JP2004229482A - Electric vehicle using solar cell as power supply for charging - Google Patents
Electric vehicle using solar cell as power supply for charging Download PDFInfo
- Publication number
- JP2004229482A JP2004229482A JP2003050088A JP2003050088A JP2004229482A JP 2004229482 A JP2004229482 A JP 2004229482A JP 2003050088 A JP2003050088 A JP 2003050088A JP 2003050088 A JP2003050088 A JP 2003050088A JP 2004229482 A JP2004229482 A JP 2004229482A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- solar cell
- layer capacitor
- double layer
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Photovoltaic Devices (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【001】
【発明の属する技術分野】
本発明は昼間の走行時間が少なく、休止している時間が多い用途の福祉用電動車両や電動アシスト自転車などの電動モータで駆動力の全部または一部の補助力として得る電動車両に関するものである。
【002】
【従来の技術】従来の電動車両の電池充電は商用電源から充電器を経由して行われている。
【003】この場合、商用電源のある場所で、かつ、充電器を別途用意する必要がある。
【004】電動式移動用車両の場合、駆動源である電池容量を小さくし、且つ軽量化を計る観点からはこのような制約は好ましいことではなく、商用電源のある場所まで電池を移動することから充電作業が苦痛になるといったことや、電池の残量を何時も気にして運転しなければならないなどの問題がある。
【005】
【発明が解決しようとする課題】本発明は上記の問題点を解決せんとなされるもので、充電作業レスの電動車を提供することを課題とする。
【006】
【課題を解決するための手段】本発明は電動車両に具備した太陽電池モジュール(5)の出力を電気二重層コンデンサ(3)に蓄え、電気二重層コンデンサ(3)の電圧が所定の電圧値以上にあるとき、降圧回路を経由して電池(1)を充電することを特徴とする電動車両。
【007】球状シリコンマイクロソーラセルを多数個、直並列接続し、太陽電池モジュール(5)として適用したことを特徴とする電動車両。
【008】
【発明の実施の形態】本発明の実施の形態を以下に説明する。
【009】本発明の電源部の基本構成図を図1に示す。図1に於いて駆動モータが力行走行時には電池(1)のエネルギーは昇圧回路(2)を経由して電気二重層コンデンサーに蓄えられる。電気二重層コンデンサー(3)から負荷モータ駆動回路(6)へパワーの供給が行われ、モータが駆動される。
【010】ここで、昇圧回路(2)の昇圧比は1〜数倍でよいが、電流制限機能を有することが必要で、これにより電池容量を小さくでき、電池寿命も長くなる
【011】また、下り坂走行時にはブレーキ操作により走行速度が上昇することを抑制する必要がある。本発明の負荷モータ駆動回路(6)には回生制動制御機能を有しているため、制動エネルギーは制動動作制御時に電気二重層コンデンサー(3)に蓄えられる。
【012】ここで、制動エネルギーにより電気二重層コンデンサー(3)の電圧は上昇するが、電圧が設定された値以上になると降圧回路(4)が動作し駆動用電池(1)を充電し、電気二重層コンデンサー(3)に蓄えられたエネルギーを移動し電気二重層コンデンサー(3)の電圧上昇を抑制すると同時に吸収エネルギーを電池(1)に蓄えるよう動作する。
【013】車両の走行トルクは始動加速時と登坂走行時に、平地走行時の5〜数10倍のトルクを必要とするが、この時に必要とする電流に耐えられる電源とするなら、高容量または過負荷耐量の大きな電池が必要となる。
【014】しかし図1に示したように電気二重層コンデンサー(3)を設けることによって負荷との大電流の授受が電気二重層コンデンサー(3)によってされる結果、電池(1)の電流容量は登坂走行時の平均電流が供給できればよいので汎用品が使用でき、コスト的に安価となる。
【015】以上のような基本動作で車両走行できるが、福祉用車両や電動アシスト自転車などの車両は走行距離にして数キロ〜10キロ以内/日での使用で、使用時間にして1H/日以内が一般的であり、基本的に晴天時での使用が主となる。
【016】このことは太陽の出ている時間の大部分を使用していないことになる。従って、この使用していない時間を利用して電池を長時間でゆっくり充電すれば充電電源用量も小さくて済み、電池の負担も小さくなり長寿命化が計られる。
【017】第1表は電動アシスト自転車で標準走行パターン(5km)を走行した場合の電池の消費電力である。この表から、電動アシスト自転車の場合10W・H程度の消費電力であることから、数時間かけて充電するとすれば数Wの充電電源が有ればよいことになる。
【018】この充電電源を車両に設置した太陽電池とすることで太陽の出ている時ならいつでも充電できる。しかも、電池を取り外し移動することなく、太陽光を受光出来る状態に車両を放置するだけで充電できるので、電気の取り扱いに不慣れな者でも抵抗感無く取り扱える利点が生まれる。
【019】図2は自転車に太陽電池を設置した一例である。本例では自転車のタイヤカバー(11)、フレーム(12)電池ユニットケース(13)や後部荷台下部(14)および荷かご(19)に太陽電池セルを自転車転倒時にも破損しにくいようにカバーやフレームの中心部に図3に示すように設置する。
【020】フイルム状の薄膜太陽電池を使用することが一般的であるが、本発明では球状シリコンマイクロソーラセルを2、350 のスペースに直並列接続し、25V、7〜13Wの出力を得ることが出来る。従って、本例では1時間程度で充電が完了することになる。
【021】球状マイクロソーラセルは直径1〜2mmのシリコン単結晶で受光面がほぼ球面全体に及ぶことから周囲の光を3次元で捉えることができ、同じ直径の片面受光型の従来型太陽電池と比べると、理論上では4倍の光入力が取り込める結果、それだけ大きな出力が得られることになり、また、セル形状が小さな球状で、機械強度的にも強く、従来考えられなかった微少なスペース部分への設置が可能で車両設置に適している。
【022】球状マイクロソーラセルを適用した太陽電池モジュール(5)は太陽光を受光することによって得られた出力は電気二重層コンデンサー(3)を充電する。電動車両の走行中は太陽電池モジュール(5)からの充電によって電気二重層コンデンサー(3)の電圧が上昇することはないが、走行停止状態では充電によって電気二重層コンデンサーの電圧が上昇する。電気二重層コンデンサーの電圧があらかじめ設定された第1の電圧値以上になると、昇圧回路は動作を停止し、さらに電圧が上昇し第2の設定電圧になると降圧回路(4)が動作し、電気二重層コンデンサー(3)に蓄えられたエネルギーで電池(1)を充電する。
【023】以上の説明は電動アシスト自転車を主体に進めてきたが、福祉用電動車両などのように昼間の走行時間が短く充電時間が長くとれる用途の電動車両に適用できる。
【024】
【発明の効果】本発明は電動車両に太陽電池を具備することで、太陽が出ている時は何処ででも充電が出来る。このことは、従来機種では、充電可能な場所が限定されていたため使用されなかった、充電設備のない場所での使用が可能となる。たとえば、駅から職場や学校までといった、パークアンドライドのような使用が可能となる。
また、万一電池容量が空になったとしても太陽光を受光できれば電池充電が可能なことから、買い物用途の車輌のように、間歇走行する車両では停止期間中の放置充電が可能となり電池容量も小容量化でき、小型軽量化と充電作業レス化から、その使用方法は大幅に変革する。この結果、使用台数の大幅な増加をもたらし環境改善にも寄与できる。
【図面の簡単な説明】
【図1】本発明の基本構成を示すブロック図である。
【図2】本発明の太陽電池を実装した電動アシスト自転車の一例である。
【図3】本発明の太陽電池をタイヤカバーに設置した一例である。
【表1】電動アシスト自転車で標準パターン走行路を走行したときの消費電力を示す。
【符号の説明】[0101]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric vehicle that can be used as an assisting force for all or a part of a driving force by an electric motor such as a welfare electric vehicle or an electric assist bicycle that is used for a short daytime running time and a long resting time. .
[0092]
2. Description of the Related Art A conventional electric vehicle is charged with a battery from a commercial power supply via a charger.
In this case, it is necessary to separately prepare a charger at a place where a commercial power supply is present and a charger.
In the case of an electric vehicle, such a restriction is not preferable from the viewpoint of reducing the battery capacity as a driving source and reducing the weight, and it is necessary to move the battery to a place where a commercial power source is present. There is a problem that the charging work becomes painful from the beginning, and that the user must always drive while paying attention to the remaining amount of the battery.
[0056]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, and an object of the present invention is to provide an electric vehicle without charging work.
[0086]
According to the present invention, the output of a solar cell module (5) provided in an electric vehicle is stored in an electric double layer capacitor (3), and the voltage of the electric double layer capacitor (3) is set to a predetermined voltage value. An electric vehicle according to any of the preceding claims, wherein the battery (1) is charged via a step-down circuit.
An electric vehicle characterized in that a number of spherical silicon micro solar cells are connected in series and parallel and applied as a solar cell module (5).
[0098]
Embodiments of the present invention will be described below.
FIG. 1 shows a basic configuration diagram of the power supply unit of the present invention. In FIG. 1, when the drive motor runs in power, the energy of the battery (1) is stored in the electric double layer capacitor via the booster circuit (2). Power is supplied from the electric double layer capacitor (3) to the load motor drive circuit (6), and the motor is driven.
Here, the boosting ratio of the boosting circuit (2) may be 1 to several times, but it is necessary to have a current limiting function, whereby the battery capacity can be reduced and the battery life is prolonged. When traveling downhill, it is necessary to suppress an increase in traveling speed due to a brake operation. Since the load motor drive circuit (6) of the present invention has a regenerative braking control function, braking energy is stored in the electric double layer capacitor (3) during braking operation control.
Here, the voltage of the electric double layer capacitor (3) rises due to the braking energy, but when the voltage exceeds a set value, the step-down circuit (4) operates to charge the driving battery (1). It operates to transfer the energy stored in the electric double layer capacitor (3), suppress the voltage rise of the electric double layer capacitor (3), and store the absorbed energy in the battery (1).
The running torque of the vehicle is required to be 5 to several tens times that at the time of starting acceleration and at the time of climbing a hill. A battery with a large overload capacity is required.
However, as shown in FIG. 1, the provision of the electric double layer capacitor (3) allows the transfer of a large current to and from the load by the electric double layer capacitor (3). As a result, the current capacity of the battery (1) is reduced. As long as the average current during the uphill traveling can be supplied, general-purpose products can be used and the cost is low.
Although the vehicle can be driven by the basic operation as described above, vehicles such as a welfare vehicle and an electric assist bicycle are used within a traveling distance of several kilometers to 10 km / day, and a usage time of 1 H / day. Generally, it is mainly used in fine weather.
This means that most of the time when the sun is out is not used. Therefore, if the battery is slowly charged over a long period of time using this unused time, the charge power source dose can be reduced, and the burden on the battery can be reduced, and the life can be extended.
Table 1 shows the power consumption of the battery when the electric assist bicycle travels in the standard traveling pattern (5 km). From this table, since the power consumption of the electric assist bicycle is about 10 W · H, if it takes several hours to charge, it is only necessary to have a charging power source of several W.
By using this charging power source as a solar cell installed in a vehicle, charging can be performed at any time when the sun is out. In addition, since the vehicle can be charged simply by leaving the vehicle in a state where sunlight can be received without removing and moving the battery, there is an advantage that even a person who is unfamiliar with the handling of electricity can handle the battery without any difficulty.
FIG. 2 shows an example in which a solar battery is installed on a bicycle. In this example, the bicycle tire cover (11), the frame (12), the battery unit case (13), the lower part of the rear carrier (14), and the basket (19) are provided with covers to prevent the solar cells from being damaged even when the bicycle falls. It is installed at the center of the frame as shown in FIG.
It is common to use a thin film solar cell in the form of a film. In the present invention, a spherical silicon micro solar cell is connected in series and parallel to a space of 2,350 to obtain an output of 25 V and 7 to 13 W. Can be done. Therefore, in this example, charging is completed in about one hour.
The spherical micro solar cell is a silicon single crystal having a diameter of 1 to 2 mm and its light receiving surface covers almost the entire spherical surface, so that ambient light can be captured in three dimensions, and a single-sided light receiving type conventional solar cell having the same diameter. As a result, 4 times the optical input can be taken in theoretically, and as a result, a large output can be obtained. In addition, the cell shape is small and spherical, and the mechanical strength is strong. It can be installed in parts and is suitable for vehicle installation.
In the solar cell module (5) to which the spherical micro solar cell is applied, the output obtained by receiving sunlight charges the electric double layer capacitor (3). While the electric vehicle is traveling, the voltage of the electric double layer capacitor (3) does not increase due to charging from the solar cell module (5), but the voltage of the electric double layer capacitor increases due to charging when the vehicle is stopped. When the voltage of the electric double layer capacitor becomes equal to or higher than a preset first voltage value, the booster circuit stops operating, and when the voltage further increases and reaches the second set voltage, the step-down circuit (4) operates, The battery (1) is charged with the energy stored in the double-layer capacitor (3).
Although the above description has been mainly directed to the electric assist bicycle, the present invention can be applied to an electric vehicle such as a welfare electric vehicle which has a short running time in the daytime and a long charging time.
[0242]
According to the present invention, since the electric vehicle is provided with a solar cell, it can be charged anywhere when the sun is out. This means that the conventional model can be used in a place where there is no charging facility, which is not used because the place where charging is possible is limited. For example, it can be used like park and ride from a station to work or school.
In addition, even if the battery capacity becomes empty, the battery can be charged if sunlight can be received. Can be reduced in size, and its usage is drastically changed because of its smaller size, lighter weight, and less charging work. As a result, the number of vehicles used can be significantly increased, and the environment can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a basic configuration of the present invention.
FIG. 2 is an example of an electric assist bicycle on which the solar cell of the present invention is mounted.
FIG. 3 is an example in which the solar cell of the present invention is installed on a tire cover.
Table 1 shows the power consumption when the electric assist bicycle runs on the standard pattern road.
[Explanation of symbols]
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003050088A JP2004229482A (en) | 2003-01-21 | 2003-01-21 | Electric vehicle using solar cell as power supply for charging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003050088A JP2004229482A (en) | 2003-01-21 | 2003-01-21 | Electric vehicle using solar cell as power supply for charging |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004229482A true JP2004229482A (en) | 2004-08-12 |
Family
ID=32905645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003050088A Pending JP2004229482A (en) | 2003-01-21 | 2003-01-21 | Electric vehicle using solar cell as power supply for charging |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004229482A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1317145C (en) * | 2004-08-27 | 2007-05-23 | 吴琦 | Electric vehicle with solar energy compensation |
CN102255355A (en) * | 2011-06-30 | 2011-11-23 | 西安交通大学 | Electric vehicle energy management system and method thereof based on hybrid stored energy |
CN102774289A (en) * | 2012-08-02 | 2012-11-14 | 徐州富尔沃车业有限公司 | Light solar electric tricycle |
CN103042938A (en) * | 2013-01-17 | 2013-04-17 | 辽宁太阳能研究应用有限公司 | Solar electrombile |
US11205968B2 (en) | 2018-03-29 | 2021-12-21 | Nuvoton Technology Corporation Japan | Matrix converter control device and power conversion system |
US11698117B2 (en) | 2020-12-09 | 2023-07-11 | Toyota Motor Engineering & Manufacturing North America, Inc. | Braking systems comprising artificial muscles |
-
2003
- 2003-01-21 JP JP2003050088A patent/JP2004229482A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1317145C (en) * | 2004-08-27 | 2007-05-23 | 吴琦 | Electric vehicle with solar energy compensation |
CN102255355A (en) * | 2011-06-30 | 2011-11-23 | 西安交通大学 | Electric vehicle energy management system and method thereof based on hybrid stored energy |
CN102774289A (en) * | 2012-08-02 | 2012-11-14 | 徐州富尔沃车业有限公司 | Light solar electric tricycle |
CN103042938A (en) * | 2013-01-17 | 2013-04-17 | 辽宁太阳能研究应用有限公司 | Solar electrombile |
US11205968B2 (en) | 2018-03-29 | 2021-12-21 | Nuvoton Technology Corporation Japan | Matrix converter control device and power conversion system |
US11698117B2 (en) | 2020-12-09 | 2023-07-11 | Toyota Motor Engineering & Manufacturing North America, Inc. | Braking systems comprising artificial muscles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7591331B2 (en) | Energy storage system | |
CN202225968U (en) | Long-range solar electric bicycle | |
CN103738195B (en) | A kind of compound energy electro-vehicle energy control method | |
JP2004229482A (en) | Electric vehicle using solar cell as power supply for charging | |
CN101396974A (en) | Automatic power generation and storage electric motor car | |
CN110920423A (en) | Vehicle emergency power supplementing method and system | |
CN201932294U (en) | Solar power bicycle | |
CN202911902U (en) | Electro-mechanical transformation portable bicycle | |
JPH07131905A (en) | Hybrid power source for electric vehicle | |
CN201761374U (en) | Novel automatic double-supply clean energy electric automobile | |
AU2015100550B4 (en) | Power management for an electric drive system | |
CN201841969U (en) | Solar electric car | |
CN105383265A (en) | Control system for solar vehicle-mounted air purifier, and solar vehicle-mounted air purifier | |
CN202123940U (en) | Novel electric tour car charged by wind power and solar power | |
CN205498652U (en) | Electric automobile increases journey device | |
JPH08126119A (en) | Electric automobile | |
RU74107U1 (en) | ELECTRIC DRIVE WHEELS OF A CAR | |
CN211223011U (en) | Electric motor car chassis device | |
CN102826188A (en) | Electro-mechanical-transformation portable bicycle | |
CN101992823B (en) | Solar electric bicycle | |
CN201442526U (en) | Solar power-assisted electric vehicle | |
JP2008259281A (en) | Electric vehicle and its current feeder | |
CN201304903Y (en) | Solar car | |
CN2654418Y (en) | Variable speed solar energy power vehicle | |
WO2012035817A1 (en) | Regenerative device for motor-driven traveling body, and motor-driven traveling body using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060119 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090623 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091110 |