Nothing Special   »   [go: up one dir, main page]

JP2004340652A - 欠陥検査装置および陽電子線応用装置 - Google Patents

欠陥検査装置および陽電子線応用装置 Download PDF

Info

Publication number
JP2004340652A
JP2004340652A JP2003135265A JP2003135265A JP2004340652A JP 2004340652 A JP2004340652 A JP 2004340652A JP 2003135265 A JP2003135265 A JP 2003135265A JP 2003135265 A JP2003135265 A JP 2003135265A JP 2004340652 A JP2004340652 A JP 2004340652A
Authority
JP
Japan
Prior art keywords
positron
sample
electron
electron beam
application device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135265A
Other languages
English (en)
Inventor
Masanari Takaguchi
雅成 高口
Ruriko Tokida
るり子 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Ltd
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Ltd, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2003135265A priority Critical patent/JP2004340652A/ja
Priority to DE602004002031T priority patent/DE602004002031T2/de
Priority to EP04010485A priority patent/EP1480034B1/en
Priority to US10/838,207 priority patent/US7141790B2/en
Publication of JP2004340652A publication Critical patent/JP2004340652A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • H01J37/256Tubes for spot-analysing by electron or ion beams; Microanalysers using scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • H01J2237/2807X-rays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

【課題】半導体デバイスや金属材料をはじめとする各種固体材料中の微小欠陥の位置や個数、サイズなどをナノメートルオーダの空間分解能で高速検査する。
【解決手段】収束電子線装置に陽電子照射機能を搭載し、欠陥位置情報を収束電子線位置情報、欠陥の個数やサイズを電子と陽電子の対消滅で発生したγ線の検知情報から得、これら2次元分布情報をモニタ上に表示する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、電子線と陽電子線を用い、半導体デバイスや金属材料をはじめとする各種固体材料中の微小欠陥の位置や個数、サイズなどを検査する装置に関する。
【0002】
【従来の技術】
半導体デバイス中の微少欠陥を検査する技術として、近年、陽電子が注目されてきている。陽電子は、電子とほぼ同等の質量を持ち、電子と反対の正荷電を有しているが、寿命が数100ピコ秒(ピコ秒は10−12秒)と短いため自然界では安定に存在しないが、核反応により生成することができる。試料中の欠陥は局所的に負電荷に帯電している。従って、正電荷を持つ低エネルギーの陽電子は、欠陥位置でトラップされ、長寿命化することが知られている。陽電子は、試料入射後、数100ピコ秒内に周囲の電子と衝突し、電子・陽電子の質量がγ線エネルギーに変換されることで、エネルギー511keVのγ線に対消滅する(多くは2個のγ線を発生する)。なお、511keVは、電子・陽電子の質量をエネルギー換算した値である。陽電子による評価は、高エネルギーγ線のパルスカウント測定であるため、電子線照射による電子線検出のようにプローブ自体が信号と競合するバックグラウンドになる場合と異なり、欠陥に対する高S/N・高感度評価が期待できる。このような陽電子による微小欠陥の評価にはいくつもの研究・発表や特許出願がなされている。
【0003】
陽電子による評価方法を半導体試料の欠陥検査に応用する場合、検出できる欠陥のサイズが問題であり、分解能を向上するため、従来は、陽電子線の収束手段の改良に技術開発の焦点が当てられていた。特開平2000−292380記載の「陽電子消滅分析装置」には、陽電子源から放射された陽電子線に薄膜を透過させることにより、単色かつ低エネルギー化する技術が開示されている。こうしてエネルギーの揃った低エネルギー陽電子線を電磁レンズで試料上に収束する。このとき、収束陽電子ビームを走査コイルにより試料上で走査することで、試料面上での2次元的な欠陥分布を評価できる。試料最表面は原子配列の不連続面であり、欠陥同様の電子状態である。しかし陽電子は試料表面では仕事関数分のエネルギーを得て試料外に放出される特性があり、試料表面で原子にトラップされる確率は低い。この特性により、陽電子を、モデレータと呼ばれる薄膜に入射させると、単色化された陽電子が再放出される。これにより、数百MeV範囲で白色化されている陽電子は0.5eV以下に単色化され、放出方向も膜面に垂直に揃えられる。試料表面で原子にトラップされる確率は低いことから、目的とする試料内部の微小欠陥に敏感な評価が可能であることが期待されている。これは表面の評価に適する光やSTMやAFMに代表される微小プローブ技術にはない特長である。但し、再放出確率は10−4程度であるため、単色陽電子の生成効率は低い。
【0004】
一方、特開2001−74673号公報には、γ線検出器を対抗して配置し、対に配置された検出器で同時計測(coincidence計測)を行うことにより、検出信号のS/N比(Signal−to−Noise ratio)を向上させる技術が開示されている。本技術によれば、陽電子線源から放射された陽電子は、電磁レンズで収束され試料に照射される。対消滅で発生したγ線は、対向して設置されたγ線検出器で検出される。すなわち、対消滅γ線は正反対方向に同時に放射されることを利用し、両検出器が同時に計測した事象を真のγ線信号とし、片方のみ計測した事象は宇宙線や検出器の電気ノイズなどのバックグラウンドとして処理することで、SNを向上させることができる。これにより、数ナノメートル程度の微小結晶欠陥に関する情報、すなわち欠陥サイズの統計的分布を評価することができる。
【0005】
図3には、従来技術による陽電子線欠陥評価装置の模式図を示す。陽電子源9から放射された陽電子線は、モデレータ14と呼ばれる清浄表面を持つタングステン等の薄膜を透過することにより単色化される。単色でないと、色収差の影響で収束できないためである。民生用途として通常用いられる陽電子源は、ベータ崩壊を利用して陽電子を得る形式の線源が多い。この場合、得られる陽電子線のエネルギー分布は連続であり、単色化が重要となる。単色化した陽電子線を収束するためには、電磁レンズ11が用いられる。単色化された陽電子線は、引き出し電極17により引き出され、電磁レンズ11で試料7面上に収束される。15は、引出電極17に電位差を与えるための電源であり、16は、試料7と引出電極17間に電位差を与えることにより、陽電子線を加速するための電源である。12は陽電子線を試料の表面上に走査するためのスキャン手段であり、8はγ線検出器である。スキャン手段12の2次元走査位置情報と、γ線検出器で検出される信号強度をデータ処理装置13にてマッピングすることにより、γ線分布、すなわち欠陥量の2次元分布を可視化できる。
【0006】
以上、従来技術で開示されたポイントを纏めると以下のようになる。
(1)陽電子線を試料に照射し、欠陥に滞在させる。欠陥位置で長寿命化させる。
(2)欠陥位置でエネルギーを失った陽電子が試料内の電子と対消滅し、γ線を発生する。
(3)γ線強度から欠陥数(密度)を測定する。
(4)収束した陽電子ビームを試料面上で走査する。走査位置情報とγ線強度の同期を取って2次元強度分布を描くことで、試料上の2次元欠陥分布を評価する。
(5)モデレータと呼ばれる金属薄膜を使い、これを透過させること陽電子線を単色化する。
(6)陽電子線強度を上げるため、加速器を使った核反応を利用する。
(7)陽電子源として、22Na、64Cu等のベータプラス崩壊する密封線源を用いる。
(8)γ線のSNを向上させるため、対に設置した検出器の同時計測(coincidence計測)を行う。すなわち、宇宙線や外来のバックグラウンドとなる放射線は、両検出器を同時に鳴らす確率は殆どゼロである。従って、対検出器で同時に計測したイベントを真のγ線イベントとし、同時でないイベントを計数しないアルゴリズムを用いることで、SNを向上させることができる。
【0007】
【発明が解決しようとする課題】
従来の技術では、数ナノメートル程度の微小欠陥のサイズと個数の2次元分布とを統計的に測定できた。ここでいう統計的分布とは、数100ナノメートル領域内での平均的情報ということである。これは広い面積内で同様の状態を示す対象の評価には適用可能だが、たとえば半導体メモリのような電子デバイスでは、構造の最小単位である1ビットのトランジスタゲート長や配線構造が数10nm以下(場合によっては数ナノメートル)であり、その中の分布を知りたいというような場合、1ナノメートルの空間分解能の実現が求められており、空間分解能が1桁〜3桁不足という問題が発生している。陽電子ビームをナノメートル径サイズに収束することは、上に示したようにモデレータを使った単色化と電子レンズによる収束で原理的には可能と考えられる。しかし単色化することにより陽電子強度が、線源から放出された陽電子強度の1/1000から1/100000程度に弱まってしまうため、検出されるγ線の信号強度が弱くなり、結果的に測定感度の不足という問題を生み出してしまう。陽電子線強度を維持するため、線源として加速器を使った測定が試験的に実施されているものの、コストや測定回数の制限などの問題があり、半導体デバイス評価などの民生用途への展開はむずかしい。このように、分解能と感度は常に相反する要件であり、本発明の解決しようとする課題は、この分解能と感度とを両立した測定装置、測定手段および当該測定装置を用いた応用装置を実現することである。
【0008】
【課題を解決するための手段】
本発明においては、試料に対し陽電子と収束電子線とを照射することにより発生するγ線を検出することにより、分解能と感度の両立という課題を解決する。前述の通り、陽電子線を単色化すると強度が大幅に低下する。しかしながら、電子線の場合、単色電子源や収束電磁コイルなどの技術が開発されており、実用的な電子線強度を保ちつつビームのスポット径を小さくすることが可能である。そこで、陽電子線を試料の比較的広い領域に照射し、同時に収束電子線も試料に照射する。この方式により、γ線が発生する箇所の大きさを収束電子線のビームスポット径のオーダー程度に押さえることが可能であり、従来技術と比較して、十分な分解能を得ることができる。また、単色化しないため陽電子線の強度低下という問題も発生しない。従って、発生するγ線の強度低下も従来技術に比べて小さく押さえることが可能であり、よって、空間分解能と感度を実用範囲内で両立することができる。
【0009】
【発明の実施の形態】
[実施例1]
初めに、図2を用い陽電子による欠陥数計測法の原理を示す。本図では4つのケースについて記載した。すなわち、試料中に欠陥があるなし、試料に電子線のみと電子線・陽電子の両方が入射した場合のそれぞれの組み合わせ4通りである。試料中に入射した陽電子は、非弾性散乱を繰り返しながら試料中でエネルギーを損失していく。低エネルギー化した陽電子は、試料中の電子と対消滅する。すなわち、511keVのγ線を通常2本放射し消滅する。
また、電子と対消滅せずに試料外に再放出される陽電子もある。ここで、試料に入射する陽電子強度をN1、電子と対消滅する確率をP1(0<P1<1)とすると、対消滅γ線強度は、N1P1であり、外部の再放出される陽電子線強度はN1(1−P1)で与えられる。一方、試料中に結晶欠陥が存在する場合、欠陥位置周辺が局所的に負電荷になるため、正電荷の陽電子がトラップされることが知られている。この場合、試料中に滞在する時間が長くなるため、陽電子と電子が出会う確率が増加し、対消滅の確率が増加する。ここで、試料中に結晶欠陥が存在する場合の対消滅確率をP2(0<P2<1)とすると、対消滅γ線強度は、N1P2であり、外部の再放出される陽電子線強度はN1(1−P2)で与えられる。γ線検出器で、陽電子照射時の放射されるγ線を計数すると、結晶欠陥のない試料(位置)に比べ、結晶欠陥のある試料(位置)の方が、γ線強度は大きくなり、その比率C1は、
C1=N1P2/N1P1=P2/P1で与えられる。ここで、P2>P1であるため、C1>1である。従来の技術の項で述べた方法は、原理的にこの比率C1をコントラストとして検知したものである。
【0010】
一方、試料に陽電子と電子を同時に照射した場合を検討する。対消滅確率は、トラップされた低速陽電子の周辺にある電子密度に比例する。
試料中に欠陥がなく、電子線が同時に照射されたときの対消滅確率はP3(0<P3<1)、試料中に欠陥があり、電子線が同時に照射されたときの対消滅確率はP4(0<P4<1)とすると、測定されるγ線強度比C2は、C2=P4/P3 で与えられる。ここでも、P4>P3であるため、C2>1である。一般に、欠陥の種類(サイズや電荷)にもよるが、シリコンの場合、P2は高々P1の2倍程度である。同様に、P4は高々P3の2倍程度であり、これから得られる結論は、欠陥のある箇所とない箇所から得られるγ線強度の比率は、高々2倍程度であり、電子線を入射しても変化しないということである。
【0011】
次にγ線強度と信号SN(Signal−to−Noise ratio)について検討する。γ線測定の場合、測定信号に含まれるノイズの影響は、通常無視できる程度に小さいので、信号SNは検出されるγ線の信号強度により規定されると考えてよい。ノイズの原因としては、例えば宇宙線によるバックグラウンド等がある。一方、陽電子線は、通常核反応により生成させるため、十分な入射線量を確保することが難しい場合が多い。このため、信号SNは、事実上、検出されるγ線強度の平方根に比例する値となる。従って、電子線照射のある場合の欠陥位置からの信号SN1は、SN1=√N1P1である。同様に、電子線照射のない場合の欠陥位置からの信号SN2は、SN2=√N1P2で与えられる。
【0012】
欠陥位置周辺の電子線密度を各々M1、M2とすると、SN1=√N1M1P、SN2=√N1M2Pであり、SN2/SN1=√(M2/M1)である。欠陥周辺の電子線密度は、典型的には1×1018/cm2程度であり、陽電子寿命時間(約250ps)電子線照射による発生する電子線密度は、典型的には1×1026/cm2程度である。従って、SN2/SN1=1×104である。即ち、電子線照射により、陽電子信号のSNは1万倍向上することになる。これにより、従来法では不可能だった高感度欠陥評価が可能になる。
【0013】
図1には、本実施例に係る陽電子線応用装置の図を示す。本実施例の陽電子線応用装置は、陽電子線と収束電子線とを試料に照射することを主な特徴とする。電子線と陽電子線の両方を照射する利点としては、対消滅確率が増加することによる発生γ線量の増加、それに伴う検出信号強度の増大による信号SNの向上である。同時に、試料に照射する電子線を収束して、γ線の発生する領域の大きさをナノメートルレベルに押さえる。即ち、γ線位置は照射電子線位置により規定される。
【0014】
電子源1から放射された電子線は、引き出し電極2に印加される引き出し電圧により引き出され、試料7と線源との間に形成される所定の経路上を通過して、電磁レンズ3が配置された領域に入射する。本実施例では、電子源として電界放射型電子源を用いた。引出電圧は、電子線源側に配置された引出電極の1と電磁レンズ側に配置された引出電極の2との間に、引出電圧源5により電位差を与えることにより発生させる。また、試料7と引出電極の2との間には加速電圧源6により所定の電位差が印加されており、経路上を通過する電子線はこの電位差により加速される。電子線を加速しているため、加速電圧は電子源側が負、試料側が正に電圧印加される。
加速された電子線は、電磁レンズ3により試料7上に収束される。電子線に関しては、単色化、収束電子光学系の技術が発達しており、スポット径を0.1ナノメートルに収束できる。電子線の収束径を小さくするためには、加速電圧をできるだけ大きくし、電子線を短波長化することが有効である。同時に、収差の小さい電磁レンズ3を用いることが有効であるが、高速な電子ほど試料内での散乱による広がりが大きいという問題もある。つまり、電子線の収束径と広がり径の間にはトレードオフの関係があり、加速電圧には最適値ないし最適範囲がある。本実施例では、加速電圧を0.1−1kV程度に設定したが、この値は、通常の電子顕微鏡で用いられる値よりも低めの値である。番号4は、電子線を試料上で走査するための走査手段である。これにより、電子線は収束したまま試料面上に走査される。走査手段4は直交した2方向に独立に制御される電場もしくは磁場を印加することで2次元的な走査を実現する。
【0015】
一方、陽電子は陽電子源9から放射される。本実施例では、単色化せず電磁レンズ11により試料7上に照射される。単色化しないため電磁レンズ11では陽電子線を十分に収束できず、従って、強度低下の問題が発生しない。本実施例の陽電子線応用装置においては、陽電子線を収束しないため、電子線のように微小な照射領域は形成できず、従って、陽電子線の照射スポット位置からγ線の発生箇所を特定することはできない。しかし、欠陥位置を規定するγ線発生領域の位置情報は、走査手段4により得られる電子線スポットのスキャン位置情報から特定できるため問題ない。従って、原理的には陽電子用の電磁レンズ11は不要であり、例えば、陽電子線の照射領域が非常に大きく、試料の全面に陽電子線を試料に照射するような構成であっても欠陥検出が可能である。但し、電子線と陽電子線の衝突確率を上げるために、できるだけ両者の照射領域は揃えることが望ましい。このため本実施例では、陽電子側にも第2の走査手段12を設け、第1の走査手段4と第2の走査手段12の走査位置との同期を取ることで、電子線と陽電子線の衝突確率を増大させることにした。従って、第2の走査手段を設けることにより、そうでない場合に比べて信号SNを向上することができる。欠陥マッピングモニタ13には制御器が内蔵されており、走査手段4,11の同期は、当該制御器により行なったが、同期を取るための制御手段を別に設けても良い。
【0016】
試料7を挟んで対向位置に1対のγ線検出器8を設置する。両検出器で同時に検知されたイベントのみ真のγ線として欠陥マッピングモニタ13にて計数する。この計数値を像強度とし、走査手段4の2方向のスキャン位置情報を2次元位置情報としてマッピングすることで、欠陥マッピングモニタ13では、欠陥位置と欠陥量の2次元分布を表示することにした。
【0017】
10はγ線遮蔽用シールドであり、陽電子が通過するための開口部を備えている。陽電子源9は一般に多くのバックグラウンドとなるγ線を発生するため、発生したγ線が直接γ線検出器8に入射することを防ぐための手段である。本実施例では、シールド10の材料として、鉛を用いている。なお、図示されていないが、試料7の下には試料ステージが設けられており、試料は試料ステージ上に載置されている。
[実施例2]
図4には、第2の実施例を示す。試料の左側から収束電子線、試料の右側から陽電子線を照射する点は、図1の第1の実施例と同様である。本実施例では、低加速でできるだけ収束性を維持するため、試料直前に加速電子線を減速する減速メッシュ18を設けた。そしてこの減速メッシュに引き出し電圧5や加速電圧6と逆符号の減速電圧19を印加する。陽電子との対消滅を発生させるためには、試料は十分に低エネルギーである必要がある。また、試料内での散乱による入射電子線広がりを抑えるためにも電子線を低エネルギー化するのは有効である。低加速電圧で電磁コイル3にて収束するより、高加速で十分に収束させた後、減速した方が収束性は維持される。
同時に、本実施例では、陽電子の収束性についても考慮した。本実施例の装置においては、陽電子線のスポット径が広がらないようにしながら輸送する手段としてソレノイド型コイル21を設け、線源9と電磁コイル11との間の領域に配置した。ソレノイド型コイル21では、コイル中心軸方向に磁場が形成されるため、コイル中心軸周りに陽電子は回転しながら輸送される。このため、広い角度に放射された陽電子は、拡散することなくソレノイド型コイル21を通過し、効率良く電磁コイル11に導かれる。ソレノイド型コイル21の磁場強さは、強くするほど内部での陽電子の回転半径が小さくなり、電磁コイル11に入射する際のビームスポット径も小さくできる。従って、ソレノイドコイル21としてはなるべく発生磁界の大きなソレノイドを用いることが望ましい。
【0018】
本実施例でも、実施例1と同様、陽電子源9からのγ線が直接γ線検出器8に入射しないようにシールド10を設置する。加えて、本実施例では、放射された陽電子の方向を変えるためのマグネットを設けた。陽電子線の方向を変える構造とすることで、方向を変えない場合にソレノイド型コイル21内部を通過してしまうγ線を、より効率よく遮蔽できる。本実施例では、陽電子線の方向をマグネット20で90曲げて電磁コイル11内に導入しているが、曲げる角度は任意の角度で構わない。また、本実施例では、ソレノイドコイルを2つに分割し、第1のソレノイドコイルの後段にマグネットを配置したが、ソレノイドコイル自体を曲げても構わない。この場合、陽電子線がソレノイドコイルを通過する領域が、ソレノイドコイルを分割した場合に比べて実効的に長くなるため、陽電子線のビームスポットを絞るという観点からは有利である。
[実施例3]
近年の半導体デバイスでは、微細化に伴うデバイス内応力の高まりや、内部に酸化膜層を有するSOI(ilicon nsulator)ウェハの採用などの新構造導入により、従来技術では観察できない微小欠陥が基板内部ないし基板上に形成される回路パターンに発生する確率が高くなっている。このような微少欠陥は、接合電流リークの要因になるため、結晶中の点欠陥や極微小欠陥の評価(有無、密度、位置同定等)が重要性を増している。例えば、透過電子顕微鏡 (TEM:Transmission Electron Microscope)では、母原子列5に対し1以上の比率で欠陥が存在しないと像コントラストが得られない。即ち、試料厚さを1nm以下にするか、欠陥が数個凝集している必要があり、従来の電子顕微鏡では、上記のような固体中の点欠陥、もしくは複数の欠陥が集まったクラスタ欠陥評価が困難であった。
【0019】
また、微小欠陥の評価は半導体デバイス以外の分野においても重要である。例えば、アモルファス材料においては、層内のポア(直径数ナノメートルの微小空孔)が問題となっており、他にも、金属、樹脂材料といった種々の材料開発においても広く重要である。
【0020】
図5には、本実施例の陽電子による半導体ウェハの非破壊欠陥検査装置の例を示す。検査装置の電子線側の機構は、電子銃111及び1次電子線加速電圧や引き出し電圧を制御する制御回路111’、照射レンズ112及びその電流値を制御する制御回路112’、コンデンサ絞り113及びコンデンサ絞りの穴位置を制御する制御回路113’、軸ずれ補正用偏向器114及びその電圧値を制御する制御回路114’、非点収差を補正するスティグメータ115及びその電流値を制御する制御回路115’、イメージシフト用偏向器116及びその電圧値もしくは電流値を制御する制御回路116’、走査用偏向器117及びその電圧値もしくは電流値を制御する制御回路117’、対物レンズ118及びその電流値を制御する制御回路118’、γ線検出器119及びその制御回路119’、試料ステージ120およびその位置を制御する制御回路120’、試料から放射された二次電子線141を検知する二次電子検出器121およびそのゲインやオフセットを制御する二次電子検出器制御回路121’、信号処理ソフトを搭載した計算機122、SEM制御ソフトを搭載した計算機123から構成される。各制御回路は各計算機によってコマンド制御される。128は、生成されたγ線を示す。
【0021】
電子銃111から1次電子線を引出し電圧V1で引出し、電子銃111とグラウンド間に印加した加速電圧V0で加速する。鏡体の光軸とほぼ平行な方向をZ方向、光軸とほぼ直交する面をXY平面とする。ここで、半導体ウェハ140を試料ステージ120に載せ、Z方向より1次電子線126を入射する。照射レンズ112を用いて1次電子線126をnmオーダーまで収束させ、走査用偏向器117を用いて半導体ウェハ140上で走査させる。試料ステージ120のXY移動機構にて半導体ウェハ140を移動させ、光学系調整用の視野を選択する。二次電子検出器121のゲインとオフセットを調整し、半導体ウェハ140の構造が観察し易い様に像コントラストを調整する。次ぎに、試料ステージ120のZ位置調整、または対物レンズ118の制御値調整にて焦点を補正する。焦点を変化させながら、SEM像がもっともシャープに観察できる様に手動で補正する。次ぎに、軸ずれを補正する。対物レンズ119にて焦点を変化させたときの像移動を検出し、像移動が最小になる様にコンデンサ絞り113の穴の位置、もしくは軸ずれ補正用偏向器114の制御値を調整し、1次電子線126の対物レンズ119の光軸からのずれ量を補正する。次ぎに、スティグメータ115を用いてビーム形状が真円に近づく様に非点を補正する。上記コントラスト補正、焦点補正、軸ずれ補正、非点補正を必要に応じて繰返し、最後に試料ステージ120を用いて撮影用の視野を選択し、対物レンズ118による焦点微調整と、二次電子検出器121のゲインとオフセットによる像コントラスト微調整を行う。
【0022】
次に陽電子側の構成について説明する。本実施例では、陽電子源148は複数の線源を並べて構成した。各々の線源には、異なる核種の元素が格納されており、最大エネルギーの異なる陽電子線を放出する。陽電子源148には、ベータプラス崩壊する不安定核を用いるため、元素により、陽電子の最大エネルギーが異なる。例えば22Naでは540keV、64Cuでは650keV、68Geでは1880keVである。陽電子の最大エネルギーは、陽電子の試料侵入深さと関連がある。陽電子の試料中進入深さをR(μm)と、陽電子の最大エネルギー(MeV)、試料の密度d(g/cm3)の間には、次の経験式がある。
R=60×(Emax)2/3×d−1
最大エネルギーの最も高い68Geの場合、シリコンに対する陽電子の進入深さは数10〜数100μmとなり、ウェハ内部まで陽電子線が侵入することがわかる。従って、本実施例のように、試料の裏面側から陽電子を照射し、表面側から収束電子を照射することで、ウェハを割断したり薄膜加工することなく、内部欠陥を評価できる。また、検査目的に応じて陽電子源148を選択することで、欠陥の深さに関する情報を得ることができる。
【0023】
複数の陽電子源の上部には、陽電子線の通過経路に相当する部分のみ開口部を設けたシールド149を設置し、陽電子源可動機構146にて所望の陽電子源を前記開口部の下部に移動する。陽電子源可動機構146は、陽電子源可動機構制御回路146’により移動を制御される。この機構で、放射エネルギーの異なる線源を選択することにより、試料に照射する陽電子のエネルギーを選択することが可能となる。また、陽電子の通過経路上に、薄膜147やメッシュ電極143等の陽電子エネルギーの調節手段を設置することで、陽電子のエネルギーをさらに細かく調節できる。例えば、陽電子は薄膜147中では減速されるため、透過する陽電子線のエネルギーを薄膜の厚さに応じて調整できる。実際には、薄膜147は所定の基板上にアルミニウムや銅等の薄膜が形成された部品である。厚さの異なる薄膜が形成された基板を、制御したいエネルギーに応じて交換できるような構造にしても良い。また、メッシュ電極143には、メッシュ電極制御回路143’により任意電圧を印加することで、メッシュを通過した陽電子のエネルギーを調節できる。
【0024】
薄膜147に陽電子を単色化する機能を持たせることも可能である。例えば、薄膜147の材料として清浄表面をもったタングステンなどの金属薄膜を用いると、透過陽電子線が単色化される。これにより、収束レンズ145を通過する陽電子線のスポット径をより小さくすることが可能である。但し、単色化により陽電子線の強度は低下するため、薄膜の材料は場合に応じて選択する必要がある。収束レンズ制御回路145’は、印加電圧の調整など、収束レンズ145の制御動作を行う。収束した陽電子線は、偏向コイル144および偏向コイル制御回路144’にて、半導体ウェハ140の任意の位置に照射できるものとする。
上記装置において、走査偏向器117は、図1の走査手段4に相当する。計算機122には信号処理ソフトが搭載されており、γ線検出器119の検出信号の強度を走査偏向器117の走査位置情報に同期させてマッピングすることで、欠陥位置の2次元分布に相当する画像信号を生成する。同時に、計算機122は表示画面を備えており、生成された画像信号を欠陥分布像として表示する。同様に、二次電子検出器121の出力も、走査偏向器117の走査位置情報と同期させ、表示画面上に二次電子像として表示する。二次電子像の画像信号の合成も計算機122で行う。これら欠陥分布像と二次電子像の位置情報とは表示画面上、左右に分けて同時表示することもできるが、重ねて表示しても良い。後者の場合、視認性が良く、目視による欠陥分布と試料構造情報の対比が行いやすい。
【0025】
本実施例の試料ステージ120は、液体窒素、液体ヘリウムからの熱伝導、もしくはペルティエ素子等の電気的な冷却手段により、半導体ウェハ140の温度を制御できるものとする。半導体中では、自由電子が少ないため、結晶欠陥中に捕獲された陽電子のエネルギーは対消滅のほか、フォノン散乱にて緩和していく。このため、対消滅確率を増加させるためには、試料冷却によるフォノン散乱抑制が効果的である。欠陥サイズや欠乏電荷数により変化するが、冷却温度としては、300Kから10Kが適当である。冷却により対消滅確率が数10%程度向上する。
【0026】
以上、本実施例の陽電子応用装置は、半導体ウェハの非破壊欠陥検査装置として有効である。特に、本実施例の陽電子応用装置を半導体の製造ラインに設置すれば、被検査ウェハを破壊することなく製造工程の途中で欠陥検査を行なうことができ、製造歩留まり向上の上で非常に有効である。
【0027】
【発明の効果】
本発明により、シリコンウェハをはじめとする結晶中の極微小欠陥の密度やサイズを、高空間分解能で非破壊検査・解析できるようになる。
【図面の簡単な説明】
【図1】本発明の原理を示す図。
【図2】陽電子と電子照射による欠陥コントラストを説明する図。
【図3】陽電子を用いた従来の欠陥評価装置を示す図。
【図4】本発明の一実施例を示す図。
【図5】本発明の一実施例を示す図。
【符号の説明】
1:電子源、
2:引き出し電極、
3:電磁レンズ、
4:スキャン機能、
5:引き出し電圧、
6:加速電圧、
7:試料、
8:γ線検出器、
9:陽電子源、
10:シールド、
11:電磁レンズ、
12:スキャン機能、
13:欠陥マッピングモニタ、
14:モデレータ、
15:引き出し電圧、
16:加速電圧、
17:引き出し電極、
18:減速メッシュ、
19:減速電圧、
20:マグネット、
21:ソレノイド型コイル、
111:電子銃、
111’:電子銃制御回路、
112:照射レンズ、
112’:照射レンズ制御回路、
113:コンデンサ絞り、
113’:コンデンサ絞り制御回路、
114:軸ずれ補正用偏向器、
114’:軸ずれ補正用偏向器制御回路、
115:スティグメータ、
115’:スティグメータ制御回路、
116:イメージシフト用偏向器、
116’:イメージシフト用偏向器制御回路、
117:走査用偏向器、
117’:走査用偏向器制御回路、
118:対物レンズ、
118’:対物レンズ制御回路、
119:γ線検出器、
119’:γ線検出器制御回路、
120:試料ステージ、
120’:試料ステージ制御回路、
121:二次電子検出器、
121’:二次電子検出器制御回路、
122:信号処理ソフトを搭載した計算機、
123:SEM制御ソフトを搭載した計算機、
126:1次電子線、
128:γ線、
140:半導体ウェハ、
141:二次電子線、
143:メッシュ電極、
143’:メッシュ電極制御回路、
144:偏向コイル、
144’:偏向コイル制御回路、
145:収束レンズ、
145’:収束レンズ制御回路、
146:陽電子源可動機構、
146’陽電子源可動機構制御回路、
147:薄膜、
148:陽電子源、
149:シールド。

Claims (14)

  1. 電子源と、陽電子源と、試料を載置する試料ステージと、
    前記電子源から放射される電子線を集束し前記試料に照射する電子線照射機構と、
    前記試料上における電子線の照射位置を制御する電子線位置制御機構と、
    前記陽電子源から放射される陽電子線を試料に照射する陽電子線照射機構と、
    前記電子線および陽電子線の照射により前記試料から発生する電磁波を検出する検出器と、
    前記電子線の照射位置の情報と前記検出器の出力信号とを同期させ画像信号を生成する制御器と、
    該画像信号を表示する表示手段を備えたことを特徴とする陽電子線応用装置。
  2. 請求項1に記載の陽電子線応用装置において、
    前記陽電子線を前記試料に対して走査させるスキャン手段を備えたことを特徴とする陽電子線応用装置。
  3. 請求項1に記載の陽電子線応用装置において、
    前記試料を冷却する手段を備えたことを特徴とする陽電子線応用装置。
  4. 請求項1に記載の陽電子線応用装置において、
    前記検出器として少なくとも2つのγ線検出器を用い、該少なくとも2つのγ線検出器を前記試料ステージを挟んで相対する位置に配置したことを特徴とする陽電子線応用装置。
  5. 請求項1に記載の陽電子線応用装置において、
    前記検出器がγ線検出器であることを特徴とする陽電子線応用装置。
  6. 請求項5に記載の陽電子線応用装置において、
    前記γ線検出器と陽電子源の間に配置されたγ線遮蔽手段を含むことを特徴とする陽電子線応用装置。
  7. 請求項1に記載の陽電子線応用装置において、
    前記陽電子線を収束する手段を備えたことを特徴とする陽電子線応用装置。
  8. 請求項1に記載の陽電子線応用装置において、
    前記試料ステージと前記電子線照射機構との間に配置された電子線減速器とを備えることを特徴とする陽電子線応用装置。
  9. 請求項8に記載の陽電子線応用装置において、
    前記電子線減速器は、ソレノイド型磁場発生装置を含むことを特徴とする陽電子線応用装置。
  10. 請求項1に記載の陽電子線応用装置において、
    前記陽電子源として複数の陽電子線源と、
    前記試料ステージと前記陽電子源との間に配置され、陽電子線の通過する開口を備えたシールドと、
    前記複数の陽電子線源のうちの1の陽電子線源を、放射される陽電子が前記開口部を通過する位置に移動する移動手段とを備え、
    前記複数の陽電子源は、各々種類の異なる核種を備えたことを特徴とする陽電子線応用装置。
  11. 請求項1に記載の陽電子線応用装置において、
    電子線照射により試料から発生する二次電子を検出する二次電子検出器を有し、
    前記画像表示手段は、前記画像信号に加えて二次電子像を表示することを特徴とする陽電子線応用装置。
  12. 請求項1に記載の陽電子線応用装置において、陽電子線の通過経路と電子線の通過経路が、前記試料ステージを挟んで互いに相対する位置に存在することを特徴とする陽電子線応用装置。
  13. 電子源と、陽電子源と、該電子源から放射される電子線を試料に照射する電子線照射機構と、試料上での該電子線照射位置を制御する位置制御機構と、該陽電子源から放射される陽電子線を試料に照射する陽電子線照射機構と、試料上での該陽電子線照射位置を制御する位置制御機構と、試料温度を制御する手段を有した試料位置制御機構と、γ線検出器と、該陽電子源と該γ線検出器の間に設置されるγ線遮蔽手段と、データ処理手段と、前記γ線検出器により検出された信号を画像表示する表示手段とを有し、
    該データ処理手段は、該位置制御機構からの位置情報とγ線検出器により検出される信号強度情報との同期を取り、γ線強度の2次元分布を前記表示手段に表示することを特徴とした欠陥検査装置。
  14. 電子源と、陽電子源と、試料を載置する試料ステージと、前記電子源から放射される電子線を集束し前記試料に照射する電子線照射機構と、前記試料上における電子線の照射位置を制御する電子線位置制御機構と、前記陽電子源から放射される陽電子線を試料に照射する陽電子線照射機構と、前記電子線および陽電子線の照射により前記試料から発生する電磁波を検出する検出器と、前記電子線の照射位置の情報と前記検出器の出力信号とを同期させ画像信号を生成する制御器と、
    該画像信号を表示する表示手段を備えたことを特徴とする欠陥検査装置。
JP2003135265A 2003-05-14 2003-05-14 欠陥検査装置および陽電子線応用装置 Pending JP2004340652A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003135265A JP2004340652A (ja) 2003-05-14 2003-05-14 欠陥検査装置および陽電子線応用装置
DE602004002031T DE602004002031T2 (de) 2003-05-14 2004-05-03 Hochauflösende Defekterkennung mit Positronenrekombination durch gleichzeitiges Einstrahlen eines Positronenstrahls und eines Elektronenstrahls
EP04010485A EP1480034B1 (en) 2003-05-14 2004-05-03 High resolution defect inspection with positron annihilation by simultaneous irradiation of a positron beam and an electron beam
US10/838,207 US7141790B2 (en) 2003-05-14 2004-05-05 Defect inspection instrument and positron beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135265A JP2004340652A (ja) 2003-05-14 2003-05-14 欠陥検査装置および陽電子線応用装置

Publications (1)

Publication Number Publication Date
JP2004340652A true JP2004340652A (ja) 2004-12-02

Family

ID=33095362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135265A Pending JP2004340652A (ja) 2003-05-14 2003-05-14 欠陥検査装置および陽電子線応用装置

Country Status (4)

Country Link
US (1) US7141790B2 (ja)
EP (1) EP1480034B1 (ja)
JP (1) JP2004340652A (ja)
DE (1) DE602004002031T2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031250A (ja) * 2005-07-29 2007-02-08 Tokuyama Corp 窒化アルミニウム焼結体
WO2007129596A1 (ja) * 2006-05-02 2007-11-15 The University Of Tokyo エネルギー準位の測定方法、分析方法
JP2008304276A (ja) * 2007-06-06 2008-12-18 Chiba Univ 低速陽電子輝度増強用透過型減速材の製造方法、低速陽電子輝度増強用透過型減速材、低速陽電子ビームの輝度増強方法、高輝度低速陽電子ビーム発生装置および陽電子顕微鏡
JP6033325B2 (ja) * 2012-11-19 2016-11-30 株式会社日立製作所 半導体検査装置、及び荷電粒子線を用いた検査方法
JP2018040645A (ja) * 2016-09-06 2018-03-15 国立研究開発法人産業技術総合研究所 陽電子消滅特性測定装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056142B1 (ko) 2004-01-29 2011-08-10 케이엘에이-텐코 코포레이션 레티클 설계 데이터의 결함을 검출하기 위한 컴퓨터로구현되는 방법
JP4299195B2 (ja) * 2004-06-28 2009-07-22 株式会社日立ハイテクノロジーズ 荷電粒子線装置及びその光軸調整方法
JP4904034B2 (ja) 2004-09-14 2012-03-28 ケーエルエー−テンカー コーポレイション レチクル・レイアウト・データを評価するための方法、システム及び搬送媒体
JP2006351669A (ja) * 2005-06-14 2006-12-28 Mitsubishi Electric Corp 赤外検査装置および赤外検査方法ならびに半導体ウェハの製造方法
US7769225B2 (en) 2005-08-02 2010-08-03 Kla-Tencor Technologies Corp. Methods and systems for detecting defects in a reticle design pattern
US7676077B2 (en) 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US8041103B2 (en) 2005-11-18 2011-10-18 Kla-Tencor Technologies Corp. Methods and systems for determining a position of inspection data in design data space
US7570796B2 (en) 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
JP4685637B2 (ja) * 2006-01-05 2011-05-18 株式会社日立ハイテクノロジーズ モノクロメータを備えた走査電子顕微鏡
US7718962B2 (en) * 2006-06-05 2010-05-18 Idaho State University And The Board Of Educa Defect imaging device and method
WO2008077100A2 (en) 2006-12-19 2008-06-26 Kla-Tencor Corporation Systems and methods for creating inspection recipes
WO2008086282A2 (en) * 2007-01-05 2008-07-17 Kla-Tencor Corporation Methods and systems for using electrical information for a device being fabricated on a wafer to perform one or more defect-related functions
JP5024865B2 (ja) * 2007-02-26 2012-09-12 独立行政法人 宇宙航空研究開発機構 半導体基板の評価方法
US7962863B2 (en) 2007-05-07 2011-06-14 Kla-Tencor Corp. Computer-implemented methods, systems, and computer-readable media for determining a model for predicting printability of reticle features on a wafer
US7738093B2 (en) 2007-05-07 2010-06-15 Kla-Tencor Corp. Methods for detecting and classifying defects on a reticle
US8213704B2 (en) 2007-05-09 2012-07-03 Kla-Tencor Corp. Methods and systems for detecting defects in a reticle design pattern
US7796804B2 (en) 2007-07-20 2010-09-14 Kla-Tencor Corp. Methods for generating a standard reference die for use in a die to standard reference die inspection and methods for inspecting a wafer
US7711514B2 (en) 2007-08-10 2010-05-04 Kla-Tencor Technologies Corp. Computer-implemented methods, carrier media, and systems for generating a metrology sampling plan
KR101448971B1 (ko) 2007-08-20 2014-10-13 케이엘에이-텐코어 코오포레이션 실제 결함들이 잠재적으로 조직적인 결함들인지 또는 잠재적으로 랜덤인 결함들인지를 결정하기 위한 컴퓨터-구현 방법들
US20090218489A1 (en) * 2008-02-28 2009-09-03 Douglas William Akers Systems and methods for material treatment and characterization employing positron annihilation
US8139844B2 (en) 2008-04-14 2012-03-20 Kla-Tencor Corp. Methods and systems for determining a defect criticality index for defects on wafers
KR101729669B1 (ko) 2008-07-28 2017-04-24 케이엘에이-텐코어 코오포레이션 웨이퍼 상의 메모리 디바이스 영역에서 검출된 결함들을 분류하기 위한 컴퓨터-구현 방법들, 컴퓨터-판독 가능 매체, 및 시스템들
US8775101B2 (en) 2009-02-13 2014-07-08 Kla-Tencor Corp. Detecting defects on a wafer
US8204297B1 (en) 2009-02-27 2012-06-19 Kla-Tencor Corp. Methods and systems for classifying defects detected on a reticle
US8112241B2 (en) 2009-03-13 2012-02-07 Kla-Tencor Corp. Methods and systems for generating an inspection process for a wafer
US8433039B1 (en) * 2009-05-01 2013-04-30 Proteomyx Inc. Gamma-ray microscopy methods
US8781781B2 (en) 2010-07-30 2014-07-15 Kla-Tencor Corp. Dynamic care areas
US9170211B2 (en) 2011-03-25 2015-10-27 Kla-Tencor Corp. Design-based inspection using repeating structures
US9087367B2 (en) 2011-09-13 2015-07-21 Kla-Tencor Corp. Determining design coordinates for wafer defects
US8831334B2 (en) 2012-01-20 2014-09-09 Kla-Tencor Corp. Segmentation for wafer inspection
US8826200B2 (en) 2012-05-25 2014-09-02 Kla-Tencor Corp. Alteration for wafer inspection
US9189844B2 (en) 2012-10-15 2015-11-17 Kla-Tencor Corp. Detecting defects on a wafer using defect-specific information
US9053527B2 (en) 2013-01-02 2015-06-09 Kla-Tencor Corp. Detecting defects on a wafer
US9134254B2 (en) 2013-01-07 2015-09-15 Kla-Tencor Corp. Determining a position of inspection system output in design data space
US9311698B2 (en) 2013-01-09 2016-04-12 Kla-Tencor Corp. Detecting defects on a wafer using template image matching
WO2014149197A1 (en) 2013-02-01 2014-09-25 Kla-Tencor Corporation Detecting defects on a wafer using defect-specific and multi-channel information
US9865512B2 (en) 2013-04-08 2018-01-09 Kla-Tencor Corp. Dynamic design attributes for wafer inspection
US9310320B2 (en) 2013-04-15 2016-04-12 Kla-Tencor Corp. Based sampling and binning for yield critical defects
WO2014178823A1 (en) * 2013-04-29 2014-11-06 Proteomyx Inc. Gamma-ray microscopy methods
US20150123003A1 (en) * 2013-11-06 2015-05-07 University Of Kentucky Research Foundation High resolution absorption imaging using annihilation radiation from an external positron source
JP2016109485A (ja) * 2014-12-03 2016-06-20 株式会社日立ハイテクノロジーズ 欠陥観察方法及び欠陥観察装置
US11480606B2 (en) 2016-06-14 2022-10-25 Taiwan Semiconductor Manufacturing Co., Ltd. In-line device electrical property estimating method and test structure of the same
JP6896667B2 (ja) * 2018-03-14 2021-06-30 株式会社日立ハイテク 荷電粒子線装置、断面形状推定プログラム
WO2020003458A1 (ja) 2018-06-28 2020-01-02 株式会社日立ハイテクノロジーズ 半導体検査装置
US11049745B2 (en) * 2018-10-19 2021-06-29 Kla Corporation Defect-location determination using correction loop for pixel alignment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3686598T2 (de) * 1985-06-07 1993-04-15 Hitachi Ltd Verfahren und vorrichtung zur analyse mittels positionsausloeschung und elektronenmikroskop mit derartiger einrichtung.
JP3142612B2 (ja) * 1991-07-05 2001-03-07 栄胤 池上 固体の表面物性を探査する方法および走査クラスター顕微鏡
DE19650694A1 (de) * 1996-12-06 1998-06-10 Leo Elektronenmikroskopie Gmbh Positronenquelle
JP2000292380A (ja) 1999-04-05 2000-10-20 Canon Inc 陽電子消滅分析装置
JP3448636B2 (ja) 1999-09-02 2003-09-22 大阪大学長 陽電子を用いた材料評価装置及び評価方法
JP3585789B2 (ja) * 1999-10-22 2004-11-04 独立行政法人 科学技術振興機構 陽電子を用いた材料評価装置および評価方法
JP3712386B2 (ja) * 2002-08-29 2005-11-02 株式会社半導体理工学研究センター 陽電子を利用した欠陥評価装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031250A (ja) * 2005-07-29 2007-02-08 Tokuyama Corp 窒化アルミニウム焼結体
WO2007129596A1 (ja) * 2006-05-02 2007-11-15 The University Of Tokyo エネルギー準位の測定方法、分析方法
JP2008304276A (ja) * 2007-06-06 2008-12-18 Chiba Univ 低速陽電子輝度増強用透過型減速材の製造方法、低速陽電子輝度増強用透過型減速材、低速陽電子ビームの輝度増強方法、高輝度低速陽電子ビーム発生装置および陽電子顕微鏡
JP6033325B2 (ja) * 2012-11-19 2016-11-30 株式会社日立製作所 半導体検査装置、及び荷電粒子線を用いた検査方法
JP2018040645A (ja) * 2016-09-06 2018-03-15 国立研究開発法人産業技術総合研究所 陽電子消滅特性測定装置

Also Published As

Publication number Publication date
US7141790B2 (en) 2006-11-28
US20040227078A1 (en) 2004-11-18
EP1480034A1 (en) 2004-11-24
EP1480034B1 (en) 2006-08-23
DE602004002031D1 (de) 2006-10-05
DE602004002031T2 (de) 2007-04-12

Similar Documents

Publication Publication Date Title
JP2004340652A (ja) 欠陥検査装置および陽電子線応用装置
US4864131A (en) Positron microscopy
US6653637B2 (en) X-ray detector and charged-particle apparatus
US4740694A (en) Method and apparatus for analyzing positron extinction and electron microscope having said apparatus
JP2002107134A (ja) 蛍光x線膜厚計
TWI559356B (zh) 具有高角度解析度的電子散射裝置、系統與方法
Frase et al. Model-based SEM for dimensional metrology tasks in semiconductor and mask industry
JP7098766B2 (ja) 高性能検査走査電子顕微鏡装置およびその動作方法
JP2004031379A (ja) 電子線を用いた検査方法及び検査装置
US5594246A (en) Method and apparatus for x-ray analyses
Zhou et al. Experiments on bright-field and dark-field high-energy electron imaging with thick target material
Legge et al. High resolution imaging with high energy ion beams
Sakakibara et al. Impact of secondary electron emission noise in SEM
US5767516A (en) Electron microscope and sample observing method using the same
US20100158189A1 (en) Mossbauer spectrometer
Smith et al. Single ion hit detection set-up for the Zagreb ion microprobe
Takai et al. Heavy ion microprobes and their applications
JP4274247B2 (ja) 回路パターンの検査方法及び検査装置
Dou et al. Breaking the 10 nm barrier using molecular ions in nuclear microprobes
KR101377938B1 (ko) 중에너지 이온빔 산란을 이용한 분광분석기
JP2000146876A (ja) 電子デバイス非破壊内部欠陥検出装置
JP2001116847A (ja) X線検出装置、元素分析装置および半導体製造装置
JP2005331460A (ja) 陽電子分析顕微鏡および陽電子ビームを用いた測定方法
KR101939465B1 (ko) 양전자 빔 집속 장치 및 이를 이용한 양전자 현미경
JPH0510895A (ja) 固体の表面物性を探査する方法および走査クラスター顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120