Nothing Special   »   [go: up one dir, main page]

JP2004207665A - Electronic component - Google Patents

Electronic component Download PDF

Info

Publication number
JP2004207665A
JP2004207665A JP2003021104A JP2003021104A JP2004207665A JP 2004207665 A JP2004207665 A JP 2004207665A JP 2003021104 A JP2003021104 A JP 2003021104A JP 2003021104 A JP2003021104 A JP 2003021104A JP 2004207665 A JP2004207665 A JP 2004207665A
Authority
JP
Japan
Prior art keywords
electronic component
solder
base substrate
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003021104A
Other languages
Japanese (ja)
Other versions
JP3964332B2 (en
Inventor
Masafumi Hisataka
将文 久高
Mitsutaka Touden
光隆 嶌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003021104A priority Critical patent/JP3964332B2/en
Priority to US10/628,881 priority patent/US7154206B2/en
Priority to CNB031524494A priority patent/CN100373771C/en
Publication of JP2004207665A publication Critical patent/JP2004207665A/en
Priority to US11/445,586 priority patent/US7513022B2/en
Application granted granted Critical
Publication of JP3964332B2 publication Critical patent/JP3964332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic component in which thermal melting of the internal solder and short circuits due to outflowing melted solder are prevented when the electronic component is mounted on a mother board. <P>SOLUTION: In order to form a specified interval between the surface of a base substrate 3 and one major surface of an electronic component element 2, a side face coating member 6b applied to the side face of the electronic component element 2 connected/secured to the surface of the base substrate 3 and the outer circumferential surface of a solder joint member 5 has such a modulus of elasticity as the interval between the surface of the base substrate 3 and one major surface of the electronic component element 2 varies while following the volume expansion of a solder bump member 4 and the solder joint member 5 when they are melted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品素子をハンダにてフリップチップ実装及び封止を行った電子部品装置に関するものである。
【0002】
【従来の技術】
従来、電子部品装置の小型化の要求に伴い、電子部品素子の入出力電極にバンプを形成し、ベース基板の接続電極とフェイスダウンにて接合・実装するフリップチップ実装を行った電子部品装置が知られている。
【0003】
図4に、このような電子部品素子をハンダにてフリップチップ実装及び封止を行った電子部品装置として弾性表面波装置100の断面図を示す。
【0004】
電子部品素子である弾性表面波素子100は、弾性表面波素子101の一方主面とベース基板102の表面との間に所定間隔を形成するようにハンダバンプ部材103にて、弾性表面波素子101の接続電極104とベース基板102の素子接続用電極105とが接続されている。また、弾性表面波素子101の外周には外周封止電極106が形成され、この部分とベース基板102の外周封止導体膜107とがハンダ接合部材108によって接合され、弾性表面波素子101の一方主面とベース基板102の表面との間の空隙が気密封止されている。この結果、弾性表面波素子101の一方主面に形成されたIDT電極は、水分の侵入等による変質を防ぐことができ、安定した信頼性性能を確保できる。
このように、ベース基板102と接続・封止を行った弾性表面波素子101の他方主面側から、エポキシ樹脂ペースト等を塗布、硬化処理することで外装樹脂層109を形成している。
【0005】
【特許文献1】
特願2002−222582号
【0006】
【発明が解決しようとする課題】
しかしながら、上述の従来の弾性表面波装置100においては、マザーボードへの実装時において、ハンダリフロー等の熱が弾性表面波装置100の内部にも加わるため、弾性表面波素子101の外周封止電極106と、ベース基板102の外周封止導体膜107とを接合しているハンダ接合部材108にも熱が加わる。その結果、ハンダ接合部材108は、熱によって膨張するとともに再溶融時に大きく体積が膨張する。ハンダ接合部材108の外周面及び弾性表面波素子101の側面及び他方主面は、外装樹脂層109によって覆われており、強固に固定されているため、再溶融し体積が膨張したハンダ接合部材108は弾性表面波素子101ベース基板102との間の空隙を、内部方向に向かって流れ出すこととなり、その結果、ハンダバンプ部材103や接続電極104、あるいは素子接続電極105などと短絡する問題が発生していた。
【0007】
この場合、再溶融したハンダの流れだしを防ぐために、ハンダ接合部材108とハンダバンプ部材103や接続電極104、あるいは素子接続電極105などとの間隔を十分とれば短絡は防止できるが、その結果、弾性表面波素子101やベース基板102の寸法の大型化を招き、製品の小型化対応には逆行する設計となってしまうため、効果的な問題解決が望まれていた。
【0008】
本発明は上述の課題に鑑みて案出されたものであり、その目的は、マザーボードに実装する際、内部のハンダの際溶融による短絡を防止する電子部品装置を提供することにある。
【0009】
【課題を解決するための手段】
上述の課題を解決するために本発明の電子部品装置は、一方主面に接続電極及び外周封止電極が形成された電子部品素子と、
ハンダバンプ部材を介して前記接続電極と接続する素子接続用電極、ハンダ接合部材を介して前記外周封止電極と接合する外周封止導体膜及び外部端子電極が夫々形成されたベース基板とを、前記ベース基板と前記電子部品素子との間に所定間隔が形成されるようにして接続するとともに、
前記電子部品素子の側面及び前記ハンダ接合部材の外周面に側面外装部材を配して成る電子部品装置において、前記側面外装部材は、前記ハンダバンプ部材及びハンダ接合部材の溶融温度で、該ハンダバンプ部材及びハンダ接合部材の体積膨張により発生する前記ベース基板と前記電子部品素子との間の間隔の変化に追従する弾性率を有することを特徴とする電子部品装置である。
【0010】
また、前記側面外装部材は、熱可逆性を有する樹脂である。
【0011】
また、前記側面外装部材は、温度25℃における弾性率が3.5GPa〜6GPaであり、且つ温度230℃における弾性率が0.2GPa〜0.4GPaである。
【0012】
さらに、前記電子部品素子、側面外装部材の温度180℃〜250℃における単位体積あたりの質量は、前記ハンダバンプ部材及びハンダ接合部材の温度180℃〜250℃における単位体積あたりの質量より小さいことを特徴とする。
【0013】
さらに、前記電子部品素子、ベース基板及びハンダ接合部材によって形成される空間には、空気又は不活性ガスが充填されている。
【0014】
【作用】
本発明によれば、ベース基板と電子部品素子の一方主面との間に所定間隔を形成するようにして、ベース基板に電子部品素子が接続されるとともに、電子部品素子の側面及びハンダ接合部材外周面には側面外装部材が被覆されている。そして、この側面外装部材、ハンダバンプ部材及びハンダ接合部材の溶融温度で、ハンダバンプ部材及びハンダ接合部材の体積膨張により発生するベース基板と電子部品素子との間の間隔の変化に追従する弾性率を有している。即ち、電子部品装置をマザーボードに実装する際、ハンダリフロー等の熱でハンダバンプ部材及びハンダ接合部材が溶融し体積膨張が生じたとき、その体積膨張による応力によって、電子部品素子を上方に持ち上げる力が働く。このとき、側面外装部材にも同時に伸びが生じて、ベース基板の表面と電子部品素子の一方主面との間の間隔の変化に追従する。従って、従来のようにハンダバンプ部材及びハンダ接合部材が再溶融したハンダが、電子部品素子とベース基板との空隙の内部方向に向かって流れ出し、短絡を発生させる恐れはない。
【0015】
また本発明によれば、側面外装部材は熱可逆性樹脂であるため電子部品装置のマザーボードへの実装が終了し、電子部品装置の温度が常温に戻った時点で元の状態に復帰するため、元来の信頼性性能を損なうこともない。
【0016】
更に本発明によれば、電子部品素子、側面外装部材の温度180℃〜250℃における単位体積あたりの質量は、ハンダバンプ部材及びハンダ接合部材の温度180℃〜250℃における単位体積あたりの質量より、小さいことを特徴としている。これにより、ハンダバンプ部材及びハンダ接合部材が溶融したとき電子部品素子に生じる浮力によって、電子部品素子を上方に持ち上げる力が強化されるため、ベース基板の表面と電子部品素子の一方主面との間を広げることがより確実になる。
【0017】
また更に、電子部品素子、ベース基板及びハンダ接合部材によって形成され封止される空間には、空気又は不活性ガスが充填されているため、電子部品装置のマザーボードへの実装時の熱で空気又は不活性ガスも膨張し、ハンダバンプ部材及びハンダ接合部材の溶融時、電子部品素子を上方に持ち上げる力がさらに強化される。即ち、基板の表面と電子部品素子の一方主面との間を広げることがさらに確実になり、ハンダの流れ出しによる短絡防止はいっそう確実なものになる。
【0018】
【発明の実施の形態】
以下、本発明の電子部品装置を図面に基づいて詳説する。なお、説明にあたっては電子部品素子として弾性表面波素子を用いた電子部品装置の1つである弾性表面波装置を例にとって説明を行う。
【0019】
図1は本発明の弾性表面波装置1の断面図であり、図2は弾性表面波装置1に用いるベース基板3の平面図である。
弾性表面波装置(電子部品装置)1は、弾性表面波素子(電子部品素子)2、ベース基板3、ハンダバンプ部材4、ハンダ接合部材5、外装部材6より構成されている。
【0020】
弾性表面波素子2は弾性表面波共振子、弾性表面波フィルタなどが例示でき、水晶やニオブ酸リチウム、タンタル酸リチウムなどの圧電基板20の一方主面上に図示しないインターデジタルトランスデューサー電極(本発明では櫛歯状電極及び反射器電極を含み、以下単にIDT電極という)が形成され、さらに、このIDT電極と接続する接続電極8が形成されている。また、この圧電基板20の外周には全周にわたって、IDT電極や接続電極8を取り囲むように環状の外周封止電極9が形成されている。これらの各電極は、例えばAl、Cuなどをフォトリソグラフィ技術により形成され、また、必要に応じてその表面にCr、Ni、Auなどの層が形成される。
【0021】
ベース基板3は、図1、図2に示すように、例えば、ガラスーセラミック材料などの多層基板から成り、表面には、弾性表面波素子2の接続電極8と対向する素子接続用電極10、及び外周封止電極9と対向する環状の外周封止導体膜11が形成されている。また、ベース基板3の底面には、外部端子電極12が形成されており、素子接続電極10と外部端子電極12とはビアホール導体13を含む内部配線パターンにて接続されている。
【0022】
ここで上述の弾性表面波素子2は、接続電極8とベース基板3の素子接続用電極10とをハンダバンプ部材4によって、弾性表面波素子2の一方主面とベース基板3の表面との間に所定の空隙を形成すると同時に電気的接続を行う。また、外周封止電極9と外周導体膜11とをハンダ接合部材5によって接合することで、弾性表面波素子2の一方主面とベース基板3の表面との間の空隙を封止し、空隙内部気密に保つことができ、湿気の侵入などによるIDT電極の劣化を防止する。
【0023】
上述の弾性表面波素子2とベース基板3との接続・接合にあたっては、まず、ベース基板2に、それぞれハンダバンプ部材4とハンダ接合部材5を形成する。このハンダバンプ部材4とハンダ接合部材5は、それぞれ素子接続用電極10の表面及び外周封止導体膜11の表面にペースト状のハンダを塗布して形成するが、バンプ状の形状とするため、塗布したハンダを一次加熱処理及び洗浄処理を行う。これによって、塗布されたハンダは、素子接続用電極10及び外周封止導体膜11上で断面半円形状となり、さらに、不要なフラックス成分を除去することができる。そして、上述のバンプ状のハンダが形成されたベース基板3に弾性表面波素子2を載置し、リフロー処理を行うことによりハンダバンプ部材4によって電気的な接続を施し、ハンダ接合部材5によって機械的な接合を行うとともに気密的な封止を行う。これにより、ハンダバンプ部材4及びハンダ接合部材5の高さに相当する空隙が、弾性表面波素子2の一方主面とベース基板3の表面との間にでき、かつ、気密封止されるため、弾性表面波素子2の主面において安定した弾性表面波を振動させることができる。
【0024】
そして、上述の、ベース基板3に電気的な接続及び機械的な接合が施された弾性表面波素子2には、他方主面側及び側面外周を覆って外装部材6が被着形成される。この外装部材6は、弾性表面波素子2の他方主面を覆う上面外装部材6aと側面を覆う側面外装部材6bとから構成される。ただし、上面外装部材6aは外部からの機械的衝撃に対し充分な強度を確保できれば、必ずしも形成する必要はない。
【0025】
ここで本発明の特徴的なことは、側面外装部材6bはハンダバンプ部材4及びハンダ接合部材5の溶融温度で体積膨張によりベース基板3の表面と弾性表面波素子2との間の間隔の変化に追従する弾性率を有していることである。即ち、弾性表面波装置1をマザーボードに実装する際、ハンダリフロー等の熱でハンダバンプ部材4及びハンダ接合部材5が溶融し体積膨張が生じる結果、弾性表面波素子1を上方に持ち上げる力が働く。このとき、側面外装部材6bに伸びが生じるためベース基板3の表面と弾性表面波素子1の一方主面との間は広がることができる。つまり、図3(a)に示すように、マザーボードに実装する前のベース基板3の表面と弾性表面波素子2の一方主面との間隔Aは、マザーボードに実装時ハンダバンプ部材4及びハンダ接合部材5が溶融し体積膨張が生じる結果、図3(b)に示す間隔Bとなる。このとき間隔A<間隔Bの関係となり、ベース基板3の表面と弾性表面波素子2の一方主面との間隔が広がることにより、ハンダバンプ部材4及びハンダ接合部材5の体積膨張(特に上下方向の動き)は妨げられることがない。よって、従来のように溶融したハンダが弾性表面波素子2とベース基板3との空隙を内部方向に向かって流れ出し短絡を発生させる恐れはない。
【0026】
また、側面外装部材6bは、熱可逆性を有する例えば、エポキシ系樹脂成分であり、例えば、エポキシ樹脂成分に、無機フィラー、硬化剤成分とともにシリコーン樹脂弾性体成分を含有されている。そして、このシリコーン樹脂弾性成分を制御することにより弾性率の制御が可能となる。その弾性率は温度25℃において3.5GPa〜6GPaであり、かつ、温度230℃において0.2GPa〜0.4GPaである。このような樹脂であれば、常温時、例えば25℃において、外部衝撃から弾性表面波素子2を保護するのに必要な強度を有するとともに、樹脂の硬化時の収縮による反りも抑えることができる。加えて、ハンダバンプ部材4及びハンダ接合部材5が溶融する温度、例えば230℃において、弾性率が低下するため、ハンダバンプ部材4及びハンダ接合部材5の溶融時の体積膨張に追従して変形し、ベース基板3の表面と弾性表面波素子2の一方主面との間の間隔が変化することができる。よって、ハンダの流れ出しによる短絡不良もなく、弾性表面波素子2との密着強度も確保できる。
【0027】
この側面外装部材6bにおいて、弾性率の異なる10種類の樹脂を用いて評価を行った。この樹脂の25℃における弾性率は1.5GPa〜8GPaの間で異なっているものである。この10種類の樹脂で側面外装部材6bを形成した弾性表面波装置1をそれぞれ作成した。同時に、反りの評価用として樹脂のみで30mm角の基板もそれぞれ作成した。樹脂の硬化条件は、ともに100℃で1時間、及び150℃で3時間の加熱を行った。次に、これら作成した弾性表面波装置1を1mの高さからコンクリート床上に自然落下させ、樹脂に割れや欠けの発生の有無を調べる落下試験と、30mm角の基板の反りの量を測定した。これらの樹脂の25℃における弾性率と落下試験の不良数及び基板反りの評価結果を表1に示す。
【0028】
【表1】

Figure 2004207665
【0029】
樹脂の弾性率が小さいと、強度が劣化するため落下試験において割れや欠けの不良が発生する。弾性率が大きくなると、樹脂が硬化する際の収縮も大きく反りが発生し、弾性表面波装置としての電気特性に悪影響を及ぼす。従って、落下試験において不良の発生がなく、弾性表面波装置としての電気特性に悪影響を与えない反り量0.1mm以下の試料を合格と判定すると、試料番号4、5、6,7が合格となり、即ち、25℃における弾性率が3.5GPa〜6GPaの樹脂を選定すれば良い。
【0030】
次に、同じ10種類の樹脂で側面外装部材6bを形成した弾性表面波装置1と密着強度評価用として1.8mm角の弾性表面波素子2に樹脂層を形成した試料を用いて、ハンダリフロー処理を行いハンダ流れ出しによる短絡不良の発生数を調べるとともに、ダイシェア強度計にて樹脂の密着強度を測定した。このとき230℃における弾性率は0.1GPa〜1.3GPaの間で異なっており、また、表1に示す試料番号と表2に示す試料番号は同一のものである。これらの樹脂の230℃における弾性率と短絡不良の発生数及び密着強度の評価結果を表2に示す。
【0031】
【表2】
Figure 2004207665
【0032】
230℃での弾性率が小さいと、溶融したハンダの体積膨張を十分吸収できる為、ハンダ流れによる短絡不良は発生しない。しかし、弾性率が小さくなりすぎると、弾性表面波素子2との密着強度が低下する。従って、短絡不良の発生がなく、密着強度が十分とされるダイシェア強度40N以上の試料を合格と判定すると、試料番号3,4が合格となり、即ち、230℃における弾性率が0.2GPa〜0.4GPaである樹脂を選定すれば良い。
【0033】
従って表1での判定と表2での判定を総合すると、25℃での弾性率が3.5GPa〜6GPa、かつ230℃での弾性率が0.2GPa〜0.4GPaである樹脂が使用可能で、両者を満足する樹脂として試料番号4の樹脂が使用できる。
【0034】
更に、温度180℃〜250℃におけるハンダバンプ部材4及びハンダ接合部材5の単位体積あたりの質量は、ハンダ組成により異なるが、5〜8g/cm3程度であるのに対し、同じく温度180℃〜250℃における単位体積あたりの質量は、弾性表面波素子2が2〜3g/cm3程度、側面外装部材6bが1〜2g/cm3程度、上面外装部材6aが1〜2g/cm3程度と、ハンダバンプ部材4及びハンダ接合部材5の単位体積あたりの質量に対して小さな値となっているため、ハンダバンプ部材4及びハンダ接合部材5が溶融したときに弾性表面波素子2に浮力が生じ、ベース基板3の表面と弾性表面波素子2の一方主面との間隔を広げることをより確実にする。
【0035】
更にまた、ハンダ接合部材5による接合を空気中または、窒素ガスなどの不活性ガス雰囲気中で行うことで、弾性表面波素子2、ベース基板3、及びハンダ接合部材5によって封止される空間は、空気又は不活性ガスで充填される。この空気や不活性ガスは、弾性表面波装置1がマザーボードに実装される際、実装時の熱によって膨張するため、ベース基板3の表面と弾性表面波素子2の一方主面との間隔を広げることを更に確実なものにする。
【0036】
尚、上述の実施例では、電子部品素子に弾性表面波素子を用いた電子部品装置である弾性表面波装置で説明したが、電子部品素子にハンダパンプを用いてベース基板に接続し、且つ側面を外装部材で被覆した電子部品装置に広く利用できる。
【0037】
【発明の効果】
本発明の電子部品装置によれば、電子部品素子の側面及びハンダ接合部材外周面に被着された側面外装部材が、ハンダバンプ部材及びハンダ接合部材の溶融時の体積膨張によるベース基板の表面と電子部品素子の一方主面との間の間隔の変化に追従する弾性率を有している。従って、電子部品装置をマザーボードに実装する際、ハンダリフロー等の熱でハンダバンプ部材及びハンダ接合部材が溶融し体積膨張が生じたとき、その体積膨張は妨げられることがないため、溶融したハンダの流れ出しがなく短絡を発生させる恐れがない。
【図面の簡単な説明】
【図1】本発明の電子部品装置の断面図である。
【図2】本発明の電子部品装置に用いるベース基板の平面図である。
【図3】本発明の電子部品装置の断面図であり、(a)はハンダバンプ部材及びハンダ接合部材の固化時の断面図であり、(b)はハンダバンプ部材及びハンダ接合部材の溶融時の断面図である。
【図4】従来の電子部品装置の断面図である。
【符号の説明】
1・・・弾性表面波装置
2・・・弾性表面波素子
3・・・ベース基板
4・・・ハンダバンプ部材
5・・・ハンダ接合部材
6・・・外装部材
6a・・・上面外装部材
6b・・・側面外装部材
8・・・接続電極
9・・・外周封止電極
10・・・素子接続用電極
11・・・外周封止導体膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic component device in which electronic component elements are flip-chip mounted and sealed with solder.
[0002]
[Prior art]
Conventionally, with the demand for miniaturization of electronic component devices, flip-chip mounting that forms bumps on input / output electrodes of electronic component elements and joins and mounts the connection electrodes of the base substrate face down has been developed. Are known.
[0003]
FIG. 4 is a sectional view of a surface acoustic wave device 100 as an electronic component device in which such an electronic component element is flip-chip mounted and sealed with solder.
[0004]
The surface acoustic wave element 100, which is an electronic component element, is formed by solder bump members 103 so as to form a predetermined space between one main surface of the surface acoustic wave element 101 and the surface of the base substrate 102. The connection electrode 104 and the element connection electrode 105 of the base substrate 102 are connected. Further, an outer peripheral sealing electrode 106 is formed on the outer periphery of the surface acoustic wave element 101, and this portion and an outer peripheral sealing conductor film 107 of the base substrate 102 are joined by a solder joining member 108. A gap between the main surface and the surface of the base substrate 102 is hermetically sealed. As a result, the IDT electrode formed on one principal surface of the surface acoustic wave element 101 can prevent deterioration due to intrusion of moisture or the like, and can secure stable reliability performance.
As described above, the exterior resin layer 109 is formed by applying and curing an epoxy resin paste or the like from the other main surface side of the surface acoustic wave element 101 connected and sealed to the base substrate 102.
[0005]
[Patent Document 1]
Japanese Patent Application No. 2002-22258 [0006]
[Problems to be solved by the invention]
However, in the above-described conventional surface acoustic wave device 100, heat such as solder reflow is also applied to the inside of the surface acoustic wave device 100 when mounted on a motherboard. Then, heat is also applied to the solder bonding member 108 that bonds the outer peripheral sealing conductor film 107 of the base substrate 102. As a result, the solder joint member 108 expands due to heat and expands significantly in volume when remelted. The outer peripheral surface of the solder bonding member 108 and the side surface and the other main surface of the surface acoustic wave element 101 are covered with the exterior resin layer 109 and are firmly fixed. Causes the gap between the surface acoustic wave element 101 and the base substrate 102 to flow inward, resulting in a short circuit with the solder bump member 103, the connection electrode 104, or the element connection electrode 105. Was.
[0007]
In this case, in order to prevent the re-melted solder from flowing out, a short circuit can be prevented by providing a sufficient space between the solder bonding member 108 and the solder bump member 103, the connection electrode 104, or the element connection electrode 105. Since the dimensions of the surface acoustic wave element 101 and the base substrate 102 are increased, and the design is counter to the miniaturization of products, an effective solution of the problem has been desired.
[0008]
The present invention has been devised in view of the above-described problems, and an object of the present invention is to provide an electronic component device that prevents a short circuit due to melting when soldering inside when mounted on a motherboard.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, an electronic component device of the present invention includes an electronic component element having a connection electrode and an outer peripheral sealing electrode formed on one main surface,
An element connection electrode connected to the connection electrode via a solder bump member, an outer peripheral sealing conductor film joined to the outer peripheral sealing electrode via a solder joining member, and a base substrate on which an external terminal electrode is formed, While connecting so that a predetermined interval is formed between the base substrate and the electronic component element,
In an electronic component device comprising a side surface exterior member disposed on a side surface of the electronic component element and an outer peripheral surface of the solder bonding member, the side surface exterior member may have a solder bump member and a solder bonding member at a melting temperature of the solder bump member and the solder bonding member. An electronic component device having an elastic modulus that follows a change in a space between the base substrate and the electronic component element caused by a volume expansion of the solder bonding member.
[0010]
Further, the side surface exterior member is a resin having thermoreversibility.
[0011]
Further, the side surface exterior member has an elastic modulus of 3.5 GPa to 6 GPa at a temperature of 25 ° C, and an elastic modulus of 0.2 GPa to 0.4 GPa at a temperature of 230 ° C.
[0012]
Further, the mass per unit volume at a temperature of 180 ° C. to 250 ° C. of the electronic component element and the side surface exterior member is smaller than the mass per unit volume at a temperature of 180 ° C. to 250 ° C. of the solder bump member and the solder bonding member. And
[0013]
Further, a space formed by the electronic component element, the base substrate, and the solder bonding member is filled with air or an inert gas.
[0014]
[Action]
According to the present invention, the electronic component element is connected to the base substrate so as to form a predetermined space between the base substrate and one main surface of the electronic component element, and the side surface of the electronic component element and the solder bonding member The outer peripheral surface is covered with a side exterior member. At the melting temperature of the side surface exterior member, the solder bump member, and the solder bonding member, there is an elastic modulus that follows a change in the space between the base substrate and the electronic component element caused by the volume expansion of the solder bump member and the solder bonding member. are doing. That is, when mounting the electronic component device on the motherboard, when the solder bump member and the solder bonding member are melted by heat such as solder reflow and volume expansion occurs, a force for lifting the electronic component element upward due to the stress due to the volume expansion. work. At this time, the side surface exterior member also expands at the same time, and follows the change in the distance between the surface of the base substrate and one main surface of the electronic component element. Therefore, unlike the related art, the solder in which the solder bump member and the solder bonding member are re-melted does not flow toward the inside of the gap between the electronic component element and the base substrate, and there is no danger of causing a short circuit.
[0015]
Further, according to the present invention, the mounting of the electronic component device on the motherboard is completed because the side exterior member is a thermoreversible resin, and the electronic component device returns to the original state when the temperature of the electronic component device returns to normal temperature. It does not impair the original reliability performance.
[0016]
Furthermore, according to the present invention, the mass per unit volume at a temperature of 180 ° C. to 250 ° C. of the electronic component element and the side exterior member is greater than the mass per unit volume at a temperature of 180 ° C. to 250 ° C. of the solder bump member and the solder bonding member. It is characterized by being small. With this, the buoyancy generated in the electronic component element when the solder bump member and the solder bonding member are melted enhances the force for lifting the electronic component element upward, so that the distance between the surface of the base substrate and one main surface of the electronic component element is increased. Is more sure to spread.
[0017]
Further, since the space formed and sealed by the electronic component element, the base substrate, and the solder bonding member is filled with air or an inert gas, the air or the inert gas is used to mount the electronic component device on the motherboard. The inert gas also expands, and when the solder bump member and the solder bonding member are melted, the force for lifting the electronic component element upward is further enhanced. That is, it is more certain that the space between the surface of the substrate and one main surface of the electronic component element is widened, and the prevention of short circuit due to the flow of solder becomes more certain.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an electronic component device of the present invention will be described in detail with reference to the drawings. In the description, a surface acoustic wave device which is one of electronic component devices using a surface acoustic wave device as an electronic component device will be described as an example.
[0019]
FIG. 1 is a sectional view of a surface acoustic wave device 1 of the present invention, and FIG. 2 is a plan view of a base substrate 3 used in the surface acoustic wave device 1.
The surface acoustic wave device (electronic component device) 1 includes a surface acoustic wave element (electronic component element) 2, a base substrate 3, a solder bump member 4, a solder bonding member 5, and an exterior member 6.
[0020]
The surface acoustic wave element 2 can be exemplified by a surface acoustic wave resonator, a surface acoustic wave filter, and the like. An interdigital transducer electrode (not shown) is formed on one main surface of a piezoelectric substrate 20 made of quartz, lithium niobate, lithium tantalate, or the like. In the present invention, a comb-shaped electrode and a reflector electrode are included, and the IDT electrode (hereinafter, simply referred to as an IDT electrode) is formed. Further, a connection electrode 8 connected to the IDT electrode is formed. Further, an annular outer peripheral sealing electrode 9 is formed on the entire outer periphery of the piezoelectric substrate 20 so as to surround the IDT electrode and the connection electrode 8. Each of these electrodes is formed of, for example, Al, Cu, or the like by a photolithography technique, and a layer of Cr, Ni, Au, or the like is formed on the surface as necessary.
[0021]
As shown in FIGS. 1 and 2, the base substrate 3 is made of, for example, a multi-layer substrate made of a glass-ceramic material or the like, and has on its surface an element connection electrode 10 facing the connection electrode 8 of the surface acoustic wave element 2, In addition, an annular outer peripheral sealing conductor film 11 facing the outer peripheral sealing electrode 9 is formed. An external terminal electrode 12 is formed on the bottom surface of the base substrate 3, and the element connection electrode 10 and the external terminal electrode 12 are connected by an internal wiring pattern including a via-hole conductor 13.
[0022]
In the surface acoustic wave element 2 described above, the connection electrode 8 and the element connection electrode 10 of the base substrate 3 are connected between one principal surface of the surface acoustic wave element 2 and the surface of the base substrate 3 by the solder bump member 4. An electrical connection is made at the same time as forming a predetermined gap. Further, by bonding the outer peripheral sealing electrode 9 and the outer peripheral conductor film 11 with the solder bonding member 5, the gap between one principal surface of the surface acoustic wave element 2 and the surface of the base substrate 3 is sealed. The inside can be kept airtight, and deterioration of the IDT electrode due to invasion of moisture or the like is prevented.
[0023]
In connecting and joining the surface acoustic wave element 2 and the base substrate 3, first, a solder bump member 4 and a solder joining member 5 are formed on the base substrate 2. The solder bump member 4 and the solder bonding member 5 are formed by applying paste solder to the surface of the element connection electrode 10 and the surface of the outer peripheral sealing conductor film 11, respectively. The solder that has been subjected to the primary heat treatment and the cleaning treatment. As a result, the applied solder has a semicircular cross-section on the element connection electrode 10 and the outer peripheral sealing conductor film 11, and furthermore, unnecessary flux components can be removed. Then, the surface acoustic wave element 2 is placed on the base substrate 3 on which the above-mentioned bump-shaped solder is formed, and is electrically connected by the solder bump member 4 by performing a reflow process. And a hermetic seal. As a result, a gap corresponding to the height of the solder bump member 4 and the solder bonding member 5 is formed between one principal surface of the surface acoustic wave element 2 and the surface of the base substrate 3 and is hermetically sealed. A stable surface acoustic wave can be vibrated on the main surface of the surface acoustic wave element 2.
[0024]
The exterior member 6 is attached to the surface acoustic wave element 2 electrically connected and mechanically joined to the base substrate 3 so as to cover the other main surface and the outer periphery of the side surface. The exterior member 6 includes an upper exterior member 6a that covers the other main surface of the surface acoustic wave element 2 and a side exterior member 6b that covers the side surface. However, the upper exterior member 6a is not necessarily required to be formed as long as sufficient strength against mechanical shock from the outside can be secured.
[0025]
Here, the feature of the present invention is that the side surface exterior member 6b is capable of changing the distance between the surface of the base substrate 3 and the surface acoustic wave element 2 due to volume expansion at the melting temperature of the solder bump member 4 and the solder bonding member 5. That is, it has a following elastic modulus. That is, when the surface acoustic wave device 1 is mounted on a motherboard, heat such as solder reflow causes the solder bump member 4 and the solder bonding member 5 to melt and expand in volume, resulting in a force for lifting the surface acoustic wave element 1 upward. At this time, since the side surface exterior member 6b is elongated, the space between the surface of the base substrate 3 and one main surface of the surface acoustic wave element 1 can be expanded. That is, as shown in FIG. 3A, the distance A between the surface of the base substrate 3 and one main surface of the surface acoustic wave element 2 before being mounted on the motherboard is the solder bump member 4 and the solder bonding member when mounted on the motherboard. As a result of melting of 5 and volume expansion, the interval B shown in FIG. At this time, the relationship of the interval A <the interval B is satisfied, and the interval between the surface of the base substrate 3 and one main surface of the surface acoustic wave element 2 is increased, so that the volume expansion of the solder bump member 4 and the solder bonding member 5 (particularly, the vertical direction). Movement) is not hindered. Therefore, there is no possibility that the molten solder flows in the gap between the surface acoustic wave element 2 and the base substrate 3 toward the inside and causes a short circuit unlike the related art.
[0026]
The side surface exterior member 6b is, for example, an epoxy resin component having thermoreversibility. For example, the epoxy resin component contains a silicone resin elastic component together with an inorganic filler and a curing agent component. The elastic modulus can be controlled by controlling the silicone resin elastic component. Its elastic modulus is 3.5 GPa to 6 GPa at a temperature of 25 ° C., and 0.2 GPa to 0.4 GPa at a temperature of 230 ° C. With such a resin, at room temperature, for example, at 25 ° C., it has the strength necessary to protect the surface acoustic wave element 2 from an external impact, and also suppresses warping due to shrinkage of the resin during curing. In addition, at a temperature at which the solder bump member 4 and the solder joint member 5 melt, for example, at 230 ° C., the elastic modulus decreases, so that the solder bump member 4 and the solder joint member 5 deform according to the volume expansion at the time of melting, and The distance between the surface of the substrate 3 and one main surface of the surface acoustic wave element 2 can be changed. Therefore, there is no short-circuit failure due to solder flowing out, and the adhesion strength with the surface acoustic wave element 2 can be secured.
[0027]
This side exterior member 6b was evaluated using ten kinds of resins having different elastic moduli. The elastic modulus of the resin at 25 ° C. is different between 1.5 GPa and 8 GPa. The surface acoustic wave device 1 in which the side surface exterior member 6b was formed of the ten kinds of resins was manufactured. At the same time, 30 mm square substrates were also made of resin alone for evaluation of warpage. Regarding the curing conditions of the resin, heating was performed at 100 ° C. for 1 hour and at 150 ° C. for 3 hours. Next, the produced surface acoustic wave device 1 was naturally dropped on a concrete floor from a height of 1 m, a drop test for checking whether or not cracking or chipping occurred in the resin, and the amount of warpage of a 30 mm square substrate was measured. . Table 1 shows the elastic modulus of these resins at 25 ° C., the number of defects in the drop test, and the evaluation results of the substrate warpage.
[0028]
[Table 1]
Figure 2004207665
[0029]
If the elastic modulus of the resin is small, the strength is deteriorated, so that cracking or chipping occurs in a drop test. When the elastic modulus increases, the resin shrinks when it cures, causing a large warp, which adversely affects the electrical characteristics of the surface acoustic wave device. Therefore, when a sample having a warpage of 0.1 mm or less, which does not cause a defect in the drop test and does not adversely affect the electrical characteristics of the surface acoustic wave device, is judged to be acceptable, sample numbers 4, 5, 6, and 7 pass. That is, a resin having an elastic modulus at 25 ° C. of 3.5 GPa to 6 GPa may be selected.
[0030]
Next, using a sample in which a resin layer was formed on a surface acoustic wave device 1 having a side surface exterior member 6b made of the same ten kinds of resins and a surface acoustic wave element 2 having a 1.8 mm square for evaluation of adhesion strength, a solder reflow was performed. After the treatment, the number of occurrences of short-circuit failure due to solder flowing out was examined, and the adhesive strength of the resin was measured with a die shear strength meter. At this time, the elastic modulus at 230 ° C. is different between 0.1 GPa and 1.3 GPa, and the sample numbers shown in Table 1 and 2 are the same. Table 2 shows the evaluation results of the elastic modulus at 230 ° C., the number of occurrences of short-circuit failure, and the adhesion strength of these resins.
[0031]
[Table 2]
Figure 2004207665
[0032]
If the elastic modulus at 230 ° C. is small, the volume expansion of the molten solder can be sufficiently absorbed, so that short-circuit failure due to solder flow does not occur. However, when the elastic modulus is too small, the adhesion strength with the surface acoustic wave element 2 is reduced. Accordingly, when a sample having a die shear strength of 40 N or more, which has no short-circuit failure and sufficient adhesion strength, is judged to be acceptable, samples Nos. 3 and 4 pass, that is, the elastic modulus at 230 ° C is 0.2 GPa to 0 GPa. A resin having a pressure of 4 GPa may be selected.
[0033]
Therefore, when the judgment in Table 1 and the judgment in Table 2 are combined, it is possible to use a resin having an elastic modulus at 25 ° C. of 3.5 to 6 GPa and an elastic modulus at 230 ° C. of 0.2 GPa to 0.4 GPa. Thus, the resin of sample number 4 can be used as a resin satisfying both.
[0034]
Furthermore, the mass per unit volume of the solder bump member 4 and the solder bonding member 5 at a temperature of 180 ° C. to 250 ° C. varies depending on the solder composition, but is about 5 to 8 g / cm 3. Are about 2 to 3 g / cm3 for the surface acoustic wave element 2, about 1 to 2 g / cm3 for the side exterior member 6b, about 1 to 2 g / cm3 for the top exterior member 6a, and the solder bump member 4 and Since the solder bonding member 5 has a small value with respect to the mass per unit volume, when the solder bump member 4 and the solder bonding member 5 are melted, buoyancy is generated in the surface acoustic wave element 2, and the surface of the base substrate 3 The distance between the surface acoustic wave element 2 and one main surface is more reliably increased.
[0035]
Furthermore, the space sealed by the surface acoustic wave element 2, the base substrate 3, and the solder bonding member 5 is formed by performing the bonding by the solder bonding member 5 in air or an inert gas atmosphere such as nitrogen gas. , Filled with air or inert gas. When the surface acoustic wave device 1 is mounted on the motherboard, the air and the inert gas expand due to heat generated during mounting, and thus increase the distance between the surface of the base substrate 3 and one principal surface of the surface acoustic wave element 2. Make things more certain.
[0036]
In the above-described embodiment, the surface acoustic wave device which is an electronic component device using a surface acoustic wave element as an electronic component element has been described. However, the electronic component element is connected to a base substrate using a solder pump, and the side surface is It can be widely used for electronic component devices covered with exterior members.
[0037]
【The invention's effect】
According to the electronic component device of the present invention, the side surface exterior member attached to the side surface of the electronic component element and the outer peripheral surface of the solder joint member is formed between the surface of the base substrate due to volume expansion when the solder bump member and the solder joint member melt. It has an elastic modulus that follows a change in the distance between the component element and one main surface. Therefore, when mounting the electronic component device on the motherboard, when the solder bump member and the solder bonding member are melted by heat such as solder reflow and the volume expansion occurs, the volume expansion is not hindered. There is no danger of short-circuiting.
[Brief description of the drawings]
FIG. 1 is a sectional view of an electronic component device of the present invention.
FIG. 2 is a plan view of a base substrate used in the electronic component device of the present invention.
3A and 3B are cross-sectional views of the electronic component device of the present invention, in which FIG. 3A is a cross-sectional view of a solder bump member and a solder bonding member when they are solidified, and FIG. FIG.
FIG. 4 is a cross-sectional view of a conventional electronic component device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Surface acoustic wave device 2 ... Surface acoustic wave element 3 ... Base substrate 4 ... Solder bump member 5 ... Solder joining member 6 ... Exterior member 6a ... Top exterior member 6b ..Side member 8 ... Connection electrode 9 ... Outer periphery sealing electrode 10 ... Element connection electrode 11 ... Outer periphery sealing conductor film

Claims (5)

一方主面に接続電極及び外周封止電極が形成された電子部品素子と、
ハンダバンプ部材を介して前記接続電極と接続する素子接続用電極、ハンダ接合部材を介して前記外周封止電極と接合する外周封止導体膜及び外部端子電極が夫々形成されたベース基板とを、前記ベース基板と前記電子部品素子との間に所定間隔が形成されるようにして接合するとともに、
前記電子部品素子の側面及び前記ハンダ接合部材の外周面に側面外装部材を配して成る電子部品装置において、
前記側面外装部材は、前記ハンダバンプ部材及びハンダ接合部材の溶融温度で、該ハンダバンプ部材及びハンダ接合部材の体積膨張により発生する前記ベース基板と前記電子部品素子との間の間隔の変化に追従する弾性率を有することを特徴とする電子部品装置。
On the other hand, an electronic component element having a connection electrode and an outer peripheral sealing electrode formed on a main surface,
An element connection electrode connected to the connection electrode via a solder bump member, an outer peripheral sealing conductor film joined to the outer peripheral sealing electrode via a solder joining member, and a base substrate on which an external terminal electrode is formed, Along with joining such that a predetermined space is formed between the base substrate and the electronic component element,
An electronic component device comprising a side exterior member disposed on a side surface of the electronic component element and an outer peripheral surface of the solder bonding member,
The side exterior member has an elasticity that follows a change in the distance between the base substrate and the electronic component element caused by volume expansion of the solder bump member and the solder joint member at a melting temperature of the solder bump member and the solder joint member. An electronic component device having a rate.
前記側面外装部材は、熱可逆性を有する樹脂であることを特徴とする請求項1記載の電子部品装置。The electronic component device according to claim 1, wherein the side surface exterior member is a resin having thermoreversibility. 前記側面外装部材は、温度25℃における弾性率が3.5GPa〜6GPaであり、且つ温度230℃における弾性率が0.2GPa〜0.4GPaであることを特徴とする請求項1または請求項2記載の電子部品装置。The said side surface exterior member has an elastic modulus in the temperature of 25 degreeC from 3.5 GPa to 6 GPa, and the elasticity in the temperature of 230 degreeC is 0.2 GPa-0.4 GPa, The Claims 1 or 2 characterized by the above-mentioned. Electronic component device according to the above. 前記電子部品素子、側面外装部材の温度180℃〜250℃における単位体積あたりの質量は、前記ハンダバンプ部材及びハンダ接合部材の温度180℃〜250℃における単位体積あたりの質量より小さいことを特徴とする請求項1乃至請求項3のいずれか記載の電子部品装置。The mass per unit volume at a temperature of 180 ° C. to 250 ° C. of the electronic component element and the side exterior member is smaller than the mass per unit volume at a temperature of 180 ° C. to 250 ° C. of the solder bump member and the solder bonding member. The electronic component device according to claim 1. 前記電子部品素子、ベース基板及びハンダ接合部材によって形成される空間には、空気又は不活性ガスが充填されていることを特徴とする請求項1乃至請求項4のいずれか記載の電子部品装置。The electronic component device according to claim 1, wherein a space formed by the electronic component element, the base substrate, and the solder bonding member is filled with air or an inert gas.
JP2003021104A 2002-07-31 2003-01-29 Electronic component equipment Expired - Fee Related JP3964332B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003021104A JP3964332B2 (en) 2002-10-30 2003-01-29 Electronic component equipment
US10/628,881 US7154206B2 (en) 2002-07-31 2003-07-28 Surface acoustic wave device and method for manufacturing same
CNB031524494A CN100373771C (en) 2002-07-31 2003-07-31 Elastic surface wave apparatus and mfg. method thereof
US11/445,586 US7513022B2 (en) 2002-07-31 2006-06-01 Method for manufacturing surface acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002316791 2002-10-30
JP2003021104A JP3964332B2 (en) 2002-10-30 2003-01-29 Electronic component equipment

Publications (2)

Publication Number Publication Date
JP2004207665A true JP2004207665A (en) 2004-07-22
JP3964332B2 JP3964332B2 (en) 2007-08-22

Family

ID=32828255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021104A Expired - Fee Related JP3964332B2 (en) 2002-07-31 2003-01-29 Electronic component equipment

Country Status (1)

Country Link
JP (1) JP3964332B2 (en)

Also Published As

Publication number Publication date
JP3964332B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US7154206B2 (en) Surface acoustic wave device and method for manufacturing same
KR100654054B1 (en) Piezoelectric component and method for manufacturing the same
US7486160B2 (en) Electronic component and manufacturing method thereof
JP4210958B2 (en) Piezoelectric device
JP4766831B2 (en) Manufacturing method of electronic parts
JP5206377B2 (en) Electronic component module
JP6315650B2 (en) Electronic devices
JP2004031651A (en) Element mounting substrate and its manufacturing method
JP2004129224A (en) Piezoelectric component and manufacturing method thereof
JP2007081555A (en) Surface acoustic wave device
US7550902B2 (en) Electronic component device
JP4195605B2 (en) Surface acoustic wave device
US9386703B2 (en) Electronic device
JP2004129193A (en) Elastic surface wave apparatus
JP4384443B2 (en) Electronic component equipment
JP2004207665A (en) Electronic component
JP2005217177A (en) Electronic component device
JP2004207674A (en) Method for producing electronic component
JP4731216B2 (en) Surface acoustic wave device
JP2008011125A (en) Surface acoustic wave device
JP4333322B2 (en) Manufacturing method of surface acoustic wave device
JP2004047897A (en) Electronic part and manufacture thereof
JP2005348273A (en) Surface acoustic wave device
JP2012009729A (en) Electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Ref document number: 3964332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees