、ポリリン酸などを、また触媒と耐熱剤の両方の効果をねらって亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩などの無機系リン化合物を添加することができる。
添加量は、通常、仕込み原料に対して50〜3000ppmである。
本発明のポリアミド系エラストマーは、その特性が阻害されない範囲で、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤、補強材などを添加することができる。
【0042】
本発明のポリアミド系エラストマーは、溶融成形性に優れ、成形加工性に優れ、透明性に優れ、強靭性に優れ、耐屈曲疲労性に優れ、反ぱつ弾性に優れ、低比重性、低温柔軟性に優れ、低温耐衝撃性に優れ、伸長回復性に優れ、消音特性に優れ、ゴム的な性質などに優れている。
【0043】
本発明のポリアミド系エラストマーは、射出成形、押出成形、ブロー成形などの成形方法により、成形物を得ることが出来る。
本発明のポリアミド系エラストマーの射出成形品としては、強靭性、耐屈曲疲労性、反ぱつ弾性、低比重の材料が好ましい野球、サッカー、陸上競技などの分野におけるシューズソール材があげられ、その他の射出成形品としては、機械・電気精密機器のギア、コネクタ、シール、自動車用部材、モール、シール材などを挙げることが出来る。
本発明のポリアミド系エラストマーの押出成形品としては、チューブ、ホース、異形材、シート、フィルム、モノフィラメントなどを挙げることが出来る。
本発明のポリアミド系エラストマーのブロー成形品としては、自動車用ミラーブーツ、等速ジョイントブーツ、タンクなどを挙げることが出来る。
【0044】
本発明のポリアミド系エラストマーは、本発明のポリアミド系エラストマーを除くポリアミド、ポリ塩化ビニル、熱可塑性ポリウレタン、ABS樹脂などの熱可塑性樹脂との相溶性が良く、これらの熱可塑性樹脂とブレンドすることにより、これらの樹脂の成形性、耐衝撃性、弾性及び柔軟性などを改良することができる。
【0045】
本発明のポリアミド系エラストマーは、脂肪族ポリアミドをハードセグメント、ABA型トリブロックポリエーテルジアミン及びポリオキシプロピレンジアミンをソフトセグメントとする、透明性、強靭性、溶融成形性、低温柔軟性、低温耐衝撃性、伸長回復性、耐屈曲疲労性、反ぱつ弾性などに優れ、硬度(ショアD)と伸長回復率とのバランスに優れる新規な熱可塑性ポリエーテルアミドであって、スポーツシューズ材、スキー板の表面材、機械・電気精密機器のギア・コネクタ・シール、自動車用モール、シール材、各種自動車用部材、各種チューブ・ホース、シート、フィルム、モノフィラメント、自動車用ミラーブーツ、等速ジョイントブーツなどに用いることができる。
【0046】
以下、実施例および比較例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
特性値は次のようにして測定した。
【0047】
1)相対粘度(ηr)(0.5重量/容量%メタクレゾール溶液、25℃):
試薬特級品のm−クレゾールを溶媒として、5g/dm3の濃度で、オストワルド粘度計を用いて25℃で測定した。
【0048】
2)末端カルボキシル基濃度([COOH]):
重合物約1gに40mlのベンジルアルコールを加え、窒素ガス雰囲気で加熱溶解し、得られた試料溶液に指示薬としてフェノールフタレインを加えて、N/20水酸化カリウム−エタノール溶液で滴定した。
【0049】
3)末端アミノ基濃度([NH2]):
重合物約1gを40mlのフェノール/メタノール混合溶媒(容量比:9/1)に溶解し、得られた試料溶液に指示薬としてチモールブルーを加えて、N/20塩酸で滴定した。
【0050】
4)数平均分子量(Mn):
数平均分子量(Mn)は、末端カルボキシル基濃度([COOH])及び末端アミノ基濃度([NH2])を用い、式(1)により求めた。
【数1】
【0051】
5)融点(Tm)及び結晶化温度(Tc):
Tm及びTcは(株)島津製作所製示差走査熱量計DSC−50を用いて窒素雰囲気下で測定した。室温から230℃まで10℃/分の速度で昇温し(昇温ファーストランと呼ぶ)、230℃で10分保持したのち、−100℃まで10℃/分の速度で降温し(降温ファーストランと呼ぶ)、次に230℃まで10℃/分の速度で昇温した(昇温セカンドランと呼ぶ)。得られたDSCチャートから降温ファーストランの発熱ピーク温度をTc、昇温セカンドランの吸熱ピーク温度をTmとした。
【0052】
6)組成:
重トリフロロ酢酸を溶媒として、4重量%の濃度で、日本電子(株)製JNM−EX400WB型FT−NMRを用いて、室温で測定したプロトンNMRスペクトルから各成分の組成を求めた。
【0053】
7)硬度:
ASTM・D2240に準拠してショアDを測定した。圧縮成形により成形した厚さ1mmのシートを厚さ5mmのナイロン12(UBENYLON 3030U、宇部興産社製)の板の上に置いて測定した。測定は、温度23℃で行った。
【0054】
8)透明性:ヘイズ(曇り度):
圧縮成形により成形した70mm×70mm×厚さ1mmのシートを用いて、JIS・K7105に準拠し、スガ試験機(株)製直読式ヘイズコンピュータHGM−2DPを用いて測定した。
【0055】
9)応力緩和:
厚さ約100μmのフィルムからJIS3号ダンベルを用いて切り出した試料を引張試験機のチャックに、チャック間距離50mmで挟み、500mm/分の速度で延伸し、試料中央部直線部分の2%に当たる0.4mmを延伸したところで止めて、その状態を保ったまま応力の変化を測定した。2%延伸時の初期応力(σ0)とt時間後の応力(σt)との比(σt/σ0)が、0.9になる時間(t0.9)を測定した。t0.9が大きくなるほど緩和しにくく、ゴム弾性が優れる。測定は、温度23℃で行った。
【0056】
10)伸長回復率:
厚さ約100μmのフィルムからJIS3号ダンベルを用いて切り出した試料を引張試験機のチャックにチャック間距離50mmで挟み、100mm/minの速度で延伸し、試料中央部直線部分の20%に当たる4mmを延伸したところで直ちに同じ速度で元に戻し、応力が0になった時のチャック間距離r(mm)を測定し、式(2)により伸長回復率を求めた。伸長回復率が大きいほどゴム弾性に優れる。測定は、温度23℃で行った。
【数2】
【0057】
[実施例1]
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約130ミリリットルの反応容器に宇部興産(株)製12−アミノドデカン酸(ADA)25.500g、ABA型のトリブロックポリエーテルジアミン(HUNTSMAN社製XTJ−542、全アミン:1.965meq/g)1.824g、ポリオキシプロピレンジアミン(HUNTSMAN社製ジェファーミンD−400、全アミン:4.43meq/g)1.824g及びアジピン酸(AA)0.852gを仕込み、容器内を十分窒素置換した後、窒素ガスを流速50ml/分で供給しながら、190℃で1時間加熱し、次に1時間かけて230℃に昇温させ、さらに230℃で8時間重合を行い、重合物を得た。
得られた重合物は白色のポリマーであり、ηr=2.01、[COOH]=3.25×10−5eq/g、[NH2]=3.83×10−5eq/g、Mn=28200、Tm=175℃、Tc=138℃であった。ポリマー組成はPA12/XTJ−542/D−400/AA=84.9/6.2/6.0/2.9(重量%)(ただし、PA12、XTJ−542、D−400及びAAはポリマー中の各成分を表し、PA12はナイロン12単位を、XTJ−542はABA型トリブロックポリエーテルジアミン単位を、D−400はポリオキシプロピレンジアミン単位を、AAはアジピン酸単位をそれぞれ表す)であった。
得られた重合物を、温度230℃、10MPaで圧縮成形を行い、厚さ約1mmのシートと厚さ約100μmのフィルムを作成した。厚さ1mmのシートを用いて、硬度及びヘーズを評価し、厚さ約100μmのフィルムを用いて、t0.9及び伸長回復率を評価し、結果を表1に示す。
【0058】
[比較例1]
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約130ミリリットルの反応容器に宇部興産(株)製12−アミノドデカン酸(ADA)25.500g、ABA型のトリブロックポリエーテルジアミン(HUNTSMAN社製XTJ−542、全アミン:1.965meq/g)3.936g及びアジピン酸(AA)0.564gを仕込み、容器内を十分窒素置換した後、窒素ガスを流速50ml/分で供給しながら、190℃で1時間加熱し、次に1時間かけて230℃に昇温させ、さらに230℃で8時間重合を行い、重合物を得た。
得られた重合物は白色のポリマーであり、ηr=2.06、[COOH]=2.91×10−5eq/g、[NH2]=3.72×10−5eq/g、Mn=30200、Tm=175℃、Tc=139℃であった。ポリマー組成はPA12/XTJ−542/AA=85.1/13.1/1.8(重量%)(ただし、PA12、XTJ−542及びAAはポリマー中の各成分を表し、PA12はナイロン12単位を、XTJ−542はABA型トリブロックポリエーテルジアミン単位を、AAはアジピン酸単位をそれぞれ表す)であった。
得られた重合物を、温度230℃、10MPaで圧縮成形を行い、厚さ約1mmのシートと厚さ約100μmのフィルムを作成した。厚さ1mmのシートを用いて、硬度及びヘーズを評価し、厚さ約100μmのフィルムを用いて、t0.9及び伸長回復率を評価し、結果を表1に示す。
【0059】
[比較例2]
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約130ミリリットルの反応容器に宇部興産(株)製12−アミノドデカン酸(ADA)25.500g、ポリオキシプロピレンジアミン(HUNTSMAN社製ジェファーミンD−400、全アミン:4.43meq/g)3.403g及びアジピン酸(AA)1.107gを仕込み、容器内を十分窒素置換した後、窒素ガスを流速50ml/分で供給しながら、190℃で1時間加熱し、次に1時間かけて230℃に昇温させ、さらに230℃で8時間重合を行い、重合物を得た。
得られた重合物は白色のポリマーであり、ηr=1.95、[COOH]=4.25×10−5eq/g、[NH2]=3.55×10−5eq/g、Mn=25600、Tm=175℃、Tc=138℃であった。ポリマー組成はPA12/D−400/AA=85.7/10.8/3.5(重量%)(ただし、PA12、D−400及びAAはポリマー中の各成分を表し、PA12はナイロン12単位を、D−400はポリオキシプロピレンジアミン単位を、AAはアジピン酸単位をそれぞれ表す)であった。
得られた重合物を、温度230℃、10MPaで圧縮成形を行い、厚さ約1mmのシートと厚さ約100μmのフィルムを作成した。厚さ1mmのシートを用いて、硬度及びヘーズを評価し、厚さ約100μmのフィルムを用いて、t0.9及び伸長回復率を評価し、結果を表1に示す。
【0060】
[実施例2]
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約130ミリリットルの反応容器に宇部興産(株)製12−アミノドデカン酸(ADA)22.500g、ABA型のトリブロックポリエーテルジアミン(HUNTSMAN社製XTJ−542、全アミン:1.965meq/g)3.132g、ポリオキシプロピレンジアミン(HUNTSMAN社製ジェファーミンD−400、全アミン:4.43meq/g)3.131g及びアジピン酸(AA)1.237gを仕込み、容器内を十分窒素置換した後、窒素ガスを流速50ml/分で供給しながら、190℃で1時間加熱し、次に1時間かけて230℃に昇温させ、さらに230℃で8時間重合を行い、重合物を得た。
得られた重合物は白色のポリマーであり、ηr=1.92、[COOH]=4.11×10−5eq/g、[NH2]=3.83×10−5eq/g、Mn=25200、Tm=168℃、Tc=130℃であった。ポリマー組成はPA12/XTJ−542/D−400/AA=74.1/10.9/10.5/4.5(重量%)(ただし、PA12、XTJ−542、D−400及びAAはポリマー中の各成分を表し、PA12はナイロン12単位を、XTJ−542はABA型トリブロックポリエーテルジアミン単位を、D−400はポリオキシプロピレンジアミン単位を、AAはアジピン酸単位をそれぞれ表す)であった。
得られた重合物を、温度230℃、10MPaで圧縮成形を行い、厚さ約1mmのシートと厚さ約100μmのフィルムを作成した。厚さ1mmのシートを用いて、硬度及びヘーズを評価し、厚さ約100μmのフィルムを用いて、t0.9及び伸長回復率を評価し、結果を表1に示す。
【0061】
[比較例3]
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約130ミリリットルの反応容器に宇部興産(株)製12−アミノドデカン酸(ADA)22.500g、ABA型のトリブロックポリエーテルジアミン(HUNTSMAN社製XTJ−542、全アミン:1.965meq/g)6.559g及びアジピン酸(AA)0.940gを仕込み、容器内を十分窒素置換した後、窒素ガスを流速50ml/分で供給しながら、190℃で1時間加熱し、次に1時間かけて230℃に昇温させ、さらに230℃で8時間重合を行い、重合物を得た。
得られた重合物は白色のポリマーであり、ηr=1.97、[COOH]=3.91×10−5eq/g、[NH2]=3.72×10−5eq/g、Mn=26200、Tm=169℃、Tc=133℃であった。ポリマー組成はPA12/XTJ−542/AA=75.3/21.9/2.8(重量%)(ただし、PA12、XTJ−542及びAAはポリマー中の各成分を表し、PA12はナイロン12単位を、XTJ−542はABA型トリブロックポリエーテルジアミン単位を、AAはアジピン酸単位をそれぞれ表す)であった。
得られた重合物を、温度230℃、10MPaで圧縮成形を行い、厚さ約1mmのシートと厚さ約100μmのフィルムを作成した。厚さ1mmのシートを用いて、硬度及びヘーズを評価し、厚さ約100μmのフィルムを用いて、t0.9及び伸長回復率を評価し、結果を表1に示す。
【0062】
[比較例4]
攪拌機、窒素ガス導入口、縮合水排出口を備えた容積約130ミリリットルの反応容器に宇部興産(株)製12−アミノドデカン酸(ADA)22.500g、ポリオキシプロピレンジアミン(HUNTSMAN社製ジェファーミンD−400、全アミン:4.43meq/g)5.666g及びアジピン酸(AA)1.834gを仕込み、容器内を十分窒素置換した後、窒素ガスを流速50ml/分で供給しながら、190℃で1時間加熱し、次に1時間かけて230℃に昇温させ、さらに230℃で8時間重合を行い、重合物を得た。
得られた重合物は白色のポリマーであり、ηr=1.83、[COOH]=4.37×10−5eq/g、[NH2]=4.15×10−5eq/g、Mn=23500、Tm=170℃、Tc=132℃であった。ポリマー組成はPA12/D−400/AA=75.7/18.1/6.2(重量%)(ただし、PA12、D−400及びAAはポリマー中の各成分を表し、PA12はナイロン12単位を、D−400はポリオキシプロピレンジアミン単位を、AAはアジピン酸単位をそれぞれ表す)であった。
得られた重合物を、温度230℃、10MPaで圧縮成形を行い、厚さ約1mmのシートと厚さ約100μmのフィルムを作成した。厚さ1mmのシートを用いて、硬度及びヘーズを評価し、厚さ約100μmのフィルムを用いて、t0.9及び伸長回復率を評価し、結果を表1に示す。
【0063】
【表1】
【0064】
【発明の効果】
本発明のポリアミド系エラストマーは、ポリアミドをハードセグメント、ABA型トリブロックポリエーテルジアミン及び一定割合のポリオキシプロピレンジアミンをソフトセグメントとすることにより、強靭性、溶融成形性、低温柔軟性、低温耐衝撃性、伸長回復性、耐屈曲疲労性及び反ぱつ弾性などに優れ、透明性と伸長回復率が良好にバランスし熱可塑性ポリアミド系エラストマーを提供することができる。
さらに、本発明のポリアミド系エラストマーは、脂肪族ポリアミドをハードセグメント、ABA型トリブロックポリエーテルジアミン及び一定割合のポリオキシプロピレンジアミンをソフトセグメントとすることにより、強靭性、溶融成形性、低温柔軟性、低温耐衝撃性、伸長回復性、耐屈曲疲労性及び反ぱつ弾性などに優れ、透明性と伸長回復率が良好にバランスし熱可塑性の脂肪族ポリアミド系エラストマーを提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The polyamide-based elastomer of the present invention relates to a polyamide-based elastomer having a polyamide as a hard segment and a polyether as a soft segment and having excellent transparency, and a method for producing the same. More specifically, toughness, melt moldability, low-temperature flexibility, low-temperature impact resistance, elongation recovery, bending fatigue resistance using aliphatic polyamide as a hard segment and ABA-type triblock polyether and polyoxypropylene diamine as a soft segment. The present invention relates to an aliphatic polyamide-based elastomer which is excellent in properties, resilience, sound-absorbing properties and the like, and also exhibits good transparency.
[0002]
[Prior art]
As a polyamide-based elastomer, a copolymer using an aliphatic polyamide as a hard segment, an aliphatic polyether as a soft segment, and an aliphatic dicarboxylic acid as a chain extender is disclosed.
[0003]
Method for producing polyether amide block polymer obtained by polymerizing polyamide or oligomer thereof having carboxyl group or amino group at both terminals and polyether or oligomer thereof having amino group or carboxyl group at both terminals in a molten state Is disclosed (for example, refer to Patent Document 1).
A method for producing a polyether amide obtained by polymerizing a diamine having a specific polyether block as a soft segment with a dicarboxylic acid and an polyamide-forming compound forming a hard segment in an approximately equivalent amount to the soft segment is disclosed (for example, Patent Reference 2).
Polyamide having carboxyl groups at both ends obtained by polycondensation of a polyamide-forming monomer and an aliphatic dicarboxylic acid having 14 to 48 carbon atoms, and a block polycharacterized by polycondensing a specific terminal aminopolyoxyalkylene A method for producing an ether amide is disclosed (for example, see Patent Document 3).
Polyamides useful as hot melt adhesives include alkanedicarboxylic acids containing 6 to 12 carbon atoms and unsubstituted or C 1 -C 4 Polyetheramides obtained from dibasic acids selected from alkyl-substituted benzenedicarboxylic acids, poly (oxytetramethylene) diamines and poly (oxytetramethylene) oligomers containing a secondary amino group inside and a primary amine at the end It is disclosed (see, for example, Patent Document 4).
[0004]
Polyetheramides are disclosed (see, for example, Patent Documents 5 and 6).
A polyether amide containing a polyether structure containing ethylene oxide has been disclosed (for example, see Patent Documents 7 and 8).
[0005]
[Patent Document 1]
Japanese Patent Publication No. 45-7559
[Patent Document 2]
JP-B-62-50495
[Patent Document 3]
Japanese Patent Publication No. 2-48021
[Patent Document 4]
Patent No. 3199797
[Patent Document 5]
JP-A-3-237131
[Patent Document 6]
JP-A-4-91128
[Patent Document 7]
Japanese Patent Application Laid-Open No. Hei 9-118750
[Patent Document 8]
JP 2000-7780A
[0006]
[Problems to be solved by the invention]
Conventionally, polyether amides having polyoxyethylene having an amino group or a carboxyl group at both terminals, polyoxypropylene having an amino group at both terminals and polyoxytetramethylene have been used as polyether. When polyoxyethylene having an amino group or a carboxyl group at both ends is used as the polyether, a polyether amide having improved hygroscopicity and antistatic properties has an amino group at both ends as a polyether. When polyoxypropylene is used, polyether amide having excellent flexibility, transparency, water resistance, flexibility, rubber elasticity, etc. is used, while polyoxytetramethylene having amino groups at both ends is used as a polyether. In this case, a polyether amide having excellent flexibility, resilience, impact resistance, notch toughness and the like can be obtained. However, the characteristics of each polyether amide have advantages and disadvantages, and a well-balanced elastomer is desired.
[0007]
The present invention provides a polyamide elastomer excellent in toughness, low-temperature flexibility, elongation recovery, flex fatigue resistance, rebound resilience, transparency, etc., which are important physical properties of a thermoplastic elastomer, and a method for producing the same. The purpose is to do. In particular, an object of the present invention is to provide an aliphatic polyamide elastomer showing good transparency.
[0008]
[Means for Solving the Problems]
The present inventors have developed a novel polyamide-based elastomer having excellent toughness, low-temperature flexibility, elongation recovery, bending fatigue resistance, resilience, transparency, melt moldability, etc., and good transparency, and its production. As a result of intensive studies on the method, it has been found that ABA-type triblock polyether and polyether amide having polyoxypropylenediamine as a soft segment are elastomer materials having a good balance of elastomer properties such as transparency and elongation recovery. And found the present invention.
[0009]
A first invention is a polyamide-forming monomer (A), an ABA-type triblock polyether diamine (B) represented by the following general formula (1), and a polyoxypropylene diamine represented by the following general formula (2) ( An object of the present invention is to provide a polyamide elastomer obtained by polymerization of C) and a dicarboxylic acid (D).
Embedded image
(Here, x and z are 1-10, and y shows 8-30.)
Embedded image
(Here, n represents 2 to 10.)
[0010]
A preferred embodiment of the present invention is
1: The ratio of the ABA triblock polyether diamine (B) and polyoxypropylene diamine (C) to all components of the polyamide elastomer is 1 to 67% by weight.
2: The ratio ((B) / (C)) of the ABA triblock polyether diamine (B) represented by the general formula (1) and the polyoxypropylene diamine (C) represented by the general formula (2) is 90/10 to 10/90 (weight ratio).
[0011]
3: The polyamide-forming monomer (A) is represented by the general formula (3) and / or (4), and the dicarboxylic acid (D) is represented by the general formula (5).
Embedded image
(Where R 1 Represents a hydrocarbon chain having 2 to 20 carbon atoms or an alkylene group having 2 to 20 carbon atoms. )
Embedded image
(Where R 2 Represents a hydrocarbon chain having 3 to 20 carbon atoms or an alkylene group having 3 to 20 carbon atoms. )
Embedded image
(Where R 3 Represents a molecular chain of a hydrocarbon having 1 to 20 carbon atoms or an alkylene group having 1 to 20 carbon atoms, and m represents 0 or 1. )
[0012]
4: The polyamide-forming monomer (A) is an aliphatic polyamide-forming monomer (A).
5: The dicarboxylic acid (D) is at least one dicarboxylic acid selected from aliphatic dicarboxylic acids and alicyclic dicarboxylic acids.
[0013]
6: The relative viscosity of the polyamide-based elastomer is 1.2 to 3.5 (0.5% w / v meta-cresol solution at 25 ° C).
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The polyamide-based elastomer of the present invention is represented by a polyamide-forming monomer (A), an ABA-type triblock polyetherdiamine (B: polyoxybutylene) represented by the following general formula (1), and a general formula (2) shown below. A polyamide elastomer obtained by polymerizing polyoxypropylene diamine (C) and dicarboxylic acid (D).
The polyamide-based elastomer of the present invention is represented by a polyamide-forming monomer (A), an ABA-type triblock polyetherdiamine (B: polyoxybutylene) represented by the following general formula (1), and a general formula (2) shown below. A polymerization product comprising a polyoxypropylene diamine (C) and a dicarboxylic acid (D).
Embedded image
(Where x and z are 1 to 10, preferably 1 to 9, more preferably 1 to 8, more preferably 1 to 7, particularly preferably 1 to 6,
y represents 8 to 30, preferably 8 to 29, more preferably 8 to 28, more preferably 8 to 27, and particularly preferably 8 to 26. )
Embedded image
(Here, n represents preferably 2 to 10, more preferably 2 to 8, more preferably 2 to 7, particularly preferably 2 to 6.)
[0015]
Preferably, the polyamide-based elastomer of the present invention comprises a polyamide-forming monomer (A) represented by the following general formula (3) and / or general formula (4), and an ABA-type trimeric represented by the following general formula (1). A polyamide-based elastomer obtained by polymerizing a block polyether diamine, a polyoxypropylene diamine represented by the following general formula (2) and a dicarboxylic acid (D) represented by the following general formula (5): preferable.
Embedded image
(Where x and z are 1 to 10, preferably 1 to 9, more preferably 1 to 8, more preferably 1 to 7, particularly preferably 1 to 6,
y represents 8 to 30, preferably 8 to 29, more preferably 8 to 28, more preferably 8 to 27, and particularly preferably 8 to 26. )
Embedded image
(Here, n represents preferably 2 to 10, more preferably 2 to 8, more preferably 2 to 7, particularly preferably 2 to 6.)
Embedded image
(Where R 1 Is a hydrocarbon chain having 2 to 20 carbon atoms or an alkylene group having 2 to 20 carbon atoms, preferably a hydrocarbon chain having 3 to 18 carbon atoms or an alkylene group having 3 to 18 carbon atoms. And more preferably a hydrocarbon chain having 4 to 15 carbon atoms or an alkylene group having 4 to 15 carbon atoms, and particularly preferably a hydrocarbon chain having 10 to 15 carbon atoms or having 10 to 15 carbon atoms. Shows an alkylene group. )
Embedded image
(Where R 2 Is a hydrocarbon chain having 3 to 20 carbon atoms or an alkylene group having 3 to 20 carbon atoms, preferably a hydrocarbon chain having 3 to 18 carbon atoms or an alkylene group having 3 to 18 carbon atoms. And more preferably a hydrocarbon chain having 4 to 15 carbon atoms or an alkylene group having 4 to 15 carbon atoms, and particularly preferably a hydrocarbon chain having 10 to 15 carbon atoms or having 10 to 15 carbon atoms. Shows an alkylene group. )
Embedded image
(Where R 3 Is a hydrocarbon chain having 0 to 20 carbon atoms or an alkylene group having 0 to 20 carbon atoms, more preferably a hydrocarbon chain having 1 to 15 carbon atoms or an alkylene group having 1 to 15 carbon atoms, More preferably, it is a hydrocarbon chain having 2 to 12 carbon atoms or an alkylene group having 2 to 12 carbon atoms, and particularly preferably, a hydrocarbon chain having 4 to 10 carbon atoms or an alkylene having 4 to 10 carbon atoms. And m represents 0 or 1. )
[0016]
The ratio of the ABA-type triblock polyetherdiamine (B) and polyoxypropylenediamine (C) to all components of the polyamide elastomer is preferably 1 to 67% by weight, more preferably 2 to 67% by weight, and more preferably 2 to 67% by weight. 66% by weight, particularly preferably 3 to 65% by weight, is preferred. When the ratio of the ABA-type triblock polyether diamine (B) and polyoxypropylene diamine (C) to all the components of the polyamide elastomer is less than the above range, the function and performance as an elastomer such as flexibility and rubber elasticity are exhibited. In some cases, it is not preferable because it becomes difficult to perform the operation. When the ratio of the ABA-type triblock polyether diamine (B) and the polyoxypropylene diamine (C) to all the components of the polyamide elastomer is larger than the above range, the crystallinity of the polyamide elastomer may be reduced, and the strength and elasticity may be reduced. In some cases, the mechanical properties such as the rate decrease, which is not preferable.
[0017]
Ratio of ABA-type triblock polyether diamine (B) represented by the general formula (1) and polyoxypropylene diamine (C) in polyoxypropylene diamine (C) represented by the general formula (2) = (C ) × 100 / ((B) + (C)) is preferably 5 to 80% by weight, more preferably 5 to 70% by weight, more preferably 10 to 70% by weight, particularly preferably 10 to 60% by weight. preferable. If the proportion of (C) is larger than the above, the rubber elasticity is undesirably low. When the proportion of (C) is smaller than the above, transparency is low, which is not preferable.
[0018]
The hardness (Shore D) of the polyamide elastomer of the present invention is preferably in the range of 37 to 70, more preferably in the range of 40 to 70, more preferably in the range of 43 to 70, and particularly preferably in the range of 45 to 70. .
[0019]
Stress relaxation (t) of the polyamide elastomer of the present invention 0.9 ) Is preferably at least 2 seconds, more preferably at least 2.2 seconds, more preferably at least 2.5 seconds, particularly preferably at least 2.8 seconds. When the stress relaxation is in the above range, an elastomer having excellent rubber elasticity can be obtained.
[0020]
The elongation recovery of the polyamide elastomer of the present invention is preferably in the range of 86 to 100%, more preferably in the range of 87 to 100%, and particularly preferably in the range of 88 to 100%. When the elongation recovery rate is in the above range, an elastomer excellent in recovery elasticity and rebound elasticity can be obtained.
[0021]
The haze of the polyamide elastomer of the present invention is preferably 35 or less, more preferably 32 or less, more preferably 30 or less, and particularly preferably 27 or less. When the haze is below the above range, an elastomer having excellent transparency can be obtained.
[0022]
In the polyamide-based elastomer, a polyamide-forming monomer (A), an ABA-type triblock polyether diamine (B) represented by the general formula (1), a polyoxypropylene diamine (C) represented by the general formula (2), and The ratio is preferably such that the terminal carboxylic acid or carboxyl group contained in the dicarboxylic acid (D) and the terminal amino group are almost equimolar.
In particular, when one end of the polyamide-forming monomer (A) is an amino group and the other end is a carboxylic acid or a carboxyl group, (B) ABA-type triblock polyether diamine, (C) polyoxypropylene diamine, and (D) The dicarboxylic acid is preferably in such a ratio that the amino groups of (B) and (C) and the carboxyl group of (D) are almost equimolar.
[0023]
The polyamide-based elastomer of the present invention comprises a polyamide-forming monomer (A) represented by the general formula (3) and / or (4), an ABA-type triblock polyether diamine represented by the general formula (1), When synthesized from the polyoxypropylene diamine (C) represented by the general formula (2) and the dicarboxylic acid (D) represented by the general formula (5), an ABA triblock represented by the general formula (1) The ratio is preferably such that the polyetherdiamine and the polyoxypropylenediamine (C) represented by the general formula (2) and the dicarboxylic acid (D) represented by the general formula (4) become almost equimolar.
[0024]
(A) As the polyamide-forming monomer, at least one kind of aliphatic, alicyclic and aromatic selected from those synthesized from ω-aminocarboxylic acid, lactam, or diamine and dicarboxylic acid and / or salts thereof are used. Polyamide-forming monomers are used.
[0025]
In a compound synthesized from a diamine and a dicarboxylic acid and / or a salt thereof, examples of the diamine include at least one diamine compound selected from aliphatic diamines, alicyclic diamines, aromatic diamines, and derivatives thereof. Examples of the dicarboxylic acids include at least one dicarboxylic acid compound selected from aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, aromatic dicarboxylic acids, and derivatives thereof.
In particular, in a compound synthesized from a diamine and a dicarboxylic acid and / or a salt thereof, by using a combination of an aliphatic diamine compound and an aliphatic dicarboxylic acid compound, low specific gravity, high tensile elongation, and high impact resistance are obtained. It is possible to obtain a polyamide elastomer having excellent melt moldability.
[0026]
The molar ratio of diamine to dicarboxylic acid (diamine / dicarboxylic acid) is preferably in the range of 0.9 to 1.1, more preferably in the range of 0.93 to 1.07, and more preferably in the range of 0.95 to 1.05. The range of 0.97 to 1.03 is particularly preferable. Outside of this range, it is difficult to increase the molecular weight, which is not preferable.
[0027]
In a compound synthesized from a diamine and a dicarboxylic acid and / or a salt thereof, specific examples of the diamine include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Fats having 2 to 20 carbon atoms such as decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, and 3-methylpentamethylenediamine Examples of the dicarboxylic acid include, for example, oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecane diacid. Dicarboxylic acid compounds may be mentioned such aliphatic dicarboxylic acids having 2 to 20 carbon atoms.
[0028]
Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as ε-caprolactam, ω-enantholactam, ω-undecalactam, ω-dodecalactam, and 2-pyrrolidone.
[0029]
Examples of the ω-aminocarboxylic acid include those having 5 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid. Examples thereof include aliphatic ω-aminocarboxylic acids.
[0030]
The ABA type triblock polyether diamine (B) represented by the following general formula (1) is obtained by adding propylene oxide to both ends of poly (oxytetramethylene) glycol or the like to obtain polypropylene glycol. A polyether diamine or the like produced by reacting ammonia or the like with the terminal of the compound can be used.
[0031]
In the ABA-type triblock polyether diamine (B) represented by the following general formula (1), when x and z are smaller than the following ranges, the obtained elastomer is inferior in transparency and is not preferable. It is not preferable because the elasticity becomes low. Further, when x and z are larger than the following ranges, or when y is larger than the following ranges, the compatibility with the polyamide component is lowered, the transparency is lowered, and a tough elastomer is not easily obtained, which is not preferable.
Embedded image
(Where x and z are 1 to 10, preferably 1 to 9, more preferably 1 to 8, more preferably 1 to 7, particularly preferably 1 to 6,
y represents 8 to 30, preferably 8 to 29, more preferably 8 to 28, more preferably 8 to 27, and particularly preferably 8 to 26. )
[0032]
Examples of the polyoxypropylene diamine (C) represented by the following general formula (2) include Jeffamine D-230 (n is about 2.6) and Jeffamine D-400 (n is about 5.6) manufactured by HUNTSMAN, USA. ) Can be used.
[0033]
In the polyoxypropylene diamine (C) represented by the following general formula (2), when n is smaller than the following range, flexibility and rubber elasticity as an elastomer are inferior, which is not preferable. On the other hand, when n is larger than the following range, the compatibility with the polyamide component is lowered, and the transparency is undesirably lowered.
Embedded image
(Here, n represents preferably 2 to 10, more preferably 2 to 8, more preferably 2 to 7, particularly preferably 2 to 6.)
[0034]
As the dicarboxylic acid (D), at least one dicarboxylic acid selected from aliphatic, alicyclic, and aromatic dicarboxylic acids or a derivative thereof can be used.
Examples of the dicarboxylic acid include oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, linear aliphatic dicarboxylic acids having 2 to 25 carbon atoms such as dodecane diacid, or triglyceride Aliphatic dicarboxylic acids such as dimerized aliphatic dicarboxylic acids having 14 to 48 carbon atoms (dimer acid) and hydrogenated products thereof (hydrogenated dimer acid), Examples include alicyclic dicarboxylic acids such as 4-cyclohexanedicarboxylic acid and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
As dimer acid and hydrogenated dimer acid, trade names “Pripol 1004”, “Pripol 1098”, “Pripol 1006”, “Pripol 1009”, “Pripol 1013”, etc., manufactured by Uniqema Corporation can be used.
[0035]
As an example of the method for producing the polyamide-based elastomer of the present invention, the polyamide-forming monomer (A), ABA-type triblock polyetherdiamine (B), polyoxypropylenediamine (C) and dicarboxylic acid (D) are used. It is possible to use a method comprising melt-polymerizing the components simultaneously under pressure and / or normal pressure or, if necessary, further melt-polymerizing under reduced pressure.
In the production, the method of charging the raw materials is not particularly limited, but the charging ratio of the polyamide-forming monomer (A), ABA-type triblock polyetherdiamine (B), polyoxypropylenediamine (C) and dicarboxylic acid (D) is as follows: The polyamide-forming monomer (A) is preferably in the range of 40 to 95% by weight, particularly preferably 50 to 95% by weight, based on all components. ABA type triblock polyether diamine (B) and polyoxypropylene diamine (C) Is preferably in the range of 4 to 57% by weight, particularly preferably 4 to 56% by weight.
Among the raw materials, the ABA-type triblock polyether diamine (B), the polyoxypropylene diamine (C) and the dicarboxylic acid (D) are the amino acids of the ABA-type triblock polyether diamine (B) and the polyoxypropylene diamine (C). It is preferable that the carboxylic acid group and the carboxyl group of the dicarboxylic acid (D) are charged so as to be substantially equimolar.
[0036]
The production of the polyamide elastomer of the present invention can be carried out at a polymerization temperature of preferably from 150 to 300 ° C, more preferably from 160 to 280 ° C, particularly preferably from 180 to 250 ° C. When the polymerization temperature is lower than the above-mentioned temperature, the polymerization reaction is slow, and when it is higher than the above-mentioned temperature, thermal decomposition is likely to occur, and a polymer having good physical properties may not be obtained.
When the ω-aminocarboxylic acid is used as the polyamide-forming monomer (A), the polyamide-based elastomer of the present invention is produced by a method comprising normal pressure melt polymerization or a normal pressure melt polymerization followed by a reduced pressure melt polymerization. be able to.
On the other hand, when a lactam, or a compound synthesized from a diamine and a dicarboxylic acid and / or a salt thereof is used as the polyamide-forming monomer (A), an appropriate amount of water is allowed to coexist, and under a pressure of 0.1 to 5 MPa. And then a normal pressure melt polymerization and / or a reduced pressure melt polymerization.
[0037]
The production of the polyamide elastomer of the present invention can be carried out usually for a polymerization time of 0.5 to 30 hours. If the polymerization time is shorter than the above range, the increase in the molecular weight is not sufficient, and if the polymerization time is longer, coloring due to thermal decomposition or the like occurs, and in either case, a polyamide elastomer having desired physical properties may not be obtained, which is not preferable.
[0038]
The production of the polyamide-based elastomer of the present invention can be carried out batchwise or continuously, and a batch type reaction vessel, a single or multi-tank type continuous reaction device, a tubular continuous reaction device, etc. can be used alone or in combination. Can be used.
[0039]
The polyamide-based elastomer of the present invention preferably has a relative viscosity (ηr) of 1.2 to 3.5 (0.5 wt / vol% meta-cresol solution at 25 ° C.).
[0040]
In the production of the polyamide-based elastomer of the present invention, monoamines and diamines such as laurylamine, stearylamine, hexamethylenediamine, meta-xylylenediamine, acetic acid, for adjusting the molecular weight and for stabilizing the melt viscosity during molding as required. Monocarboxylic acids and dicarboxylic acids such as benzoic acid, stearic acid, adipic acid, sebacic acid and dodecane diacid can be added. These amounts can be appropriately added so that the relative viscosity of the finally obtained elastomer is in the range of 1.2 to 3.5 (0.5% w / v meta-cresol solution, 25 ° C).
In the production of the polyamide elastomer of the present invention, the amount of the above-mentioned monoamine and diamine, monocarboxylic acid, dicarboxylic acid, and the like is preferably in a range that does not impair the properties of the obtained polyamide elastomer.
[0041]
In the production of the polyamide-based elastomer of the present invention, as a catalyst, if necessary, phosphoric acid, pyrophosphoric acid, polyphosphoric acid, etc., and phosphorous acid, hypophosphorous acid, with the aim of both the effect of the catalyst and the heat-resistant agent, and Inorganic phosphorus compounds such as alkali metal salts and alkaline earth metal salts can be added.
The addition amount is usually 50 to 3000 ppm based on the charged raw materials.
The polyamide-based elastomer of the present invention may be a heat-resistant agent, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a lubricant, a slip agent, a crystal nucleating agent, a tackifier, a seal as long as its properties are not impaired. A property improving agent, an antifogging agent, a release agent, a plasticizer, a pigment, a dye, a fragrance, a flame retardant, a reinforcing material, and the like can be added.
[0042]
The polyamide-based elastomer of the present invention is excellent in melt moldability, excellent in moldability, excellent in transparency, excellent in toughness, excellent in bending fatigue resistance, excellent in rebound resilience, low in specific gravity, low-temperature flexibility. Excellent in low-temperature impact resistance, excellent in elongation recovery, excellent in silencing characteristics, and excellent in rubber-like properties.
[0043]
The molded product can be obtained from the polyamide-based elastomer of the present invention by a molding method such as injection molding, extrusion molding, and blow molding.
Examples of the injection-molded article of the polyamide elastomer of the present invention include toughness, flex fatigue resistance, rebound resilience, baseball, soccer, and athletics where foot-sole materials are preferred. Examples of the injection molded product include gears, connectors, seals, automobile members, moldings, seal materials and the like of mechanical and electric precision equipment.
Examples of the extrusion molded article of the polyamide elastomer of the present invention include a tube, a hose, a deformed material, a sheet, a film, and a monofilament.
Examples of the blow molded article of the polyamide elastomer of the present invention include mirror boots for automobiles, constant velocity joint boots, and tanks.
[0044]
The polyamide-based elastomer of the present invention has good compatibility with thermoplastic resins such as polyamide, polyvinyl chloride, thermoplastic polyurethane, and ABS resin except for the polyamide-based elastomer of the present invention. By blending with these thermoplastic resins, In addition, the moldability, impact resistance, elasticity and flexibility of these resins can be improved.
[0045]
The polyamide-based elastomer of the present invention has an aliphatic polyamide as a hard segment and an ABA-type triblock polyetherdiamine and a polyoxypropylenediamine as a soft segment. Is a new thermoplastic polyether amide that has excellent balance between hardness (Shore D) and elongation recovery rate, and has excellent balance between hardness (Shore D) and elongation recovery rate. Used for surface materials, gears, connectors, seals for mechanical and electric precision equipment, moldings for automobiles, sealing materials, various automotive parts, various tubes and hoses, sheets, films, monofilaments, mirror boots for automobiles, constant velocity joint boots, etc. be able to.
[0046]
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
The characteristic values were measured as follows.
[0047]
1) Relative viscosity (ηr) (0.5% w / v meta-cresol solution at 25 ° C.):
5 g / dm using reagent grade m-cresol as solvent 3 At 25 ° C. using an Ostwald viscometer.
[0048]
2) Terminal carboxyl group concentration ([COOH]):
About 1 g of the polymer was added with 40 ml of benzyl alcohol, dissolved by heating under a nitrogen gas atmosphere, phenolphthalein was added as an indicator to the obtained sample solution, and titrated with an N / 20 potassium hydroxide-ethanol solution.
[0049]
3) Terminal amino group concentration ([NH 2 ]):
About 1 g of the polymer was dissolved in 40 ml of a phenol / methanol mixed solvent (volume ratio: 9/1), thymol blue was added as an indicator to the obtained sample solution, and the solution was titrated with N / 20 hydrochloric acid.
[0050]
4) Number average molecular weight (Mn):
The number average molecular weight (Mn) is calculated from the terminal carboxyl group concentration ([COOH]) and the terminal amino group concentration ([NH 2 ]), And was determined by equation (1).
(Equation 1)
[0051]
5) Melting point (Tm) and crystallization temperature (Tc):
Tm and Tc were measured in a nitrogen atmosphere using a differential scanning calorimeter DSC-50 manufactured by Shimadzu Corporation. The temperature is raised from room temperature to 230 ° C. at a rate of 10 ° C./min (referred to as a temperature rising fast run), maintained at 230 ° C. for 10 minutes, and then lowered to −100 ° C. at a rate of 10 ° C./min (temperature decreasing fast run). Then, the temperature was raised to 230 ° C. at a rate of 10 ° C./min (referred to as a temperature rising second run). From the obtained DSC chart, the exothermic peak temperature of the first temperature run was Tc, and the endothermic peak temperature of the second run was Tm.
[0052]
6) Composition:
The composition of each component was determined from a proton NMR spectrum measured at room temperature using JNM-EX400WB type FT-NMR manufactured by JEOL Ltd. at a concentration of 4% by weight using heavy trifluoroacetic acid as a solvent.
[0053]
7) Hardness:
Shore D was measured according to ASTM D2240. A sheet having a thickness of 1 mm formed by compression molding was placed on a 5 mm-thick nylon 12 (UBENYLON 3030U, manufactured by Ube Industries, Ltd.) plate and measured. The measurement was performed at a temperature of 23 ° C.
[0054]
8) Transparency: haze (haze):
Using a sheet of 70 mm × 70 mm × 1 mm thick formed by compression molding, it was measured using a direct-reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. in accordance with JIS K7105.
[0055]
9) Stress relaxation:
A sample cut out from a film having a thickness of about 100 μm using a JIS No. 3 dumbbell was sandwiched between chucks of a tensile tester at a distance of 50 mm between the chucks and stretched at a speed of 500 mm / min. When the sheet was stretched by 0.4 mm, it was stopped, and the change in stress was measured while maintaining the state. Initial stress at the time of 2% stretching (σ 0 ) And the stress after time t (σ t ) And the ratio (σ t / Σ 0 ) Becomes 0.9 (t) 0.9 ) Was measured. t 0.9 The larger the value, the more difficult it is to relax and the rubber elasticity is excellent. The measurement was performed at a temperature of 23 ° C.
[0056]
10) Elongation recovery rate:
A sample cut out from a film having a thickness of about 100 μm using a JIS No. 3 dumbbell was sandwiched between chucks of a tensile tester at a distance between chucks of 50 mm and stretched at a speed of 100 mm / min, and 4 mm corresponding to 20% of a linear portion in the center of the sample was drawn. Immediately after the stretching, the film was returned to the original at the same speed, the distance r (mm) between the chucks when the stress became 0 was measured, and the elongation recovery rate was obtained by the equation (2). The larger the elongation recovery rate, the better the rubber elasticity. The measurement was performed at a temperature of 23 ° C.
(Equation 2)
[0057]
[Example 1]
25.500 g of 12-aminododecanoic acid (ADA) manufactured by Ube Industries, Ltd., and an ABA-type triblock polyether diamine (HUNTSMAN) were placed in a reaction vessel having a volume of about 130 ml provided with a stirrer, a nitrogen gas inlet, and a condensed water outlet. 1.824 g of XTJ-542, total amine: 1.965 meq / g), 1.824 g of polyoxypropylene diamine (Jeffamine D-400, HUNTSMAN, total amine: 4.43 meq / g) and adipic acid (AA) ) After charging 0.852 g and sufficiently replacing the inside of the vessel with nitrogen, the mixture was heated at 190 ° C for 1 hour while supplying nitrogen gas at a flow rate of 50 ml / min, and then heated to 230 ° C over 1 hour. Polymerization was performed at 230 ° C. for 8 hours to obtain a polymer.
The obtained polymer is a white polymer, ηr = 2.01, [COOH] = 3.25 × 10 -5 eq / g, [NH 2 ] = 3.83 × 10 -5 eq / g, Mn = 28200, Tm = 175 ° C., Tc = 138 ° C. The polymer composition was PA12 / XTJ-542 / D-400 / AA = 84.9 / 6.2 / 6.0 / 2.9 (% by weight) (provided that PA12, XTJ-542, D-400 and AA are polymers) PA12 represents nylon 12 units, XTJ-542 represents ABA-type triblock polyetherdiamine units, D-400 represents polyoxypropylenediamine units, and AA represents adipic acid unit). Was.
The obtained polymer was subjected to compression molding at a temperature of 230 ° C. and 10 MPa to prepare a sheet having a thickness of about 1 mm and a film having a thickness of about 100 μm. The hardness and haze were evaluated using a sheet having a thickness of 1 mm, and using a film having a thickness of about 100 μm, 0.9 The elongation recovery rate was evaluated, and the results are shown in Table 1.
[0058]
[Comparative Example 1]
25.500 g of 12-aminododecanoic acid (ADA) manufactured by Ube Industries, Ltd., and an ABA-type triblock polyether diamine (HUNTSMAN) were placed in a reaction vessel having a volume of about 130 ml provided with a stirrer, a nitrogen gas inlet, and a condensed water outlet. XTJ-542, total amine: 1.965 meq / g) 3.936 g and adipic acid (AA) 0.564 g were charged, and the inside of the vessel was sufficiently purged with nitrogen. Then, nitrogen gas was supplied at a flow rate of 50 ml / min. After heating at 190 ° C. for 1 hour, the temperature was raised to 230 ° C. over 1 hour, and polymerization was further performed at 230 ° C. for 8 hours to obtain a polymer.
The obtained polymer is a white polymer, ηr = 2.06, [COOH] = 2.91 × 10 -5 eq / g, [NH 2 ] = 3.72 × 10 -5 eq / g, Mn = 30200, Tm = 175 ° C., Tc = 139 ° C. Polymer composition: PA12 / XTJ-542 / AA = 85.1 / 13.1 / 1.8 (% by weight) (where PA12, XTJ-542 and AA represent each component in the polymer, PA12 is 12 units of nylon) XTJ-542 represents an ABA-type triblock polyetherdiamine unit, and AA represents an adipic acid unit).
The obtained polymer was subjected to compression molding at a temperature of 230 ° C. and 10 MPa to form a sheet having a thickness of about 1 mm and a film having a thickness of about 100 μm. The hardness and haze were evaluated using a sheet having a thickness of 1 mm, and t was determined using a film having a thickness of about 100 μm. 0.9 The elongation recovery rate was evaluated, and the results are shown in Table 1.
[0059]
[Comparative Example 2]
25.500 g of 12-aminododecanoic acid (ADA) manufactured by Ube Industries, Ltd. and polyoxypropylenediamine (Jeffamine manufactured by HUNTSMAN) were placed in a reaction vessel having a volume of about 130 ml provided with a stirrer, a nitrogen gas inlet, and a condensed water outlet. D-400, total amine: 4.43 meq / g) 3.403 g and adipic acid (AA) 1.107 g were charged, and the inside of the vessel was sufficiently purged with nitrogen. Then, while supplying nitrogen gas at a flow rate of 50 ml / min, 190 C. for 1 hour, then the temperature was raised to 230.degree. C. over 1 hour, and polymerization was carried out at 230.degree. C. for 8 hours to obtain a polymer.
The obtained polymer is a white polymer, ηr = 1.95, [COOH] = 4.25 × 10 -5 eq / g, [NH 2 ] = 3.55 × 10 -5 eq / g, Mn = 25600, Tm = 175 ° C., and Tc = 138 ° C. Polymer composition: PA12 / D-400 / AA = 85.7 / 10.8 / 3.5 (% by weight) (where PA12, D-400 and AA represent each component in the polymer, PA12 is 12 units of nylon) , D-400 represents a polyoxypropylenediamine unit, and AA represents an adipic acid unit).
The obtained polymer was subjected to compression molding at a temperature of 230 ° C. and 10 MPa to form a sheet having a thickness of about 1 mm and a film having a thickness of about 100 μm. The hardness and haze were evaluated using a sheet having a thickness of 1 mm, and t was determined using a film having a thickness of about 100 μm. 0.9 The elongation recovery rate was evaluated, and the results are shown in Table 1.
[0060]
[Example 2]
22.500 g of 12-aminododecanoic acid (ADA) manufactured by Ube Industries, Ltd., and an ABA-type triblock polyether diamine (HUNTSMAN) were placed in a reaction vessel having a volume of about 130 ml provided with a stirrer, a nitrogen gas inlet, and a condensed water outlet. XTJ-542, total amine: 1.965 meq / g) 3.132 g, polyoxypropylene diamine (HUNTSMAN Jeffamine D-400, total amine: 4.43 meq / g) 3.131 g and adipic acid (AA) After charging 1.237 g and sufficiently replacing the inside of the vessel with nitrogen, the mixture was heated at 190 ° C. for 1 hour while supplying nitrogen gas at a flow rate of 50 ml / min, and then heated to 230 ° C. over 1 hour. Polymerization was performed at 230 ° C. for 8 hours to obtain a polymer.
The obtained polymer is a white polymer, ηr = 1.92, [COOH] = 4.11 × 10 -5 eq / g, [NH 2 ] = 3.83 × 10 -5 eq / g, Mn = 25200, Tm = 168 ° C., and Tc = 130 ° C. The polymer composition was PA12 / XTJ-542 / D-400 / AA = 74.1 / 10.9 / 10.5 / 4.5 (% by weight) (provided that PA12, XTJ-542, D-400 and AA are polymers) PA12 represents nylon 12 units, XTJ-542 represents ABA-type triblock polyetherdiamine units, D-400 represents polyoxypropylenediamine units, and AA represents adipic acid unit). Was.
The obtained polymer was subjected to compression molding at a temperature of 230 ° C. and 10 MPa to prepare a sheet having a thickness of about 1 mm and a film having a thickness of about 100 μm. The hardness and haze were evaluated using a sheet having a thickness of 1 mm, and using a film having a thickness of about 100 μm, 0.9 The elongation recovery rate was evaluated, and the results are shown in Table 1.
[0061]
[Comparative Example 3]
22.500 g of 12-aminododecanoic acid (ADA) manufactured by Ube Industries, Ltd., and an ABA-type triblock polyether diamine (HUNTSMAN) were placed in a reaction vessel having a volume of about 130 ml provided with a stirrer, a nitrogen gas inlet, and a condensed water outlet. XTJ-542, total amine: 1.965 meq / g) 6.559 g and adipic acid (AA) 0.940 g were charged, and the inside of the vessel was sufficiently purged with nitrogen. Then, nitrogen gas was supplied at a flow rate of 50 ml / min. After heating at 190 ° C. for 1 hour, the temperature was raised to 230 ° C. over 1 hour, and polymerization was further performed at 230 ° C. for 8 hours to obtain a polymer.
The obtained polymer is a white polymer, ηr = 1.97, [COOH] = 3.91 × 10 -5 eq / g, [NH 2 ] = 3.72 × 10 -5 eq / g, Mn = 26200, Tm = 169 ° C., Tc = 133 ° C. The polymer composition was PA12 / XTJ-542 / AA = 75.3 / 21.9 / 2.8 (% by weight) (where PA12, XTJ-542 and AA represent each component in the polymer, and PA12 is 12 units of nylon) XTJ-542 represents an ABA-type triblock polyetherdiamine unit, and AA represents an adipic acid unit).
The obtained polymer was subjected to compression molding at a temperature of 230 ° C. and 10 MPa to form a sheet having a thickness of about 1 mm and a film having a thickness of about 100 μm. The hardness and haze were evaluated using a sheet having a thickness of 1 mm, and t was determined using a film having a thickness of about 100 μm. 0.9 The elongation recovery rate was evaluated, and the results are shown in Table 1.
[0062]
[Comparative Example 4]
22.500 g of 12-aminododecanoic acid (ADA) manufactured by Ube Industries, Ltd. and polyoxypropylenediamine (Jeffamine manufactured by HUNTSMAN) were placed in a reaction vessel having a volume of about 130 ml provided with a stirrer, a nitrogen gas inlet, and a condensed water outlet. 5.666 g of D-400, total amines: 4.43 meq / g) and 1.834 g of adipic acid (AA) were charged, and the inside of the vessel was sufficiently purged with nitrogen. Then, nitrogen gas was supplied at a flow rate of 50 ml / min. C. for 1 hour, then the temperature was raised to 230.degree. C. over 1 hour, and polymerization was carried out at 230.degree. C. for 8 hours to obtain a polymer.
The obtained polymer is a white polymer, ηr = 1.83, [COOH] = 4.37 × 10 -5 eq / g, [NH 2 ] = 4.15 × 10 -5 eq / g, Mn = 23500, Tm = 170 ° C., Tc = 132 ° C. The polymer composition was PA12 / D-400 / AA = 75.7 / 18.1 / 6.2 (% by weight) (where PA12, D-400 and AA represent each component in the polymer, and PA12 is 12 units of nylon) , D-400 represents a polyoxypropylenediamine unit, and AA represents an adipic acid unit).
The obtained polymer was subjected to compression molding at a temperature of 230 ° C. and 10 MPa to prepare a sheet having a thickness of about 1 mm and a film having a thickness of about 100 μm. The hardness and haze were evaluated using a sheet having a thickness of 1 mm, and using a film having a thickness of about 100 μm, 0.9 The elongation recovery rate was evaluated, and the results are shown in Table 1.
[0063]
[Table 1]
[0064]
【The invention's effect】
The polyamide elastomer of the present invention has toughness, melt moldability, low-temperature flexibility, and low-temperature impact resistance by using polyamide as a hard segment and an ABA-type triblock polyetherdiamine and a certain proportion of polyoxypropylenediamine as soft segments. The thermoplastic polyamide-based elastomer can be provided with excellent balance between transparency, elongation recovery, flex fatigue resistance, rebound resilience, etc., and a good balance between transparency and elongation recovery.
Furthermore, the polyamide elastomer of the present invention has toughness, melt moldability, and low-temperature flexibility by using an aliphatic polyamide as a hard segment and an ABA-type triblock polyether diamine and a certain proportion of polyoxypropylene diamine as soft segments. It is excellent in low-temperature impact resistance, elongation recovery, bending fatigue resistance, rebound resilience, etc., and has a good balance between transparency and elongation recovery, thereby providing a thermoplastic aliphatic polyamide elastomer.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003147732A JP4193588B2 (en) | 2003-05-26 | 2003-05-26 | Polyamide elastomer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003147732A JP4193588B2 (en) | 2003-05-26 | 2003-05-26 | Polyamide elastomer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004346274A true JP2004346274A (en) | 2004-12-09 |
JP4193588B2 JP4193588B2 (en) | 2008-12-10 |
Family
ID=33534181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003147732A Expired - Fee Related JP4193588B2 (en) | 2003-05-26 | 2003-05-26 | Polyamide elastomer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4193588B2 (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007144531A2 (en) | 2006-06-14 | 2007-12-21 | Arkema France | Blends and alloys based on an amorphous to semicrystalline copolymer, comprising amide units and comprising ether units, wherein these materials have improved optical properties |
WO2007145324A1 (en) | 2006-06-16 | 2007-12-21 | Ube Industries, Ltd. | Polyether polyamide elastomer |
EP2090629A2 (en) | 2008-02-15 | 2009-08-19 | Arkema France | Use of an adhesion promotor in a cleaning solution |
WO2010084289A1 (en) | 2009-01-22 | 2010-07-29 | Arkema France | Use of a transparent composition for photobioreactors |
WO2010086574A2 (en) | 2009-02-02 | 2010-08-05 | Arkema France | Method for synthesising a block copolymer alloy having improved antistatic properties |
WO2011045550A1 (en) | 2009-10-16 | 2011-04-21 | Arkema France | Method for preparing a recyclable polyamide powder |
WO2011124833A1 (en) | 2010-04-07 | 2011-10-13 | Arkema France | Block copolymer derived from renewable materials and method for making such a block copolymer |
JP2011207935A (en) * | 2010-03-29 | 2011-10-20 | Hitachi Chem Co Ltd | Polyamide having norbornane skeleton and method for producing the same |
WO2011144829A1 (en) | 2010-05-21 | 2011-11-24 | Arkema France | Cooling fabric containing hydrophobic peba |
WO2011144825A1 (en) | 2010-05-18 | 2011-11-24 | Arkema France | Use of at least two polyolefins as an anti-creep agent in a flame-retarded tpe composition |
WO2012001298A1 (en) | 2010-07-01 | 2012-01-05 | Arkema France | Cosmetic composition comprising peba |
EP2284311A4 (en) * | 2008-05-15 | 2012-04-11 | Toyo Boseki | Interpolyether polyamide resin |
WO2012111635A1 (en) | 2011-02-14 | 2012-08-23 | 三菱瓦斯化学株式会社 | Polyether polyamide elastomer |
US20130085239A1 (en) * | 2010-02-02 | 2013-04-04 | Henkel Ag & Co. Kgaa | Polyether block copolymers and compositions that can be obtained therefrom |
WO2013102742A1 (en) | 2012-01-05 | 2013-07-11 | Arkema France | Liquid solution comprising peba |
EP2235089A4 (en) * | 2008-01-21 | 2013-07-17 | Henkel Corp | Polyamides |
WO2013105607A1 (en) | 2012-01-12 | 2013-07-18 | 三菱瓦斯化学株式会社 | Polyether polyamide elastomer |
WO2013160624A1 (en) | 2012-04-27 | 2013-10-31 | Arkema France | Method for manufacturing polyamide thermoplastic polymer particles in the presence of supercritical co2 |
WO2014001674A1 (en) | 2012-06-27 | 2014-01-03 | Arkema France | Use of an alloy of thermoplastic starch and tpe for the production of an ultra-thin, adhesive waterpfoof/breathable film |
WO2014001675A1 (en) | 2012-06-27 | 2014-01-03 | Arkema France | Use of an alloy of thermoplastic starch and pof for the production of an ultra-thin, adhesive waterpfoof/breathable film |
WO2014027650A1 (en) | 2012-08-14 | 2014-02-20 | 三菱瓦斯化学株式会社 | Polyether-polyamide composition |
WO2014114766A1 (en) | 2013-01-25 | 2014-07-31 | Arkema France | Adhesive composition and structure comprising at least one layer of said composition |
WO2014167202A1 (en) | 2013-04-10 | 2014-10-16 | Arkema France | Transparent and antistatic pmma composition |
CN104508044A (en) * | 2012-08-14 | 2015-04-08 | 三菱瓦斯化学株式会社 | Polyether polyamide resin composition |
JP2015127380A (en) * | 2013-11-29 | 2015-07-09 | 宇部興産株式会社 | Polyamide elastomer and molded product produced using the same |
US9139693B2 (en) | 2011-02-14 | 2015-09-22 | Mitsubishi Gas Chemical Company, Inc. | Polyether polyamide elastomer |
WO2015155489A1 (en) | 2014-04-11 | 2015-10-15 | Arkema France | Use of peba having long blocks for the manufacture of all or part of a catheter |
US9512314B2 (en) | 2012-08-14 | 2016-12-06 | Mitsubishi Gas Chemical Company, Inc. | Polyether polyamide composition |
EP3109273A1 (en) | 2015-06-26 | 2016-12-28 | Arkema France | Peba for direct bonding to tpe |
EP3196226A1 (en) | 2008-10-06 | 2017-07-26 | Arkema France | Block copolymer obtained from renewable materials and method for manufacturing such a block copolymer |
WO2017198949A1 (en) | 2016-05-17 | 2017-11-23 | Arkema France | Transparent impact-resistant composition |
WO2018146426A1 (en) | 2017-02-08 | 2018-08-16 | Arkema France | Non-crosslinked copolymer foam with polyamide blocks and polyether blocks |
WO2019069032A1 (en) | 2017-10-04 | 2019-04-11 | Arkema France | Thermoplastic powder composition and reinforced three-dimensional object produced by 3d printing of such a composition |
WO2019097178A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Block copolymer foam |
WO2019097185A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Stretchable and anti-pilling, flexible textile material based on block copolymer |
WO2019097179A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Block copolymer exhibiting improved abrasion resistance and improved tear resistance |
WO2019097184A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Block-copolymer-based stretchable, flexible, waterproof and breathable film |
WO2019110946A1 (en) | 2017-12-08 | 2019-06-13 | Arkema France | Offshore hose outer cladding comprising at least one block copolymer |
WO2019110944A1 (en) | 2017-12-08 | 2019-06-13 | Arkema France | Hydrolysis-resistant, co 2-permeable block copolymer |
WO2019138202A1 (en) | 2018-01-15 | 2019-07-18 | Arkema France | Thermoplastic elastomer-silicone composition |
JP2019133820A (en) * | 2018-01-31 | 2019-08-08 | トヨタ自動車株式会社 | Lithium ion secondary battery |
WO2019223008A1 (en) | 2018-05-25 | 2019-11-28 | Evonik Degussa Gmbh | Plastic material for printing by dye diffusion thermal transfer printing |
WO2020008134A1 (en) | 2018-07-03 | 2020-01-09 | Arkema France | Use of peba foams for vibration filtering |
WO2020008133A1 (en) | 2018-07-03 | 2020-01-09 | Arkema France | Method for producing a copolymer foam with polyamide blocks and polyether blocks |
WO2020079371A1 (en) | 2018-10-17 | 2020-04-23 | Arkema France | Transparent polymeric composition |
WO2020120899A1 (en) | 2018-12-13 | 2020-06-18 | Arkema France | Copolymer powder with polyamide blocks and polyether blocks |
FR3093726A1 (en) | 2019-03-15 | 2020-09-18 | Arkema France | Process for manufacturing a polyamide block and polyether block copolymer foam |
FR3093725A1 (en) | 2019-03-15 | 2020-09-18 | Arkema France | Rigid block and branched soft block copolymers |
US10836117B2 (en) | 2008-04-29 | 2020-11-17 | Arkema France | Method for increasing the difference between the melting temperature and the crystallization temperature of a polyamide powder |
WO2020229782A1 (en) | 2019-05-16 | 2020-11-19 | Arkema France | Copolymer powder with polyamide blocks and polyether blocks |
WO2021009463A1 (en) | 2019-07-15 | 2021-01-21 | Arkema France | Copolymers with hard polyamide blocks and soft blocks comprising polyethylene glycol |
FR3101635A1 (en) | 2019-10-08 | 2021-04-09 | Arkema France | Thermoplastic polymer composition for construction of 3D articles |
FR3108912A1 (en) | 2020-04-07 | 2021-10-08 | Arkema France | Polymer composition for waterproof-breathable films |
WO2021205134A1 (en) | 2020-04-10 | 2021-10-14 | Arkema France | Antistatic or dust-repellent poly(methyl methacrylate) composition |
FR3114096A1 (en) | 2020-09-15 | 2022-03-18 | Arkema France | Polymer foam comprising a copolymer with polyamide blocks and with polyether blocks |
FR3114098A1 (en) | 2020-09-15 | 2022-03-18 | Arkema France | Composition comprising a copolymer with polyamide blocks and with polyether blocks |
FR3114097A1 (en) | 2020-09-15 | 2022-03-18 | Arkema France | Foamable composition of polymers comprising a copolymer with polyamide blocks and with branched polyether blocks |
FR3115491A1 (en) | 2020-10-27 | 2022-04-29 | Arkema France | Breathable waterproof multilayer structure |
FR3118052A1 (en) | 2020-12-23 | 2022-06-24 | Arkema France | Powder for electrically insulating coating |
FR3118775A1 (en) | 2021-01-14 | 2022-07-15 | Arkema France | POWDER POLYMER for 3D printing |
WO2022223937A1 (en) | 2021-04-22 | 2022-10-27 | Arkema France | Composition of thermoplastic polyurethane and polyamide |
WO2022223936A1 (en) | 2021-04-22 | 2022-10-27 | Arkema France | Composition containing thermoplastic polyurethane and a copolymer having polyamide blocks and polyether blocks comprising amine chain ends |
WO2023284583A1 (en) * | 2021-07-13 | 2023-01-19 | 东丽先端材料研究开发(中国)有限公司 | End-modified polyamide resin, preparation method therefor, composition and molded product |
FR3125543A1 (en) | 2021-07-26 | 2023-01-27 | Arkema France | Recyclable elastic filament based on a block copolymer of polyamide and polyether |
WO2023007092A1 (en) | 2021-07-28 | 2023-02-02 | Arkema France | Antistatic transparent polymer composition |
WO2024089364A1 (en) | 2022-10-26 | 2024-05-02 | Arkema France | Foam comprising a thermoplastic polyurethane and a copolymer having polyamide blocks and polyether blocks with amine end groups |
WO2024089363A1 (en) | 2022-10-26 | 2024-05-02 | Arkema France | Thermoplastic polyurethane and polyamide foam |
EP4397696A2 (en) | 2016-01-29 | 2024-07-10 | Arkema France | Foam of a copolymer of polyamide blocks and polyether blocks |
FR3144818A1 (en) | 2023-01-11 | 2024-07-12 | Arkema France | COMPOSITION COMPRISING AT LEAST ONE RECYCLED POLYAMIDE ELASTOMER |
EP4431563A1 (en) | 2023-03-13 | 2024-09-18 | Arkema France | Polymer processing aids for polymer extrusion |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006520835A (en) * | 2003-03-20 | 2006-09-14 | アリゾナ・ケミカル・カンパニー | Polyamide-polyether block copolymer |
-
2003
- 2003-05-26 JP JP2003147732A patent/JP4193588B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006520835A (en) * | 2003-03-20 | 2006-09-14 | アリゾナ・ケミカル・カンパニー | Polyamide-polyether block copolymer |
Cited By (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007144531A2 (en) | 2006-06-14 | 2007-12-21 | Arkema France | Blends and alloys based on an amorphous to semicrystalline copolymer, comprising amide units and comprising ether units, wherein these materials have improved optical properties |
WO2007145324A1 (en) | 2006-06-16 | 2007-12-21 | Ube Industries, Ltd. | Polyether polyamide elastomer |
EP2235089A4 (en) * | 2008-01-21 | 2013-07-17 | Henkel Corp | Polyamides |
EP2090629A2 (en) | 2008-02-15 | 2009-08-19 | Arkema France | Use of an adhesion promotor in a cleaning solution |
US10836117B2 (en) | 2008-04-29 | 2020-11-17 | Arkema France | Method for increasing the difference between the melting temperature and the crystallization temperature of a polyamide powder |
US11718045B2 (en) | 2008-04-29 | 2023-08-08 | Arkema France | Method for increasing the difference between the melting temperature and the crystallization temperature of a polyamide powder |
US8541321B2 (en) | 2008-05-15 | 2013-09-24 | Toyo Boseki Kabushiki Kaisha | Copolymerized polyether polyamide resin |
EP2284311A4 (en) * | 2008-05-15 | 2012-04-11 | Toyo Boseki | Interpolyether polyamide resin |
EP3196226A1 (en) | 2008-10-06 | 2017-07-26 | Arkema France | Block copolymer obtained from renewable materials and method for manufacturing such a block copolymer |
EP3660076A1 (en) | 2008-10-06 | 2020-06-03 | Arkema France | Block copolymer obtained from renewable materials and method for manufacturing such a block copolymer |
WO2010084289A1 (en) | 2009-01-22 | 2010-07-29 | Arkema France | Use of a transparent composition for photobioreactors |
WO2010086574A2 (en) | 2009-02-02 | 2010-08-05 | Arkema France | Method for synthesising a block copolymer alloy having improved antistatic properties |
EP2502950A1 (en) | 2009-02-02 | 2012-09-26 | Arkema France | Method for synthesising a block copolymer alloy having improved antistatic properties |
WO2011045550A1 (en) | 2009-10-16 | 2011-04-21 | Arkema France | Method for preparing a recyclable polyamide powder |
US20130085239A1 (en) * | 2010-02-02 | 2013-04-04 | Henkel Ag & Co. Kgaa | Polyether block copolymers and compositions that can be obtained therefrom |
US8969511B2 (en) * | 2010-02-02 | 2015-03-03 | Henkel Ag & Co. Kgaa | Polyether block copolymers and compositions that can be obtained therefrom |
JP2011207935A (en) * | 2010-03-29 | 2011-10-20 | Hitachi Chem Co Ltd | Polyamide having norbornane skeleton and method for producing the same |
EP3085725A1 (en) | 2010-04-07 | 2016-10-26 | Arkema France | Block copolymer obtained from renewable materials and method for manufacturing such a block copolymer |
WO2011124833A1 (en) | 2010-04-07 | 2011-10-13 | Arkema France | Block copolymer derived from renewable materials and method for making such a block copolymer |
WO2011144825A1 (en) | 2010-05-18 | 2011-11-24 | Arkema France | Use of at least two polyolefins as an anti-creep agent in a flame-retarded tpe composition |
WO2011144829A1 (en) | 2010-05-21 | 2011-11-24 | Arkema France | Cooling fabric containing hydrophobic peba |
WO2012001298A1 (en) | 2010-07-01 | 2012-01-05 | Arkema France | Cosmetic composition comprising peba |
WO2012111635A1 (en) | 2011-02-14 | 2012-08-23 | 三菱瓦斯化学株式会社 | Polyether polyamide elastomer |
US9139693B2 (en) | 2011-02-14 | 2015-09-22 | Mitsubishi Gas Chemical Company, Inc. | Polyether polyamide elastomer |
US9206288B2 (en) | 2011-02-14 | 2015-12-08 | Mitsubishi Gas Chemical Company, Inc. | Polyether polyamide elastomer |
WO2013102742A1 (en) | 2012-01-05 | 2013-07-11 | Arkema France | Liquid solution comprising peba |
WO2013105607A1 (en) | 2012-01-12 | 2013-07-18 | 三菱瓦斯化学株式会社 | Polyether polyamide elastomer |
WO2013160624A1 (en) | 2012-04-27 | 2013-10-31 | Arkema France | Method for manufacturing polyamide thermoplastic polymer particles in the presence of supercritical co2 |
WO2014001674A1 (en) | 2012-06-27 | 2014-01-03 | Arkema France | Use of an alloy of thermoplastic starch and tpe for the production of an ultra-thin, adhesive waterpfoof/breathable film |
US11352467B2 (en) | 2012-06-27 | 2022-06-07 | Arkema France | Use of an alloy of thermoplastic starch and TPE in the manufacture of an adhesive ultrathin waterproof-breathable film |
WO2014001675A1 (en) | 2012-06-27 | 2014-01-03 | Arkema France | Use of an alloy of thermoplastic starch and pof for the production of an ultra-thin, adhesive waterpfoof/breathable film |
WO2014027650A1 (en) | 2012-08-14 | 2014-02-20 | 三菱瓦斯化学株式会社 | Polyether-polyamide composition |
CN104508044A (en) * | 2012-08-14 | 2015-04-08 | 三菱瓦斯化学株式会社 | Polyether polyamide resin composition |
US9512314B2 (en) | 2012-08-14 | 2016-12-06 | Mitsubishi Gas Chemical Company, Inc. | Polyether polyamide composition |
CN104508045A (en) * | 2012-08-14 | 2015-04-08 | 三菱瓦斯化学株式会社 | Polyether-polyamide composition |
WO2014114766A1 (en) | 2013-01-25 | 2014-07-31 | Arkema France | Adhesive composition and structure comprising at least one layer of said composition |
US10308849B2 (en) | 2013-01-25 | 2019-06-04 | Arkema France | Adhesive composition and structure comprising at least one layer of said composition |
US10414958B2 (en) | 2013-01-25 | 2019-09-17 | Arkema France | Adhesive composition and structure comprising at least one layer of said composition |
US12071538B2 (en) | 2013-04-10 | 2024-08-27 | Arkema France | Transparent and antistatic PMMA composition |
WO2014167202A1 (en) | 2013-04-10 | 2014-10-16 | Arkema France | Transparent and antistatic pmma composition |
US12077665B2 (en) | 2013-04-10 | 2024-09-03 | Arkema France | Transparent and antistatic PMMA composition |
JP2015127380A (en) * | 2013-11-29 | 2015-07-09 | 宇部興産株式会社 | Polyamide elastomer and molded product produced using the same |
US11344654B2 (en) | 2014-04-11 | 2022-05-31 | Arkema France | Use of PEBA having long blocks for the manufacture of all or part of a catheter |
US10646620B2 (en) | 2014-04-11 | 2020-05-12 | Arkema France | Use of PEBA having long blocks for the manufacture of all or part of a catheter |
WO2015155489A1 (en) | 2014-04-11 | 2015-10-15 | Arkema France | Use of peba having long blocks for the manufacture of all or part of a catheter |
EP4163320A1 (en) | 2015-06-26 | 2023-04-12 | Arkema France | Peba for direct adhesion to tpe |
EP3109273A1 (en) | 2015-06-26 | 2016-12-28 | Arkema France | Peba for direct bonding to tpe |
EP4397696A2 (en) | 2016-01-29 | 2024-07-10 | Arkema France | Foam of a copolymer of polyamide blocks and polyether blocks |
WO2017198949A1 (en) | 2016-05-17 | 2017-11-23 | Arkema France | Transparent impact-resistant composition |
US11142641B2 (en) | 2016-05-17 | 2021-10-12 | Arkema France | Transparent impact-resistant composition |
WO2018146426A1 (en) | 2017-02-08 | 2018-08-16 | Arkema France | Non-crosslinked copolymer foam with polyamide blocks and polyether blocks |
US11760856B2 (en) | 2017-02-08 | 2023-09-19 | Arkema France | Non-crosslinked copolymer foam composition with polyamide blocks and polyether blocks |
WO2019069032A1 (en) | 2017-10-04 | 2019-04-11 | Arkema France | Thermoplastic powder composition and reinforced three-dimensional object produced by 3d printing of such a composition |
US11767428B2 (en) | 2017-10-04 | 2023-09-26 | Arkema France | Thermoplastic powder composition and reinforced three-dimensional object produced by 3D printing of such a composition |
WO2019097179A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Block copolymer exhibiting improved abrasion resistance and improved tear resistance |
WO2019097185A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Stretchable and anti-pilling, flexible textile material based on block copolymer |
WO2019097184A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Block-copolymer-based stretchable, flexible, waterproof and breathable film |
WO2019097178A1 (en) | 2017-11-17 | 2019-05-23 | Arkema France | Block copolymer foam |
WO2019110944A1 (en) | 2017-12-08 | 2019-06-13 | Arkema France | Hydrolysis-resistant, co 2-permeable block copolymer |
WO2019110946A1 (en) | 2017-12-08 | 2019-06-13 | Arkema France | Offshore hose outer cladding comprising at least one block copolymer |
WO2019138202A1 (en) | 2018-01-15 | 2019-07-18 | Arkema France | Thermoplastic elastomer-silicone composition |
JP6996992B2 (en) | 2018-01-31 | 2022-01-17 | トヨタ自動車株式会社 | Lithium ion secondary battery |
JP2019133820A (en) * | 2018-01-31 | 2019-08-08 | トヨタ自動車株式会社 | Lithium ion secondary battery |
WO2019223008A1 (en) | 2018-05-25 | 2019-11-28 | Evonik Degussa Gmbh | Plastic material for printing by dye diffusion thermal transfer printing |
WO2020008134A1 (en) | 2018-07-03 | 2020-01-09 | Arkema France | Use of peba foams for vibration filtering |
WO2020008133A1 (en) | 2018-07-03 | 2020-01-09 | Arkema France | Method for producing a copolymer foam with polyamide blocks and polyether blocks |
FR3087444A1 (en) | 2018-10-17 | 2020-04-24 | Arkema France | TRANSPARENT POLYMERIC COMPOSITION |
WO2020079371A1 (en) | 2018-10-17 | 2020-04-23 | Arkema France | Transparent polymeric composition |
FR3089999A1 (en) | 2018-12-13 | 2020-06-19 | Arkema France | Polyamide block and polyether block copolymer powder |
WO2020120899A1 (en) | 2018-12-13 | 2020-06-18 | Arkema France | Copolymer powder with polyamide blocks and polyether blocks |
WO2020188210A1 (en) | 2019-03-15 | 2020-09-24 | Arkema France | Branched hard- and soft-block copolymers |
WO2020188211A1 (en) | 2019-03-15 | 2020-09-24 | Arkema France | Method for producing a copolymer foam with polyamide blocks and polyether blocks |
FR3093725A1 (en) | 2019-03-15 | 2020-09-18 | Arkema France | Rigid block and branched soft block copolymers |
FR3093726A1 (en) | 2019-03-15 | 2020-09-18 | Arkema France | Process for manufacturing a polyamide block and polyether block copolymer foam |
WO2020229782A1 (en) | 2019-05-16 | 2020-11-19 | Arkema France | Copolymer powder with polyamide blocks and polyether blocks |
FR3096053A1 (en) | 2019-05-16 | 2020-11-20 | Arkema France | Polyamide block and polyether block copolymer powder |
FR3098816A1 (en) | 2019-07-15 | 2021-01-22 | Arkema France | Polyamide rigid block copolymers and flexible blocks comprising polyethylene glycol |
WO2021009463A1 (en) | 2019-07-15 | 2021-01-21 | Arkema France | Copolymers with hard polyamide blocks and soft blocks comprising polyethylene glycol |
WO2021069843A1 (en) | 2019-10-08 | 2021-04-15 | Arkema France | Thermoplastic polymer composition for constructing 3d articles |
FR3101635A1 (en) | 2019-10-08 | 2021-04-09 | Arkema France | Thermoplastic polymer composition for construction of 3D articles |
WO2021205117A1 (en) | 2020-04-07 | 2021-10-14 | Arkema France | Polymer composition for waterproof-breathable films |
FR3108912A1 (en) | 2020-04-07 | 2021-10-08 | Arkema France | Polymer composition for waterproof-breathable films |
FR3109155A1 (en) | 2020-04-10 | 2021-10-15 | Arkema France | Antistatic or dust-repellent poly (methyl methacrylate) -based composition |
WO2021205134A1 (en) | 2020-04-10 | 2021-10-14 | Arkema France | Antistatic or dust-repellent poly(methyl methacrylate) composition |
FR3114097A1 (en) | 2020-09-15 | 2022-03-18 | Arkema France | Foamable composition of polymers comprising a copolymer with polyamide blocks and with branched polyether blocks |
FR3114096A1 (en) | 2020-09-15 | 2022-03-18 | Arkema France | Polymer foam comprising a copolymer with polyamide blocks and with polyether blocks |
FR3114098A1 (en) | 2020-09-15 | 2022-03-18 | Arkema France | Composition comprising a copolymer with polyamide blocks and with polyether blocks |
WO2022058679A1 (en) | 2020-09-15 | 2022-03-24 | Arkema France | Foamable polymer composition comprising a branched copolymer containing polyamide blocks and polyether blocks |
WO2022058678A1 (en) | 2020-09-15 | 2022-03-24 | Arkema France | Polymer foam comprising an ethylene-vinyl acetate (eva) copolymer and/or an ethylene-alkyl (meth)acrylate copolymer and a copolymer comprising polyamide blocks and polyether blocks |
WO2022058680A1 (en) | 2020-09-15 | 2022-03-24 | Arkema France | Composition comprising a copolymer containing polyamide blocks and polyether blocks |
WO2022090665A1 (en) | 2020-10-27 | 2022-05-05 | Arkema France | Waterproof and breathable multilayer structure |
FR3115491A1 (en) | 2020-10-27 | 2022-04-29 | Arkema France | Breathable waterproof multilayer structure |
WO2022136789A1 (en) | 2020-12-23 | 2022-06-30 | Arkema France | Powder for an electrically insulating coating |
FR3118052A1 (en) | 2020-12-23 | 2022-06-24 | Arkema France | Powder for electrically insulating coating |
FR3118775A1 (en) | 2021-01-14 | 2022-07-15 | Arkema France | POWDER POLYMER for 3D printing |
FR3122182A1 (en) | 2021-04-22 | 2022-10-28 | Arkema France | Composition of thermoplastic polyurethane and of copolymer with polyamide blocks and with polyether blocks comprising amine chain ends |
FR3122181A1 (en) | 2021-04-22 | 2022-10-28 | Arkema France | Composition of thermoplastic polyurethane and polyamide |
WO2022223937A1 (en) | 2021-04-22 | 2022-10-27 | Arkema France | Composition of thermoplastic polyurethane and polyamide |
WO2022223936A1 (en) | 2021-04-22 | 2022-10-27 | Arkema France | Composition containing thermoplastic polyurethane and a copolymer having polyamide blocks and polyether blocks comprising amine chain ends |
WO2023284583A1 (en) * | 2021-07-13 | 2023-01-19 | 东丽先端材料研究开发(中国)有限公司 | End-modified polyamide resin, preparation method therefor, composition and molded product |
FR3125543A1 (en) | 2021-07-26 | 2023-01-27 | Arkema France | Recyclable elastic filament based on a block copolymer of polyamide and polyether |
WO2023007080A1 (en) | 2021-07-26 | 2023-02-02 | Arkema France | Recyclable elastic filament based on a polyamide-polyether block copolymer |
FR3125821A1 (en) | 2021-07-28 | 2023-02-03 | Arkema France | Transparent antistatic polymer composition |
WO2023007092A1 (en) | 2021-07-28 | 2023-02-02 | Arkema France | Antistatic transparent polymer composition |
WO2024089364A1 (en) | 2022-10-26 | 2024-05-02 | Arkema France | Foam comprising a thermoplastic polyurethane and a copolymer having polyamide blocks and polyether blocks with amine end groups |
WO2024089363A1 (en) | 2022-10-26 | 2024-05-02 | Arkema France | Thermoplastic polyurethane and polyamide foam |
FR3141465A1 (en) | 2022-10-26 | 2024-05-03 | Arkema France | Thermoplastic polyurethane and copolymer foam with polyamide blocks and amine chain-ended polyether blocks |
FR3141466A1 (en) | 2022-10-26 | 2024-05-03 | Arkema France | Thermoplastic polyurethane and polyamide foam |
FR3144818A1 (en) | 2023-01-11 | 2024-07-12 | Arkema France | COMPOSITION COMPRISING AT LEAST ONE RECYCLED POLYAMIDE ELASTOMER |
WO2024149961A1 (en) | 2023-01-11 | 2024-07-18 | Arkema France | Composition comprising at least one recycled polyamide elastomer |
EP4431563A1 (en) | 2023-03-13 | 2024-09-18 | Arkema France | Polymer processing aids for polymer extrusion |
WO2024189104A1 (en) | 2023-03-13 | 2024-09-19 | Arkema France | Polymer processing aids for polymer extrusion |
Also Published As
Publication number | Publication date |
---|---|
JP4193588B2 (en) | 2008-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4193588B2 (en) | Polyamide elastomer | |
JP4193587B2 (en) | Polyamide elastomer and method for producing the same | |
JP4161802B2 (en) | Polyamide composition | |
JP4123475B2 (en) | Low water absorption polyether polyamide elastomer | |
KR101846525B1 (en) | Polyether polyamide elastomer | |
JP4978425B2 (en) | Polyamide laminate | |
TW201335229A (en) | Polyether polyamide elastomer | |
JP2003286341A (en) | Polyamide elastomer | |
JP4106654B2 (en) | Resin composition | |
US20030144462A1 (en) | Polyetherpolyamide elastomer having low water absorption | |
JP6698079B2 (en) | Polyamide elastomer, medical device, and method for producing polyamide elastomer | |
JP2004352796A (en) | Polyamide film | |
JP7329717B1 (en) | polyamide block copolymer | |
JP6778678B2 (en) | Polyamide elastomers, medical devices and methods for manufacturing polyamide elastomers | |
JP2003012800A (en) | Polyamide elastomer and method for manufacturing the same | |
JP6273882B2 (en) | Polyamide elastomer and molded article produced using the same | |
JPS6355535B2 (en) | ||
JPWO2018088497A1 (en) | POLYAMIDE RESIN, MOLDED BODY, LAMINATE, MEDICAL DEVICE, AND METHOD FOR PRODUCING POLYAMIDE RESIN | |
JPH0248020B2 (en) | ||
JP7013386B2 (en) | Polyamide-based resin, molded body, laminate, medical device, and method for manufacturing polyamide-based resin. | |
JPH0374254B2 (en) | ||
JP2004352793A (en) | Polyamide-based elastomer | |
JP4106656B2 (en) | Flame retardant-containing resin composition and molded article | |
WO2024225376A1 (en) | Polyamide block copolymer, polyamide block copolymer composition, and molded article | |
JP2016204490A (en) | Composition and molded article consisting of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080902 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080915 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4193588 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111003 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121003 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131003 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |