Nothing Special   »   [go: up one dir, main page]

JP2004217724A - Method for manufacturing aqueous emulsion - Google Patents

Method for manufacturing aqueous emulsion Download PDF

Info

Publication number
JP2004217724A
JP2004217724A JP2003004641A JP2003004641A JP2004217724A JP 2004217724 A JP2004217724 A JP 2004217724A JP 2003004641 A JP2003004641 A JP 2003004641A JP 2003004641 A JP2003004641 A JP 2003004641A JP 2004217724 A JP2004217724 A JP 2004217724A
Authority
JP
Japan
Prior art keywords
polymerization
vinyl
emulsion
vinyl ester
aqueous emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003004641A
Other languages
Japanese (ja)
Inventor
Seiji Tanimoto
征司 谷本
Naoki Fujiwara
直樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2003004641A priority Critical patent/JP2004217724A/en
Publication of JP2004217724A publication Critical patent/JP2004217724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an aqueous emulsion which has excellent water resistance and freeze/thaw stability, is excellent in polymerization stability even at low viscosity, and is excellent in storage stability. <P>SOLUTION: The method for manufacturing an aqueous emulsion is characterized in that a vinyl ester monomer is subjected to emulsion polymerization wherein (1) a vinyl alcohol polymer having a degree of saponification of 75 mol% or higher is used as a dispersant, (2) at least one polymerization initiator selected from hydrogen peroxide, ammonium persulfate and potassium persulfate is used, (3) the vinyl ester monomer in an amount less than 15 wt.% based on the whole amount of the monomer is charged in the initial period of polymerization, (4) the vinyl ester monomer in an amount of 85 wt.% or more based on the whole amount of the monomer is continuously or discontinuously added in the latter period of polymerization, and (5) the average amount of residual vinyl ester monomer in the latter period of polymerization is kept to 7 wt.% or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、優れた耐水性および凍結融解安定性を有し、低粘度においても重合安定性に優れ、貯蔵安定性に優れる水性エマルジョンの製造方法に関する。
【0002】
【従来の技術】
従来、ポリビニルアルコール(以下、PVAと略記することがある)はエチレン性不飽和単量体、特に酢酸ビニルに代表されるビニルエステル系単量体の乳化重合用保護コロイドとして広く用いられており、これを保護コロイドとして用いて乳化重合して得られるビニルエステル系水性エマルジョンは紙用、木工用およびプラスチック用などの各種接着剤、含浸紙用および不織製品用などの各種バインダー、混和剤、打継ぎ材、塗料、紙加工および繊維加工などの分野で広く用いられている。
このような水性エマルジョンは、PVA系重合体のけん化度を調整することにより、一般的に粘度が低く、ニュートニアン流動に近い粘性を有し、比較的耐水性の良好なものから、一般的に粘度が高く、比較的エマルジョン粘度の温度依存性が小さいものが得られることから、種々の用途に賞用されてきた。
【0003】
乳化重合用分散剤としてのPVA系重合体は、一般的には鹸化度98モル%程度のいわゆる“完全鹸化PVA”と鹸化度88モル%程度の“部分鹸化PVA”があり、前者を使用した場合、比較的耐水性は良好なものの、氷点下といった極低温下における安定性、すなわち凍結融解安定性が不足する欠点があり、他方、後者のPVA系重合体を使用した場合、凍結融解安定性には優れるものの耐水性に劣る欠点を有している。このような欠点を改良するために、両者のPVA系重合体の併用、両者の中間的な鹸化度のPVA系重合体の使用等が行われているが、耐水性、凍結融解安定性を同時に満足することはできなかった。そこで、エチレン単位を含有するビニルアルコール系重合体が提案(特許文献1〜3等)され、耐水性と低温放置安定性が大幅に改善された。また、1,2−グリコール結合を多く含むビニルアルコール系重合体が提案(特許文献4)され、低温安定性、重合安定性等が大幅に改善された。しかしながら、これらのエマルジョンでも耐水性と凍結融解安定性を同時に完全に満足するものではなかった。
また、従来PVA系保護コロイドのエマルジョンは、エマルジョンの粒子径が乳化剤系のエマルジョンに比べて大きくなることから、特に1000MPa・s以下といった低粘度のエマルジョンを調製する場合、重合安定性が悪く、さらに放置時沈降するなどの問題点があり、エマルジョン粘度調整に難があるのが現状であった。
【0004】
この出願の発明に関連する先行技術文献としては次のものがある。
【特許文献1】
特開平8−81666号公報
【特許文献2】
特開平6−80709号公報
【特許文献3】
特開平10−226774号公報
【特許文献4】
特開2001−220484号公報
【0005】
【発明が解決しようとする課題】
本発明は、これらの従来技術の欠点を解消したものであり、優れた耐水性および凍結融解安定性を有し、低粘度においても重合安定性に優れ、貯蔵安定性に優れる水性エマルジョンの製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的は、ビニルエステル系単量体を乳化重合するに際し、(1)分散剤としてけん化度75モル%以上のビニルアルコール系重合体を用い、(2)過酸化水素、過硫酸アンモニウムおよび過硫酸カリウムから選ばれる少なくとも一種の重合開始剤を使用し、(3)重合初期にビニルエステル系単量体を単量体全量に対し15重量%未満仕込み、(4)重合後期にビニルエステル系単量体を単量体全量に対し85重量%以上連続的または断続的に添加し、かつ(5)重合後期におけるビニルエステル系単量体の平均残存量を7重量%以下に保つことを特徴とする水性エマルジョンの製造方法を提供することによって達成される。
また、本発明においては、分子内にエチレン単位を1〜15モル%有するビニルアルコール系重合体あるいは1,2−グリコール結合を1.9モル%以上有するビニルアルコール系重合体を用いることによって、耐水性、凍結融解安定性をより好適に達成することができる。
さらには、上記製造方法により、B型粘度計による粘度が20℃、20rpmにおいて1000MPa・s以下の低粘度の水性エマルジョンを安定に得ることができる。
【0007】
【発明の実施の形態】
本発明において上記(1)の水性エマルジョンの分散剤として用いられるけん化度75モル%以上のビニルアルコール系重合体は、例えば、ビニルエステルを重合して得られるビニルエステル系重合体をけん化することにより製造される。該ビニルアルコール系重合体のけん化度は、75モル%以上であることが必要であり、好ましくは、80モル%以上、より好ましくは85モル%以上である。けん化度が75モル%未満の場合、ビニルアルコール系重合体本来の性質である水溶性が低下する懸念が生じる。該ビニルアルコール系重合体の粘度平均重合度(以下重合度と略す)は特に制限されないが、100〜8000の範囲が好適であり、300〜3000がより好ましい。
【0008】
ここで、ビニルエステルとしては、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどが挙げられるが、酢酸ビニルが経済的にみて好ましい。
【0009】
本発明においては、上記(1)の分散剤として用いられるビニルアルコール系重合体として、分子内にエチレン単位を1〜15モル%含有するビニルアルコール系重合体を用いることにより、耐水性に優れ、さらに重合安定性に優れた水性エマルジョンを得ることが可能である。該ビニルアルコール系重合体は、ビニルエステルとエチレンとの共重合体をけん化することにより得ることができる。該ビニルアルコール系重合体のエチレン単位含有量は、好ましくは3〜13モル%、さらに好ましくは4〜12モル%である。
【0010】
また本発明においては、上記(1)の分散剤として用いられるビニルアルコール系重合体として、1,2−グリコール結合を1.9モル%以上有するビニルアルコール系重合体を用いることにより、凍結融解安定性に優れた水性エマルジョンを得ることが可能である。1,2−グリコール結合を1.9モル%以上有するビニルアルコール系重合体の製造方法は、特に制限はなく、公知の方法が使用可能である。一例としてビニレンカーボネートを上記の1,2−グリコール結合量になるようにビニルエステルと共重合する方法、ビニルエステルの重合温度を通常の条件より高い温度、例えば75〜200℃で、加圧下に重合する方法などが挙げられる。後者の方法においては、重合温度は95〜190℃であることが好ましく、100〜180℃であることが特に好ましい。また加圧条件としては、重合系が沸点以下になるように選択することが重要であり、好適には0.2MPa以上、さらに好適には0.3MPa以上である。また上限は5MPa以下が好適であり、さらに3MPa以下がより好適である。重合はラジカル重合開始剤の存在下、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などいずれの方法でも行うことができるが、溶液重合、とくにメタノールを溶媒とする溶液重合法が好適である。このようにして得られたビニルエステル系重合体を通常の方法によりけん化することにより1,2−グリコール結合を1.9モル%以上有するビニルアルコール系重合体が得られる。該ビニルアルコール系重合体の1,2−グリコール結合の含有量は、より好ましくは1.95モル%以上、さらに好ましくは2.0モル%以上、最適には2.1モル%以上である。また、1,2−グリコール結合の含有量は4モル%以下であることが好ましく、さらに好ましくは3.5モル%以下、最適には3.2モル%以下である。ここで、1,2−グリコール結合の含有量はNMRスペクトルの解析から求められる。
【0011】
また、上記(1)の分散剤として用いられるビニルアルコール系重合体として、分子内にエチレン単位を1〜15モル%含有し、かつ1,2−グリコール結合を1.9モル%以上有するビニルアルコール系重合体を用いることにより、より耐水性および凍結融解安定性に優れ、さらに重合安定性に優れた水性エマルジョンを得ることが可能である。
【0012】
また、上記ビニルアルコール系重合体は本発明の目的を損なわない範囲で共重合可能なエチレン性不飽和単量体を共重合したものでも良い。このようなエチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、フマル酸、(無水)マレイン酸、イタコン酸、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸およびそのナトリウム塩、エチルビニルエーテル、ブチルビニルエーテル、N−ビニルピロリドン、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウムなどが挙げられる。
また、チオール酢酸、メルカプトプロピオン酸などのチオール化合物の存在下で、酢酸ビニルなどのビニルエステル系単量体を重合するか、またはビニルエステル系単量体と上記エチレン性不飽和単量体とを共重合し、得られた(共)重合体をけん化することによって得られる末端にメルカプト基またはカルボキシル基を有する変性物も用いることができる。
【0013】
本発明において乳化重合に用いるビニルエステル系単量体としては、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどが挙げられるが、酢酸ビニルが経済的にみて好ましい。
【0014】
本発明では、乳化重合に用いる単量体として、ビニルエステル系単量体が主に用いられるが、ビニルエステル系単量体とエチレンを併用することも好適な態様である。これらの単量体を乳化重合することにより、ビニルエステル系重合体またはビニルエステル−エチレン系共重合体を分散質とする水性エマルジョンが得られる。
【0015】
また、乳化重合する際、本発明の目的を損なわない範囲で、エチレン性不飽和単量体およびジエン系単量体を共重合しても構わない。このような単量体としては、プロピレン、イソブチレンなどのオレフィン、塩化ビニル、フッ化ビニル、ビニリデンクロリド、ビニリデンフルオリドなどのハロゲン化オレフィン、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ドデシル、アクリル酸2−ヒドロキシエチルなどのアクリル酸およびそのエステル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ドデシル、メタクリル酸2−ヒドロキシエチルなどのメタクリル酸およびそのエステル、アクリル酸ジメチルアミノエチル、メタクリル酸ジメチルアミノエチルおよびこれらの四級化物、さらには、アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N,N−ジメチルアクリルアミド、アクリルアミド−2−メチルプロパンスルホン酸およびそのナトリウム塩などのアクリルアミド系単量体、スチレン、α−メチルスチレン、p−スチレンスルホン酸およびナトリウム、カリウム塩などのスチレン系単量体、その他N−ビニルピロリドンなど、またブタジエン、イソプレン、クロロプレンなどのジエン系単量体が挙げられる。
【0016】
本発明の水性エマルジョンの製造方法においては、過酸化水素、過硫酸アンモニウムおよび過硫酸カリウムから選ばれる少なくとも一種の重合開始剤を用いることは重要であり、この中でも、特に過酸化水素が好ましい。また、重合開始剤の使用量は特に制限されないが、通常、全単量体に対してモル比で0.001〜0.01使用して乳化重合し、好ましくは0.002〜0.007であり、さらに好ましくは0.0025〜0.005である。上記範囲の重合開始剤を用いることで、耐水性をより改善した水性エマルジョンが得られる。
【0017】
また、前記重合開始剤は還元剤と併用し、レドックス系で用いられる場合もある。その場合、通常、過酸化水素は酒石酸、L−アスコルビン酸、ロンガリットなどとともに用いられる。また、過硫酸アンモニウム、過硫酸カリウムは亜硫酸水素ナトリウム、炭酸水素ナトリウムなどとともに用いられる。還元剤の使用量も特に限定されないが、通常、重合開始剤に対して、0.05〜3当量用い、好ましくは0.1〜2当量、より好ましくは0.3〜1.5当量用いる。
【0018】
重合初期、あるいは重合後期の前記重合開始剤の添加方法は特に制限されず、一括添加する手法、連続添加する手法などを用いることができる。重合初期においては好ましくは、重合開始剤を一括添加する手法が用いられる。重合後期には、重合開始剤を連続添加する手法が好ましく用いられる。
【0019】
本発明においては、ビニルエステル系単量体を、単量体全量の15重量%未満を重合初期に仕込むことが必要である。重合初期のビニルエステル系単量体の仕込み量を0重量%とすることもできるが、好適には5重量%以上、最適には7重量%である。該初期仕込みの単量体が15重量%以上の場合、重合後期にビニルエステル系単量体の平均残存量を7重量%未満に保つことが難しくなり、エマルジョンの凍結融解安定性が低下する懸念がある。重合初期に添加する重合開始剤量は特に制限されないが、通常重合初期仕込みの全単量体に対してモル比で0.005〜0.025、好ましくは0.008〜0.020、より好ましくは0.01〜0.018である。
重合開始剤を上記したとおり所定の量を重合初期に添加することにより耐水性がより向上する。
初期重合は、分散剤の水溶液に単量体、重合開始剤を加え、重合温度50〜70℃、好適には55〜65℃、重合時間15〜60分、好適には20〜50分の条件下で行われる。重合初期において用いる単量体は一括添加することが好適である。
【0020】
分散剤として使用するビニルアルコール系重合体の使用量については、特に制限はないが、全単量体100重量部に対して好ましくは1〜20重量部、より好ましくは1.5〜15重量部の範囲である。該使用量が1重量部未満または20重量部を超える場合には、重合安定性が低下したり、放置安定性が低下することがある。
【0021】
初期重合はビニルエステルの残存濃度(系全体に対する重量%)が7%以下、好適には3%以下、さらに好適には1%以下になった時点で終了する。初期重合後は、重合後期に入る。後期重合では、単量体を連続的にまたは断続的に添加することが重要であり、このうち特に連続的添加が最適である。連続的または断続的に添加することにより、本発明の目的とする水性エマルジョンが得られる。後期重合では重合開始剤は連続添加が好適であるが、一括添加あるいは断続添加でも良い。また後期重合では、重合温度は初期重合温度よりも5〜30℃高くすることが好適であり、55〜100℃、好適には60〜95℃、さらに好適には70〜90℃の範囲内で行われる。
本発明においては、重合後期においてビニルエステル系単量体の平均残存量(系全体に対する重量%)を7%以下に保つことが重要であり、好ましくは6%以下、より好ましくは5%以下である。ここで平均残存量とは後述する方法により測定される値である。該平均残存量が7%以上である場合、凍結融解安定性、耐水性が低下する恐れがある。
重合後期においてビニルエステル系単量体の平均残存量が7%以下であれば、ビニルエステル系単量体の滴下時間は特に制限されないが、通常3時間以上、好ましくは4時間以上、さらに好ましくは4.5時間以上である。
【0022】
重合圧力は、初期重合、後期重合とも常圧で良いが、必要に応じ加圧する必要がある。特にビニルエステルと他の単量体、例えばエチレンとの共重合体エマルジョンを製造する場合は、圧力下で行うことが必要である。
【0023】
本発明においては、凍結融解安定性、耐水性等に優れたエマルジョンを得ることができるが、同時に1000MPa・s以下といった低粘度のエマルジョンを安定に得ることもできる。ここでエマルジョン粘度はB型粘度計を用い、20rpm、20℃の条件下において測定したものである。粘度は好ましくは900MPa・s未満、より好ましくは800MPa・s未満のものが低粘度エマルジョンが要求される用途においては好適に用いられる。
【0024】
本発明で得られる水性エマルジョンは、上記の方法で得られる水性エマルジョンをそのまま用いることができるが、必要があれば、本発明の効果を損なわない範囲で、従来公知の各種エマルジョンを添加して用いることができる。
なお、本発明の水性エマルジョンにおける分散剤としては、上記のビニルアルコール系重合体が用いられるが、必要に応じて、従来公知のアニオン性、ノニオン性あるいはカチオン性の界面活性剤や、ヒドロキシエチルセルロースなどを併用することもできる。
【0025】
本発明により、低粘度においても重合安定性に優れた水性エマルジョンが得られ、さらに得られる水性エマルジョンは、優れた耐水性および凍結融解安定性を有しているので、紙管、製袋、合紙、段ボール用等の紙、パルプなどの紙加工用接着剤、フラッシュパネル、集成材、ツキ板、合板加工用、合板二次加工用(練り合わせ)、一般木工等の木工用接着剤および各種プラスチック用の接着剤、含浸紙用、不織製品用のバインダー、混和剤、打継ぎ材、塗料、紙加工および繊維加工などの分野で好適に用いられる。
【0026】
【実施例】
次に、実施例および比較例により、本発明をさらに詳細に説明する。なお、以下の実施例および比較例において「部」および「%」は、特に断らない限り、重量基準を意味する。また、得られたエマルジョンの耐水性、放置安定性を、下記の要領で評価した。
【0027】
(エマルジョンの評価)
粘度はB型粘度計(20rpm)を用いて測定。
(1)皮膜の耐水性
得られた水性エマルジョンを20℃、65%RHの条件下に、ポリエチレンテレフタレート(PET)上に流延し、7日間乾燥させて厚さ500μmの乾燥皮膜を得た。この皮膜を直径2.5cmに打ち抜き、それを試料として20℃水に24時間浸漬した場合の、皮膜の溶出率を求めた。
溶出率(%):{1−(浸漬後の皮膜絶乾重量/浸漬前の皮膜絶乾重量)}×100
浸漬前の皮膜絶乾重量;浸漬前の皮膜重量(含水)−{浸漬前の皮膜重量(含水)× 皮膜含水率(%)/100}
皮膜含水率;皮膜(20℃の水に浸漬するサンプルとは別のサンプル)を、105℃、4時間で絶乾し、皮膜の含水率をあらかじめ求める。
浸漬後の皮膜絶乾重量;浸漬後の皮膜を105℃、4時間で絶乾した重量。
(2)凍結融解安定性
試料50gをポリエチレン製のびんに取り、試料を−15℃で16時間保った後、30℃の恒温水槽中に1時間放置し、その後状態を観察、以下の基準により評価した。
◎流動性良好、○増粘するも流動性有り、△混ぜれば流動性戻る、×ゲル化
(3)重合安定性
ろ過残
重合後、60メッシュ金網でろ過し、ろ過残量(%)(対エマルジョンの固形分)を測定。ろ過残量が少ないほど、重合安定性が優れていることを示す。
グラフトポリマー
水性エマルジョンを20℃65%RH下で、PETフィルム上に流延し、7日間乾燥させて厚さ500μmの乾燥皮膜を得た。この皮膜を直径2.5cmに打ち抜いたものを試料として、アセトンにて24時間ソックスレー抽出し、さらに煮沸水中で24時間抽出を行い、抽出後の皮膜の不溶分(分散質のポリマーの周りに分散剤のビニルアルコール系重合体が化学的に結合したグラフトポリマー)量を求めた。グラフトポリマー量が大きいほど、分散剤のビニルアルコール系重合体が分散質の重合体の周りを強固に保護していることを示し、そのために重合安定性に優れ(ろ過残が少なく)、さらに低粘度における重合安定性に優れた水性エマルジョンが得られる。
グラフトポリマー(%)=(抽出後の皮膜絶乾重量/抽出前の皮膜絶乾重量)×100
抽出前の皮膜絶乾重量=抽出前の皮膜重量(含水)−{抽出前の皮膜重量(含水)×皮膜含水率(%)/100}
*皮膜含水率:皮膜(アセトンおよび煮沸水で抽出する試料とは別の試料)を、105℃、4時間で絶乾し、皮膜の含水率をあらかじめ求める。
*抽出後の皮膜絶乾重量:抽出後の皮膜を105℃、4時間で絶乾した重量。
(4)貯蔵安定性
水性エマルジョンを20℃下に、3ヶ月間放置後、状態を観察し、以下の基準により評価した。
○変化なし、△やや沈降が見られる、×完全に分離
【0028】
実施例1
還流冷却器、滴下ロート、温度計、窒素吹込口を備えた2リットルガラス製重合容器に、イオン交換水750g、PVA−1{重合度1700、けん化度98モル%:(株)クラレ製PVA−117}68.4gを仕込み、95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、200rpmで撹拌しながら、60℃に調整した後、酒石酸の10%水溶液12.8gおよび5%過酸化水素水8.8g(全酢酸ビニルに対し、モル比で0.015)を一括添加後、酢酸ビニル76g(全酢酸ビニルに対し10%)を仕込み、重合を開始した。重合開始30分後に初期重合終了(酢酸ビニルの残存量1重量%)を確認した。次に酒石酸の10%水溶液1.3gを一括添加後、1%過酸化水素43.8gを5時間かけて連続的に添加した。同時に、酢酸ビニル684gを5時間にわたって連続的に添加し、重合温度80℃に維持して後期重合を完結させた。その後60メッシュのステンレス製金網を用いてろ過した。ろ過残量が少ないほど重合安定性が優れ、多いほど重合安定性が悪いことを示す。
以上の結果、固形分濃度49.8%のポリ酢酸ビニル系エマルジョンが得られた。このエマルジョンの評価を前述の方法により行った。
なお、重合後期における酢酸ビニルの平均残存量は、後期重合開始から終了まで30分経過毎に残存酢酸ビニル量を測定(JIS K−6828記載の滴定法による)し、その平均を求めた。結果を表1に示す。
【0029】
比較例1
実施例1において、5時間かけて添加した酢酸ビニルおよび1%過酸化水素水を2時間で添加した他は、実施例1と同様にして、固形分濃度49.7%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0030】
実施例2
実施例1において、PVA−1の代わりにPVA−2(重合度1700、けん化度88モル%:(株)クラレ製PVA−217)を用いた他は、実施例1と同様にして、固形分濃度49.7%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0031】
比較例2
実施例2において、5時間かけて添加した酢酸ビニルおよび1%過酸化水素水を2時間で添加した他は、実施例2と同様にして、固形分濃度49.7%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0032】
実施例3
還流冷却器、滴下ロート、温度計、窒素吹込口を備えた2リットルガラス製重合容器に、イオン交換水を930g、PVA−1を54g仕込み、l95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、200rpmで撹拌しながら、60℃に調整した後、酒石酸の10%水溶液10.2gおよび5%過酸化水素水6.9g(全酢酸ビニルに対し、モル比で0.015)を一括添加後、酢酸ビニル60g(全酢酸ビニルに対し10%)を仕込み、重合を開始した。重合開始30分後に初期重合終了(酢酸ビニルの残存量1重量%)を確認した。次に酒石酸の10%水溶液1gを一括添加後、1%過酸化水素34.6gを5時間かけて連続的に添加した。同時に、酢酸ビニル540gを5時間にわたって連続的に添加し、重合温度80℃に維持して後期重合を完結させた。その後60メッシュのステンレス製金網を用いてろ過した。以上の結果、固形分濃度40.1%のポリ酢酸ビニル系エマルジョンが得られた。このエマルジョンの評価を前述の方法により行った。結果を併せて表1に示す。
【0033】
比較例3
実施例3において、5時間かけて添加した酢酸ビニルおよび1%過酸化水素水を2時間で添加した他は、実施例3と同様にして、固形分濃度38.8%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0034】
実施例4
実施例1において、PVA−1の代わりにPVA−3(重合度1700、けん化度98モル%、エチレン単位含有量5モル%)を用いた他は、実施例1と同様にして、固形分濃度49.8%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0035】
実施例5
実施例1において、PVA−1の代わりにPVA−4(重合度1700、けん化度88モル%、エチレン単位含有量3モル%)を用いた他は、実施例1と同様にして、固形分濃度49.7%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0036】
実施例6
実施例1において、PVA−1の代わりにPVA−5(重合度1700、けん化度98モル%、1,2−グリコール結合含有量2.2モル%)を用いた他は、実施例1と同様にして、固形分濃度49.9%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0037】
実施例7
還流冷却器、滴下ロート、温度計、窒素吹込口を備えた2リットルガラス製重合容器に、イオン交換水を740g、PVA−5を30g仕込み、95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、200rpmで撹拌しながら、60℃に調整した後、酒石酸の10%水溶液17gおよび5%過酸化水素水11.5g(全酢酸ビニルに対し、モル比で0.015)を一括添加後、酢酸ビニル100g(全酢酸ビニルに対し10%)を仕込み、重合を開始した。重合開始30分後に初期重合終了(酢酸ビニルの残存量1重量%)を確認した。次に酒石酸の10%水溶液1.7gを一括添加後、1%過酸化水素57.6gを5時間かけて連続的に添加した。同時に、酢酸ビニル900gを5時間にわたって連続的に添加し、重合温度80℃に維持して後期重合を完結させた。その後60メッシュのステンレス製金網を用いてろ過した。以上の結果、固形分濃度54.8%のポリ酢酸ビニル系エマルジョンが得られた。このエマルジョンの評価を前述の方法により行った。結果を併せて表1に示す。
【0038】
実施例8
還流冷却器、滴下ロート、温度計、窒素吹込口を備えた2リットルガラス製重合容器に、イオン交換水を630g、PVA−5を17.6g仕込み、95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、200rpmで撹拌しながら、60℃に調整した後、酒石酸の10%水溶液15gおよび5%過酸化水素水10.1g(全酢酸ビニルに対し、モル比で0.015)を一括添加後、酢酸ビニル88g(全酢酸ビニルに対し10%)を仕込み、重合を開始した。重合開始30分後に初期重合終了(酢酸ビニルの残存量1重量%)を確認した。次に酒石酸の10%水溶液1.5gを一括添加後、1%過酸化水素50.7gを5時間かけて連続的に添加した。同時に、酢酸ビニル792gを5時間にわたって連続的に添加し、重合温度80℃に維持して後期重合を完結させた。その後60メッシュのステンレス製金網を用いてろ過した。以上の結果、固形分濃度54.4%のポリ酢酸ビニル系エマルジョンが得られた。このエマルジョンの評価を前述の方法により行った。結果を併せて表1に示す。
【0039】
比較例4
実施例8において、5時間かけて添加した酢酸ビニルおよび1%過酸化水素水を2時間で添加した他は、実施例8と同様にして、固形分濃度53.8%のポリ酢酸ビニル系エマルジョンが得られた。結果を併せて表1に示す。
【0040】
【表1】

Figure 2004217724
【0041】
表1中、
Et…エチレン単位
DH…けん化度
分散剤PVAの量(phm)…全酢酸ビニル100重量部に対する重量部
をそれぞれ示す。
【0042】
【発明の効果】
本発明によれば、優れた耐水性および凍結融解安定性を有し、低粘度においても重合安定性に優れ、貯蔵安定性に優れる水性エマルジョンを得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an aqueous emulsion having excellent water resistance and freeze-thaw stability, excellent polymerization stability even at a low viscosity, and excellent storage stability.
[0002]
[Prior art]
Conventionally, polyvinyl alcohol (hereinafter sometimes abbreviated as PVA) has been widely used as a protective colloid for emulsion polymerization of ethylenically unsaturated monomers, particularly vinyl ester monomers represented by vinyl acetate, The vinyl ester aqueous emulsion obtained by emulsion polymerization using this as a protective colloid is used for various adhesives for paper, woodworking and plastics, various binders for impregnated paper and nonwoven products, admixtures, Widely used in fields such as splicing materials, paints, paper processing and fiber processing.
By adjusting the degree of saponification of the PVA-based polymer, such an aqueous emulsion generally has a low viscosity, has a viscosity close to a Newtonian flow, and has a relatively good water resistance. Since it has high viscosity and relatively low temperature dependence of emulsion viscosity, it has been awarded for various uses.
[0003]
PVA-based polymers as dispersants for emulsion polymerization generally include so-called "fully saponified PVA" having a saponification degree of about 98 mol% and "partially saponified PVA" having a saponification degree of about 88 mol%, and the former is used. In this case, although the water resistance is relatively good, there is a disadvantage that the stability at extremely low temperatures such as below freezing, that is, the freeze-thaw stability is insufficient.On the other hand, when the latter PVA polymer is used, the freeze-thaw stability is poor. Has excellent properties but has poor water resistance. In order to improve such disadvantages, both PVA-based polymers are used in combination, and a PVA-based polymer having an intermediate saponification degree is used, but water resistance and freeze-thaw stability are simultaneously improved. I was not satisfied. Therefore, vinyl alcohol-based polymers containing ethylene units have been proposed (Patent Documents 1 to 3, etc.), and the water resistance and the low-temperature storage stability have been greatly improved. Further, a vinyl alcohol-based polymer containing a large amount of 1,2-glycol bonds has been proposed (Patent Document 4), and the low-temperature stability, polymerization stability, and the like have been significantly improved. However, even with these emulsions, water resistance and freeze-thaw stability were not completely satisfied at the same time.
In addition, the emulsion of the conventional PVA-based protective colloid has a poor polymerization stability, especially when preparing a low-viscosity emulsion such as 1000 MPa · s or less, because the particle size of the emulsion is larger than that of the emulsifier-based emulsion. At present, there are problems such as settling during standing, and there is a difficulty in adjusting the emulsion viscosity.
[0004]
Prior art documents related to the invention of this application include the following.
[Patent Document 1]
JP-A-8-81666
[Patent Document 2]
JP-A-6-80709
[Patent Document 3]
JP-A-10-226774
[Patent Document 4]
JP 2001-220484 A
[0005]
[Problems to be solved by the invention]
The present invention has solved these disadvantages of the prior art, has excellent water resistance and freeze-thaw stability, has excellent polymerization stability even at low viscosity, and has excellent storage stability. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The above object is to carry out emulsion polymerization of a vinyl ester monomer, (1) using a vinyl alcohol polymer having a saponification degree of 75 mol% or more as a dispersant, and (2) hydrogen peroxide, ammonium persulfate and potassium persulfate. (3) less than 15% by weight of a vinyl ester monomer based on the total amount of the monomer in the initial stage of polymerization, and (4) a vinyl ester monomer in the latter stage of the polymerization. Is continuously or intermittently added in an amount of 85% by weight or more based on the total amount of the monomers, and (5) maintaining the average residual amount of the vinyl ester monomer in the late stage of the polymerization at 7% by weight or less. This is achieved by providing a method of making an emulsion.
Further, in the present invention, by using a vinyl alcohol polymer having 1 to 15 mol% of ethylene units in the molecule or a 1.9 mol% or more of 1,2-glycol bond in the molecule, water resistance is improved. Properties and freeze-thaw stability can be more suitably achieved.
Further, by the above production method, a low-viscosity aqueous emulsion having a viscosity of not more than 1000 MPa · s at 20 ° C. and 20 rpm by a B-type viscometer can be stably obtained.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the vinyl alcohol-based polymer having a degree of saponification of 75 mol% or more used as a dispersant for the aqueous emulsion of the above (1) is obtained by, for example, saponifying a vinyl ester-based polymer obtained by polymerizing a vinyl ester. Manufactured. The saponification degree of the vinyl alcohol-based polymer needs to be 75 mol% or more, preferably 80 mol% or more, more preferably 85 mol% or more. When the degree of saponification is less than 75 mol%, there is a concern that the water solubility, which is an intrinsic property of the vinyl alcohol polymer, is reduced. The viscosity average degree of polymerization (hereinafter abbreviated as degree of polymerization) of the vinyl alcohol polymer is not particularly limited, but is preferably in the range of 100 to 8000, and more preferably 300 to 3000.
[0008]
Here, examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate and the like, and vinyl acetate is economically preferable.
[0009]
In the present invention, by using a vinyl alcohol-based polymer containing 1 to 15 mol% of ethylene units in the molecule as the vinyl alcohol-based polymer used as the dispersant of the above (1), excellent water resistance is obtained. Further, it is possible to obtain an aqueous emulsion having excellent polymerization stability. The vinyl alcohol-based polymer can be obtained by saponifying a copolymer of a vinyl ester and ethylene. The ethylene unit content of the vinyl alcohol-based polymer is preferably 3 to 13 mol%, more preferably 4 to 12 mol%.
[0010]
In the present invention, freeze-thaw stability is achieved by using a vinyl alcohol-based polymer having 1,2-glycol bonds of 1.9 mol% or more as the vinyl alcohol-based polymer used as the dispersant of the above (1). It is possible to obtain an aqueous emulsion having excellent properties. The method for producing a vinyl alcohol-based polymer having 1.9 mol% or more of 1,2-glycol bonds is not particularly limited, and a known method can be used. As an example, a method in which vinylene carbonate is copolymerized with a vinyl ester so as to have the above-mentioned 1,2-glycol bond amount, the polymerization temperature of the vinyl ester is higher than usual, for example, 75 to 200 ° C., and the polymerization is performed under pressure And the like. In the latter method, the polymerization temperature is preferably from 95 to 190 ° C, particularly preferably from 100 to 180 ° C. It is important to select the pressure condition so that the polymerization system has a boiling point or less, preferably 0.2 MPa or more, more preferably 0.3 MPa or more. The upper limit is preferably 5 MPa or less, and more preferably 3 MPa or less. Polymerization can be performed by any method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization in the presence of a radical polymerization initiator.Solution polymerization, especially solution polymerization using methanol as a solvent, can be used. It is suitable. By saponifying the thus obtained vinyl ester polymer by a usual method, a vinyl alcohol polymer having 1.9 mol% or more of 1,2-glycol bond can be obtained. The content of 1,2-glycol bonds in the vinyl alcohol polymer is more preferably 1.95 mol% or more, further preferably 2.0 mol% or more, and most preferably 2.1 mol% or more. Further, the content of the 1,2-glycol bond is preferably 4 mol% or less, more preferably 3.5 mol% or less, and most preferably 3.2 mol% or less. Here, the content of the 1,2-glycol bond is determined from the analysis of the NMR spectrum.
[0011]
Further, as the vinyl alcohol polymer used as the dispersant of the above (1), a vinyl alcohol containing 1 to 15 mol% of ethylene units in the molecule and having 1.9 mol% or more of 1,2-glycol bond is used. By using the system polymer, it is possible to obtain an aqueous emulsion which is more excellent in water resistance, freeze-thaw stability and polymerization stability.
[0012]
The vinyl alcohol polymer may be a copolymer of an ethylenically unsaturated monomer copolymerizable within a range not to impair the object of the present invention. Such ethylenically unsaturated monomers include, for example, acrylic acid, methacrylic acid, fumaric acid, (anhydride) maleic acid, itaconic acid, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, trimethyl- (3-acrylamide -3-dimethylpropyl) -ammonium chloride, acrylamide-2-methylpropanesulfonic acid and its sodium salt, ethyl vinyl ether, butyl vinyl ether, N-vinylpyrrolidone, vinyl chloride, vinyl bromide, vinyl fluoride, vinylidene chloride, fluoride Vinylidene, tetrafluoroethylene, sodium vinyl sulfonate, sodium allyl sulfonate and the like can be mentioned.
Further, in the presence of a thiol compound such as thiolacetic acid and mercaptopropionic acid, a vinyl ester monomer such as vinyl acetate is polymerized, or a vinyl ester monomer and the above ethylenically unsaturated monomer are polymerized. A modified product having a mercapto group or a carboxyl group at a terminal obtained by copolymerizing and saponifying the obtained (co) polymer can also be used.
[0013]
Examples of the vinyl ester monomer used for emulsion polymerization in the present invention include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate, and the like. Vinyl acetate is economically preferable.
[0014]
In the present invention, a vinyl ester monomer is mainly used as a monomer used for emulsion polymerization, but it is also a preferable embodiment to use a vinyl ester monomer and ethylene in combination. By subjecting these monomers to emulsion polymerization, an aqueous emulsion containing a vinyl ester-based polymer or a vinyl ester-ethylene-based copolymer as a dispersoid can be obtained.
[0015]
In the emulsion polymerization, an ethylenically unsaturated monomer and a diene-based monomer may be copolymerized as long as the object of the present invention is not impaired. Such monomers include propylene, olefins such as isobutylene, vinyl chloride, vinyl fluoride, vinylidene chloride, halogenated olefins such as vinylidene fluoride, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, Acrylic acid and its esters such as 2-ethylhexyl acrylate, dodecyl acrylate and 2-hydroxyethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacryl Methacrylic acid such as 2-hydroxyethyl acid and its esters, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate and quaternary products thereof, furthermore, acrylamide, methacrylic acid Amide, N-methylolacrylamide, N, N-dimethylacrylamide, acrylamide monomers such as acrylamide-2-methylpropanesulfonic acid and its sodium salt, styrene, α-methylstyrene, p-styrenesulfonic acid and sodium and potassium Examples include styrene-based monomers such as salts, N-vinylpyrrolidone, and the like, and diene-based monomers such as butadiene, isoprene, and chloroprene.
[0016]
In the method for producing an aqueous emulsion of the present invention, it is important to use at least one polymerization initiator selected from hydrogen peroxide, ammonium persulfate, and potassium persulfate, and among them, hydrogen peroxide is particularly preferred. The amount of the polymerization initiator to be used is not particularly limited, but usually, the emulsion polymerization is carried out using a molar ratio of 0.001 to 0.01 with respect to all monomers, preferably 0.002 to 0.007. And more preferably 0.0025 to 0.005. By using the polymerization initiator in the above range, an aqueous emulsion with further improved water resistance can be obtained.
[0017]
Further, the polymerization initiator may be used in combination with a reducing agent and used in a redox system. In that case, hydrogen peroxide is usually used together with tartaric acid, L-ascorbic acid, Rongalit and the like. Ammonium persulfate and potassium persulfate are used together with sodium hydrogen sulfite, sodium hydrogen carbonate and the like. The amount of the reducing agent to be used is not particularly limited either, but usually 0.05 to 3 equivalents, preferably 0.1 to 2 equivalents, more preferably 0.3 to 1.5 equivalents, relative to the polymerization initiator.
[0018]
The method of adding the polymerization initiator in the early stage or late stage of the polymerization is not particularly limited, and a method of batch addition, a method of continuous addition, and the like can be used. In the early stage of the polymerization, preferably, a method of adding the polymerization initiator all at once is used. In the latter stage of the polymerization, a method of continuously adding a polymerization initiator is preferably used.
[0019]
In the present invention, it is necessary to charge less than 15% by weight of the total amount of the vinyl ester-based monomer in the initial stage of polymerization. The charge amount of the vinyl ester monomer in the initial stage of the polymerization may be 0% by weight, but is preferably 5% by weight or more, and most preferably 7% by weight. When the amount of the initially charged monomer is 15% by weight or more, it is difficult to keep the average residual amount of the vinyl ester monomer at less than 7% by weight in the latter stage of the polymerization, and the freeze-thaw stability of the emulsion may be reduced. There is. The amount of the polymerization initiator added in the early stage of the polymerization is not particularly limited, but is usually 0.005 to 0.025, preferably 0.008 to 0.020, more preferably 0.005 to 0.025 in terms of a molar ratio with respect to all monomers charged in the initial stage of the polymerization. Is 0.01 to 0.018.
As described above, by adding a predetermined amount of the polymerization initiator in the early stage of the polymerization, the water resistance is further improved.
In the initial polymerization, a monomer and a polymerization initiator are added to an aqueous solution of a dispersant, and the polymerization temperature is 50 to 70 ° C., preferably 55 to 65 ° C., and the polymerization time is 15 to 60 minutes, preferably 20 to 50 minutes. Done below. It is preferable that the monomers used in the initial stage of polymerization are added all at once.
[0020]
The amount of the vinyl alcohol-based polymer used as a dispersant is not particularly limited, but is preferably 1 to 20 parts by weight, more preferably 1.5 to 15 parts by weight, based on 100 parts by weight of all monomers. Range. When the amount is less than 1 part by weight or more than 20 parts by weight, the polymerization stability may be lowered or the storage stability may be lowered.
[0021]
The initial polymerization is terminated when the residual concentration of vinyl ester (% by weight based on the whole system) becomes 7% or less, preferably 3% or less, more preferably 1% or less. After the initial polymerization, it enters into the late stage of the polymerization. In the latter stage polymerization, it is important to add the monomer continuously or intermittently, and among them, continuous addition is particularly optimal. By the continuous or intermittent addition, an aqueous emulsion intended for the present invention is obtained. In the latter stage polymerization, the polymerization initiator is preferably added continuously, but may be added all at once or intermittently. In the latter stage polymerization, the polymerization temperature is preferably 5 to 30 ° C. higher than the initial polymerization temperature, and is in the range of 55 to 100 ° C., preferably 60 to 95 ° C., more preferably 70 to 90 ° C. Done.
In the present invention, it is important to keep the average residual amount (% by weight based on the entire system) of the vinyl ester monomer in the late stage of the polymerization at 7% or less, preferably 6% or less, more preferably 5% or less. is there. Here, the average residual amount is a value measured by a method described later. If the average residual amount is 7% or more, freeze-thaw stability and water resistance may be reduced.
If the average residual amount of the vinyl ester monomer is 7% or less in the latter stage of the polymerization, the dropping time of the vinyl ester monomer is not particularly limited, but is usually 3 hours or more, preferably 4 hours or more, and more preferably 4.5 hours or more.
[0022]
The polymerization pressure may be normal pressure in both the initial polymerization and the late polymerization, but it is necessary to increase the pressure if necessary. In particular, when producing a copolymer emulsion of a vinyl ester and another monomer, for example, ethylene, it is necessary to carry out under pressure.
[0023]
In the present invention, an emulsion excellent in freeze-thaw stability, water resistance and the like can be obtained, but at the same time, an emulsion having a low viscosity of 1000 MPa · s or less can be obtained stably. Here, the emulsion viscosity was measured under the conditions of 20 rpm and 20 ° C. using a B-type viscometer. Those having a viscosity of preferably less than 900 MPa · s, more preferably less than 800 MPa · s, are suitably used in applications requiring a low-viscosity emulsion.
[0024]
As the aqueous emulsion obtained by the present invention, the aqueous emulsion obtained by the above method can be used as it is, but if necessary, conventionally known various emulsions are added and used as long as the effects of the present invention are not impaired. be able to.
As the dispersant in the aqueous emulsion of the present invention, the above-mentioned vinyl alcohol-based polymer is used, and if necessary, a conventionally known anionic, nonionic or cationic surfactant, or hydroxyethyl cellulose, etc. Can also be used in combination.
[0025]
According to the present invention, an aqueous emulsion having excellent polymerization stability even at a low viscosity can be obtained. Further, since the obtained aqueous emulsion has excellent water resistance and freeze-thaw stability, it can be used for paper tubes, bag making, Adhesives for processing paper such as paper and corrugated cardboard, paper for pulp, etc., flash panels, glued glue, wood veneer, plywood processing, secondary processing of plywood (kneading), woodworking adhesives for general woodworking and various plastics Adhesives, impregnated papers, binders for non-woven products, admixtures, joints, paints, paper processing and textile processing.
[0026]
【Example】
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. In the following Examples and Comparative Examples, “parts” and “%” mean on a weight basis unless otherwise specified. Further, the water resistance and standing stability of the obtained emulsion were evaluated in the following manner.
[0027]
(Evaluation of emulsion)
The viscosity was measured using a B-type viscometer (20 rpm).
(1) Water resistance of the film
The obtained aqueous emulsion was cast on polyethylene terephthalate (PET) under the conditions of 20 ° C. and 65% RH, and dried for 7 days to obtain a dry film having a thickness of 500 μm. The film was punched out to a diameter of 2.5 cm, and the sample was immersed in water at 20 ° C. for 24 hours to determine the elution rate of the film.
Dissolution rate (%): {1− (weight of dried film after immersion / weight of dried film before immersion)} × 100
Absolute dry weight of the coating before immersion; weight of the coating before immersion (water content)-{weight of the coating before immersion (water content) x moisture content of the coating (%) / 100}
Film moisture content: The film (a sample different from the sample immersed in water at 20 ° C.) is absolutely dried at 105 ° C. for 4 hours, and the moisture content of the film is determined in advance.
Absolute dry weight of film after immersion; weight of absolutely dried film after immersion at 105 ° C for 4 hours.
(2) Freeze-thaw stability
50 g of the sample was placed in a polyethylene bottle, the sample was kept at −15 ° C. for 16 hours, then left in a constant temperature water bath at 30 ° C. for 1 hour, and the state was observed and evaluated according to the following criteria.
◎ Good fluidity, ○ Thickening but fluidity, △ Recovering fluidity when mixed, × Gellation
(3) Polymerization stability
Filtration residue
After the polymerization, the mixture was filtered through a 60-mesh wire gauze, and the remaining amount (%) of filtration (solid content of the emulsion) was measured. The smaller the filtration residue, the better the polymerization stability.
Graft polymer
The aqueous emulsion was cast on a PET film at 20 ° C. and 65% RH and dried for 7 days to obtain a dried film having a thickness of 500 μm. A sample obtained by punching out this film to a diameter of 2.5 cm was subjected to Soxhlet extraction with acetone for 24 hours, followed by extraction in boiling water for 24 hours, and the insoluble content of the film after extraction (dispersed around the polymer of the dispersoid). (A graft polymer in which a vinyl alcohol polymer was chemically bonded). The larger the amount of the graft polymer, the more strongly the vinyl alcohol-based polymer as the dispersant protects the periphery of the polymer of the dispersoid. An aqueous emulsion having excellent polymerization stability in viscosity is obtained.
Graft polymer (%) = (absolute dry weight of membrane after extraction / absolute dry weight of membrane before extraction) × 100
Absolute dry weight of film before extraction = Weight of film before extraction (water content)-{Weight of film before extraction (water content) x moisture content of film (%) / 100}
* Coating water content: The coating (a sample different from the sample extracted with acetone and boiling water) is completely dried at 105 ° C. for 4 hours, and the water content of the coating is determined in advance.
* Absolute dry weight of the film after extraction: The weight of the film after extraction at 105 ° C. for 4 hours.
(4) Storage stability
After leaving the aqueous emulsion at 20 ° C. for 3 months, the state was observed and evaluated according to the following criteria.
○ No change, slight sedimentation is observed, × completely separated
[0028]
Example 1
In a 2-liter glass polymerization vessel equipped with a reflux condenser, a dropping funnel, a thermometer, and a nitrogen inlet, 750 g of ion-exchanged water, PVA-1 @ polymerization degree of 1700, saponification degree of 98 mol%: PVA- manufactured by Kuraray Co., Ltd. 117} 68.4 g was charged and completely dissolved at 95 ° C. Next, the PVA aqueous solution was cooled, replaced with nitrogen, and then adjusted to 60 ° C. while stirring at 200 rpm. Then, 12.8 g of a 10% aqueous solution of tartaric acid and 8.8 g of a 5% aqueous hydrogen peroxide solution (based on total vinyl acetate). , In a molar ratio of 0.015), and 76 g of vinyl acetate (10% of the total vinyl acetate) was charged to initiate polymerization. 30 minutes after the start of the polymerization, the end of the initial polymerization (the residual amount of vinyl acetate was 1% by weight) was confirmed. Next, 1.3 g of a 10% aqueous solution of tartaric acid was added all at once, and then 43.8 g of 1% hydrogen peroxide was continuously added over 5 hours. At the same time, 684 g of vinyl acetate was continuously added over 5 hours, and the polymerization temperature was maintained at 80 ° C. to complete the late polymerization. Thereafter, filtration was performed using a 60-mesh stainless steel wire mesh. The smaller the filtration residue, the better the polymerization stability, and the larger the filtration residue, the worse the polymerization stability.
As a result, a polyvinyl acetate emulsion having a solid content of 49.8% was obtained. This emulsion was evaluated according to the method described above.
The average amount of residual vinyl acetate in the late stage of polymerization was determined by measuring the amount of residual vinyl acetate (by the titration method described in JIS K-6828) every 30 minutes from the start to the end of late polymerization, and calculating the average. Table 1 shows the results.
[0029]
Comparative Example 1
A polyvinyl acetate emulsion having a solid content of 49.7% in the same manner as in Example 1 except that vinyl acetate and 1% aqueous hydrogen peroxide added over 5 hours were added in 2 hours. was gotten. Table 1 also shows the results.
[0030]
Example 2
In the same manner as in Example 1, except that PVA-2 (polymerization degree: 1700, saponification degree: 88 mol%: PVA-217 manufactured by Kuraray Co., Ltd.) was used instead of PVA-1, the solid content was changed. A polyvinyl acetate emulsion having a concentration of 49.7% was obtained. Table 1 also shows the results.
[0031]
Comparative Example 2
A polyvinyl acetate emulsion having a solid content of 49.7% in the same manner as in Example 2 except that vinyl acetate and 1% aqueous hydrogen peroxide added in 5 hours were added in 2 hours in Example 2. was gotten. Table 1 also shows the results.
[0032]
Example 3
In a 2 liter glass polymerization vessel equipped with a reflux condenser, a dropping funnel, a thermometer and a nitrogen inlet, 930 g of ion-exchanged water and 54 g of PVA-1 were charged and completely dissolved at 195 ° C. Next, the PVA aqueous solution was cooled, replaced with nitrogen, and then adjusted to 60 ° C. while stirring at 200 rpm. Then, 10.2 g of a 10% aqueous solution of tartaric acid and 6.9 g of a 5% hydrogen peroxide solution (based on total vinyl acetate) , In a molar ratio of 0.015), and then 60 g of vinyl acetate (10% based on the total vinyl acetate) was charged to initiate polymerization. 30 minutes after the start of the polymerization, the end of the initial polymerization (the residual amount of vinyl acetate was 1% by weight) was confirmed. Next, 1 g of a 10% aqueous solution of tartaric acid was added all at once, and 34.6 g of 1% hydrogen peroxide was continuously added over 5 hours. At the same time, 540 g of vinyl acetate was continuously added over 5 hours, and the polymerization temperature was maintained at 80 ° C. to complete the late polymerization. Thereafter, filtration was performed using a 60-mesh stainless steel wire mesh. As a result, a polyvinyl acetate emulsion having a solid content of 40.1% was obtained. This emulsion was evaluated according to the method described above. Table 1 also shows the results.
[0033]
Comparative Example 3
A polyvinyl acetate emulsion having a solid content of 38.8% in the same manner as in Example 3 except that vinyl acetate and 1% aqueous hydrogen peroxide added over 5 hours were added over 2 hours. was gotten. Table 1 also shows the results.
[0034]
Example 4
In the same manner as in Example 1, except that PVA-3 (polymerization degree 1700, saponification degree 98 mol%, ethylene unit content 5 mol%) was used in place of PVA-1, the solid content concentration was changed. A 49.8% polyvinyl acetate emulsion was obtained. Table 1 also shows the results.
[0035]
Example 5
In the same manner as in Example 1, except that PVA-4 (polymerization degree 1700, saponification degree 88 mol%, ethylene unit content 3 mol%) was used in place of PVA-1, the solid content concentration was changed. A 49.7% polyvinyl acetate emulsion was obtained. Table 1 also shows the results.
[0036]
Example 6
Example 1 is the same as Example 1 except that PVA-5 (polymerization degree 1700, saponification degree 98 mol%, 1,2-glycol bond content 2.2 mol%) was used in place of PVA-1. As a result, a polyvinyl acetate emulsion having a solid concentration of 49.9% was obtained. Table 1 also shows the results.
[0037]
Example 7
In a 2-liter glass polymerization vessel equipped with a reflux condenser, a dropping funnel, a thermometer, and a nitrogen inlet, 740 g of ion-exchanged water and 30 g of PVA-5 were charged and completely dissolved at 95 ° C. Next, the PVA aqueous solution was cooled, replaced with nitrogen, and then adjusted to 60 ° C. while stirring at 200 rpm. Then, 17 g of a 10% aqueous solution of tartaric acid and 11.5 g of a 5% aqueous hydrogen peroxide solution (mol After a batch addition of 0.015), 100 g of vinyl acetate (10% based on the total vinyl acetate) was charged to initiate polymerization. 30 minutes after the start of the polymerization, the end of the initial polymerization (the residual amount of vinyl acetate was 1% by weight) was confirmed. Next, 1.7 g of a 10% aqueous solution of tartaric acid was added all at once, and 57.6 g of 1% hydrogen peroxide was continuously added over 5 hours. At the same time, 900 g of vinyl acetate was continuously added over 5 hours, and the polymerization temperature was maintained at 80 ° C. to complete the late polymerization. Thereafter, filtration was performed using a 60-mesh stainless steel wire mesh. As a result, a polyvinyl acetate emulsion having a solid content of 54.8% was obtained. This emulsion was evaluated according to the method described above. Table 1 also shows the results.
[0038]
Example 8
In a 2-liter glass polymerization vessel equipped with a reflux condenser, a dropping funnel, a thermometer and a nitrogen inlet, 630 g of ion-exchanged water and 17.6 g of PVA-5 were charged and completely dissolved at 95 ° C. Next, the PVA aqueous solution was cooled, purged with nitrogen, and adjusted to 60 ° C. while stirring at 200 rpm. Then, 15 g of a 10% aqueous solution of tartaric acid and 10.1 g of a 5% aqueous hydrogen peroxide solution (mol After the batch addition of 0.015), 88 g of vinyl acetate (10% based on the total vinyl acetate) was charged to initiate polymerization. 30 minutes after the start of the polymerization, the end of the initial polymerization (the residual amount of vinyl acetate was 1% by weight) was confirmed. Next, 1.5 g of a 10% aqueous solution of tartaric acid was added all at once, and then 50.7 g of 1% hydrogen peroxide was continuously added over 5 hours. At the same time, 792 g of vinyl acetate was continuously added over 5 hours, and the polymerization temperature was maintained at 80 ° C. to complete the late polymerization. Thereafter, filtration was performed using a 60-mesh stainless steel wire mesh. As a result, a polyvinyl acetate emulsion having a solid content of 54.4% was obtained. This emulsion was evaluated according to the method described above. Table 1 also shows the results.
[0039]
Comparative Example 4
Example 8 A polyvinyl acetate emulsion having a solid content of 53.8% in the same manner as in Example 8, except that vinyl acetate and 1% aqueous hydrogen peroxide added over 5 hours were added over 2 hours. was gotten. Table 1 also shows the results.
[0040]
[Table 1]
Figure 2004217724
[0041]
In Table 1,
Et: ethylene unit
DH: degree of saponification
Amount of dispersant PVA (phm): parts by weight based on 100 parts by weight of total vinyl acetate
Are respectively shown.
[0042]
【The invention's effect】
According to the present invention, an aqueous emulsion having excellent water resistance and freeze-thaw stability, excellent polymerization stability even at low viscosity, and excellent storage stability can be obtained.

Claims (5)

ビニルエステル系単量体を乳化重合するに際し、(1)分散剤としてけん化度75モル%以上のビニルアルコール系重合体を用い、(2)過酸化水素、過硫酸アンモニウムおよび過硫酸カリウムから選ばれる少なくとも一種の重合開始剤を使用し、(3)重合初期にビニルエステル系単量体を単量体全量に対し15重量%未満仕込み、(4)重合後期にビニルエステル系単量体を単量体全量に対し85重量%以上連続的または断続的に添加し、かつ(5)重合後期におけるビニルエステル系単量体の平均残存量を7重量%以下に保つことを特徴とする水性エマルジョンの製造方法。When emulsion-polymerizing a vinyl ester monomer, (1) a vinyl alcohol polymer having a saponification degree of 75 mol% or more is used as a dispersant, and (2) at least one selected from hydrogen peroxide, ammonium persulfate and potassium persulfate. Using a kind of polymerization initiator, (3) less than 15% by weight of vinyl ester monomer based on the total amount of monomer in the initial stage of polymerization, and (4) vinyl ester monomer in the latter stage of polymerization (5) A method for producing an aqueous emulsion, characterized in that 85% by weight or more of the total amount is continuously or intermittently added and (5) the average residual amount of the vinyl ester monomer in the late stage of polymerization is kept at 7% by weight or less. . (4)の重合後期において、ビニルエステル系単量体を3時間以上かけて連続的または断続的に添加する請求項1記載の水性エマルジョンの製造方法。The method for producing an aqueous emulsion according to claim 1, wherein the vinyl ester monomer is continuously or intermittently added over 3 hours or more in the latter stage of the polymerization of (4). (1)のビニルアルコール系重合体が、分子内にエチレン単位を1〜15モル%含有するビニルアルコール系重合体である請求項1または2記載の水性エマルジョンの製造方法。The method for producing an aqueous emulsion according to claim 1 or 2, wherein the vinyl alcohol-based polymer (1) is a vinyl alcohol-based polymer containing 1 to 15 mol% of ethylene units in a molecule. (1)のビニルアルコール系重合体が、1,2−グリコール結合を1.9モル%以上有するビニルアルコール系重合体である請求項1または2記載の水性エマルジョンの製造方法。3. The method for producing an aqueous emulsion according to claim 1, wherein the vinyl alcohol-based polymer (1) is a vinyl alcohol-based polymer having 1.9 mol% or more of 1,2-glycol bonds. 水性エマルジョンのB型粘度計による粘度が、20℃、20rpmにおいて1000MPa・s以下である請求項1〜4のいずれかに記載の水性エマルジョンの製造方法。The method for producing an aqueous emulsion according to any one of claims 1 to 4, wherein a viscosity of the aqueous emulsion measured by a B-type viscometer at 20 ° C and 20 rpm is 1000 MPa · s or less.
JP2003004641A 2003-01-10 2003-01-10 Method for manufacturing aqueous emulsion Pending JP2004217724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004641A JP2004217724A (en) 2003-01-10 2003-01-10 Method for manufacturing aqueous emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004641A JP2004217724A (en) 2003-01-10 2003-01-10 Method for manufacturing aqueous emulsion

Publications (1)

Publication Number Publication Date
JP2004217724A true JP2004217724A (en) 2004-08-05

Family

ID=32895566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004641A Pending JP2004217724A (en) 2003-01-10 2003-01-10 Method for manufacturing aqueous emulsion

Country Status (1)

Country Link
JP (1) JP2004217724A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082665A (en) * 2003-09-08 2005-03-31 Kuraray Co Ltd Dispersion stabilizer
WO2006022147A1 (en) * 2004-08-27 2006-03-02 Konishi Co., Ltd. Vinyl acetate resin emulsion and method for producing same
JP2009173895A (en) * 2007-12-27 2009-08-06 Nippon Synthetic Chem Ind Co Ltd:The Aqueous emulsion, and production method therefor
EP2202252A2 (en) 2008-12-29 2010-06-30 Celanese Emulsions GmbH Vinyl acetate/butenedioic acid cycloalkyl ester copolymers and uses thereof
WO2010076006A2 (en) 2008-12-29 2010-07-08 Celanese Emulsions Gmbh Alkyl methacrylate/alkyl acrylate copolymers used as sizing for reinforcing fiber
WO2013037382A1 (en) 2011-09-12 2013-03-21 Oxea Gmbh Vinyl acetate/vinyl 3,5,5-trimethylhexanoate copolymer binder resins
CN114746480A (en) * 2019-11-28 2022-07-12 三井-陶氏聚合化学株式会社 Resin pellet, method for producing resin pellet, gravure ink, and wire coating material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082665A (en) * 2003-09-08 2005-03-31 Kuraray Co Ltd Dispersion stabilizer
WO2006022147A1 (en) * 2004-08-27 2006-03-02 Konishi Co., Ltd. Vinyl acetate resin emulsion and method for producing same
JPWO2006022147A1 (en) * 2004-08-27 2008-05-08 コニシ株式会社 Vinyl acetate resin emulsion and method for producing the same
JP5085130B2 (en) * 2004-08-27 2012-11-28 コニシ株式会社 Vinyl acetate resin emulsion and method for producing the same
JP2009173895A (en) * 2007-12-27 2009-08-06 Nippon Synthetic Chem Ind Co Ltd:The Aqueous emulsion, and production method therefor
EP2202252A2 (en) 2008-12-29 2010-06-30 Celanese Emulsions GmbH Vinyl acetate/butenedioic acid cycloalkyl ester copolymers and uses thereof
WO2010076006A2 (en) 2008-12-29 2010-07-08 Celanese Emulsions Gmbh Alkyl methacrylate/alkyl acrylate copolymers used as sizing for reinforcing fiber
WO2013037382A1 (en) 2011-09-12 2013-03-21 Oxea Gmbh Vinyl acetate/vinyl 3,5,5-trimethylhexanoate copolymer binder resins
US9315694B2 (en) 2011-09-12 2016-04-19 Oxea Gmbh Vinyl acetate/vinyl 3,5,5-trimethylhexanoate copolymer binder resins
CN114746480A (en) * 2019-11-28 2022-07-12 三井-陶氏聚合化学株式会社 Resin pellet, method for producing resin pellet, gravure ink, and wire coating material
CN114746480B (en) * 2019-11-28 2024-06-04 三井-陶氏聚合化学株式会社 Resin pellet, method for producing resin pellet, gravure ink, and wire coating material

Similar Documents

Publication Publication Date Title
WO2020009178A1 (en) Modified vinyl alcohol polymer, method for producing same, dispersion stabilizer for suspension polymerization, and method for producing vinyl polymer
JP2002167403A (en) Method for producing vinylester resin emulsion
JP2002167403A5 (en)
JP2004217724A (en) Method for manufacturing aqueous emulsion
JP2004300193A (en) Aqueous emulsion
JP2001234018A (en) Dispersant for emulsion polymerization and aqueous emulsion
JP4731676B2 (en) Aqueous emulsion and process for producing the same
JP3563189B2 (en) Method for producing aqueous emulsion
JP2002003806A (en) Adhesive
JP4601794B2 (en) Aqueous emulsion and method for producing the same
JP4913462B2 (en) Aqueous emulsion
JP4416888B2 (en) Adhesive for paper industry
JP2001072820A (en) Aqueous emulsion composition
JP2005089540A (en) Vinyl acetate resin emulsion and manufacturing process
JP4628534B2 (en) Aqueous emulsion composition
JP4615133B2 (en) Production method of vinyl ester resin emulsion
JP2002194165A (en) Aqueous emulsion
JP2004189892A (en) Method for preparing aqueous emulsion, and adhesive
JP2001106856A (en) Aqueous emulsion composition
JP2002371165A (en) Aqueous emulsion composition and method for producing the same
JP2001106855A (en) Aqueous emulsion
JP2002234904A (en) Polyvinyl ester resin emulsion and adhesive
JP2004331901A (en) Vinyl acetate resin-based emulsion and method for producing the same
JP2001172592A (en) Adhesive for paper engineering
JP2001234144A (en) Adhesive for carpentry

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050309

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070816