【0001】
【発明の属する技術分野】
本発明は、攪拌体の振動により複数の種類の原料を攪拌混合する場合に使用される攪拌混合装置に関するものである。
【0002】
【従来の技術】
従来、化学産業の重合反応処理あるいは医薬品等に用いられる溶解物や複合エマルションの製造において、二以上の原料をケーシング内に供給し、攪拌体の振動により原料を攪拌混合する攪拌混合装置が使用される。この種の攪拌混合装置としては、複数の原料を流通室内に導入し、これらをミキサー部材により攪拌混合する振動型ミキサーが知られている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平2−207829号公報(第2頁−第3頁、図1−図2)
【0004】
【発明が解決しようとする課題】
ところで、例えば、従来の攪拌混合装置でもって粉体の溶解物を得ようとする場合、攪拌混合後にこれを濾過し、未溶解物を除去する必要があった。また、合成反応での攪拌混合が不十分な場合、ケーシング内に未反応物などが残存することとなる。その結果、不均質な製品が取り出され歩留りが悪くなるという問題があった。すなわち、従来装置は、粉体の溶解作業における未溶解物の除去、あるいは合成反応物製造の際の未反応物の分離、といった課題を有するものであった。本発明は上記の課題に鑑み、溶解物あるいは混合物の均一な品質を確保し、製品歩留りを向上させることができる攪拌混合装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
この目的を達成する請求項1の発明は、流入管からケーシング内に供給された原料を、流通路に沿って流通させながら、振動する攪拌体により攪拌混合して混合物を得る攪拌混合装置において、その混合物取出部に、混合物を濾過するフィルタを前記攪拌体を包囲して取り付けたことを特徴とする。また、請求項2記載の発明は、請求項1記載の攪拌混合装置において、フィルタで濾過された混合物を排出する濾過液排出管と、前記フィルタで濾過されない混合物を排出する未濾過物排出管とを設け、未濾過物排出管に、内圧が所定値以上になると開く開閉弁又は定期的に開く開閉弁を設けたことを特徴とする。さらに、請求項3記載の発明は、請求項1又は請求項2記載の攪拌混合装置において、濾過液排出管又は未濾過物排出管の出口側をケーシングの流入管に接続し、濾過液排出管又は未濾過物排出管のいずれかから排出される混合物又は未混合物をケーシング内に再循環させることを特徴とする。さらにまた、請求項4記載の発明は、請求項1乃至請求項3のいずれかに記載の攪拌混合装置において、混合物取出部に攪拌振動と連動する擂り子を設けたことを特徴とする。
【0006】
本発明の攪拌混合装置は、原料を混合して溶解又は合成反応などの処理を行う際、例えば、粉体又はゲル状物質を溶解する場合、攪拌混合装置内に残存した未溶解物を除去するために使用される。また、モノマー(低分子)からポリマー(高分子)に反応させて合成する場合、攪拌混合装置内に残存した未反応物(モノマー)を分離するために使用される。また、被反応物質や低分子の溶媒溶液などを加え、複合エマルションの製造、pH調整や酸化還元等の化学反応を行なった後、これらを分離するときに使用される。ケーシング内に供給される原料物質としては、気体、液体又は粉粒体等の固体が含まれる。
【0007】
原料の攪拌混合を行う攪拌混合装置は、所定方向に延びる筒状のケーシングを備え、このケーシング内には、原料を所定方向に流通させる流通路が形成される。ケーシングの構成は、例えば複数個のパイプと、各パイプ同士を接続する仕切板とからなり、複数段に仕切られた複数の混合室を有する。
【0008】
ケーシングには、流通路の一端側、他端側において原料の流入部(原料供給部)、流出部(混合物取出部)を設ける。ケーシングの一端側流入部には複数本の流入管を連結し、各流入管からは種類の異なる原料(被混合流体)をケーシング内に供給する。各流入管には、注入圧力を測定するための圧力計を取り付ける。
【0009】
ケーシング内の流通路には攪拌体を挿入配置し、攪拌体を駆動源により原料の流通方向に往復振動させる。攪拌体は、往復振動する軸に螺旋羽根付きの攪拌素子を一体的に取り付けて構成されている。また、ケーシングの仕切板には、攪拌体の軸(攪拌素子の軸筒)が挿通される流通路を形成する。ケーシングの混合物取出部に流出管(後記未濾過物排出管)を連結し、流出管(後記未濾過物排出管)には開閉弁を設ける。開閉弁はバネ等の弾性体又はエアー圧により閉弁方向に付勢する。混合物取出部の内圧に応ずる流出管内が設定圧力以上になると、開閉弁が自動的に開くようにする。
【0010】
混合室の流通路内には混合物を濾過するフィルタを攪拌体を包囲して取り付ける。フィルタが設けられた混合室内には溶解液と未溶解物が混在するため、このフィルタでもって溶解液のみを濾過して取り出す。フィルタとしては、例えばミクロンレベルの粗さの網目(ファインメッシュ)を有するステンレス製又はセラミック製の濾過部材、あるいは逆浸透膜、高分子膜(ナノフィルタ膜)等を使用できる。フィルタの外面には濾過液排出管を連結し、この濾過液排出管により、フィルタを通過した濾過物質をケーシング外に流出させる。一方、未溶解物は未濾過物排出管から外部に排出され、必要により配管を介して流入管に戻し、ケーシング内の流通路を循環させて再び攪拌混合させる。
【0011】
この攪拌混合装置では、ケーシングの内部に二以上の原料(被混合流体)を供給して流通移動させ攪拌体を振動させて原料の攪拌混合を連続的に行う。その際、供給される被混合流体は予め簡単に混合処理しておいても良い。攪拌混合装置に供給された被混合流体は、仕切板により仕切られた混合室内で攪拌体及び混合室内壁面と衝突するため、被混合流体の流通速度が制限され、攪拌体の振動により十分な攪拌混合効果が得られる。
【0012】
例えば、本装置を使用して粉体を溶解する場合、攪拌混合によりほとんどの粉体は溶解されるが、一部が未溶解物として残り、ケーシング内に貯留してフィルタの目詰まりを生じる。しかし、フィルタ内壁に付着した未溶解物は、フィルタで包囲された混合室内で振動する攪拌羽根でもって削ぎ落されながら再溶解する。ごく一部の未溶解物は未溶解物排出管から排出される。また、化学合成反応を行なう場合においては、反応が完了すると反応物質が増加してフィルタに目詰まりが生じる。つまり未溶解物又は反応物が溜ってくると、混合物取出部の混合室の内圧が所定値以上に増大する。そして、内圧が所定値以上になると、流出管の開閉弁が開き、未溶解物又は反応物は未濾過物排出管を通りケーシングの外に流出する。同時に、混合物の流出に伴い原料流入部側の圧力は低下する。
【0013】
本発明では、ケーシング内に混合物を濾過するフィルタを前記攪拌体を包囲して取り付けたので、例えば、粉体の溶解工程における溶解液はフィルタにより分離濾過される。また、分子サイズの小さい物質、例えば、混合不足により重合反応が十分完了しなかった未反応の原料物質や溶媒等も濾過される。この濾過された物質は、濾過液排出管からケーシングの外に排出される。ここで、この濾過物質を濾過液排出管から流入管に還流させて再利用することもできる。
【0014】
このように、混合生成物中に未溶解物や残滓物質などが含まれないので、ばらつきの少ない均質な混合生成物を得ることができる。また、攪拌混合が完了した最終段階で、混合生成物の良品と不良品とを濾過分別するので、良品のみを取り出すことができる。さらに、混合不足などにより未溶解物や未反応物質が生じたときは、それらをケーシング内に還流させて、再度ケーシング内で十分に攪拌混合することができる。すなわち、原料の攪拌混合による反応効率を高めて不良品の発生を極力抑制でき、製品歩留りを大幅に向上させることができる。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態を図面に示す実施例に基づいて説明する。図1は本発明に係る攪拌混合装置の一実施例を示す縦断面図、図2及び図3は本発明に係る攪拌混合装置の他の実施例を示す(A)は縦断面図、(B)は横断面図である。
【0016】
【実施例】
本実施例は、複数の原料M1、M2をケーシング4内で流通下降させながら、振動する攪拌体により攪拌混合させる振動型攪拌混合装置に適用したもので、ケーシング4の最下段の混合室(混合物取出部)7Lに、流通路5を囲む筒状のステンレス製又はセラミック製のフィルタ24を取り付け、混合室7Lの側面にフィルタ24で濾過された混合液を排出するための濾過液排出管25を設け、フィルタ24で濾過されなかった混合物質を下方に排出するための未濾過物排出管19を混合室7Lの下面に設けている。
【0017】
前記未濾過物排出管19には、その管内の圧力が所定値以上になると自動的に開く開閉弁20が設けられている。未濾過物排出管19又は濾過液排出管25は、別途配管を介してケーシング4の原料供給用流入管1又は2に切替え可能に接続できるようにされている。したがって、未濾過物排出管19から排出される未濾過物質又は濾過液排出管25から排出される濾過液をケーシング4内に還流させることで、原料M1、M2の攪拌混合を再度十分に行うことができるようにされている。
【0018】
図1において、3は、二種類の原料M1、M2を攪拌混合する攪拌混合装置で、攪拌混合装置3は、上下方向に延びる筒状のケーシング4を備えている。ケーシング4の内部には、攪拌すべき原料M1、M2を流通させる流通路5が上下方向に形成されている。ケーシング4は、上下に接続した複数個のパイプ10と、各パイプ10同士の接合部に介在させた仕切板6とから成っている。パイプ10と仕切板6とを交互上下に積み重ねることで、上下方向に多段に仕切られた複数の混合室7が構成されている。
【0019】
ケーシング4では、流通路5の上端側、下端側がそれぞれ、原料M1、M2の流入口側、流出口側とされている。流入口側であるケーシング4の上端部には左右2本の流入管1、2が連結され、2本の流入管1、2は、ケーシング4上部の左右両側に取り付けられている。各流入管1、2からはそれぞれ原料M1、M2が、ケーシング4内に所要の加圧状態で送られるようになっている。ここで、流入管1、2にはそれぞれ圧力計8、9が取り付けられ、この圧力計8、9により混合室7への注入圧力が測定できるようになっている。
【0020】
ケーシング4内の流通路5には、攪拌体11が挿入配置されている。この攪拌体11は、バイブレータとしての駆動源12に連結された駆動軸13の駆動により、上下方向に往復振動するようにされている。攪拌体11は複数の攪拌素子15を一体的に連結して構成され、攪拌素子15の周囲には螺旋羽根14が形成されている。
【0021】
仕切板6の中央には流通穴18が形成されて、流通穴18には、攪拌素子15の軸筒16が貫挿されている。この流通穴18は、被混合流体を流通させる流通路5の一部を形成している。流通路5の下端側、すなわち流出口側であるケーシング4の下端面には、下方に延びる未濾過物排出管19の上端が連結され、未濾過物排出管19の途中には開閉弁20が設けられている。この開閉弁20は、加圧エアー又はバネ等の弾性体21により閉弁方向に付勢されている。未濾過物排出管19の流通路5側の内圧が所定値以上になると、開閉弁20が弾性体21の押圧力に抗して自動的に開くようにされている。開閉弁20としては、安全弁の機能をもつダイヤフラムエアー弁を使用することができる。また、未濾過物排出管19に、その内圧を検知する圧力計22を取り付け、その圧力信号に基づいて開閉弁20の開閉を制御することができる。
【0022】
ケーシング4の最下段の混合室7L内には、円筒状のフィルタ24が設けられている。フィルタ24は最下段のパイプ10Lの混合室7L内の流通路5外周を囲んでいる。フィルタ24は、混合物質をふるいにかけて分離するものである。具体的なフィルタ24としては、精密な網目を有するステンレス製又はセラミック製の濾過部材が使用されている。ケーシング4の最下段のパイプ10L側面には、側方に延びる濾過液排出管25の一端が連結されている。この濾過液排出管25により、フィルタ24で濾過された混合液がケーシング4外に排出される。
【0023】
尚、溶解の場合には、混合室7L内に残った未溶解物質(非濾過物質)を再び流通路5に循環させることがある。このための配管構成にあっては、未濾過物排出管19の下端をチェック弁付きの配管(図略)により流入管1又は流入管2に接続するものとする。
【0024】
次に、本実施例の作用について説明する。
上記構成の攪拌混合装置では、被混合流体である原料M1、M2がケーシング4内に流通された状態で、攪拌体11が上下に振動し、流通路5にて攪拌混合が行われる。その際に原料M1、M2は攪拌体11及び仕切板6と衝突する。また、原料M1、M2が仕切板6の流通穴18を通って下方に流動するので、原料M1、M2の下降速度が制限される。そして、この状態で攪拌体11が上下に振動するため、十分な攪拌混合効果が得られる。ケーシング4内には気体、液体又は粉粒体等の原料M1、M2が注入され、溶解や化学合成反応その他を行うために使用される。
【0025】
次に、この装置を使用して溶解を行う場合について説明する。この場合は、未濾過物質排出管19の下端を流入管1に接続し、未濾過物質排出管19から排出される未溶解物質Sをケーシング4内に還流させて再循環させるものとする。例えば、液−粉体間の溶解を一例に挙げると、原料M1、M2として溶媒液、粉粒体を用い、両者M1、M2を混合して溶解反応をさせると、溶媒液M1により粉粒体M2が溶解する。すると、粉粒体M2の溶解物Fは分子サイズが小さいので、最下段の混合室7L内の流通路5からフィルタ24を通過して混合室7Lの外周側に移動する。
【0026】
混合室7Lの外側に移動した溶解物質Fは、濾過物排出管25からケーシング4の外に流出し、未溶解物質Sを含まない溶解物質Fのみが取り出される。一方、混合が不十分で溶解しなかった粉粒体、即ち未溶解物質Sは、フィルタ24を通過せずに混合室7L内の流通路5L内に残り、未濾過液排出管19から流入管2に戻されて再び攪拌混合が行われる。これにより、混合不足による未溶解を防止でき、その分だけ製品歩留りが向上する。
【0027】
また、図2及び図3に示すように、粉体の溶解に際してわずかに残る未溶解物(ダマ)を破砕するための擂り子26を設けることで、粉体の分散が促進され溶解効率を向上することができる。すなわち、駆動軸13に擂り子26を連結して攪拌体11の攪拌振動に連動させる。擂り子26の設置方法としては、フィルタ24とは別個に設ける場合(図2参照)、又はフィルタ24内に設ける場合(図3参照)が考えられるが、いずれの場合も鑢状に形成された擂り子26の外周面とケーシング4の内壁又はフィルタ24の内壁とで未溶解物を挟圧して粉砕する。尚、擂り子26には、上下に貫通する透孔26Aを設けて混合流体の噴流路とし、擂り子26が下動する際に受ける押圧抵抗を削減すると共に、脈動を防止する。
【0028】
この装置において最も特徴的なことは、攪拌混合装置の下部に連続して、流通路5を囲むフィルタ24を設けた点にある。このフィルタ24により、溶解液は攪拌混合完了後に濾過液排出管25から混合室7L外に取り出される。一方、未溶解物Sは流入管1又は2に還流されてケーシング4内を再循環する。
【0029】
次に、本装置を使用して反応を行う場合について説明する。
例えば、液−液間反応の一例として、モノマーに添加剤を混合して反応させると、モノマーがポリマー化する際に粘度が増加する。粘度が増加するとケーシング4内の圧力が所定値以上になる。すると、開閉弁20が弾性体21の押圧に抗して開弁し、フィルタ24を通過できなかった物質、すなわち分子サイズの大きい混合物質Sが未濾過物排出管20から排出される。
【0030】
上記の攪拌混合において、十分混合せずに粘度が増加しなかった物質、すなわち混合反応が不十分で分子サイズが小さい物質は、最下段の混合室7L内の流通路5からフィルタ24を通過し、混合室7Lの外周部に移動する。移動後、濾過物質Fは未濾過物排出管25から混合室7Lの外に出て流入管1又は2に戻される。そして、濾過物質Fはケーシング4内に再流入して再び攪拌混合が行われる。混合不良による未反応を防止でき、その分だけ反応効率が向上し製品歩留りが高まる。
【0031】
この場合、攪拌混合して十分に反応した物質だけがケーシングの外に取り出され、未反応物質は再びケーシング内に戻される。つまり、反応が終了する最終段階で反応物をふるいかけて分離するので、未反応物質の混入が少ない良質の製品のみを取り出すことができる。
【0032】
尚、本発明は上記実施例に限定されず、種々の応用が可能である。例えば上記実施例では、ケーシング4の上部に原料の流入管、下部に混合物の流出管を設けたが、原料や反応の種類又は反応後に取り出す製品の物性によっては、これらを逆転させて原料を上方向に流通させながら攪拌混合することもできる。
【0033】
【発明の効果】
以上の如く本発明によれば、ケーシング内の混合物取出部に、流通路を囲むフィルタを設けたことにより、攪拌混合後の最終段階で混合物を濾過して、未溶解物や未反応物質の残滓を分離できるので、不良品が混入しない均質の製品のみを取り出すことができ、製品の歩留りを格段に向上させることができるという優れた効果がある。
【0034】
流出管の内圧が所定値以上になると開く開閉弁を設けたものでは、製品をケーシングから自動的に流出させることがきる。併せて開閉弁は、ケーシング内の異常な圧力上昇を防止する安全弁として機能する。さらに、排出管又は流出管から出る混合物をケーシング内に再循環させた場合は、原料同士の攪拌混合を十分かつ確実に行うことができ、製品歩留りの更なる向上を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る攪拌混合装置の一実施例を示す縦断面図である。
【図2】本発明に係る攪拌混合装置の他の実施例を示す(A)は縦断面図、(B)は横断面図である。
【図3】本発明に係る攪拌混合装置の他の実施例を示す(A)は縦断面図、(B)は横断面図である。
【符号の説明】
1 流入管
2 流入管
3 攪拌混合装置
4 ケーシング
5 流通路
6 仕切板
7 混合室
7L 最下段の混合室
8 圧力計
9 圧力計
10 パイプ
10L最下段のパイプ
11 攪拌体
12 駆動源
13 駆動軸
14 螺旋羽根
15 攪拌素子
16 軸筒
18 流通穴
19 未濾過物排出管
20 開閉弁
21 弾性体
22 圧力計
24 フィルタ
25 濾過液排出管
26 擂り子
26A擂り子の透孔(噴流路)
M1 原料
M2 原料[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stirring and mixing apparatus used when stirring and mixing a plurality of types of raw materials by the vibration of a stirring body.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a stirrer that supplies two or more raw materials into a casing and stirs and mixes the raw materials by the vibration of a stirrer has been used in a polymerization reaction treatment in the chemical industry or in the production of a dissolved substance or a composite emulsion used for pharmaceuticals and the like. You. As this kind of stirring and mixing apparatus, there is known a vibration mixer in which a plurality of raw materials are introduced into a distribution chamber and mixed and stirred by a mixer member (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2-207829 (pages 2 to 3, FIGS. 1 to 2)
[0004]
[Problems to be solved by the invention]
By the way, for example, when it is intended to obtain a dissolved substance of a powder using a conventional stirring and mixing device, it is necessary to filter the powder after stirring and mixing to remove undissolved matter. If the stirring and mixing in the synthesis reaction are insufficient, unreacted substances and the like will remain in the casing. As a result, there is a problem that a non-uniform product is taken out and the yield is deteriorated. That is, the conventional apparatus has problems such as removal of undissolved substances in the operation of dissolving the powder or separation of unreacted substances during production of a synthetic reactant. In view of the above problems, an object of the present invention is to provide a stirring and mixing device capable of ensuring uniform quality of a melt or a mixture and improving the product yield.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 which achieves this object is a stirring and mixing device which obtains a mixture by stirring and mixing a raw material supplied from an inflow pipe into a casing along a flow passage by a vibrating stirrer, A filter for filtering the mixture is attached to the mixture take-out section so as to surround the stirring body. According to a second aspect of the present invention, in the stirring and mixing apparatus according to the first aspect, a filtrate discharge pipe for discharging a mixture filtered by a filter, and an unfiltered substance discharge pipe for discharging a mixture not filtered by the filter. And an on-off valve that opens when the internal pressure exceeds a predetermined value or an on-off valve that opens periodically is provided in the unfiltered matter discharge pipe. Further, according to a third aspect of the present invention, in the stirring and mixing device according to the first or second aspect, an outlet side of the filtrate discharge pipe or the unfiltered matter discharge pipe is connected to an inlet pipe of the casing, and the filtrate discharge pipe is connected to the casing. Alternatively, the mixture or the unmixed material discharged from any of the unfiltered material discharge pipes is recirculated into the casing. According to a fourth aspect of the present invention, there is provided the stirring and mixing device according to any one of the first to third aspects, wherein a grinder is provided in the mixture take-out section in conjunction with the stirring vibration.
[0006]
The stirring and mixing apparatus of the present invention removes undissolved substances remaining in the stirring and mixing apparatus when mixing raw materials and performing processing such as dissolution or synthesis reaction, for example, when dissolving powder or gel-like substances. Used for In addition, in the case of synthesizing a polymer (polymer) by reacting it from a monomer (low molecular weight), it is used to separate unreacted substances (monomer) remaining in the stirring and mixing device. It is also used for adding a substance to be reacted, a low molecular solvent solution, and the like, and performing a chemical reaction such as production of a composite emulsion, pH adjustment, and oxidation-reduction, and then separating them. The raw material supplied into the casing includes a solid such as a gas, a liquid, or a granular material.
[0007]
A stirring and mixing apparatus for stirring and mixing raw materials includes a cylindrical casing extending in a predetermined direction, and a flow passage for flowing the raw materials in a predetermined direction is formed in the casing. The configuration of the casing includes, for example, a plurality of pipes and a partition plate connecting the pipes, and has a plurality of mixing chambers partitioned in a plurality of stages.
[0008]
The casing is provided with an inflow portion (raw material supply portion) and an outflow portion (mixture removal portion) of the raw material at one end and the other end of the flow passage. A plurality of inflow pipes are connected to the inflow portion on one end side of the casing, and different types of raw materials (mixed fluids) are supplied from the inflow pipes into the casing. Each inlet pipe is equipped with a pressure gauge for measuring the injection pressure.
[0009]
A stirrer is inserted and arranged in the flow passage in the casing, and the stirrer is reciprocated in the flow direction of the raw material by the drive source. The stirrer is configured by integrally attaching a stirrer with a spiral blade to a shaft that reciprocates and vibrates. In addition, a flow passage through which the shaft of the stirrer (the shaft cylinder of the stirrer element) is inserted is formed in the partition plate of the casing. An outflow pipe (not-filtered matter discharge pipe described later) is connected to the mixture extraction section of the casing, and an open / close valve is provided in the outflow pipe (not-filtered substance discharge pipe described later). The on-off valve is urged in the valve closing direction by an elastic body such as a spring or air pressure. When the pressure in the outlet pipe corresponding to the internal pressure of the mixture discharge section becomes equal to or higher than the set pressure, the on-off valve is automatically opened.
[0010]
A filter for filtering the mixture is mounted in the flow passage of the mixing chamber so as to surround the stirring body. Since the dissolved solution and the undissolved material are mixed in the mixing chamber provided with the filter, only the dissolved solution is filtered out with this filter. As the filter, for example, a stainless or ceramic filter member having a mesh (fine mesh) with a roughness of a micron level, a reverse osmosis membrane, a polymer membrane (nano filter membrane), or the like can be used. A filtrate discharge pipe is connected to the outer surface of the filter, and the filtered substance that has passed through the filter flows out of the casing through the filtrate discharge pipe. On the other hand, the undissolved matter is discharged from the unfiltered matter discharge pipe to the outside, and if necessary, returned to the inflow pipe via a pipe, circulated through the flow passage in the casing, and stirred and mixed again.
[0011]
In this stirring and mixing apparatus, two or more raw materials (fluids to be mixed) are supplied to the inside of the casing, flow-moved and vibrated by a stirrer to continuously stir and mix the raw materials. At this time, the supplied fluid to be mixed may be simply mixed in advance. The fluid to be mixed supplied to the stirring and mixing device collides with the agitator and the wall surface of the mixing chamber in the mixing chamber partitioned by the partition plate, so that the flow speed of the fluid to be mixed is limited, and sufficient agitation is performed by the vibration of the agitator. A mixing effect is obtained.
[0012]
For example, when the powder is dissolved using the present apparatus, most of the powder is dissolved by stirring and mixing, but part of the powder remains as undissolved material and is stored in the casing to cause clogging of the filter. However, the undissolved matter adhering to the inner wall of the filter is re-dissolved while being scraped off by the stirring blade vibrating in the mixing chamber surrounded by the filter. A small part of the undissolved matter is discharged from the undissolved matter discharge pipe. In the case of performing a chemical synthesis reaction, when the reaction is completed, the amount of reactants increases, and the filter is clogged. That is, when the undissolved matter or the reactant accumulates, the internal pressure of the mixing chamber of the mixture extracting section increases to a predetermined value or more. When the internal pressure exceeds a predetermined value, the on-off valve of the outflow pipe is opened, and the undissolved substance or the reactant flows out of the casing through the unfiltered substance discharge pipe. At the same time, the pressure on the raw material inflow side decreases with the outflow of the mixture.
[0013]
In the present invention, since a filter for filtering the mixture is mounted in the casing so as to surround the stirring body, for example, a solution in a powder dissolving step is separated and filtered by the filter. In addition, substances having a small molecular size, for example, unreacted raw materials, solvents, etc., for which the polymerization reaction has not been sufficiently completed due to insufficient mixing, are also filtered. The filtered substance is discharged from the filtrate discharge pipe to the outside of the casing. Here, the filtered substance can be recycled from the filtrate discharge pipe to the inflow pipe by recirculation.
[0014]
As described above, since the mixed product does not include undissolved substances, residue substances, and the like, a homogeneous mixed product with little variation can be obtained. In addition, in the final stage after the completion of the stirring and mixing, a good product and a defective product of the mixed product are separated by filtration, so that only good products can be taken out. Furthermore, when undissolved substances or unreacted substances are generated due to insufficient mixing or the like, they can be refluxed in the casing and sufficiently stirred and mixed again in the casing. That is, it is possible to increase the reaction efficiency by stirring and mixing the raw materials, suppress generation of defective products as much as possible, and significantly improve product yield.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in the drawings. FIG. 1 is a longitudinal sectional view showing one embodiment of a stirring and mixing apparatus according to the present invention, FIGS. 2 and 3 are other sectional views showing another embodiment of the stirring and mixing apparatus according to the present invention, and FIG. ) Is a cross-sectional view.
[0016]
【Example】
The present embodiment is applied to a vibrating stirrer / mixer that stirs and mixes a plurality of raw materials M1 and M2 with a vibrating stirrer while flowing and descending in a casing 4. The lowermost mixing chamber (mixture) of the casing 4 A take-out part) 7L is provided with a cylindrical stainless steel or ceramic filter 24 surrounding the flow passage 5, and a filtrate discharge pipe 25 for discharging the mixed liquid filtered by the filter 24 is provided on the side of the mixing chamber 7L. An unfiltered material discharge pipe 19 for discharging the mixed substance not filtered by the filter 24 downward is provided on the lower surface of the mixing chamber 7L.
[0017]
The unfiltered material discharge pipe 19 is provided with an on-off valve 20 that automatically opens when the pressure in the pipe becomes equal to or higher than a predetermined value. The unfiltered material discharge pipe 19 or the filtrate discharge pipe 25 can be switchably connected to the raw material supply inflow pipe 1 or 2 of the casing 4 via a separate pipe. Accordingly, by refluxing the unfiltered substance discharged from the unfiltered material discharge pipe 19 or the filtrate discharged from the filtrate discharge pipe 25 into the casing 4, the raw materials M1 and M2 can be sufficiently mixed and stirred again. Have been able to.
[0018]
In FIG. 1, reference numeral 3 denotes a stirring and mixing device for stirring and mixing two types of raw materials M1 and M2. The stirring and mixing device 3 includes a cylindrical casing 4 extending in the vertical direction. Inside the casing 4, a flow passage 5 for flowing the raw materials M1 and M2 to be agitated is formed in a vertical direction. The casing 4 is composed of a plurality of pipes 10 connected vertically and a partition plate 6 interposed at a joint between the pipes 10. By alternately stacking the pipes 10 and the partition plates 6 up and down, a plurality of mixing chambers 7 are vertically divided in multiple stages.
[0019]
In the casing 4, the upper end side and the lower end side of the flow passage 5 are the inlet side and the outlet side of the raw materials M1 and M2, respectively. Two inflow pipes 1 and 2 are connected to the upper end of the casing 4 on the inflow side, and the two inflow pipes 1 and 2 are attached to the left and right sides of the upper part of the casing 4. Raw materials M1 and M2 are respectively sent from the inflow pipes 1 and 2 into the casing 4 in a required pressurized state. Here, pressure gauges 8 and 9 are attached to the inflow pipes 1 and 2, respectively, and the pressure gauges 8 and 9 can measure the injection pressure into the mixing chamber 7.
[0020]
A stirring body 11 is inserted and arranged in the flow passage 5 in the casing 4. The agitator 11 is reciprocally oscillated in a vertical direction by driving a drive shaft 13 connected to a drive source 12 as a vibrator. The stirring body 11 is configured by integrally connecting a plurality of stirring elements 15, and a spiral blade 14 is formed around the stirring element 15.
[0021]
A flow hole 18 is formed in the center of the partition plate 6, and the shaft cylinder 16 of the stirring element 15 is inserted through the flow hole 18. The flow hole 18 forms a part of the flow passage 5 through which the fluid to be mixed flows. The lower end side of the flow passage 5, that is, the lower end surface of the casing 4 that is the outlet side, is connected to the upper end of an unfiltered material discharge pipe 19 extending downward. Is provided. The on-off valve 20 is urged in a valve closing direction by an elastic body 21 such as pressurized air or a spring. When the internal pressure on the flow passage 5 side of the unfiltered matter discharge pipe 19 becomes equal to or higher than a predetermined value, the on-off valve 20 is automatically opened against the pressing force of the elastic body 21. As the on-off valve 20, a diaphragm air valve having the function of a safety valve can be used. Further, a pressure gauge 22 for detecting the internal pressure is attached to the unfiltered material discharge pipe 19, and the opening and closing of the on-off valve 20 can be controlled based on the pressure signal.
[0022]
A cylindrical filter 24 is provided in the lowermost mixing chamber 7L of the casing 4. The filter 24 surrounds the outer circumference of the flow passage 5 in the mixing chamber 7L of the lowermost pipe 10L. The filter 24 separates the mixed substances by sieving. As a specific filter 24, a stainless steel or ceramic filter member having a precise mesh is used. One end of a filtrate discharge pipe 25 extending laterally is connected to the side surface of the lowermost pipe 10L of the casing 4. The mixed liquid filtered by the filter 24 is discharged out of the casing 4 by the filtrate discharge pipe 25.
[0023]
In the case of dissolution, the undissolved substance (non-filtered substance) remaining in the mixing chamber 7L may be circulated again to the flow passage 5. In the piping configuration for this purpose, the lower end of the unfiltered material discharge pipe 19 is connected to the inflow pipe 1 or the inflow pipe 2 by a pipe with a check valve (not shown).
[0024]
Next, the operation of the present embodiment will be described.
In the stirring and mixing device having the above-described configuration, the stirring body 11 vibrates up and down while the raw materials M1 and M2, which are fluids to be mixed, are circulated in the casing 4, and the stirring and mixing are performed in the flow passage 5. At this time, the raw materials M1 and M2 collide with the stirring body 11 and the partition plate 6. Further, since the raw materials M1 and M2 flow downward through the flow holes 18 of the partition plate 6, the descending speed of the raw materials M1 and M2 is limited. Then, in this state, the stirring body 11 vibrates up and down, so that a sufficient stirring and mixing effect can be obtained. Raw materials M1 and M2 such as a gas, a liquid, and a granular material are injected into the casing 4 and used for dissolution, chemical synthesis reaction, and the like.
[0025]
Next, the case where dissolution is performed using this apparatus will be described. In this case, the lower end of the unfiltered substance discharge pipe 19 is connected to the inflow pipe 1, and the undissolved substance S discharged from the unfiltered substance discharge pipe 19 is returned to the casing 4 for recirculation. For example, when the dissolution between the liquid and the powder is taken as an example, a solvent liquid and a granular material are used as the raw materials M1 and M2, and when both M1 and M2 are mixed and a dissolution reaction is performed, the granular material is mixed with the solvent liquid M1. M2 dissolves. Then, since the melt F of the granular material M2 has a small molecular size, it moves from the flow passage 5 in the lowermost mixing chamber 7L to the outer peripheral side of the mixing chamber 7L through the filter 24.
[0026]
The dissolved substance F that has moved to the outside of the mixing chamber 7L flows out of the casing 4 from the filtrate discharge pipe 25, and only the dissolved substance F containing no undissolved substance S is taken out. On the other hand, the powdery material that has not been sufficiently dissolved due to insufficient mixing, that is, the undissolved substance S remains in the flow path 5L in the mixing chamber 7L without passing through the filter 24, and flows from the unfiltered liquid discharge pipe 19 to the inflow pipe. Then, the mixture is returned to 2 and stirring and mixing are performed again. Thereby, undissolution due to insufficient mixing can be prevented, and the product yield is improved accordingly.
[0027]
Further, as shown in FIGS. 2 and 3, by providing a grinder 26 for crushing the undissolved material (dama) which is slightly left when the powder is dissolved, the dispersion of the powder is promoted and the dissolving efficiency is improved. can do. That is, the grinder 26 is connected to the drive shaft 13 and linked with the stirring vibration of the stirring body 11. The grinding tool 26 may be provided separately from the filter 24 (see FIG. 2) or provided inside the filter 24 (see FIG. 3). The undissolved material is pinched and ground between the outer peripheral surface of the grinder 26 and the inner wall of the casing 4 or the inner wall of the filter 24. The grindstone 26 is provided with a through hole 26A penetrating up and down to serve as a jet flow path of the mixed fluid, thereby reducing the pressing resistance received when the grindstone 26 moves down and preventing pulsation.
[0028]
The most characteristic feature of this device is that a filter 24 surrounding the flow passage 5 is provided continuously below the stirring and mixing device. With this filter 24, the dissolved liquid is taken out of the mixing chamber 7L from the filtrate discharge pipe 25 after the completion of the stirring and mixing. On the other hand, the undissolved matter S is returned to the inflow pipe 1 or 2 and recirculated in the casing 4.
[0029]
Next, a case where a reaction is performed using the present apparatus will be described.
For example, as an example of a liquid-liquid reaction, when a monomer is mixed with an additive and reacted, the viscosity increases when the monomer is polymerized. When the viscosity increases, the pressure in the casing 4 becomes equal to or higher than a predetermined value. Then, the on-off valve 20 opens against the pressing of the elastic body 21, and the substance that cannot pass through the filter 24, that is, the mixed substance S having a large molecular size, is discharged from the unfiltered substance discharge pipe 20.
[0030]
In the above-mentioned stirring and mixing, a substance which did not increase in viscosity due to insufficient mixing, that is, a substance having an insufficient mixing reaction and a small molecular size passes through the filter 24 from the flow path 5 in the lowermost mixing chamber 7L. Move to the outer periphery of the mixing chamber 7L. After the movement, the filtered substance F goes out of the mixing chamber 7L from the unfiltered matter discharge pipe 25 and is returned to the inflow pipe 1 or 2. Then, the filter substance F re-flows into the casing 4 and is again stirred and mixed. Non-reaction due to poor mixing can be prevented, and the reaction efficiency is improved by that much, and the product yield is increased.
[0031]
In this case, only the substance that has been sufficiently reacted by stirring and mixing is taken out of the casing, and the unreacted substance is returned to the casing again. That is, since the reactants are sieved and separated at the final stage of the reaction, only high-quality products with little unreacted substances can be taken out.
[0032]
Note that the present invention is not limited to the above embodiment, and various applications are possible. For example, in the above embodiment, an inlet pipe for the raw material is provided at the upper part of the casing 4 and an outlet pipe for the mixture is provided at the lower part. However, depending on the type of the raw material and the reaction or the physical properties of the product to be taken out after the reaction, these are reversed to raise the raw material. The mixture can be stirred and mixed while flowing in the direction.
[0033]
【The invention's effect】
As described above, according to the present invention, by providing a filter surrounding the flow passage at the mixture take-out portion in the casing, the mixture is filtered at the final stage after stirring and mixing, and undissolved substances and unreacted substance residues are removed. Therefore, it is possible to take out only a homogenous product in which no defective product is mixed, and there is an excellent effect that the yield of the product can be remarkably improved.
[0034]
In a device provided with an on-off valve that opens when the internal pressure of the outflow pipe exceeds a predetermined value, the product can be automatically discharged from the casing. In addition, the on-off valve functions as a safety valve for preventing an abnormal pressure increase in the casing. Further, when the mixture discharged from the discharge pipe or the outflow pipe is recirculated into the casing, the raw materials can be sufficiently and reliably stirred and mixed, and the product yield can be further improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing one embodiment of a stirring and mixing device according to the present invention.
2 (A) is a longitudinal sectional view and FIG. 2 (B) is a transverse sectional view showing another embodiment of the stirring and mixing device according to the present invention.
3 (A) is a longitudinal sectional view and FIG. 3 (B) is a transverse sectional view showing another embodiment of the stirring and mixing device according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Inflow pipe 2 Inflow pipe 3 Stirring and mixing device 4 Casing 5 Flow path 6 Partition plate 7 Mixing chamber 7L Lowermost mixing chamber 8 Pressure gauge 9 Pressure gauge 10 Pipe 10L Lowermost pipe 11 Stirrer 12 Drive source 13 Drive shaft 14 Spiral blade 15 Stirrer element 16 Shaft cylinder 18 Flow hole 19 Unfiltered material discharge pipe 20 Open / close valve 21 Elastic body 22 Pressure gauge 24 Filter 25 Filtrate discharge pipe 26 Miller 26A Miller 26A
M1 raw material M2 raw material