JP2004214434A - 酸化物半導体発光素子ならびに製造方法 - Google Patents
酸化物半導体発光素子ならびに製造方法 Download PDFInfo
- Publication number
- JP2004214434A JP2004214434A JP2003000150A JP2003000150A JP2004214434A JP 2004214434 A JP2004214434 A JP 2004214434A JP 2003000150 A JP2003000150 A JP 2003000150A JP 2003000150 A JP2003000150 A JP 2003000150A JP 2004214434 A JP2004214434 A JP 2004214434A
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- zno
- light emitting
- ohmic electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
【解決手段】基板上に、少なくともn型ZnO系半導体クラッド層、ZnO系半導体発光層、p型ZnO系半導体クラッド層、p型ZnO系半導体コンタクト層が形成されている酸化物半導体発光素子のp型ZnO系半導体コンタクト層に遷移金属の酸化物を用いて、ZnO系半導体層に対して高い密着性を有し、かつ、低抵抗なオーミック電極を形成する。
【選択図】 図1
Description
【発明の属する分野】
本発明は発光ダイオード素子や半導体レーザ素子等の半導体発光素子に関し、より詳しくは、p型酸化物半導体に対して低抵抗なオーミック電極を用いた酸化物半導体発光素子に関する。さらに、本発明は上記酸化物半導体発光素子の製造方法に関する。
【0002】
【従来の技術】
酸化物材料は、誘電性、磁性、超伝導性等の従来の半導体材料では実現できない多くの機能を持ち、また半導体材料としても既存材料の特質を補って余りある可能性を有している。
最近、II族酸化物半導体である酸化亜鉛(ZnO)が青色領域ないし紫外領域の発光デバイス用の材料として有望視されている。
ZnOは、約3.4eVのバンドギャップエネルギーを有する直接遷移型半導体である。また、ZnOは約60meVと極めて高い励起子結合エネルギーを有するため、低消費電力で環境性に優れた高効率な発光デバイスを実現できる可能性があり、さらに、原材料が安価、環境や人体に無害で成膜手法が簡便である等の特徴を有している。
【0003】
以下、本明細書において、「ZnO系」半導体なる語を用いるときは、ZnOおよびこれを母体としたMgZnOまたはCdZnO等で表される混晶を含むものとする。また、本明細書において、組成を特定せずに化合物を示す場合には、例えば、「MgZnO」と単に元素記号のみで記載し、組成を特定する場合には、例えば、「Mg0.1Zn0.9O」と記載する。
【0004】
ZnOは強いイオン性に起因する自己補償効果のために従来p型の導電型制御が困難であったが、アクセプタ不純物として窒素(N)を用いることでp型化が実現し(例えば、「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Japanese Journal of Applied Physics)」、第36巻、1997年、p.L1453−1455;非特許文献1を参照せよ)、ZnO系半導体を用いて高効率な発光素子を作製すべく、多くの研究がなされるようになった(例えば、「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Japanese Journal of Applied Physics)」、第40巻、2001年、p.L177−180;非特許文献2を参照せよ)。
【0005】
しかし、ZnO中のアクセプタ準位は非常に深く、p型化を実現し得るNアクセプタでさえ200〜300meVのイオン化エネルギーを必要とするため、低抵抗層を得ることが難しい。
【0006】
特開2001−48698号公報(特許文献1)および特開2001−68707号公報(特許文献2)には、高密度記録や大量情報の伝達に必要な紫外光半導体レーザダイオードをZnOで作製するために、p型ドーパントとn型ドーパントとを同時にZnOにドーピングして、低抵抗なp型ZnO単結晶薄膜を作製する、いわゆる「同時ドーピング技術」を開示する。この「同時ドーピング技術」においては、p型ドーパント濃度がn型ドーパント濃度より大きくなるようにドーピングすることを特徴とする。この技術により得られた低抵抗なp型ZnOとGa等の不純物ドーピングにより得られるn型ZnOとを組合わせることによって、同一半導体化合物であるZnOにおいてpn接合が実現できる。
【0007】
また、p型ZnO系半導体に低抵抗なオーミック電極を形成する技術は、キャリアを活性層へ均一かつ高効率に注入するために極めて重要である。p型ZnO系半導体層のオーミック電極に関する従来の技術として、例えば、Ni、Ph、PtもしくはPdまたはこれらの合金を含む第1の金属層と、第1の金属層とは異なる金属または合金を含む第2の金属層からなるオーミック電極を形成する技術が、特開2001−168392号公報(特許文献3)に開示されている。
【0008】
【特許文献1】
特開2001−48698号公報
【0009】
【特許文献2】
特開2001−68707号公報
【0010】
【特許文献3】
特開2001−168392号公報
【0011】
【非特許文献1】
「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Japanese Journal of Applied Physics)」、第36巻、1997年、p.L1453−1455
【0012】
【非特許文献2】
「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Japanese Journal of Applied Physics)」、第40巻、2001年、p.L177−180
【0013】
【発明が解決しようとする課題】
しかしながら、本発明者の検討によると、酸化物半導体は金属層との密着性に乏しく、前記従来技術の金属を真空蒸着法やスパッタリング法等の生産性に優れた常法によって形成したオーミック電極は、ワイヤボンディング時や通電時に剥れたり劣化することが多く、信頼性において問題を有していた。
かくして、本発明は以上の課題に鑑み、p型酸化物半導体に対して密着性に優れ、かつ低抵抗なオーミック電極を用いて優れた発光特性を実現する酸化物半導体発光素子を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者は、酸化物半導体発光素子のp型層に対して密着性と低抵抗性を両立するオーミック電極の材料、構造および製造方法を鋭意検討した結果、Ni、CuおよびAgの金属酸化物をオーミック電極に用いることで目的が達せられることを見い出し本発明にいたった。
【0015】
以下、本明細書において、半導体発光素子中発光を司る層を「発光層」というが、半導体レーザ素子の場合には同様の意味で「活性層」なる語を用いることがある。しかしながら、両者の機能は実質的に同じであるため特に区別はしない。
【0016】
本発明は、基板上に、少なくともn型ZnO系半導体クラッド層、ZnO系半導体発光層、p型ZnO系半導体クラッド層、p型ZnO系半導体コンタクト層が形成され、該p型ZnO系半導体コンタクト層上に、Ni、CuおよびAgよりなる群から選択された少なくとも1の遷移金属の酸化物を含むp型オーミック電極が形成されている酸化物半導体発光素子を提供する。
【0017】
遷移金属酸化物は金属よりも酸化物に対する密着性に優れるので、これを用いたオーミック抵抗は、ワイヤボンディングや通電によって剥がれたりすることがない。特に、Ni、CuおよびAgの酸化物はp型半導体的性質を示し、低抵抗な導電性を有するため、p型酸化物半導体のオーミック電極として好適である。このことにより、信頼性に優れ、動作電圧の低い酸化物半導体発光素子を作製できる。
【0018】
p型クラッド層を低抵抗にすれば、光取り出し効率を向上させることができるが、ZnO系半導体は低抵抗なp型層を得ることが難しく、光取り出し効率を向上させるためには、電極を透光性とすることが有効である。
該オーミック電極の厚みを1〜100nmとすれば、十分低抵抗なオーミック接触を確保でき、かつ該発光層からの発光波長に対して透光性が高く光取り出し効率が向上する。
【0019】
本発明の酸化物半導体発光素子において、Auを用いて、該p型オーミック電極上にパッド電極を形成する。
Auは低抵抗でワイヤをボンディングするパッド電極として好適であり、また酸化物半導体に対してドナー不純物として作用しないので、p型オーミック電極上に形成しても電極が高抵抗化しない。
【0020】
本発明の酸化物半導体発光素子の別の局面において、該オーミック電極と該パッド電極との間に、Ru、Os、Rh、Ir、Ni、Pd、Pt、CuおよびAgよりなる群から選択された少なくとも1種の元素を含む中間層を形成する。
中間層を含むことにより、p型オーミック電極とパッド電極との密着性が向上する。また、中間層が金属薄膜で形成されていると、透光性電極に入射した発光を吸収せずに反射することができ、また電極がさらに低抵抗化する。
このような特長を有する中間層は、Ru、Os、Rh、Ir、Ni、Pt、CuおよびAgよりなる群から選択された少なくとも1種の元素を含んで構成されることにより実現される。
【0021】
該p型オーミック電極およびその上に接して形成される中間層にドナー不純物およびn型オーミック電極材料が含まれると、これら元素がp型オーミック電極やp型ZnOコンタクト層に拡散し、高抵抗化を生じてしまう。
したがって、本発明の酸化物半導体発光素子において、該p型オーミック電極および該中間層の構成元素には、Al、In、Ga、TiおよびCrが含まれない。
【0022】
また、本発明は、基板上に、少なくともn型ZnO系半導体クラッド層、ZnO系半導体発光層、p型ZnO系半導体クラッド層、p型ZnO系半導体コンタクト層を形成し;次いで、該p型ZnO系半導体コンタクト層上に遷移金属酸化物よりなるp型オーミック電極を形成する酸化物半導体発光素子の製造方法を提供する。
【0023】
本発明の酸化物半導体発光素子の製造方法の第1の局面において、Ni、CuおよびAgよりなる群から選択された少なくとも1の遷移金属の酸化物を用いて、遷移金属酸化物よりなるp型オーミック電極を形成する。
遷移金属酸化物を電極薄膜の原料として用いることにより、装置内にO2ガスを導入する必要がなく、遷移金属酸化物p型オーミック電極を簡便に作製できる。
【0024】
本発明の酸化物半導体発光素子の製造方法の第2の局面において、Ni、CuおよびAgよりなる群から選択された少なくとも1の遷移金属を用いて、酸素の存在下で、遷移金属酸化物よりなるp型オーミック電極を形成する。
元素金属は高純度な原料を安価に入手できるため、これを電極薄膜の原料に用いることにより、特性に優れた電極を低コストで製造できる。また、酸素雰囲気中で蒸着することにより、容易に酸化物薄膜を形成できるので、密着性に優れ低抵抗なオーミック電極を形成できる。
【0025】
上記の遷移金属酸化物よりなるp型オーミック電極は、電子ビーム蒸着法、スパッタリング法およびレーザアブレーション法のいずれかの薄膜形成法を用いて形成する。前記の薄膜形成法は、量産性が高く、高品質の酸化物薄膜を簡便に形成できる成膜手法であり、特性に優れた発光素子を低コストで製造できる。
【0026】
また、本発明の酸化物半導体発光素子の製造方法において、上記のp型オーミック電極を形成した後に、酸素雰囲気中または大気中で熱処理を行なって、該電極の密着性およびオーミック特性を向上させる。特に、酸素雰囲気中でアニール処理を行うことにより、該電極からの酸素抜けを抑止して、低いオーミック抵抗を保ったまま密着性を向上させることができる。
【0027】
上記の熱処理は、300〜450℃の範囲にある温度にて行う。300℃以上であれば電極の密着性向上と抵抗低減効果が高く、450℃以下であれば、酸化物半導体素子が劣化せず、特性に優れた酸化物半導体発光素子を製造できる。
【0028】
本発明において、基板上に、n型ZnO系半導体クラッド層、ZnO系半導体発光層、p型ZnO系半導体クラッド層、p型ZnO系半導体コンタクト層およびオーミック電極をこの順に直接積層することができるが、半導体発光素子の特性を向上させる目的で各層の間に他の層を形成することもできる。例えば、結晶性の良好な成長層を得るために、基板上に、先ず、バッファ層を形成することができる。また、半導体レーザ素子においては、発光層からの発光の光閉じ込め率を向上させる目的で、ZnO系半導体発光層とn型およびp型ZnO系半導体クラッド層との間に光ガイド層を形成することもできる。
【0029】
【発明の実施の形態】
以下、本発明の酸化物半導体発光素子を適用した実施形態を図面に基づいて、具体的に説明する。
【0030】
第1の実施形態
本発明による第1の実施形態の酸化物半導体発光素子は、基板上に、少なくともn型MgZnOクラッド層、CdZnO発光層、p型MgZnOクラッド層およびp型ZnOコンタクト層を有する発光ダイオード素子である。この発光ダイオード素子は、該p型ZnOコンタクト層上に遷移金属の酸化物を含むp型オーミック電極が形成されていることを特徴とする。
【0031】
図1は発光ダイオード素子1の斜視図(A)および断面図(B)を示す。発光ダイオード素子1は、亜鉛面を主面とするn型ZnO基板101上に、n型MgZnOクラッド層102、ノンドープのCdZnO発光層103、p型MgZnOクラッド層104およびp型コンタクト層105を積層することによって構成されている。
【0032】
p型MgZnOコンタクト層105の主表面全面には、発光層から発光された光に対して透光性であるp型オーミック電極106が積層されている。また、この透光性p型オーミック電極106は、Ni、CuおよびAgよりなる群から選択される少なくとも1の遷移金属の酸化物、例えば、NiO、Cu2OまたはAg2Oを用いて形成されている。さらに、この透光性p型オーミック電極106上には、透光性p型オーミック電極106よりも小さい面積でボンディング用パッド電極107が形成されている。
ZnO基板101の裏面には、n型オーミック電極108が積層されている。
【0033】
本発明の酸化物半導体発光素子において、基板101の材料としては、ZnO単結晶以外にも、サファイア、スピネル、LiGaO2等の絶縁性基板、またはSiC、GaN等の導電性基板を用いることができる。
図2(A)および(B)は、絶縁体であるサファイアを基板101に用いた発光ダイオード素子1’の斜視図を示す。
絶縁性基板を用いる場合は、図2(A)のように、成長層の一部をエッチングしてn型MgZnOクラッド層102を露出させ、その上にn型オーミック電極108を形成すればよい。また、図2(B)のように、結晶性の良好な成長層を得るために、基板上に先ずn型ZnOバッファ層109を形成し、さらにn型オーミック電極108の接触抵抗を低減するためにn型ZnOコンタクト層110を形成してもよい。
【0034】
しかしながら、高い発光効率を最大限に得るためには、(1)ZnOとの面内格子定数差が3%以内の格子整合基板であって、成長層の結晶性に優れ、非発光中心となる欠陥を低減でき、(2)発光波長に対応する吸収係数が低く、また、(3)導電性であって、裏面に電極を形成できる基板を用いることが好ましい。ZnO単結晶よりなる基板は、前記の条件を全て満足させるので最も好ましい。ZnO基板はその上にエピタキシャル成長されるZnO系半導体発光素子と完全に格子整合し、異種基板を用いるより親和性に優れる。これによって結晶性が良好で非発光中心の極めて少ない発光素子を作製することができる。
【0035】
また、主面として亜鉛面を用いることにより、p型層のキャリア活性化率が向上し、抵抗の低いp型層が得られやすくなるので好ましい。
また、基板を研磨やエッチング等の公知の手法で基板裏面に凹凸を形成して入射した発光光を乱反射させれば、光取り出し効率が向上するので好ましい。
【0036】
n型MgZnOクラッド層102にドーピングするドナー不純物には、ZnO系半導体中での活性化率が高いので、III族元素のB、Al、Ga、In等を用いることが好ましく、GaまたはAlが特に好ましい。
【0037】
発光層103は、ドナー不純物、例えば、B、Al、Ga、In等のIII族元素を任意量ドーピングしてn型にすることができる。あるいは、上記のドナー不純物とアクセプタ不純物、例えば、Li、Na、Cu、Ag、N、P、As等のIまたはV族元素とを共ドーピングして、発光層103をn型にすることもできる。NおよびAgは活性化しやすいので好ましい。Nは、N2をプラズマ化し結晶成長中に照射する手法によって結晶性を良好に保ちつつ、高濃度ドーピングが行えるので特に好ましい。これにより、ピーク波長および発光強度を制御することができる。
また、発光層103は井戸層および障壁層が交互に積層された量子井戸構造であってもよい。この場合、発光層103の井戸層のみまたは障壁層のみに上記ドナー不純物または上記ドナー不純物およびアクセプタ不純物をドーピングすることができる。
【0038】
p型MgZnOクラッド層104およびp型コンタクト層105にドーピングするアクセプタ不純物としては、IまたはV族元素であるLi、Na、Cu、Ag、N、P、As等を用いることができる。NおよびAgは活性化しやすいので好ましい。Nは、N2をプラズマ化し結晶成長中に照射する手法によって結晶性を良好に保ちつつ、高濃度ドーピングが行えるので特に好ましい。
【0039】
p型コンタクト層105の材料には、結晶性に優れキャリア濃度を高くできるZnOを用いることが好ましい。キャリア濃度を高くするために、p型ZnOコンタクト層105に過剰にアクセプタ不純物をドーピングすると、吸収損失の増大と結晶性劣化が顕著となり、光取り出し効率が低下するので、5×1016〜5×1019cm−3のキャリア濃度範囲となるようドーピング濃度を調整することが好ましい。
【0040】
p型オーミック電極106には、大きな仕事関数を有することが必要であり、特に4eV以上の仕事関数を有する遷移金属は、安定なオーミック特性を有する。このうち、特にNi、CuおよびAgの酸化物は低抵抗なp型半導体的性質を示し、p型酸化物オーミック電極として好ましい。
p型オーミック電極106はp型MgZnOクラッド層104上に直接形成することができるが、MgZnO混晶はZnOに比べて不純物の活性化率が低いことから、p型ZnOコンタクト層105を形成して低抵抗化し、その上に形成すれば、電流広がりを均一化することができるので、好ましい。
【0041】
また、本発明の高い発光効率と低い動作電圧を最大限の効果で得るためには、p型オーミック電極106が発光層から発光された光に対して透光性を有するように形成して光取り出し効率を向上させることが好ましい。光透過率は0%以上であれば効果を奏するが、発光波長に対して30%以上であることが好ましく、60%以上であることがより好ましい。
透明導電膜が主表面全面に形成されていることにより、電流広がりが均一化し外部光取り出し効率が向上する。よって、発光効率に優れた紫外発光素子を実現できる。
良好なオーミック特性と高い透光性を両立する厚みとしては1〜100nmの範囲が好ましい。
【0042】
p型オーミック電極106の形成後、アニール処理を行うと、密着性が向上すると共に接触抵抗が低減するので好ましい。ZnO結晶に欠陥を生じさせずにアニール効果を得るには、温度は300〜450℃が好ましい。また、アニール処理における雰囲気はO2または大気雰囲気中が好ましく、N2では逆に抵抗が増大する。
【0043】
パッド電極107は、透光性p型オーミック電極106上の一部に、p型オーミック電極106より小さな面積で形成すれば、透光性電極の効果を損なわずにリードフレームへの実装プロセスが容易になるので好ましい。
パッド電極107の材料としてはボンディングが容易でZnO系半導体中へ拡散してもドナー不純物とならない金属材料が好ましく、特に、Auが好ましい。
【0044】
n型オーミック電極108には、Ti、Cr、Al等の金属材料を用いることができる。なかでも低抵抗でコストの低いAlまたは密着性の良いTiが好ましい。前記金属材料の複数を合金化して、電極を形成してもよい。
Alは青〜紫外光の反射率が高いため、Alを用いてn型オーミック電極108を裏面全面に形成しても光取り出し効率は高いので好ましい。
また、n型オーミック電極108を任意の形状にパターニングし、露出した基板裏面をAgペースト等の導電性樹脂でリードフレームに接着することができる。AlよりもAgの方が青〜紫外光の反射率が高いため、Agペーストでリードフレームに接着することも好ましい。
また、n型オーミック電極108をパターニングする場合は、素子抵抗の増大を防ぐため補助電極を形成してもよく、AgやPt等の青〜紫外光の反射率が高い金属を補助電極に用いればさらに好ましい。
補助電極がリードフレームとの接触面積を増大させるため、n型電極をパターニングしても動作電圧が上昇しない。よって、動作電圧の低い発光素子を実現できる。
【0045】
その他の構成は任意であり、本明細書に記載された構成のみに限定されるものではない。
【0046】
本発明の酸化物半導体発光素子は、固体または気体原料を用いた分子線エピタキシー(MBE)法、レーザ分子線エピタキシー(レーザMBE)法、有機金属気相成長(MOCVD)法等の結晶成長手法で作製することができる。
レーザMBE法は、原料ターゲットと薄膜の組成ずれが小さく、また、例えば、ZnOにGaをドーピングさせる場合に、ZnGa2O4等の意図しない副生成物の生成を抑えることができるので好ましい。
本発明を発光ダイオード素子および半導体レーザ素子に適用する場合、図5に示すレーザMBE装置7を用いて、半導体レーザ素子を作製することができる。
レーザMBE装置7において、超高真空に排気可能な成長室701の上部に基板ホルダー702が配置され、基板ホルダー702に基板703が固定されている。基板ホルダー702上部に配置されたヒーター704により基板ホルダー702の裏面が加熱され、その熱伝導により基板703が加熱される。
基板ホルダー702直下には適当な距離を置いてターゲットテーブル705が配置され、ターゲットテーブル705上には、複数の原料ターゲット706を配置することができる。
ターゲット706の表面は成長室701の側面に設けられたビューポート707を通じ照射されるパルスレーザ光708によりアブレーションされ、瞬時に蒸発したターゲット706の原料が基板上に堆積することにより薄膜が成長する。
ターゲットテーブル705は回転機構を有し、パルスレーザ光708の照射シーケンスに同期して回転を制御することにより、異なるターゲット原料を薄膜上に積層することが可能となる。また、成長室には複数のガスを導入できるように複数のガス導入管710が設けられており、ラジカルセル709によって活性化された原子状ビームを基板703に照射することも可能である。
【0047】
本発明の酸化物半導体発光素子の金属酸化物オーミック電極を形成する場合、99.99〜99.999%の高純度で安価な元素金属および高純度なO2ガスを用い、レーザMBE装置中で酸化物層の成長を行うことができる。成長層から電極までを真空成長室中で一貫して形成することができるので、純度に優れ低抵抗な酸化物オーミック電極を簡便に形成することが可能である。
【0048】
また、本発明の酸化物半導体発光素子において、金属酸化物オーミック電極を形成する場合、量産性が高く、高品質の酸化物薄膜を簡便に形成できる成膜手法である電子ビーム蒸着法を用いることもでき、この方法を用いれば、特性に優れた発光素子を低コストで製造できる。
【0049】
さらに、金属酸化物のターゲットやタブレットは、99.999%以上の高純度なものが得られにくいが、あまり高純度な原料を必要としない場合には、原料タブレットに金属酸化物を用いることによって、装置内にO2ガスを導入せずに酸化物オーミック電極を形成することができ、製造プロセスの簡便性に優れると共に、酸素を嫌う真空成膜装置等を用いる場合に好適である。
【0050】
さらに、スパッタリング法およびレーザアブレーション法も電子ビーム蒸着法と同様、量産性が高く、高品質の酸化物薄膜を簡便に形成できる成膜手法であり、特性に優れた発光素子を低コストで製造できる。
【0051】
第2の実施形態
本発明による第2の実施形態の酸化物半導体発光素子は、第1の実施形態の半導体発光素子と同様に構成されるが、p型オーミック電極106とパッド電極107との間に、中間層201が形成されていることを特徴とする発光ダイオード素子である。
【0052】
図3は発光ダイオード素子2の断面図を示す。この図では、発光ダイオード素子1と同様の構成要素については図1と同じ符号を用いている。
発光ダイオード素子2は、p型オーミック電極106とパッド電極107との間に中間層201を形成する以外は、発光ダイオード素子1と同様にして作製される。
パッド電極107はp型オーミック電極106上に直接形成することができるが、中間層201を形成して、その上に形成すれば、密着性や光反射性を向上させるので好ましい。
【0053】
また、該p型オーミック電極106およびその上に接して形成される中間層201にドナー不純物およびn型オーミック電極材料が含まれると、これら元素がp型オーミック電極やp型ZnOコンタクト層に拡散し、高抵抗化を生じてしまうので、該p型オーミック電極および中間層は、Al、In、Ga、TiおよびCr以外の元素を用いて形成する。
【0054】
第3の実施形態
本発明による第3の実施形態の酸化物半導体発光素子は、基板上に、少なくともn型MgZnOクラッド層、量子井戸活性層、p型MgZnOクラッド層、およびp型ZnOコンタクト層を有し、該p型MgZnOクラッド層の一部およびp型ZnOコンタクト層がリッジストライプ状に加工されている半導体レーザ素子である。
この半導体レーザ素子は、該p型ZnOコンタクト層上には、遷移金属の酸化物を含むp型オーミック電極が形成され、その上にパッド電極が形成されていることを特徴とする。
【0055】
図4は、ZnO系半導体レーザ素子3の斜視図(A)および断面図(B)を示す。半導体レーザ素子3は、亜鉛面を主面としたn型ZnO単結晶基板301上に、ZnOバッファ層302、n型MgZnOクラッド層303、n型ZnO光ガイド層304、量子井戸活性層305、p型光ガイド層306、p型MgZnOクラッド層307、およびp型ZnOコンタクト層308を積層することによって構成されている。
【0056】
p型MgZnOクラッド層307の一部およびp型ZnOコンタクト層308はリッジストライプ状にエッチング加工され、n型電流ブロック層309によって、リッジストライプの側面は埋め込まれている。
【0057】
p型ZnOコンタクト層308およびn型電流ブロック層309上には、リッジストライプより広く素子より狭い幅で遷移金属の酸化物を含むp型オーミック電極310が形成され、最上面全面にはパッド電極311が形成されている。
また、ZnO基板301の下にはn型オーミック電極312が形成されている。
【0058】
本発明の酸化物半導体において、基板301の材料としては、ZnO単結晶以外にも、サファイア、スピネル、LiGaO2等の絶縁性基板、またはSiC、GaN等の導電性基板を用いることができる。
第1の実施形態において図2で示したように、絶縁性基板を用いる場合は、成長層の一部をエッチングしてn型MgZnOクラッド層303を露出させ、その上にn型オーミック電極312を形成すればよい。また、結晶性の良好な成長層を得るために、基板上に先ずバッファ層を形成してもよい。
【0059】
しかしながら、高い発光効率を最大限に得るためには、(1)ZnOとの面内格子定数差が3%以内の格子整合基板であって、成長層の結晶性に優れ、非発光中心となる欠陥を低減でき、(2)発光波長に対応する吸収係数が低く、また、(3)導電性であって、裏面に電極を形成できる基板を用いることが好ましい。ZnO単結晶よりなる基板は、前記の条件を全て満足させるので最も好ましい。ZnO基板はその上にエピタキシャル成長されるZnO系半導体発光素子と完全に格子整合し、異種基板を用いるより親和性に優れる。これによって結晶性が良好で非発光中心の極めて少ない発光素子を作製することができる。
【0060】
また、主面として亜鉛面を用いることにより、p型層のキャリア活性化率が向上し、抵抗の低いp型層が得られやすくなるので好ましい。
【0061】
バッファ層302はMgZnOより結晶性に優れるZnOで構成されることが好ましいが、ZnO基板を用いる場合はZnOとMgZnOクラッド層の中間のMg組成のMgZnO層を用いても良く、さらにMg組成が傾斜を有していてもよい。
また、基板に絶縁性基板を用いる場合には、ZnOと同じ結晶構造を有し格子定数が近いGaNやAlGaNなどのIII族窒化物をバッファ層に用いても効果を奏する。
バッファ層はn型MgZnOクラッド層303より低温で成長すると、n型MgZnOクラッド層303より上の結晶性が向上するので好ましい。
【0062】
n型MgZnOクラッド層303にドーピングするドナー不純物としては、ZnO系半導体中での活性化率が高いので、III族元素のB、Al、Ga、In等を用いることが好ましく、GaまたはAlが特に好ましい。
【0063】
量子井戸活性層305は、1または複数のZnO系半導体障壁層と1または複数のZnO系半導体井戸層とを交互に積層して形成された多重量子井戸構造である。
障壁層は井戸層にキャリアを閉じ込める働きを有し、井戸層よりもバンドギャップエネルギーが大きいZnO、CdZnOあるいはMgZnOで構成されることが好ましい。また、井戸層は所望の発振波長に応じたバンドギャップエネルギーを有するZnO、CdZnOあるいはMgZnOで構成されることが好ましい。
また、量子井戸活性層305全体に、ドナー不純物、例えば、B、Al、Ga、In等のIII族元素をドーピングすることができる。あるいは、上記ドナー不純物とアクセプタ不純物、例えば、Li、Na、Cu、Ag、N、P、As等のIまたはV族元素とを共ドーピングして、量子井戸活性層305をn型にすることもできる。これにより、ピーク波長および発光強度を制御することができる。
また、量子井戸活性層305の井戸層のみまたは障壁層のみに上記ドナー不純物または上記ドナー不純物およびアクセプタ不純物をドーピングすることができる。
【0064】
n型光ガイド層304およびp型光ガイド層306についてはZnOで構成されることが好ましいが、光閉じ込め効果を奏する屈折率を有すれば、MgZnOあるいはCdZnOで構成されていてもよい。また、n型光ガイド層304とp型光ガイド層306の層厚や組成比が異なっていてもよく、一方のみが形成されていてもよい。また、屈折率の異なる2層以上の積層構造であってもよい。
【0065】
p型MgZnOクラッド層307およびp型ZnOコンタクト層308にドーピングするアクセプタ不純物としては、IまたはV族元素であるLi、Na、Cu、Ag、N、P、As等を用いることができる。N、LiおよびAgは活性化しやすいので好ましい。Nは、N2をプラズマ化し結晶成長中に照射する手法によって結晶性を良好に保ちつつ、高濃度ドーピングが行えるので特に好ましい。
【0066】
n型電流ブロック層309は、ドナー不純物、例えば、B、Al、Ga、In等のIII族元素をドーピングしたMgZnOよりなる。
【0067】
p型オーミック電極310には、大きな仕事関数を有することが必要であり、特に4eV以上の仕事関数を有する遷移金属は、安定なオーミック特性を有する。このうち、特にNi、CuおよびAgの酸化物は低抵抗なp型半導体的性質を示し、p型酸化物オーミック電極として好ましい。
p型オーミック電極310はp型MgZnOクラッド層307上に直接形成することができるが、MgZnO混晶はZnOに比べて不純物の活性化率が低いことから、p型ZnOコンタクト層308を形成して低抵抗化し、その上に形成すれば、電流広がりを均一化することができるので、好ましい。
また、半導体レーザ素子3は端面発光型であるため、オーミック電極310は透光性である必要ななく、オーミック抵抗を十分低減させるために厚く形成することが好ましい。
【0068】
p型オーミック電極310の形成後にアニール処理を行うと、密着性が向上すると共に接触抵抗が低減するので好ましい。ZnO結晶に欠陥を生じさせずにアニール効果を得るには、温度は300〜450℃が好ましい。また、アニール処理における雰囲気はO2または大気雰囲気中が好ましく、N2では逆に抵抗が増大する。
【0069】
また、リッジストライプ幅は狭いほどキャリア注入効率が高く、また高次横モードをカットオフしてキンクレベルを向上させることができるが、一方で動作電圧が上昇し信頼性も悪化するため、0.5μm以上5μm以下の範囲で適宜制御することが好ましい。
【0070】
パッド電極311の材料としてはボンディングが容易でZnO系半導体中へ拡散してもドナー不純物とならない金属材料が好ましく、特に、Auが好ましい。
【0071】
n型オーミック電極312には、Ti、Cr、Al等の金属材料を用いることができる。なかでも低抵抗でコストの低いAlまたは密着性の良いTiが好ましい。前記金属材料の複数を合金化して、電極を形成してもよい。
【0072】
その他の構成は任意であり、本明細書に記載された構成のみに限定されるものではない。
【0073】
本発明の酸化物半導体発光素子は、固体または気体原料を用いた分子線エピタキシー(MBE)法、レーザ分子線エピタキシー(レーザMBE)法、有機金属気相成長(MOCVD)法等の結晶成長手法で作製することができる。
レーザMBE法は、原料ターゲットと薄膜の組成ずれが小さく、また、例えば、ZnOにGaをドーピングさせる場合に、ZnGa2O4等の意図しない副生成物の生成を抑えることができるので好ましい。
本発明を半導体レーザ素子に適用する場合、図5に示すレーザMBE装置7を用いて、半導体レーザ素子を作製することができる。
レーザMBE装置7において、超高真空に排気可能な成長室701の上部に基板ホルダー702が配置され、基板ホルダー702に基板703が固定されている。基板ホルダー702上部に配置されたヒーター704により基板ホルダー702の裏面が加熱され、その熱伝導により基板703が加熱される。
基板ホルダー702直下には適当な距離を置いてターゲットテーブル705が配置され、ターゲットテーブル705上には、複数の原料ターゲット706を配置することができる。
ターゲット706の表面は成長室701の側面に設けられたビューポート707を通じ照射されるパルスレーザ光708によりアブレーションされ、瞬時に蒸発したターゲット706の原料が基板上に堆積することにより薄膜が成長する。
ターゲットテーブル705は回転機構を有し、パルスレーザ光708の照射シーケンスに同期して回転を制御することにより、異なるターゲット原料を薄膜上に積層することが可能となる。また、成長室には複数のガスを導入できるように複数のガス導入管710が設けられており、ラジカルセル709によって活性化された原子状ビームを基板703に照射することも可能である。
【0074】
本発明の酸化物半導体発光素子の金属酸化物オーミック電極を形成する場合、99.99〜99.999%の高純度で安価な元素金属および高純度なO2ガスを用い、レーザMBE装置中で酸化物層の成長を行うことができる。成長層から電極までを真空成長室中で一貫して形成することができるので、純度に優れ低抵抗な酸化物オーミック電極を簡便に形成することが可能である。
【0075】
また、本発明の酸化物半導体発光素子において、金属酸化物オーミック電極を形成する場合、量産性が高く、高品質の酸化物薄膜を簡便に形成できる成膜手法である電子ビーム蒸着法を用いることもでき、この方法を用いれば、特性に優れた発光素子を低コストで製造できる。
【0076】
さらに、金属酸化物のターゲットやタブレットは、99.999%以上の高純度なものが得られにくいが、あまり高純度な原料を必要としない場合には、原料タブレットに金属酸化物を用いることによって、装置内にO2ガスを導入せずに酸化物オーミック電極を形成することができ、製造プロセスの簡便性に優れると共に、酸素を嫌う真空成膜装置等を用いる場合に好適である。
【0077】
さらに、スパッタリング法およびレーザアブレーション方も電子ビーム蒸着法と同様、量産性が高く、高品質の酸化物薄膜を簡便に形成できる成膜手法であり、特性に優れた発光素子を低コストで製造できる。
【0078】
【実施例】
実施例1
この実施例は、本発明を発光ダイオード素子に適用した第1の実施形態の酸化物半導体発光素子を説明する。
図1は、発光ダイオード素子1の斜視図(A)および断面図(B)を示す。この実施例において、(0001)亜鉛面を主面とするn型ZnO基板101上に、Gaを3×1018cm−3の濃度でドーピングした厚さ1μmのn型Mg0.1Zn0.9Oクラッド層102、厚さ0.1μmのノンドープCd0.1Zn0.9O発光層103、Nを1×1020cm−3の濃度でドーピングした厚さ1μmのp型Mg0.1Zn0.9Oクラッド層104、およびNを5×1020cm−3の濃度でドーピングした厚さ0.3μmのp型ZnOコンタクト層105を積層して、発光ダイオード素子1aを作製した。
また、p型ZnOコンタクト層105の主表面全面には、透光性のp型オーミック電極106として、厚さ10nmのNiOを積層し、その上に、直径100μmで厚さ500nmのボンディング用Auパッド電極107を形成した。
さらに、ZnO基板101の裏面には、n型オーミック電極108として厚さ100nmのAlを積層した。
【0079】
以下に製造方法を順に説明する。
まず、洗浄処理したZnO基板101をレーザMBE装置7に導入し、O2ガスを流しながら成長室701内の圧力を5×10−3Paに調整し、温度600℃で30分間加熱し清浄化した。
次に基板温度を550℃に降温し、ノンドープZnO単結晶およびGa2O3を添加したMgZnO焼結体を原料ターゲットとし、回転機構によるターゲットテーブルの駆動周期とKrFエキシマレーザのパルス照射周期を外部制御装置(図示せず)によって同期させ、前記原料ターゲットを所望のMg組成とGaドーピング濃度が得られる比率で交互にアブレーションしてn型Mg0.1Zn0.9Oクラッド層102を得た。アブレーションを行うパルスレーザにはKrFエキシマレーザ(波長:248nm、パルス数:10Hz、出力1mJ/cm2)を用いた。成長中にはガス導入管710aより、O2ガスを導入した。
【0080】
次に、ノンドープZnO単結晶およびノンドープCdO単結晶を原料ターゲットとして交互アブレーションを行い、Cd0.1Zn0.9O発光層103を成長させた。
次に、ガス導入管710bより導入したN2ガスをラジカルセル709でプラズマ化して照射しながら、ノンドープZnO単結晶およびノンドープMgZnO焼結体を原料ターゲットとして交互アブレーションを行い、p型Mg0.1Zn0.9Oクラッド層104を成長させた。
【0081】
次に、ガス導入管710bより導入したN2ガスをラジカルセル709でプラズマ化して照射しながら、ノンドープZnO単結晶を原料ターゲットとしてアブレーションを行い、p型ZnOコンタクト層105を成長させた。
【0082】
次に、O2ガスの流量を調整して成長室701内の圧力を1×10−3Paに調整し、Niを原料ターゲットとしてアブレーションを行い、NiOオーミック電極106を成膜した。このとき、アブレーションにより蒸発した金属Niは、成長室内のO2ガスによってNiOとなる。成膜したNiOは厚さ10nmで、発光層からの発光の705を透過する。
【0083】
次に、O2ガスの導入をを停止して成長室701内の圧力を1×10−4Paに調整し、Auを原料としてアブレーションを行い、Auパッド電極107を成膜した。
【0084】
次に、ZnO基板101をレーザMBE装置7装置から取り出して、エッチングによりAuパッド電極107を直径100μmに加工した。
次に、ZnO基板101をアニール炉(図示しない)に導入し、O2ガスを流しながら常圧において温度350℃で1分間アニールを行なった。
次に、ZnO基板101を真空蒸着装置(図示しない)へ導入し、Alを原料としてZnO基板101の裏面に電子ビーム蒸着を行い、n型オーミック電極108を成膜した。
【0085】
発光ダイオード素子1aを300μm角のチップ状に分離し、基板裏面にAgペーストを塗布してn型オーミック電極108をリードフレーム(図示しない)の一方に接続し、Auパッド電極107をリードフレームの他方にワイヤボンディングした後、樹脂でモールドし発光させたところ、発光ピーク波長410nmの青色発光が得られ、20mAの動作電流における動作電圧は3.6Vであった。
【0086】
発光ダイオード素子1aのチップ100個をリードフレームに実装したところ、Auパッド電極107をリードフレームにワイヤボンディングする際に電極剥れは1つも生じなかった。
【0087】
比較のため、O2ガスを流さずにNiをアブレーションすることにより、NiOオーミック電極106をNi金属電極に変更する以外は、発光ダイオード素子1aと同様にして、発光ダイオード素子1bを作製した。100個のチップをリードフレームに実装したところ、ワイヤボンディングの際に25個が電極剥れを生じ、20個の動作電圧は5V以上であった。
すなわち、金属電極と酸化物半導体との密着性が弱いため、発光ダイオード素子1bでは、製造歩留まりが低いのに対し、発光ダイオード素子1aでは、オーミック電極を金属酸化物で構成しているので密着性が強く、信頼性は飛躍的に向上することが確認された。
【0088】
また、比較のため、Auパッド電極107を形成しない以外は、発光ダイオード素子1aと同様にして発光ダイオード素子1cを作製した。100個のチップをリードフレームに実装したところ、60個がワイヤボンディングできず、20個が通電中にNiOオーミック電極106からボンディングワイヤが外れた。
すなわち、本発明の低いオーミック抵抗と強い密着性の効果を最大限に得るには、パッド電極を形成してワイヤボンディングを行うことが好ましいことが確認された。
【0089】
さらに、比較のため、p型オーミック電極106を形成した後にアニール処理を行なわない以外は、発光ダイオード素子1aと同様にして発光ダイオード素子1dを作製した。100個のチップをリードフレームに実装したところ、ワイヤボンディングの際に15個が電極剥れを生じ、10個の動作電圧は5V以上であった。
すなわち、アニール処理を行うことにより、酸化物半導体と電極の密着性およびオーミック特性は格段に向上することが確認された。
【0090】
アニール処理の温度は、300℃以上であれば密着性向上と抵抗低減効果が高く、450℃以下であれば、酸化物半導体素子が劣化しにくいことが確認された。したがって、アニール処理は、300〜450℃の範囲にある温度にて行うことが好ましい。
また、アニール処理における雰囲気はO2または大気雰囲気中が好ましく、N2では逆に抵抗が増大することが確認された。
さらに、n型オーミック電極にAl等の酸化し易い金属を用いる場合は、大気雰囲気中でアニール処理を行うか、この実施例のように先にp型オーミック電極のアニール処理を行った後、n型オーミック電極を形成することが好ましいことがわかった。
【0091】
実施例2
図6に、NiOオーミック電極層106の層厚と発光ダイオード素子1の動作電圧および発光強度の関係を示す。
NiOオーミック電極106の層厚を変化させる以外は、発光ダイオード素子1aと同様にして、種々の発光ダイオード素子を作製した。
図6からわかるように、NiOオーミック電極層106の層厚が1nm以上で動作電圧は急激に減少し、10nmを超えると動作電圧はほぼ一定になった。
また、100nmを超えると発光強度が急激に低下する。電極の層厚が高くなり過ぎると、透光性も低したためと考えられる。
以上の結果より、発光ダイオード素子の動作電圧を低く保ち、かつ高い発光強度を実現するためには、金属電極層の層厚は1nm以上100nm以下が好ましく、10nm以上100nm以下がより好ましい。
【0092】
実施例3
p型オーミック電極106として、Cu2Oタブレットを用いた電子ビーム蒸着法でCu2Oを形成する以外は、発光ダイオード素子1aと同様にして、発光ダイオード素子1eを作製した。
発光ダイオード素子1eを実施例1と同様の手法でリードフレームに実装し発光させたところ、発光ピーク波長410nmの青色発光が得られた。また、20mAの動作電流における動作電圧および発光強度は発光ダイオード素子1aの場合とほぼ同じであった。
また、100個のチップをリードフレームに実装したところ、ワイヤボンディングする際に電極剥れは1つも生じなかった。
【0093】
実施例4
この実施例は、本発明を発光ダイオード素子に適用した第2の実施形態の酸化物半導体発光素子を説明する。第2の実施形態の酸化物半導体発光素子は、NiOオーミック電極106とAuパッド電極107との間に、Ag中間層201が形成されている発光ダイオード素子である。
【0094】
図3は発光ダイオード素子2の断面図を示す。この実施例において、NiOオーミック電極106とAuパッド電極107の間に、厚さ50nmのAg中間層201を形成する以外は、発光ダイオード素子1aと同様にして発光ダイオード素子2aを作製した。なお、この図中、発光素子1aと同様の構成要素については図1と同じ符号を用いている。
【0095】
発光ダイオード素子2aを実施例1と同様の手法でリードフレームに実装し発光させたところ、発光ピーク波長410nmの青色発光が得られた。
【0096】
発光ダイオード素子2aのチップ100個をリードフレームに実装したところ、ワイヤボンディングする際に電極剥れは1つも生じなかった。また、動作電圧は発光ダイオード素子1aより低減して3.3Vとなった。
すなわち、p型オーミック電極106とパッド電極107との間にAgのごとき金属薄膜で中間層201を形成したことにより、酸化物オーミック電極とパッド電極との密着性を向上させることができることが確認された。
さらに、発光強度は10%増大した。これは、Auパッド電極直下に入射した発光が反射率の高いAg中間層201で反射されチップ側面から取り出されたためと考えられる。
【0097】
比較のため、Gaを用いて中間層201を形成する以外は、発光ダイオード素子2aと同様にして、発光ダイオード素子2bを作製し、上記と同様の手法によりリードフレームに実装したところ、ワイヤボンディングの際に電極剥れは生じなかったが、動作電圧は5V以上であった。
すなわち、p型オーミック電極106とパッド電極107との間にGaのごときドナー不純物に用いる元素で中間層201を形成したことにより、酸化物オーミック電極とパッド電極との密着性を向上させることができることが確認された。
しかしながら、Ag中間層を適用した発光ダイオード素子2aと比較して、Ga中間層を適用した発光ダイオード素子2bの動作電圧は増大した。この理由は、GaがZnO半導体においてドナー不純物として働くため、p型オーミック電極やp型ZnO層に拡散することによって電気伝導を阻害したものと考えられる。
したがって、中間層はGaのごとき導電性酸化物で形成してもよいが、Agのごとき金属薄膜で形成すれば、透光性電極に入射した発光を吸収せずに反射することができ、また電極がさらに低抵抗化するので好ましいことが確認された。
【0098】
以上の結果より、p型オーミック電極106とパッド電極107との間の密着性を向上させ、かつ、オーミック抵抗を低減させるような中間層材料としては、Ru、Os、Rh、Ir、Ni、Pd、Pt、Cu、Agが好ましい。
このように、p型オーミック電極および中間層には、ドナー不純物であるAl、GaおよびInを含まないことが好ましく、さらにn型オーミック電極材料となるTi、Crも含まないことが好ましい。
【0099】
実施例5
この実施例は、本発明を半導体レーザ素子に適用した第3の実施形態の半導体発光素子を説明する。
図4はZnO系半導体レーザ素子3の斜視図(A)および断面図(B)を示す。この実施例において、亜鉛面を主面としたn型ZnO単結晶基板301上に、Gaドーピング濃度が1×1018cm−3で厚さ0.1μmのZnOバッファ層302、Gaドーピング濃度が3×1018cm−3で厚さ1.0μmのn型Mg0.1Zn0.9Oクラッド層303、Gaドーピング濃度が5×1017cm−3で厚さ30nmのn型ZnO光ガイド層304、ノンドープ量子井戸活性層305、Nドーピング濃度が5×1018cm−3で厚さ30nmのp型ZnO光ガイド層306、Nドーピング濃度が1×1020cm−3で厚さ1.2μmのp型Mg0.1Zn0.9Oクラッド層307、Nドーピング濃度が1×1020cm−3で厚さ0.5μmのp型ZnOコンタクト層308を積層して、半導体レーザ素子3aを作製した。
量子井戸活性層305は、厚さ5nmのZnO障壁層2層と厚さ6nmのCd0.1Zn0.9O井戸層3層とを交互に積層することによって形成されている。
p型ZnOコンタクト層308およびp型Mg0.1Zn0.9Oクラッド層307の一部はリッジストライプ状にエッチング加工され、側面はGaが1×1018cm−3の濃度でドーピングされたn型Mg0.3Zn0.7O電流ブロック層309によって埋め込まれている。
p型ZnOコンタクト層308およびn型Mg0.3Zn0.7O電流ブロック層309上には、リッジストライプより広く素子より狭い幅で、厚さ100nmのAg2Oオーミック電極310が形成され、最上面全面には厚さ500nmのAuパッド電極311が形成されている。
半導体レーザ素子3aは端面発光型であるため、Ag2Oオーミック電極310は透光性である必要はなく、オーミック抵抗を十分低減させるために厚く形成している。
n型ZnO基板301の下にはn型Alオーミック電極312が形成されている。
【0100】
以下に製造方法を順に説明する。
半導体レーザ素子3aは、レーザMBE装置7を用いて結晶成長を行い、p型Ag2Oオーミック電極310、Auパッド電極311およびn型Alオーミック電極312は、原料ターゲットに各々Ag2O、AuおよびAlを用いてスパッタリング法で形成した。
【0101】
半導体レーザ素子3aを作製後、ZnO基板301を劈開して端面ミラーを形成し、保護膜を真空蒸着した後、素子を300μm角のチップ状に分離した。
半導体レーザ素子3aのチップに電流を流したところ、端面から波長405nmの青色発振光が得られ、光出力5mW駆動時に動作電圧および動作電流は、3.5Vおよび25mAであった。
【0102】
比較のため、p型Ag2Oオーミック電極310を金属Agで形成する以外は、半導体レーザ素子3aと同様にして、半導体レーザ素子3bを作製した。半導体レーザ素子3bをチップ状に分離し、100個のチップを実装したところ、30個の素子がワイヤボンディングする際に電極剥れを生じ、20個の素子が光出力5mW駆動時の動作電圧が5Vを超え、発熱によって素子寿命が著しく低下した。
【0103】
すなわち、酸化物オーミック電極を半導体レーザ素子に適用しても十分な密着性と抵抗低減効果を有することが確認された。
【0104】
【発明の効果】
本発明によれば、Ni、CuおよびAgよりなる群から選択された少なくとも1種の遷移金属の酸化物を用いて、酸化物半導体発光素子のp型コンタクト層上に遷移金属酸化物オーミック電極を形成したので、ZnO系半導体層との密着性に優れると共に、安定かつ低抵抗なオーミック電極を形成でき、信頼性が高く動作電圧の低い酸化物半導体発光素子を作製できる。
【図面の簡単な説明】
【図1】本発明による第1の実施形態の酸化物半導体発光素子(発光ダイオード素子)を示す斜視図(A)および断面図(B)。
【図2】絶縁性基板を用いた第1の実施形態の酸化物半導体発光素子(発光ダイオード)を示す斜視図。
【図3】本発明による第2の実施形態の酸化物半導体発光素子(発光ダイオード素子)を示す断面図。
【図4】本発明による第3の実施形態の酸化物半導体発光素子(半導体レーザ素子)を示す斜視図(A)および断面図(B)。
【図5】レーザ分子線エピタキシー装置の概略図。
【図6】NiOオーミック電極層の層厚と発光ダイオード素子の動作電圧および発光強度との関係を説明するグラフ図。
【符号の説明】
1・・・発光ダイオード素子、
101・・・ZnO基板、
102・・・n型ZnO系半導体層、
103・・・発光層、
104・・・p型ZnO系半導体層、
105・・・p型ZnO系半導体コンタクト層、
106・・・p型オーミック電極、
107・・・パッド電極、
108・・・n型オーミック電極、
109・・・n型ZnOバッファ層、
110・・・n型ZnOコンタクト層、
201・・・中間層、
3・・・半導体発光素子、
301・・・ZnO基板、
302・・・n型ZnOバッファ層、
303・・・n型ZnO系半導体層、
304・・・n型ZnO光ガイド層、
305・・・量子井戸活性層、
306・・・p型ZnO光ガイド層、
307・・・p型MgZnOクラッド層、
308・・・p型ZnOコンタクト層、
309・・・n型MgZnO電流ブロック層、
310・・・p型オーミック電極、
311・・・パッド電極、
312・・・n型オーミック電極、
7・・・レーザMBE装置、
701・・・成長室、
702・・・基板ホルダー、
703・・・基板、
704・・・ヒーター、
705・・・ターゲットテーブル、
706・・・原料ターゲット、
707・・・ビューポート、
708・・・パルスレーザ光(エキシマレーザ)、
709・・・ラジカルセル、
710・・・ガス導入管。
Claims (10)
- 基板上に、少なくともn型ZnO系半導体クラッド層、ZnO系半導体発光層、p型ZnO系半導体クラッド層、p型ZnO系半導体コンタクト層が形成され、該p型ZnO系半導体コンタクト層上に、Ni、CuおよびAgよりなる群から選択された少なくとも1の遷移金属の酸化物を含むp型オーミック電極が形成されている酸化物半導体発光素子。
- 該p型オーミック電極の厚みが1〜100nmであり、該発光層からの発光波長に対して透光性を有する請求項1記載の酸化物半導体発光素子。
- 該p型オーミック電極上に、Auを含むパッド電極が形成されている請求項1記載の酸化物半導体発光素子。
- 該p型オーミック電極と該パッド電極との間に、Ru、Os、Rh、Ir、Ni、Pd、Pt、CuおよびAgよりなる群から選択された少なくとも1の元素を含む中間層が形成された請求項3記載の酸化物半導体発光素子。
- 該p型オーミック電極および該中間層の構成元素が、Al、In、Ga、Ti、Crを含まない請求項1または4記載の酸化物半導体発光素子。
- 基板上に、少なくともn型ZnO系半導体クラッド層、ZnO系半導体発光層、p型ZnO系半導体クラッド層、p型ZnO系半導体コンタクト層を形成し;次いで、Ni、CuおよびAgよりなる群から選択された少なくとも1の遷移金属の酸化物を用いて、該p型ZnO系半導体コンタクト層上に遷移金属酸化物よりなるp型オーミック電極を形成する酸化物半導体発光素子の製造方法。
- 基板上に、少なくともn型ZnO系半導体クラッド層、ZnO系半導体発光層、p型ZnO系半導体クラッド層、p型ZnO系半導体コンタクト層を形成し;次いで、Ni、CuおよびAgよりなる群から選択された少なくとも1の遷移金属を用いて、酸素の存在下で、該p型ZnO系半導体コンタクト層上に遷移金属酸化物よりなるp型オーミック電極を形成する酸化物半導体発光素子の製造方法。
- 電子ビーム蒸着法、スパッタリング法またはレーザアブレーション法を用いて該遷移金属酸化物p型オーミック電極を形成する請求項6または7記載の酸化物半導体発光素子の製造方法。
- 該遷移金属酸化物p型オーミック電極を形成した後に、酸素雰囲気中または大気中で熱処理を行なう請求項6または7記載の酸化物半導体発光素子の製造方法。
- 該熱処理を300〜450℃の範囲にある温度にて行う請求項9記載の酸化物半導体発光素子の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003000150A JP2004214434A (ja) | 2003-01-06 | 2003-01-06 | 酸化物半導体発光素子ならびに製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003000150A JP2004214434A (ja) | 2003-01-06 | 2003-01-06 | 酸化物半導体発光素子ならびに製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004214434A true JP2004214434A (ja) | 2004-07-29 |
Family
ID=32818559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003000150A Pending JP2004214434A (ja) | 2003-01-06 | 2003-01-06 | 酸化物半導体発光素子ならびに製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004214434A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008143526A1 (en) * | 2007-05-17 | 2008-11-27 | Canterprise Limited | Contact and method of fabrication |
JP2010212498A (ja) * | 2009-03-11 | 2010-09-24 | Stanley Electric Co Ltd | 酸化亜鉛系半導体素子の製造方法 |
JP2010251384A (ja) * | 2009-04-10 | 2010-11-04 | Stanley Electric Co Ltd | 酸化亜鉛系半導体素子及びその製造方法 |
JP2010251383A (ja) * | 2009-04-10 | 2010-11-04 | Stanley Electric Co Ltd | 酸化亜鉛系半導体素子及びその製造方法 |
JP2013530537A (ja) * | 2010-06-18 | 2013-07-25 | センサー エレクトロニック テクノロジー インコーポレイテッド | 深紫外発光ダイオード |
WO2016132681A1 (ja) * | 2015-02-18 | 2016-08-25 | 出光興産株式会社 | 積層体及び積層体の製造方法 |
US9647137B2 (en) | 2008-10-24 | 2017-05-09 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor, thin film transistor, and display device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10335705A (ja) * | 1997-05-28 | 1998-12-18 | Nichia Chem Ind Ltd | 窒化ガリウム系化合物半導体素子及びその製造方法 |
JP2001007398A (ja) * | 1999-06-08 | 2001-01-12 | Agilent Technol Inc | p型GaN層に透光性接触部を形成する方法 |
JP2001044503A (ja) * | 1999-08-04 | 2001-02-16 | Showa Denko Kk | AlGaInP発光ダイオード |
JP2001237460A (ja) * | 2000-02-23 | 2001-08-31 | Matsushita Electric Ind Co Ltd | 発光素子 |
JP2002016285A (ja) * | 2000-06-27 | 2002-01-18 | National Institute Of Advanced Industrial & Technology | 半導体発光素子 |
JP2002170990A (ja) * | 2000-12-04 | 2002-06-14 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体へのp型オーム性接合形成方法 |
-
2003
- 2003-01-06 JP JP2003000150A patent/JP2004214434A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10335705A (ja) * | 1997-05-28 | 1998-12-18 | Nichia Chem Ind Ltd | 窒化ガリウム系化合物半導体素子及びその製造方法 |
JP2001007398A (ja) * | 1999-06-08 | 2001-01-12 | Agilent Technol Inc | p型GaN層に透光性接触部を形成する方法 |
JP2001044503A (ja) * | 1999-08-04 | 2001-02-16 | Showa Denko Kk | AlGaInP発光ダイオード |
JP2001237460A (ja) * | 2000-02-23 | 2001-08-31 | Matsushita Electric Ind Co Ltd | 発光素子 |
JP2002016285A (ja) * | 2000-06-27 | 2002-01-18 | National Institute Of Advanced Industrial & Technology | 半導体発光素子 |
JP2002170990A (ja) * | 2000-12-04 | 2002-06-14 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体へのp型オーム性接合形成方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8508015B2 (en) | 2007-05-17 | 2013-08-13 | Canterprise Limited | Schottky-like contact and method of fabrication |
JP2010527512A (ja) * | 2007-05-17 | 2010-08-12 | カンタープライズ リミティド | コンタクトおよび作製方法 |
WO2008143526A1 (en) * | 2007-05-17 | 2008-11-27 | Canterprise Limited | Contact and method of fabrication |
US9647137B2 (en) | 2008-10-24 | 2017-05-09 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor, thin film transistor, and display device |
US10141343B2 (en) | 2008-10-24 | 2018-11-27 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor, thin film transistor, and display device |
US10692894B2 (en) | 2008-10-24 | 2020-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor, thin film transistor, and display device |
US10978490B2 (en) | 2008-10-24 | 2021-04-13 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor, thin film transistor, and display device |
US11594555B2 (en) | 2008-10-24 | 2023-02-28 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor, thin film transistor, and display device |
JP2010212498A (ja) * | 2009-03-11 | 2010-09-24 | Stanley Electric Co Ltd | 酸化亜鉛系半導体素子の製造方法 |
JP2010251383A (ja) * | 2009-04-10 | 2010-11-04 | Stanley Electric Co Ltd | 酸化亜鉛系半導体素子及びその製造方法 |
JP2010251384A (ja) * | 2009-04-10 | 2010-11-04 | Stanley Electric Co Ltd | 酸化亜鉛系半導体素子及びその製造方法 |
US8735195B2 (en) | 2009-04-10 | 2014-05-27 | Stanley Electric Co., Ltd. | Method of manufacturing a zinc oxide (ZnO) based semiconductor device including performing a heat treatment of a contact metal layer on a p-type ZnO semiconductor layer in a reductive gas atmosphere |
JP2013530537A (ja) * | 2010-06-18 | 2013-07-25 | センサー エレクトロニック テクノロジー インコーポレイテッド | 深紫外発光ダイオード |
WO2016132681A1 (ja) * | 2015-02-18 | 2016-08-25 | 出光興産株式会社 | 積層体及び積層体の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4270885B2 (ja) | 酸化物半導体発光素子 | |
US6806503B2 (en) | Light-emitting diode and laser diode having n-type ZnO layer and p-type semiconductor laser | |
WO2006038665A1 (ja) | 窒化物半導体発光素子およびその製造方法 | |
WO2005078812A1 (ja) | Ga2O3系単結晶の導電率制御方法 | |
JP2006135311A (ja) | 窒化物半導体を用いた発光ダイオード | |
JP2004193270A (ja) | 酸化物半導体発光素子 | |
JP4278405B2 (ja) | 酸化物半導体発光素子およびその製造方法 | |
JP4212413B2 (ja) | 酸化物半導体発光素子 | |
JP4185784B2 (ja) | 酸化物半導体発光素子およびその製造方法ならびに酸化物半導体発光素子を用いた半導体発光装置 | |
JP2004214434A (ja) | 酸化物半導体発光素子ならびに製造方法 | |
JP2004228401A (ja) | 酸化物半導体発光素子およびその製造方法 | |
JP4185797B2 (ja) | 酸化物半導体発光素子およびその製造方法 | |
JP2010212498A (ja) | 酸化亜鉛系半導体素子の製造方法 | |
JP2004221112A (ja) | 酸化物半導体発光素子 | |
JP2004193271A (ja) | 酸化物半導体発光素子 | |
JP2004349584A (ja) | 酸化物半導体発光素子 | |
JP2005026465A (ja) | 酸化物半導体発光素子 | |
JP2004193206A (ja) | 酸化物半導体発光素子 | |
JP4278394B2 (ja) | 酸化物半導体発光素子 | |
JP2004095634A (ja) | 酸化物半導体発光素子およびその製造方法 | |
JP2004207441A (ja) | 酸化物半導体発光素子 | |
JP2004095649A (ja) | 酸化物半導体発光素子 | |
JP4287698B2 (ja) | 酸化物半導体発光素子およびその製造方法 | |
JP4194854B2 (ja) | 酸化物半導体発光素子 | |
JP2004247465A (ja) | 酸化物半導体発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080822 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081021 |