Nothing Special   »   [go: up one dir, main page]

JP2004205229A - Air supply and exhaust installation for turbine building in nuclear power plant - Google Patents

Air supply and exhaust installation for turbine building in nuclear power plant Download PDF

Info

Publication number
JP2004205229A
JP2004205229A JP2002371272A JP2002371272A JP2004205229A JP 2004205229 A JP2004205229 A JP 2004205229A JP 2002371272 A JP2002371272 A JP 2002371272A JP 2002371272 A JP2002371272 A JP 2002371272A JP 2004205229 A JP2004205229 A JP 2004205229A
Authority
JP
Japan
Prior art keywords
exhaust
air
turbine building
operating floor
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002371272A
Other languages
Japanese (ja)
Other versions
JP4003637B2 (en
Inventor
Tetsuji Yanagisawa
徹爾 柳澤
Shiyouichirou Kinoshita
詳一郎 木下
Takayuki Sonoda
隆幸 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002371272A priority Critical patent/JP4003637B2/en
Publication of JP2004205229A publication Critical patent/JP2004205229A/en
Application granted granted Critical
Publication of JP4003637B2 publication Critical patent/JP4003637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To operate stably in all patterns of operation by reducing the physical quantities of ventilation and air-conditioning installations for a turbine building in a nuclear power plant adopting a boiling water reactor. <P>SOLUTION: In the ventilation and air-conditioning installations which has a structure where air is introduced from the outdoors of the turbine building 1 into a space 25 on an operation floor where a turbine 2 and a generator are installed by opening louvers 5a and 5b, the atmosphere in the space 25 on the operation floor is exhausted to the outdoors of the turbine building 1 by exhaust fans 6a, 6b and 6c, outside air is supplied by air blowers 16a, 16b and 16c for the ventilation below the operation floor and the atmosphere below it is exhausted from an exhaust stack 23 through a filter 20 by air-exhaust ventilators 22a, 22b and 22c, a duct 19 which partially exhausts the atmosphere in the space 25 on the operation floor from the exhaust stack 23 by the air-exhaust ventilators 22a, 22b and 22c that exhausts the whole turbine building 1 through the filter 20 during normal operation, under abnormal conditions and during periodical inspections is placed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、沸騰水型原子炉を用いた原子力発電所のタービン建屋における給排気設備に係り、特にそのタービン建屋の換気空調設備に採用されて好適な給排気設備に関する。
【0002】
【従来の技術】
沸騰水型原子炉を用いた従来の原子力発電所におけるタービン建屋の換気空調設備は、タービン建屋の全体を換気する送風機を備えた給気設備と排風機を備えた排気設備により、運転階空間を含めた個々の空間及び部屋を換気している(例えば特許文献1を参照)。
【0003】
また、タービン建屋の換気装置は、タービン建屋を気密性のあるタービンが設置される運転床にて2つに区分し、通常運転時は、運転階壁面の給気口から外気を給気し、屋上部排気ファンにより雰囲気を排気する。また、異常時または定期検査時は、運転階空間内の放射能が上昇したことを放射線モニタで検知し、アラームを発報及び屋上部排気ファンを停止する。屋上部排気ファンを上方で被うように設置される屋上ダクト開放部に自重で自動的に閉められる扉があり、これにより放射性物質の環境への流出を防御する。一方運転階空間内の排気は、運転階床部の大物搬入口を放射能に対する防護を行った作業員が開けることにより、運転階空間とその階下の空間を連通させ、各ファンの予備機を起動して運転停止中のタービン建屋の全体を換気する為の排気ファンを追加運転させることで排気するシステムとしている(例えば特許文献1参照)。
【0004】
さらに、原子力発電所におけるタービン建屋の換気空調設備では、通常運転時における運転階の換気空調は、運転階の外壁部に設置される給気口とそれより高い位置に設けられる排気口の空気の密度差による換気力によって自然循環の換気をする。また、定期検査時は、排気口を閉止し、運転階専用の排風機,フィルタあるいはタービン建屋全体を換気する排風機により、換気するシステムとしている(例えば特許文献2参照)。
【0005】
【特許文献1】
特公平6−8885号公報
【特許文献2】
特許第3091519号
【0006】
【発明が解決しようとする課題】
従来の方法では、タービン建屋全体を換気する給気・排気設備によって大きな発熱量を内包し、かつ大空間である運転階空間を換気することから、大容量の給気・排気設備が必要である。
【0007】
また、特許文献1に記載の従来技術は、タービン建屋内の放射能の異常時,定期検査時に予備機の運転を伴う全数台排気ファン運転を行う方法が記載されているが、増加する風量に対する配慮がなく、また、運転階分の排気量を制御するための配慮もなされていない。さらに、タービン建屋全体の風量のアンバランスに対しても配慮されていない問題がある。
【0008】
例えば、50%容量の送風機が3台で1台が予備機、また50%容量の排風機が3台で1台が予備機という構成の場合、異常時,定期検査時は排風機の予備機を運転することから、100%の給気送風量に対し150%の排風量となる。ここで、運転階分の排気量を制御する手段がないため、運転階分の排気量は、成行きの排気量となる。
【0009】
排風量の増加分50%の内、仮に排風量の30%が運転階分を排気したとすると、残りの20%は通常運転時に100%でバランスしていた風量に加算されることとなり、送風量100%に対し、運転階分を除く排風量が120%となり、運転階を除くタービン建屋全体の個々のエリアで風量のアンバランスが生じる。尚、予備機扱いの排風機の起動と同時に送風機の予備機を起動しても、上記と同じ条件では、送風量150%に対し、運転階分を除く排風量が120%となり同様に風量がアンバランスとなる。このため、この従来技術では、計画的な換気が成立しにくい。
【0010】
また、このシステムでは必ず排気ファンに予備機を必要とする構成である。さらに、運転階の放射能が異常上昇を示す警報が発せられた際、運転階と階下を連通させる開口を作業員が防護服を着て、運転床へ行き大物搬入口を開ける作業をしなければならず、異常時にも係わらず、時間と手間を要さなければならない問題もある。
【0011】
さらに、特許文献2に記載の従来技術は、運転階に排気ファンを持たない自然循環換気であることから、特に運転階のような大きな発熱量を内包し、かつ大空間では、強制的に換気を促進させる手段がないため、熱溜まりが懸念される。また、除熱のための給排気口開口面積を非常に大きくしなければならないという問題がある。
【0012】
本発明の目的は、設備の物量及び換気風量のアンバランスを極力抑制してタービン建屋の換気を安定化することである。
【0013】
【課題を解決するための手段】
上記課題を解消するために本発明の実施例で表された解決手段は、沸騰水型原子炉を用いた原子力発電所のタービン建屋内のタービン及びそのタービンによって駆動される発電機を収納する運転階に、タービン建屋屋外から空気を導く開口と、運転階の雰囲気をタービン建屋屋外へ一部排気する排気ファンにより構成される換気空調設備において、タービン建屋内のタービン等の通常運転時,タービン建屋内の放射能の異常時,タービン建屋内での定期検査時に、第1濾過装置として採用した排気処理装置を通してタービン建屋全体を排気する排風機により排気筒から運転階の雰囲気を一部排気する通風手段(排気ダクト)を設けた換気空調設備の基本構成を有している。
【0014】
また、その基本構成に加えて、さらに換気空調設備容量を低減するために、運転階と、運転階の雰囲気と清浄度が同様な雰囲気を有するタービン建屋内の区域とを連絡する雰囲気の通気口を移送開口として設けたものである。
【0015】
また、基本構成に加えて、タービン建屋内で行われる定期検査時の放射性物質除去作業の効率を向上するために、通常運転時あるいは放射能の異常時に運転階の雰囲気を一部排気する通風手段(排気ダクト)の吸込口に、又は通風手段に他の吸気口を設けて他の吸気口に、定期検査時に用いる雰囲気浄化設備を接続できる接続手段を設けたものである。
【0016】
また、基本構成に加えて、放射能の異常時,定期検査時に運転階の放射性物質が屋上部の排気ファンを通して浄化されない状態で外気環境へ放出されることを防止するために、運転階の屋上部の排気ファンに排気ファンへの停止の制御と同時に排気ファンと通じる排気流路を遮断する手段、あるいは排気ファンへの停止の制御と同時に運転階の内圧の負圧度を制御する手段を設けたものである。
【0017】
さらに、基本構成に加えて、運転階の雰囲気温度を制御するために、運転階の屋上部の排気ファンの駆動及び停止させる台数をその雰囲気温度に応じて制御する手段を設けたものである。
【0018】
【発明の実施の形態】
以下、本発明の各実施例について、図面に基づいて説明する。第1実施例は図1に示されている。その図1において、沸騰水型原子炉を熱源として採用した原子力発電所のタービン建屋1には、タービン建屋1に設けた開口に装備したルーバ11を通じて取り込んだ外気を処理する給気処理装置15と、給気処理装置15で処理した外気中の空気を給気ダクト17を通じて給気先であるタービン建屋1内の区域へ給気する空気の送風機16a,16b,16cとが納められている。
【0019】
同じく、タービン建屋1には、排気元のタービン建屋1内部の区域から排気ダクト18を通じてタービン建屋1内の雰囲気である空気を受け入れる第1濾過装置としての排気処理装置21と、その排気処理装置21で浄化処理した空気を排気筒23へ送る排風機22a,22b,22cとが納められている。
【0020】
タービン建屋1の排気元となるタービン建屋1の区域は、運転床4で区画された上部の運転階と称せられる区域と、下部の運転階階下と称せられる区域とから成る。運転階階下の中央の区域28a,28bには、原子炉から供給された蒸気を水に戻す復水器3が設置される。その外側周囲の周辺区域26,27とは壁41によって区画されている。運転階階下の中央の区域28a,28bは一区画であり、原子炉からの放射性物質を含む蒸気が復水器3を通る関係で、放射線線量の高い区域である。又、運転階階下の中央の区域28a,28bの周囲の周辺区域26,27は、運転階階下の中央の区域28a,28bが周辺区域26,27より低い負圧となる圧力制御及び壁41などで隔てられているので、運転床4の上方に存在する運転階の空間の放射線線量と同等の放射線線量(自然界で計測される程度の放射線線量)を有するクリーン領域となっている。壁41には、雰囲気の移行開口が設けられているので、先に説明した中央の区域28a,28bが周辺区域26,27より低い負圧となる圧力関係によって、中央の区域28a,28bへ周辺区域26,27の雰囲気が移行開口を通じて流れ、その逆の流れを阻止している。このようにしてクリーン領域が放射線線量の高い区域からの雰囲気で放射線線量が高くなる影響を防止している。
【0021】
タービン建屋の運転階には、点検作業等の利便性を考慮してタービン2の上部が運転床4よりも上方へ突き出て収納されている。そのタービン2には原子炉から供給された蒸気が通るので、放射線が運転階に漏洩しないように厳重な放射線遮蔽構造が施されている。原子力発電所が通常の運転時期にあるときには、原子炉から供給された蒸気をタービン2が受け入れてタービン2が蒸気によって回転駆動され、そのタービン2の回転駆動力が運転床4上方に装備された発電機(図示せず。)を回転させて発電作用を起こさせている。そのタービン2を回転駆動して使用された蒸気は復水器3に導入されて凝縮されることによって水に戻される。その復水器3で生じた水は原子炉に戻されて蒸気となるべく再使用される。
【0022】
タービン建屋1の運転階階下の各区域26,27,28a,28bへの給気設備は、給気処理装置15と三台の送風機16a,16b,16cと給気ダクト17とから構成される。その給気処理装置15は、タービン建屋1の外壁に設けたルーバ11に外気の取り入れ口が接続される。その給気処理装置15の外気の入口から反対の出口までの外気の通風路にその入口から出口の間で順次、給気用フィルタ12と暖房用コイル13と冷却用コイル14とが装備されている。
【0023】
その給気処理装置15の外気の出口には、並列に三台の送風機16a,16b,16cの吸込口が給気ダクト17によって連通接続されている。並列な三台の送風機16a,16b,16cの空気吐出口には給気ダクト17が連通接続され、その給気ダクト17の途中で一流路に合流され、その後に三流路の給気ダクト17a,17b,17cに分流するダクト構成を備えている。その給気ダクト17a,17bは区域26,27に連通接続され、他の給気ダクト17cは区域28a,28bに連通接続される。
【0024】
運転床4から上方の空間である運転階空間25と運転階階下の区域26,27,28a,28b内と排気元の領域とする排気設備は、排気ダクト18と、排気処理装置21と、排風機22a,22b,22cと、排気筒23とで構成されている。排気ダクト18は、四流路に分かれた排気ダクト18a,18b,18c,19の内、運転階空間25に第2排気ダクトとして採用した排気ダクト19の吸込口が、運転階階下の区域26に排気ダクト18aの吸込口が、運転階階下の区域27に排気ダクト18bの吸込口が、運転階階下の区域28a,28bに排気ダクト18cの吸込口が装備されている。排気ダクト19を第2排気ダクトというのに対して、排気ダクト18,18a,18b,18cを第1排気ダクトという。
【0025】
排気ダクト18a,18b,18c,19は、タービン建屋1の排気元の領域から外に引き出されて一流路に一旦まとめられ、その先で三流路に再分岐されて排気処理装置21の空気取り込み入口に連通接続される。この排気処理装置21には排気用フィルタ20が、再分岐した排気ダクト18の三流路の各一流路に対して一台の排気用フィルタ20が排気される空気の濾過に従事できるように、三台並列に装備されている。その三台の排気用フィルタ20の濾過済み空気の出口側には、一台の排気フィルタ20に対して一台の排風機が排風に従事するように三台の排風機22a,22b,22cの吸込口が排気処理装置21に並列に排気ダクトで連通接続される。三台の排風機22a,22b,22cの空気の吐出口は一流路に纏められて排気ダクト18で排気筒23の入口に接続されている。
【0026】
タービン建屋1の運転階の雰囲気、即ち運転階空間25の空気、を給排気する給排気設備は以下のように成っている。運転階の側壁面には給気用ルーバ5a,5bを備えてタービン建屋1の外部と連通する開口部が設けられている。タービン建屋1には、運転階空間25からタービン建屋1の屋上を経由してタービン建屋1の外へ抜けるダクト形式の排気流路として採用した排気ダクト42が装備されている。その排気ダクト42に接続されて三台の排気ファン6a,6b,6cがタービン建屋1に装備されている。
【0027】
操作盤8に装備されたリモートスイッチ7a,7b,7cで排気ファン6a,6b,6cの駆動装置を個別に制御することで各排気ファン6a,6b,6cの起動や停止等の制御が可能である。その操作盤8はタービン建屋外の制御室に装備されて、遠隔にて各排気ファン6a,6b,6cを制御できる。排気ファン6a,6b,6cの駆動機構を個別に制御する制御系統がさらに存在する。その制御系統は、運転階空間25に装備されて放射線検出器10が自然界での放射線線量を超えた予め設定した放射線線量を検出した際に電気的な高放射線検出信号を出力する放射線検出器10と、その放射線検出器10からの高放射線検出信号を入力として駆動中の各排気ファン6a,6b,6cを停止させる停止信号を排気ファン6a,6b,6cの駆動機構に出力して排気ファン6a,6b,6cの駆動を停止させる制御手段であるコントローラ9とから構成されている。
【0028】
このような第1実施例の構成において、タービン建屋1の運転床4より上の運転階空間25を有する運転階に放射性物質が放出されない通常運転時について以下に説明する。運転床4より下の運転階階下の区域26,27,28a,28bの換気は、予備機無しの33%容量3台の各送風機16a,16b,16cを駆動してルーバ11から外気を取り込み、その外気は給気用フィルタ12,暖房用コイル13,冷房用コイル14を順次通る。そのため、その外気は給気用フィルタ12で浄化され、暖房用コイル13や冷房用コイル14と熱交換して所望の温度に調整される。
【0029】
このように給気処理装置15により浄化と温度調整の各処理が成された外気は3台の送風機16a〜16cによってタービン建屋1内の各区域26,27,28a,28bや図示していない運転階下の各部屋へ給気ダクト17,17a,17b,17cを通じて供給される。
【0030】
予備機無しの33%容量3台の排風機22a〜22cを駆動することによって、各区域,各部屋の空気は排気ダクト18a,18b,18cにより集められて排気処理装置21のフィルタ20に通される。その空気に放射性物質や除去対象の他の物質が存在する場合には、その空気がフィルタ20に通された際にそれらの各物質がその空気から取り除かれてその空気の浄化が成される。このように浄化処理を施された空気は排風機22a〜22cにより排気ダクト18を通じて排気筒23の入口に送風されて排気筒23からタービン建屋外の外界へ排出される。
【0031】
一方、運転床4より上の運転階空間25の換気は、排気ファン6a〜6cと排風機22a,22b,22cを駆動することによって行われる。リモートスイッチ7a〜7cの操作で排気ファン6a〜6cが駆動されると、タービン建屋内の空気が排気ファン6a〜6cの駆動力で排気ダクト42内に吸引されてタービン建屋外へ排出される。同じく排風機22a,22b,22cが駆動されると、排気ダクト19を通じて運転階空間25の空気がフィルタ20を通って排気筒23からタービン建屋1外の外界へ排出される。このように、運転階空間25の空気が排気されるに伴って、運転階の側壁に設置されている複数のルーバ5a,5bからタービン建屋1外の外気が運転階空間25に入り込む。このようなことで運転階に存在する運転階空間25の給気及び排気作用が成される。
【0032】
このようにして、複数の排気ファン6a〜6cにより運転階空間の雰囲気である空気のほとんどを排気するが、さらに排風機22a〜22cにより運転階専用の排気ダクト19を通じて運転階空間25の空気を一部排気する。この排気ダクト19は、例えば運転階平面が長方形の場合、例えばどちらか一方の短辺側へ壁に沿って配置し、給気口のルーバ5a,5bを反対側あるいは反対側と長辺側に設置することで、取り入れた外気をショートパスさせることなく十分換気,除熱が可能であり、大幅なダクト物量増加とならない。
【0033】
運転階空間25の放射線線量が自然界と同等の低いレベルである通常運転時には、放射線検出器10は高放射線検出信号を発信しないのでその放射線検出器10からの信号をコントローラ9が受けても、コントローラ9は排気ファン6a〜6cを停止させる信号を発することが無く、排気ファン6a〜6cは駆動し続けられる。
【0034】
尚、本実施例では、送風機16a〜16cと排風機22a〜22cの構成は、予備機無しの50%容量2台あるいは100%容量1台でも可能である。また、予備機が有る構成も可能である。その場合は、例えば3台構成であれば、2台が稼動している間は、1台は停止状態となる。
【0035】
次に、図2に基づいて、第1実施例のタービン建屋の換気空調システムの構成で、運転床4より上の運転階で放射能が異常に上昇した異常時について説明する。何らかの原因で、運転階空間25の放射能が異常に上昇すると、運転階空間25に設置される放射線検出器10の計測値が予め通常と定めた値を超えて異常に上昇する。
【0036】
このような異常状態になると、放射線検出器10が高放射線信号をコントローラ9に発信する。その信号を受けたコントローラ9は、その信号により、例えば原子力発電所の運転を集中操作している中央制御室へ警報を発すると共に、全台数の排気ファン6a〜6cの駆動部に排気ファン6a〜6cを停止させる停止信号を発信し、排気ファン6a〜6cが停止される。尚、送風機16a〜16c及び排風機22a〜22cは、この場合でも連続運転している。そのため、運転階空間25の空気は、運転階専用の排気ダクト19の吸込口から吸込み量分排気され、また外気がルーバ5a,5bから運転階空間25内に外気が入って給気され、換気作用が成り立つ。排気ダクト19を通じての排気に際しては、運転階空間25の空気がフィルタ20で濾過されて放射性物質がその空気から除去されるので、最終的な排気空気内には放射性物質が外界の自然界のレベルまで低下して安全である。このようにして、排気ファン6a〜6cが停止されても、運転階空間25は、排気ダクト19を通じての排気作用で外気環境より負圧となり、運転階空間25に拡散した放射性物質の外気環境への放出が防止できる。各区域26,27,28a,28bの換気に関しては、既述の通常運転時と同じである。
【0037】
次に、図3に基づいて、第1実施例のタービン建屋の換気空調システムの構成で、タービン建屋1内での定期検査時の換気について説明する。タービン建屋1内での定期検査時にはタービン2を分解点検する作業が伴う。そのため、定期検査時では、タービン2のタービンケーシング29が開かれてタービン2が分解点検工程により運転階空間25に開放される。
【0038】
このような定期検査時の状態では、タービン2内や復水器3に内包されていた放射性物質や有害物質が、汚染空気の上昇流として運転階空間25へ拡散される恐れがある。このため、排気ファン6a〜6cをリモートスイッチ7a〜7cの操作でタービンケーシング29を開く前に停止させる。運転階専用の排気ダクト19の吸込口には、例えば放射性物質がよう素の場合、第2濾過装置として採用した活性炭のフィルタ40を設置する。排気ファン6a〜6cを停止しても、送風機16a〜16c及び排風機22a〜22cは、連続運転している。そのため、運転階空間25の空気は、運転階専用の排気ダクト19の吸込口から吸込み量分排気され、また外気がルーバ5a,5bから運転階空間25内に外気が入って給気され、換気作用が成り立つ。各区域26,27,28a,28bの換気に関しては、既述の通常運転時と同じである。
【0039】
このようにすると、運転階空間25の空気が活性炭のフィルタ40を通過してから排気ダクト19に入る。そのため、活性炭のフィルタ40によって放射性物質が除去されて空気が浄化される。浄化された空気が排気ダクト19に入って再度フィルタ20で浄化されて十分な浄化作用をうけてから排気筒23を通じて外界へ排気される。このように、運転階において一旦活性炭のフィルタ40で浄化した空気を排気設備が扱うことになるので、排気ダクト19自体の放射能汚染の抑制と外気環境への放射能の放出の確実な防止とが成し遂げられる。
【0040】
運転床4より上の運転階空間25の排気手段として排気ファン6a〜6cを運転階天井に、ルーバ5a,5bを運転階側壁に付けることにより、タービン建屋1の運転階空間25と運転階階下の各区域26,27,28a,28bの換気系を分離できる構成となる。これは、従来の方法の設備と比較した場合、例えば、量産品が可能な一般汎用品の排気ファン6a〜6cは増加する一方で、特注品の送風機16a〜16c,排風機22a〜22cの容量を下げることが可能となる。
【0041】
次に、これら図1〜図3までの内容を以下具体的に風量配分を交え定量的に風量がバランスしていることを説明する。図1に示す通常運転時に、例えば3台の送風機16a〜16cによって給気される全体必要風量を270,000m3/hとする。排気側は、例えば運転階の定期検査時に必要とされる風量を30,000m3/hとすると、3台の排風機22a〜22cによって排気される全体風量は、300,000m3/hとなる。一方、運転階の風量は、外気冷却により、例えば、運転階の総発熱負荷が300,000kcal/h で外気設計温度が32℃、運転階の設計室内温度を40℃とすると、除熱のための給気風量は、130,000m3/h必要となる。
【0042】
運転階空間25では、先に記載したように排風機22a〜22cにより排出される排気ダクト19によって30,000m3/h が排気されるから残り100,000m3/h を屋上部排気ファン6a〜6cによって排気することで、タービン建屋全体の風量バランス及び換気,除熱は達成される。次に、図2,図3に示す異常時,定期検査時について、説明する。この場合は、運転階に放射性物質が存在することから、屋上部排気ファン6a〜6cを停止することは、先に記述した通りである。これに伴い、運転階の給気口であるルーバ5a,5bからの給気量は、排風機22a〜22cにより排出される排気ダクト19によって排気される30,000m3/h分へ減少する。
【0043】
但し、異常時,定期検査時は、タービンや発電機が停止していることから、通常運転時の総発熱負荷はない。従って、異常時,定期検査時においてもタービン建屋全体の風量バランス及び換気,除熱は達成される。つまり、運転階に運転階専用の排気ダクト19を設けることで、発明が解決しようとする課題中で述べた風量のアンバランスという問題もなく、容易に全ての運転パターンにおいてタービン建屋全体の風量バランス及び換気,除熱が達成される。
【0044】
さらに運転階空間25を送風機16a〜16cと排風機22a〜22cに接続された各ダクトによって通常運転時,異常時,定期検査時に換気する従来の方法の場合による送・排風機の設備容量を比較した場合、例えば給気温度23℃では、先に記載した運転階の総発熱負荷が300,000kcal/h の場合、運転階を設計室内温度に維持するためには、63,000m3/hの風量が必要になり、タービン建屋全体の送・排気風量は、333,000m3/hとなる。このことから、本実施例の場合、総送風量で約20%、総排風量で約10%の低減ができ、同様に、設備容量も同じ比率で低減できる。尚、排気ファン6a〜6cを付けることにより、上記従来の方法から排気ファン分の設備費は上がるが、一般汎用品の例えば型番品あるいは量産品の換気扇,ファンを使用することにより、設備費の増加は、低く抑えることが可能である。
【0045】
また、図中には、排気ファン6a〜6cを3台記載したが、型番品を使用することで、コスト低減のための台数増加も可能である。さらに、特公平6−8885号公報に記載の従来技術と設備容量を比較した場合は、例えば先に記載の総給気風量270,000m3/hと同じ総排気風量を有するとした場合、必ず予備機を必要とする構成から、3台で内1台予備機とした場合、1台当りの排風機容量は、135,000m3/hとなる。従って、本実施例の場合は、排風機容量で約25%の低減ができる。
【0046】
このように本実施例によれば、通常運転時,異常時,定期検査時のどのような運転パターンにおいても風量調整を実施せずともタービン建屋全体の風量のアンバランスがなく、また適切な換気,除熱が実施できると共に、万一の運転階の放射能上昇及びタービンケーシング29の開放による放射性物質の拡散においてもそのまま外気環境への放出を防止し、かつタービン建屋全体を換気する設備及び運転階の給・排気ダクトの物量及びコストを低減できる効果がある。
【0047】
図4は、本発明の第2実施例に係る沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システムの構成を示す。第2実施例は、第1実施例を一部改変したものである。その変更点は、図4に示すように、運転床4に通気口として移送開口24a,24bを設け、排気ダクト18a,18bを削除してダクト採用量を減少させた点である。その他の構成は第1実施例と同じである。
【0048】
その移送開口24a,24bは、運転床4より上の運転階空間25と運転階階下の区域26,27を連通させる開口である。運転階空間25と区域26,27は雰囲気の清浄度が同じである。
【0049】
区域28a,28bは、運転床4より下の空間で雰囲気が汚染されている区域を示す。移送開口24a,24bは、運転床の下の区域26,27から運転階空間25への空気の移送を目的として設けられている。例えば、運転床4の下の区域26,27へ給気ダクト17a,17bを通じて外気を給気し、運転床の下の区域26,27の雰囲気を雰囲気が汚染されている区域28a,28b及び清浄な雰囲気の運転階空間25へ移送する。移送されてきた雰囲気を排気ダクト18c,19を通じて排気する。また、異常時,定期検査時の換気量の観点から移送開口24a,24bからの移送風量は、運転階空間25からの専用の排気ダクト19によって排気される排気風量と同等分とする。その他の内容については、第1実施例と同じである。
【0050】
尚、排気ダクト18a,18bを採用して、区域26,27の空気の全量を移送開口24a,24bを通じて隣接の区域28a,28b及び運転階空間25へ移送するのではなく一部移送とし、残りを排気ダクト18a,18bを通じて排気することであっても良い。
【0051】
ここで、第2実施例についても以下具体的に風量配分を交え定量的に風量がバランスしていることを説明する。第1実施例と同様な条件とすると、給気される全体必要風量は270,000m3/h、運転階の定期検査時に必要とされる風量は30,000m3/hである。給気ダクト17a,17bによって運転床4の下の区域26,27へ給気される全体風量のうち30,000m3/hを運転階へ移送給気することにより、排気される全体風量も給気量と同様に270,000m3/hとなる。
【0052】
一方、運転階も第1実施例と同様な条件とすると、除熱のための給気風量は、130,000m3/hであるから、移送風量30,000m3/hがあるため、排気ファン6a〜6cからも同じ風量130,000m3/hを排出する必要があるが、前述のように風量は、バランスしていることがわかる。また、設備についても第1実施例で示したタービン建屋全体を換気する従来の方法による総風量333,000m3/hと比較した場合、給気・排気設備共に、約20%低減できる効果がある。
【0053】
図5は、本発明の第3実施例に係る沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システムの構成を示す。第3実施例は第1実施例を一部改変したもので、その変更点は次のとおりである。
【0054】
即ち、図5に示される30は、定期検査時に運転階へ放出される、例えば放射性よう素を除去する活性炭内蔵の仮設フィルタユニットである。第2濾過装置として採用した仮設フィルタユニット30は、運転階専用の排気ダクト19から分岐した仮設フィルタユニット30の接続用ノズル31を有する排気ダクト34と、その接続用ノズル31において接続される。排気ダクト19bには途中に閉止ダンパ32が設けられ、排気ダクト34には閉止ダンパ33が設けられる。
【0055】
定期検査時の運用方法は、定期検査時には仮設フィルタユニット30が排気ダクト34に接続され、排気ダクト34に設置された閉止ダンパ33は開かれている。その替わりに排気ダクト19に設置された閉止ダンパ32を閉じて排気ダクト19を閉鎖する。通常運転時や異常時は、閉止ダンパ32,33の開閉状態を定期検査時と逆とし、仮設フィルタユニット30を接続用ノズル31部分で排気ダクト34から取り外して撤去する。
【0056】
このように本実施例によれば、定期検査時の運転階空間25へ放出される例えば放射性よう素を運転階空間25の空気と共に仮設フィルタユニット30に吸込む。吸込んだその空気は仮設フィルタユニット30で放射性よう素が除去された清浄な空気に浄化される。浄化された空気は排気ダクト34を通じて排気筒23に送られて外界へ排出される。排気ダクト34には予め仮設フィルタユニット30を容易に接続したり外して撤去できるように仮設フィルタユニット30の接続用ノズル31を備えているので、仮設フィルタユニット30の排気ダクト34への接続と撤去に従事する作業者の作業効率を向上できる効果がある。その他の内容は第1実施例と同じである。
【0057】
図6は、本発明の第4実施例に係る沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システムの構成を示す。第4実施例は第1実施例を改変したもので、その変更点は以下のとおりである。即ち、各排気ダクト42の各入口に閉止ダンパ35a,35b,35cを設け、各閉止ダンパ35a,35b,35cを開閉駆動する各ダンパ駆動機構36a,36b,36cを備えている点である。
【0058】
各ダンパ駆動機構36a,36b,36cとコントローラ9とは電気的に接続され、コントローラ9から発信された停止信号を受けて各ダンパ駆動機構36a,36b,36cが各閉止ダンパ35a,35b,35cを閉止状態に駆動する構成を備えている。その停止信号は放射線検出器10からの高放射線信号をコントローラ9が受信した直後に発信される。その他の構成は第1実施例と同じである。
【0059】
このような第4実施例にあっては、ダンパ駆動機構36a〜36cは、例えば電気によるモータ駆動が考えられ、例えば、異常時に運転階空間25の放射能が異常上昇し、放射線検出器10の計測により、コントローラ9からの停止信号が発せられて排気ファン6a〜6cが停止されるが、停止方法として例えば、ダンパ駆動機構36a〜36cの駆動用のモータへの電源を遮断する方法の場合、慣性力による惰性で排気ファン6a〜6cが回転し続け、運転階専用の排気ダクト19を通じての排気作用によって保たれる運転階空間25の負圧に対向して排気ファン6a〜6cが運転階空間25の空気を吸引する圧力を生じている時に、一部放射性物質が排気ダクト42を通じて外気へ放出される可能性がある。
【0060】
このような場合、本実施例によれば、放射性物質が外気へ流出する可能性がある各排気ダクト42の流路を各閉止ダンパ35a,35b,35cで閉鎖することにより、外気環境への放射性物質流出を遮断できる効果がある。その他の内容は第1実施例と同じである。
【0061】
図7は、本発明の第5実施例に係る沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システムの構成を示す。第5実施例は第1実施例を改変したものであって、その変更点は、次のとおりである。即ち、運転階専用の排気ダクト19には圧力調整ダンパ38が設置される。その圧力調整ダンパ38は、運転階空間25とタービン建屋1外の外界との差圧、つまり運転階空間25の負圧度を制御する圧力調整ダンパである。圧力調整ダンパ38のダンパ板を駆動して圧力調整ダンパ38の開度を調整する圧力調整ダンパ38の駆動機構にはコントローラ9が電気的に接続される。そのため、コントローラ9から発信された停止信号を圧力調整ダンパ38の駆動機構が受信すると、その停止信号に基づいて圧力調整ダンパ38の駆動機構が圧力調整ダンパ38のダンパ板を駆動して圧力調整ダンパ38の開度を予め決めた大開度状態とする制御機構がその駆動機構に備わっている。
【0062】
また、コントローラ9にはタイマー37が接続され、コントローラ9からの停止信号を受信したときに予め定めた一定時間をカウントダウンし、カウントダウン終了後にコントローラ9にその終了を知らせるタイマー信号を発信するように構成されている。
【0063】
そのタイマー信号を受けたコントローラ9が、圧力調整ダンパ38の駆動機構に開度を大開度状態にする前の元の開度に戻す信号を発信するようにコントローラ9が構成されている。また、その元の開度に戻す信号を圧力調整ダンパ38の駆動機構が受信したときに、その信号に基づいて圧力調整ダンパ38の駆動機構が圧力調整ダンパ38の開度を元の開度に戻るまでダンパ板を駆動する構成を圧力調整ダンパ38の駆動機構に装備してある。その他の構成は第1実施例と同じである。
【0064】
第5実施例では、放射線検出器10の計測に基づいて発せられる高放射線信号を受けてコントローラ9から停止信号が排気ファン6a〜6cの駆動機構に送信され、排気ファン6a〜6cが停止される。これと同時にコントローラ9からの停止信号を受けた圧力調整ダンパ38の駆動機構は、あらかじめ設定された開度へ開かれる。この設定された開度とは、排気ファン6a〜6cが慣性力により停止信号が発せられた後も廻り続ける時の圧送力以上に運転階の負圧度を大きくすることが可能な範囲をいう。
【0065】
尚、通常運転時より大きな開度で開けられた圧力調整ダンパ38は、次のように元の開度に戻される。即ち、停止信号発生から一定時間後にタイマー37から発信されたカウントダウン終了を知らせる信号をコントローラ9が受信し、その後にコントローラ9が圧力調整ダンパ38の駆動機構へ開度を元に戻す信号を発信し、その信号を受けた圧力調整ダンパ38の駆動機構は圧力調整ダンパ38の開度を通常運転時の開度に戻す。タイマー37に設定すべき一定時間とは、コントローラ9から停止信号が排気ファン6a〜6cの駆動機構に送信されてから排気ファン6a〜6cが停止されるまでの時間である。
【0066】
このような第5実施例は、排気ファン6a〜6cが停止信号を受けて停止を開始した直後に、運転階空間の空気を今まで以上に排気ダクト19を通じて排気できるので、運転階空間の圧力を今まで以上に負圧に移行させることができる。そのため、排気ファン6a〜6cが停止信号を受けて停止を開始してから停止に至るまでの間に慣性で排気ダクト42から外界へ抜ける運転階空間25の空気を極力無くすることができる。排気ファン6a〜6cが停止した後は直ちに元の圧力状態に戻される。このように、圧力調整ダンパ38は運転階空間25の圧力(負圧)の度合いを制御する手段として用いられている。このような圧力制御によって、運転階空間25の負圧度を調整し、外気環境への放射性物質の流出を防御できる効果がある。その他の内容は第1実施例と同じである。
【0067】
図8は、本発明の第6実施例に係る沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システムの構成を示す。第6実施例は第1実施例を改変したもので、その変更点は、コントローラ9に運転階空間25に配備した温度検出器39を電気的に接続した点である。即ち、運転階空間25に配備された温度検出器39は運転階空間25の雰囲気温度を計測し計測結果を電気信号に変えてコントローラ9に送信している。そのコントローラ9はマイクロコンピュータを有し、そのマイクロコンピュータには、通常運転時において、あらかじめ決めた温度範囲と、その温度範囲で運転及び停止させる排気ファン6a〜6cを対応つけさせたデータが記憶されている。マイクロコンピュータにセットしたプログラムが作動していると、プログラムに基づいて以下のように処理がなされる。
【0068】
即ち、コントローラ9が温度検出器による温度計測結果を受信するごとに、マイクロコンピュータにその温度計測結果が入力され、その温度が含まれている範囲ではどの排気ファンを駆動し、どの排気ファンを停止させるかについてマイクロコンピュータが記憶した前述のデータと温度計測結果との照らし合わせによって判定し、判定結果に基づいて排気ファン6a〜6c個々にコントローラ9から駆動信号か停止信号が発信される。駆動信号を受けたいずれかの排気ファン6a〜6cは駆動され続けられ、停止信号を受けたいずれかの排気ファン6a〜6cは停止される。この間に放射線検出器10からの高放射線信号をコントローラ9が受信した場合には、コントローラ9が全排気ファン6a〜6cに停止信号を発信するように切り替わる処理を成す。
【0069】
このように、運転階空間25内の温度に依存して排気ファン6a〜6cの運転及び停止の号機を定めれば、例えば、運転階空間の雰囲気の温度が低い場合、排気ファン6aのみの運転により、ルーバ5a,5bからの外気給気量を抑制し、運転階空間の雰囲気の温度がそれより高い場合、排気ファン6a,6bのみの運転により、ルーバ5a,5bからの外気給気量を一層増加させて、適切な温度範囲に運転階空間25の雰囲気を維持することができる。このように本実施例によれば、排気ファン6a〜6cの運転及び停止の台数制御が可能なことから、運転階空間25の雰囲気温度を制御できる上、排気ファンの駆動エネルギーに無駄が無くなるという効果が得られる。
【0070】
【発明の効果】
以上に説明したように、本発明によれば、通常運転時や異常時や定期検査時のどのような運転パターンにおいても安定した換気が確実に実施できる。
【図面の簡単な説明】
【図1】本発明の第1実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成における通常運転時の概念図である。
【図2】本発明の第1実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成における異常時の概念図である。
【図3】本発明の第1実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成における定期検査時の概念図である。
【図4】本発明の第2実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成の概念図である。
【図5】本発明の第3実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成における定期検査時の概念図である。
【図6】本発明の第4実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成の概念図である。
【図7】本発明の第5実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成の概念図である。
【図8】本発明の第6実施例である沸騰水型原子炉を採用した原子力発電所タービン建屋の換気空調システム構成の概念図である。
【符号の説明】
1…タービン建屋、2…タービン、3…復水器、4…運転床、5a,5b,
11…ルーバ、6a〜6c…排気ファン、7a〜7c…リモートスイッチ、8…操作盤、9…コントローラ、10…放射線検出器、12…給気用フィルタ、13…暖房用コイル、14…冷却用コイル、15…給気処理装置、16a〜16c…送風機、17,17a,17b,17c…給気ダクト、18,18a,18b,18c,19,34…排気ダクト、20,40…フィルタ、21…排気処理装置、22a〜22c…排風機、23…排気筒、24a,24b…移送開口、25…運転階空間、26,27,28a,28b…運転階階下の区域、29…タービンケーシング、30…仮設フィルタユニット、31…接続用ノズル、32,33,35a〜35c…閉止ダンパ、36a〜36c…ダンパ駆動機構、37…タイマー、38…圧力調整ダンパ、39…温度検出器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air supply / exhaust system in a turbine building of a nuclear power plant using a boiling water reactor, and more particularly to an air supply / exhaust system suitable for use in a ventilation air conditioning system of the turbine building.
[0002]
[Prior art]
The ventilation and air-conditioning equipment of a turbine building in a conventional nuclear power plant using a boiling water reactor has an operating floor space with air supply equipment equipped with a blower that ventilates the entire turbine building and exhaust equipment equipped with an exhaust fan. The individual spaces and rooms, including those, are ventilated (for example, see Patent Document 1).
[0003]
In addition, the ventilation system of the turbine building divides the turbine building into two at an operating floor where an airtight turbine is installed, and during normal operation, supplies outside air from an air supply opening on an operating floor wall, The atmosphere is exhausted by the rooftop exhaust fan. In addition, at the time of abnormality or at the time of periodic inspection, the radiation monitor detects that radioactivity in the driving floor space has risen, issues an alarm, and stops the rooftop exhaust fan. There is a door that is automatically closed by its own weight at the rooftop duct opening that is installed so as to cover the rooftop exhaust fan from above, thereby preventing radioactive substances from leaking into the environment. On the other hand, the exhaust in the operating floor space is opened by the worker who has protected the radioactivity from the large cargo entrance on the operating floor floor, thereby connecting the operating floor space and the space below that floor, and setting up a spare unit for each fan. A system is provided in which the exhaust is exhausted by additionally operating an exhaust fan for ventilating the entire turbine building that has been started and stopped in operation (for example, see Patent Document 1).
[0004]
Furthermore, in the ventilation and air-conditioning equipment of a turbine building in a nuclear power plant, the ventilation and air-conditioning of the operating floor during normal operation is performed by using the air at the air inlet provided at the outer wall of the operating floor and the air at the outlet provided at a higher position. Ventilation of natural circulation is performed by the ventilation power due to the density difference. Further, at the time of the periodic inspection, the exhaust port is closed, and a system is provided in which ventilation is performed by an exhaust fan dedicated to the operating floor, a filter, or an exhaust fan that ventilates the entire turbine building (for example, see Patent Document 2).
[0005]
[Patent Document 1]
Japanese Patent Publication No. 6-8885
[Patent Document 2]
Patent No. 3091519
[0006]
[Problems to be solved by the invention]
In the conventional method, a large amount of heat is included by the air supply and exhaust equipment that ventilates the entire turbine building, and the operation floor space, which is a large space, is ventilated. .
[0007]
Further, the prior art described in Patent Document 1 describes a method of operating all the exhaust fans with the operation of a spare unit at the time of radioactivity abnormality in the turbine building and at the time of periodic inspection, but the method for increasing the air flow There is no consideration, nor is there any consideration for controlling the displacement of the driving floor. Furthermore, there is a problem that the air flow in the entire turbine building is not balanced.
[0008]
For example, in the configuration of three blowers with 50% capacity and one as a spare, and three with 50% capacity and one as a spare, a spare for the blower at the time of abnormality or periodic inspection. Is operated, the exhaust air amount becomes 150% with respect to the air supply air supply amount of 100%. Here, since there is no means for controlling the exhaust amount for the operating floor, the exhaust amount for the operating floor is a successful exhaust amount.
[0009]
Assuming that 30% of the exhaust air volume exhausts the driving floor out of the 50% increase in the exhaust air volume, the remaining 20% is added to the air volume that was balanced at 100% during normal operation. With respect to the air flow of 100%, the exhaust air volume excluding the operation floor becomes 120%, and an imbalance of the air flow occurs in each area of the entire turbine building except the operation floor. In addition, even if the auxiliary device of the blower is activated at the same time as the activation of the exhaust device treated as the auxiliary device, the exhaust air amount excluding the operation floor is 120% with respect to the air volume of 150% under the same conditions as above, and the air volume is similarly increased. It becomes unbalanced. For this reason, in this conventional technique, it is difficult to achieve planned ventilation.
[0010]
Further, in this system, the exhaust fan always requires a spare unit. In addition, when an alarm indicating an abnormal rise in radioactivity at the driving floor is issued, workers must wear protective clothing to open the communication between the driving floor and the downstairs, go to the driving floor, and open the large cargo entrance. In addition, there is a problem that time and labor must be taken regardless of an abnormal situation.
[0011]
Further, since the conventional technology described in Patent Document 2 is a natural circulation ventilation having no exhaust fan on the operation floor, it includes a large amount of heat, especially in the operation floor, and forcibly ventilates in a large space. Since there is no means to promote the heat generation, there is a concern about heat accumulation. In addition, there is a problem that the opening area of the supply / exhaust port for heat removal must be very large.
[0012]
An object of the present invention is to stabilize the ventilation of a turbine building by minimizing the imbalance between the quantity of equipment and the amount of ventilation air.
[0013]
[Means for Solving the Problems]
Means for Solving the Problems To solve the above problems, a solution expressed in an embodiment of the present invention is an operation for housing a turbine in a turbine building of a nuclear power plant using a boiling water reactor and a generator driven by the turbine. In a ventilation air-conditioning system including an opening for guiding air from the outside of the turbine building to the floor and an exhaust fan for partially exhausting the atmosphere of the operating floor to the outside of the turbine building, during normal operation of the turbine or the like in the turbine building, Ventilation that exhausts part of the atmosphere on the operating floor from the exhaust stack with an exhaust fan that exhausts the entire turbine building through an exhaust treatment device adopted as the first filtration device during abnormal radioactivity inside the building and periodic inspection inside the turbine building It has a basic configuration of a ventilation air conditioning system provided with means (exhaust duct).
[0014]
Further, in addition to the basic configuration, in order to further reduce the capacity of the ventilation and air-conditioning equipment, an air vent having an atmosphere that connects the operating floor and an area in the turbine building having an atmosphere similar in cleanliness to the operating floor. Are provided as transfer openings.
[0015]
In addition to the basic configuration, to improve the efficiency of radioactive material removal work during periodic inspections performed inside the turbine building, ventilation means for partially exhausting the atmosphere on the operating floor during normal operation or when radioactivity is abnormal (Exhaust duct) At the suction port, or at the ventilation means, another intake port is provided, and at the other intake port, connection means capable of connecting the atmosphere purification equipment used at the time of the periodic inspection is provided.
[0016]
In addition to the basic structure, in order to prevent radioactive substances on the operating floor from being released into the outside air without being purified through the exhaust fan on the roof at the time of radioactivity abnormalities and periodic inspections, the roof of the operating floor must be installed. The exhaust fan of the section is provided with means for shutting off the exhaust fan and shutting off the exhaust flow passage communicating with the exhaust fan, or means for controlling the stop to the exhaust fan and means for controlling the degree of negative pressure of the internal pressure of the operating floor at the same time It is a thing.
[0017]
Further, in addition to the basic configuration, means for controlling the number of driving and stopping of the exhaust fans on the rooftop of the operating floor in accordance with the atmospheric temperature is provided in order to control the atmospheric temperature of the operating floor.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The first embodiment is shown in FIG. In FIG. 1, a turbine building 1 of a nuclear power plant employing a boiling water reactor as a heat source has an air supply processing device 15 for processing outside air taken through a louver 11 provided in an opening provided in the turbine building 1. And air blowers 16a, 16b, 16c for supplying air in the outside air processed by the air supply processing device 15 to an area in the turbine building 1 to which air is supplied through an air supply duct 17.
[0019]
Similarly, the turbine building 1 has an exhaust processing device 21 as a first filtration device that receives air as an atmosphere in the turbine building 1 through an exhaust duct 18 from an area inside the turbine building 1 that is an exhaust source, and the exhaust processing device 21. And air blowers 22a, 22b, 22c for sending the air purified in the above to the exhaust pipe 23.
[0020]
The area of the turbine building 1 serving as an exhaust source of the turbine building 1 includes an area referred to as an upper operating floor and an area referred to as a lower operating floor below the operating floor 4. A condenser 3 for returning steam supplied from the reactor to water is installed in the central sections 28a and 28b below the operating floor. The outer peripheral area 26, 27 is delimited by a wall 41. The central sections 28a and 28b below the operating floor are one section, and are areas where the radiation dose is high because steam containing radioactive material from the reactor passes through the condenser 3. The peripheral areas 26 and 27 around the central sections 28a and 28b below the operating floor are pressure control and walls 41 where the central sections 28a and 28b below the operating floor have a lower negative pressure than the peripheral sections 26 and 27. , A clean area having a radiation dose equivalent to the radiation dose (radiation dose measured in the natural world) equal to the radiation dose in the space of the operation floor existing above the operation floor 4. Since the wall 41 is provided with a transition opening of the atmosphere, the central area 28a, 28b has a lower negative pressure than the peripheral areas 26, 27, so that the peripheral area 26a, 28b The atmosphere in the zones 26, 27 flows through the transition opening, preventing the reverse flow. In this manner, the effect of increasing the radiation dose in an atmosphere where the clean area is from an area having a high radiation dose is prevented.
[0021]
On the operating floor of the turbine building, the upper part of the turbine 2 is housed so as to protrude above the operating floor 4 in consideration of convenience such as inspection work. Since the steam supplied from the nuclear reactor passes through the turbine 2, a strict radiation shielding structure is provided so that the radiation does not leak to the operation floor. When the nuclear power plant is in a normal operation time, the steam supplied from the nuclear reactor is received by the turbine 2 and the turbine 2 is rotationally driven by the steam, and the rotational driving force of the turbine 2 is provided above the operating floor 4. A generator (not shown) is rotated to generate a power. The steam used by rotating the turbine 2 is introduced into the condenser 3 and is condensed and returned to water. The water generated in the condenser 3 is returned to the nuclear reactor and reused as steam.
[0022]
The air supply equipment for each of the sections 26, 27, 28a, 28b below the operating floor of the turbine building 1 includes an air supply processing device 15, three blowers 16a, 16b, 16c, and an air supply duct 17. In the air supply processing device 15, an external air intake is connected to a louver 11 provided on an outer wall of the turbine building 1. An air supply filter 12, a heating coil 13, and a cooling coil 14 are sequentially provided between the inlet and the outlet in the outside air ventilation passage from the outside air inlet to the opposite outlet of the air supply processing device 15. I have.
[0023]
Inlet outlets of three blowers 16a, 16b, 16c are connected in parallel to an outlet of the outside air of the air supply processing device 15 by an air supply duct 17. An air supply duct 17 is communicatively connected to the air discharge ports of the three parallel blowers 16a, 16b, and 16c. The air supply duct 17 joins one flow path in the middle of the air supply duct 17, and thereafter, the three flow path air supply ducts 17a, A duct structure is provided for branching to 17b and 17c. The supply ducts 17a and 17b are connected to the sections 26 and 27, and the other supply duct 17c is connected to the sections 28a and 28b.
[0024]
Exhaust equipment which is an operation floor space 25 which is a space above the operation floor 4, an area below the operation floor 26, 27, 28 a and 28 b and an exhaust source area includes an exhaust duct 18, an exhaust treatment device 21, and an exhaust system. It is composed of the blowers 22 a, 22 b, 22 c and the exhaust pipe 23. The exhaust duct 18 is configured such that, among the exhaust ducts 18a, 18b, 18c, and 19 divided into four flow paths, the suction port of the exhaust duct 19 adopted as the second exhaust duct in the operating floor space 25 is located in the area 26 below the operating floor. The suction port of the exhaust duct 18a is provided with the suction port of the exhaust duct 18b in the section 27 below the operating floor, and the sections 28a and 28b below the operating floor are provided with the suction port of the exhaust duct 18c. The exhaust duct 19 is called a second exhaust duct, while the exhaust ducts 18, 18a, 18b, 18c are called first exhaust ducts.
[0025]
The exhaust ducts 18 a, 18 b, 18 c, and 19 are drawn out of the exhaust source area of the turbine building 1, are once combined into one flow path, are re-branched into three flow paths, and are then branched into three flow paths. Is connected to. The exhaust treatment device 21 is provided with an exhaust filter 20 so that one exhaust filter 20 can engage in filtration of air exhausted from each of three passages of the re-branched exhaust duct 18. Equipped in parallel. At the outlet side of the filtered air of the three exhaust filters 20, three exhaust fans 22 a, 22 b, and 22 c are arranged such that one exhaust fan engages in exhaust air with respect to one exhaust filter 20. Are connected to the exhaust processing device 21 in parallel by an exhaust duct. The air outlets of the three air blowers 22a, 22b, 22c are combined into one flow path and connected to the inlet of the exhaust pipe 23 by the exhaust duct 18.
[0026]
The air supply / exhaust system for supplying / exhausting the atmosphere of the operation floor of the turbine building 1, that is, the air in the operation floor space 25, is configured as follows. On the side wall surface of the operating floor, an opening is provided which is provided with air supply louvers 5a and 5b and communicates with the outside of the turbine building 1. The turbine building 1 is provided with an exhaust duct 42 employed as a duct-type exhaust passage that passes from the operating floor space 25 to the outside of the turbine building 1 via the roof of the turbine building 1. Three exhaust fans 6a, 6b, 6c connected to the exhaust duct 42 are mounted on the turbine building 1.
[0027]
By individually controlling the driving devices of the exhaust fans 6a, 6b, 6c with the remote switches 7a, 7b, 7c provided on the operation panel 8, it is possible to control the start and stop of each exhaust fan 6a, 6b, 6c. is there. The operation panel 8 is installed in a control room outside the turbine building, and can remotely control the exhaust fans 6a, 6b, and 6c. There is further a control system for individually controlling the drive mechanisms of the exhaust fans 6a, 6b, 6c. The control system includes a radiation detector 10 that is provided in the driving floor space 25 and outputs an electrical high radiation detection signal when the radiation detector 10 detects a preset radiation dose exceeding the radiation dose in the natural world. And a stop signal for stopping the driven exhaust fans 6a, 6b, 6c with the high radiation detection signal from the radiation detector 10 as an input to the exhaust fan 6a by outputting to the drive mechanism of the exhaust fans 6a, 6b, 6c. , 6b, and 6c, and a controller 9 which is a control means for stopping the driving.
[0028]
In the configuration of the first embodiment, a description will be given below of a normal operation in which radioactive materials are not released to the operating floor having the operating floor space 25 above the operating floor 4 of the turbine building 1. The ventilation of the sections 26, 27, 28a, 28b below the operating floor 4 below the operating floor 4 is performed by driving each of the three blowers 16a, 16b, 16c of 33% capacity without a spare machine to take in outside air from the louver 11, The outside air sequentially passes through an air supply filter 12, a heating coil 13, and a cooling coil 14. Therefore, the outside air is purified by the air supply filter 12 and exchanges heat with the heating coil 13 and the cooling coil 14 to be adjusted to a desired temperature.
[0029]
The outside air thus purified and temperature-adjusted by the air supply processing device 15 is operated by three blowers 16a to 16c in the respective sections 26, 27, 28a, and 28b in the turbine building 1 and in an operation (not shown). Air is supplied to each room downstairs through the air supply ducts 17, 17a, 17b, and 17c.
[0030]
By driving three exhausters 22a to 22c having a 33% capacity without a spare device, air in each area and each room is collected by exhaust ducts 18a, 18b and 18c and passed through a filter 20 of an exhaust treatment device 21. You. If radioactive substances or other substances to be removed exist in the air, when the air is passed through the filter 20, each of those substances is removed from the air to purify the air. The air thus purified is sent to the inlet of the exhaust pipe 23 through the exhaust duct 18 by the exhaust fans 22a to 22c, and is discharged from the exhaust pipe 23 to the outside of the turbine building.
[0031]
On the other hand, ventilation of the driving floor space 25 above the driving floor 4 is performed by driving the exhaust fans 6a to 6c and the exhaust fans 22a, 22b, 22c. When the exhaust fans 6a to 6c are driven by operating the remote switches 7a to 7c, the air inside the turbine building is sucked into the exhaust duct 42 by the driving force of the exhaust fans 6a to 6c, and is discharged outside the turbine building. Similarly, when the blowers 22 a, 22 b, and 22 c are driven, the air in the operating floor space 25 is discharged from the exhaust pipe 23 to the outside of the turbine building 1 through the filter 20 through the exhaust duct 19. As described above, as the air in the operating floor space 25 is exhausted, the outside air outside the turbine building 1 enters the operating floor space 25 from the plurality of louvers 5a and 5b installed on the side walls of the operating floor. In this way, the air supply and exhaust operations of the driving floor space 25 existing on the driving floor are performed.
[0032]
In this manner, most of the air which is the atmosphere of the operating floor space is exhausted by the plurality of exhaust fans 6a to 6c, and the air in the operating floor space 25 is further exhausted by exhaust fans 22a to 22c through the exhaust duct 19 dedicated to the operating floor. Partially exhaust. For example, when the operation floor plane is rectangular, the exhaust duct 19 is disposed along the wall, for example, on one of the short sides, and the louvers 5a, 5b of the air supply port are arranged on the opposite side or on the opposite side and the long side. By installing, sufficient ventilation and heat removal are possible without causing a short path of the taken in outside air, and there is no significant increase in the volume of ducts.
[0033]
During normal operation in which the radiation dose in the operating floor space 25 is at a low level equivalent to that in the natural world, the radiation detector 10 does not transmit a high radiation detection signal. 9 does not emit a signal to stop the exhaust fans 6a to 6c, and the exhaust fans 6a to 6c continue to be driven.
[0034]
In this embodiment, the configuration of the blowers 16a to 16c and the blowers 22a to 22c can be two units with 50% capacity or one unit with 100% capacity without a spare unit. Further, a configuration having a spare machine is also possible. In that case, for example, if three units are configured, one unit is in a stopped state while two units are operating.
[0035]
Next, based on FIG. 2, a description will be given of an abnormal time when the radioactivity is abnormally increased in the operation floor above the operation floor 4 in the configuration of the ventilation and air conditioning system of the turbine building of the first embodiment. If the radioactivity in the driving floor space 25 abnormally rises for some reason, the measured value of the radiation detector 10 installed in the driving floor space 25 abnormally rises above a value determined as normal.
[0036]
When such an abnormal state occurs, the radiation detector 10 transmits a high radiation signal to the controller 9. The controller 9 which has received the signal issues an alarm to the central control room, for example, which centrally operates the operation of the nuclear power plant, based on the signal, and outputs the exhaust fans 6a to 6c to the drive units of all the exhaust fans 6a to 6c. A stop signal for stopping the fan 6c is transmitted, and the exhaust fans 6a to 6c are stopped. The blowers 16a to 16c and the blowers 22a to 22c are continuously operated even in this case. Therefore, the air in the operating floor space 25 is exhausted by the suction amount of the exhaust duct 19 dedicated to the operating floor by an amount corresponding to the suction amount, and the outside air enters the operating floor space 25 from the louvers 5a and 5b and is supplied. The effect holds. When the air is exhausted through the exhaust duct 19, the air in the operating floor space 25 is filtered by the filter 20 and the radioactive material is removed from the air, so that the radioactive material is contained in the final exhaust air to the level of the natural environment outside. Reduced and safe. In this way, even if the exhaust fans 6a to 6c are stopped, the operating floor space 25 becomes a negative pressure from the outside air environment due to the exhaust action through the exhaust duct 19, and the operating floor space 25 enters the outside air environment of the radioactive material diffused into the operating floor space 25. Release can be prevented. The ventilation of each of the sections 26, 27, 28a, 28b is the same as in the normal operation described above.
[0037]
Next, the ventilation at the time of the periodic inspection in the turbine building 1 in the configuration of the ventilation and air conditioning system for the turbine building of the first embodiment will be described with reference to FIG. At the time of periodic inspection in the turbine building 1, work to disassemble and inspect the turbine 2 is involved. Therefore, at the time of the periodic inspection, the turbine casing 29 of the turbine 2 is opened, and the turbine 2 is opened to the operation floor space 25 through the disassembly and inspection process.
[0038]
In such a state at the time of the periodic inspection, radioactive substances and harmful substances contained in the turbine 2 and the condenser 3 may be diffused into the operation floor space 25 as an upward flow of the contaminated air. For this reason, the exhaust fans 6a to 6c are stopped before the turbine casing 29 is opened by operating the remote switches 7a to 7c. For example, in the case where the radioactive substance is iodine, a filter 40 of activated carbon used as a second filtering device is installed at a suction port of the exhaust duct 19 dedicated to the operating floor. Even when the exhaust fans 6a to 6c are stopped, the blowers 16a to 16c and the exhaust fans 22a to 22c are continuously operated. Therefore, the air in the operating floor space 25 is exhausted by the suction amount of the exhaust duct 19 dedicated to the operating floor by an amount corresponding to the suction amount, and the outside air enters the operating floor space 25 from the louvers 5a and 5b and is supplied. The effect holds. The ventilation of each of the sections 26, 27, 28a, 28b is the same as in the normal operation described above.
[0039]
In this way, the air in the operating floor space 25 enters the exhaust duct 19 after passing through the activated carbon filter 40. Therefore, the radioactive substance is removed by the activated carbon filter 40 and the air is purified. The purified air enters the exhaust duct 19, is purified again by the filter 20, undergoes a sufficient purification action, and is exhausted to the outside through the exhaust pipe 23. As described above, since the exhaust equipment treats the air once purified by the activated carbon filter 40 on the operation floor, it is possible to suppress the radioactive contamination of the exhaust duct 19 itself and to reliably prevent the release of the radioactivity to the outside air environment. Is achieved.
[0040]
By attaching exhaust fans 6a to 6c to the operating floor ceiling and louvers 5a and 5b to the operating floor side walls as exhaust means of the operating floor space 25 above the operating floor 4, the operating floor space 25 and the operating lower floor of the turbine building 1 are attached. The ventilation system of each of the sections 26, 27, 28a, 28b can be separated. This is because, when compared with the equipment of the conventional method, for example, while the number of general-purpose exhaust fans 6a to 6c that can be mass-produced increases, the capacity of the custom-made blowers 16a to 16c and the exhaust fans 22a to 22c is increased. Can be reduced.
[0041]
Next, the fact that the air volume is quantitatively balanced with the air volume distribution will be described below with reference to FIGS. At the time of the normal operation shown in FIG. 1, for example, the total required air volume supplied by the three blowers 16a to 16c is 270,000 m. Three / H. On the exhaust side, for example, the air volume required for periodic inspection of the driving floor is 30,000 m Three / H, the total air volume exhausted by the three exhaust fans 22a to 22c is 300,000 m Three / H. On the other hand, the air volume at the operating floor is reduced by the outside air cooling. For example, if the total heating load of the operating floor is 300,000 kcal / h, the outside air design temperature is 32 ° C., and the design room temperature of the operating floor is 40 ° C. 130,000m Three / H is required.
[0042]
In the driving floor space 25, as described above, 30,000 m is provided by the exhaust duct 19 exhausted by the exhaust fans 22a to 22c. Three / H is exhausted and the remaining 100,000m Three By exhausting / h from the rooftop exhaust fans 6a to 6c, the airflow balance, ventilation, and heat removal of the entire turbine building are achieved. Next, a description will be given of an abnormal state and a periodic inspection shown in FIGS. In this case, the stop of the rooftop exhaust fans 6a to 6c is as described above because the radioactive substance exists on the operation floor. Along with this, the amount of air supplied from the louvers 5a and 5b, which are air supply ports on the operating floor, is 30,000 m which is exhausted by the exhaust duct 19 exhausted by the air blowers 22a to 22c. Three / H min.
[0043]
However, at the time of abnormality or at the time of periodic inspection, there is no total heat generation load during normal operation because the turbine and the generator are stopped. Therefore, even in the event of an abnormality or during a regular inspection, the air flow balance, ventilation and heat removal of the entire turbine building can be achieved. In other words, by providing the exhaust floor 19 dedicated to the operating floor on the operating floor, there is no problem of air flow imbalance described in the problem to be solved by the invention, and the air flow balance of the entire turbine building can be easily adjusted in all operation patterns. And ventilation and heat removal are achieved.
[0044]
Further, the capacity of the blower / discharger according to the conventional method in which the operating floor space 25 is ventilated by the ducts connected to the blowers 16a to 16c and the blowers 22a to 22c during normal operation, abnormality, and periodic inspection is compared. For example, at a supply air temperature of 23 ° C., if the total heating load of the operating floor described above is 300,000 kcal / h, to maintain the operating floor at the design room temperature, 63,000 m Three / H air volume is required, and the air flow rate of the entire turbine building is 333,000 m. Three / H. Thus, in the case of the present embodiment, the total air volume can be reduced by about 20% and the total air volume can be reduced by about 10%. Similarly, the equipment capacity can be reduced at the same ratio. The installation cost of the exhaust fan is increased by adding the exhaust fans 6a to 6c from the above-mentioned conventional method. However, by using a general-purpose product such as a model number product or a mass-produced ventilating fan and a fan, the equipment cost is reduced. The increase can be kept low.
[0045]
Although three exhaust fans 6a to 6c are shown in the drawing, the number of the exhaust fans 6a to 6c can be increased for cost reduction by using a model number. Further, when comparing the equipment capacity with the prior art described in Japanese Patent Publication No. 6-8885, for example, the total supply air volume 270,000 m Three When the total exhaust air volume is the same as / h, the configuration that always requires a spare unit, and when one of the three units is a spare unit, the capacity of the exhaust unit per unit is 135,000 m. Three / H. Therefore, in the case of the present embodiment, the capacity of the exhaust fan can be reduced by about 25%.
[0046]
As described above, according to the present embodiment, there is no imbalance in the air volume of the entire turbine building without performing air volume adjustment in any operation pattern at the time of normal operation, abnormality, and periodic inspection, and proper ventilation. In addition, heat removal can be performed, and even in the event of an increase in radioactivity on the operating floor and diffusion of radioactive materials due to the opening of the turbine casing 29, it is possible to prevent the release of the radioactive material to the outside air environment and to ventilate the entire turbine building. This has the effect of reducing the quantity and cost of supply / exhaust ducts on the floor.
[0047]
FIG. 4 shows a configuration of a ventilation air conditioning system for a nuclear power plant turbine building employing a boiling water reactor according to a second embodiment of the present invention. The second embodiment is a modification of the first embodiment. The change is that, as shown in FIG. 4, transfer openings 24a and 24b are provided as vents in the operating floor 4, and the exhaust ducts 18a and 18b are eliminated to reduce the amount of ducts used. Other configurations are the same as those of the first embodiment.
[0048]
The transfer openings 24a and 24b are openings that allow the operation floor space 25 above the operation floor 4 to communicate with the sections 26 and 27 below the operation floor. The operating floor space 25 and the areas 26 and 27 have the same atmosphere cleanliness.
[0049]
The areas 28a and 28b are areas where the atmosphere is contaminated in a space below the operating floor 4. The transfer openings 24a, 24b are provided for the purpose of transferring air from the areas 26, 27 below the operating floor to the operating floor space 25. For example, outside air is supplied to the sections 26 and 27 below the operating floor 4 through the air supply ducts 17a and 17b, and the atmosphere of the sections 26 and 27 below the operating floor is changed to the areas 28a and 28b where the atmosphere is contaminated and the cleanliness. It is transferred to the driving floor space 25 with a pleasant atmosphere. The transferred atmosphere is exhausted through the exhaust ducts 18c and 19. In addition, from the viewpoint of the ventilation volume at the time of abnormality and periodic inspection, the transfer air volume from the transfer openings 24a and 24b is made equal to the exhaust air volume exhausted from the operation floor space 25 by the dedicated exhaust duct 19. Other details are the same as in the first embodiment.
[0050]
It should be noted that the exhaust ducts 18a and 18b are employed so that the entire amount of air in the sections 26 and 27 is not transferred to the adjacent sections 28a and 28b and the operation floor space 25 through the transfer openings 24a and 24b, but is partially transferred. May be exhausted through the exhaust ducts 18a and 18b.
[0051]
Here, also in the second embodiment, the fact that the air volume is quantitatively balanced with the air volume distribution will be specifically described below. Under the same conditions as in the first embodiment, the total required air volume to be supplied is 270,000 m. Three / H, air volume required for periodic inspection of the driving floor is 30,000m Three / H. 30,000 m of the total air volume supplied to the sections 26, 27 below the operating floor 4 by the air supply ducts 17a, 17b Three / H to the driving floor and supply air, the total air volume exhausted is 270,000 m in the same manner as the air supply volume. Three / H.
[0052]
On the other hand, assuming that the driving floor has the same conditions as those of the first embodiment, the supply air volume for heat removal is 130,000 m. Three / H, transfer air volume 30,000m Three / H, the same air volume of 130,000 m from the exhaust fans 6a to 6c Three / H needs to be discharged, but it is understood that the air volume is balanced as described above. The total air volume of the equipment is 333,000 m by the conventional method of ventilating the entire turbine building shown in the first embodiment. Three / H, there is an effect that both air supply and exhaust equipment can be reduced by about 20%.
[0053]
FIG. 5 shows a configuration of a ventilation air conditioning system for a nuclear power plant turbine building employing a boiling water reactor according to a third embodiment of the present invention. The third embodiment is a partial modification of the first embodiment, and the changes are as follows.
[0054]
That is, reference numeral 30 shown in FIG. 5 is a temporary filter unit with a built-in activated carbon for removing, for example, radioactive iodine, which is released to the operation floor during the periodic inspection. The temporary filter unit 30 employed as the second filtration device is connected to the exhaust duct 34 having the connection nozzle 31 of the temporary filter unit 30 branched from the exhaust duct 19 dedicated to the operating floor, and connected at the connection nozzle 31. A closing damper 32 is provided in the exhaust duct 19b, and a closing damper 33 is provided in the exhaust duct 34.
[0055]
During the periodic inspection, the temporary filter unit 30 is connected to the exhaust duct 34 and the closing damper 33 installed in the exhaust duct 34 is opened at the time of the periodic inspection. Instead, the closing damper 32 installed in the exhaust duct 19 is closed to close the exhaust duct 19. At the time of normal operation or at the time of abnormality, the open / close state of the closing dampers 32 and 33 is reversed from that at the time of the periodic inspection, and the temporary filter unit 30 is removed from the exhaust duct 34 at the connection nozzle 31 and removed.
[0056]
As described above, according to the present embodiment, for example, radioactive iodine released to the operating floor space 25 during the periodic inspection is sucked into the temporary filter unit 30 together with the air in the operating floor space 25. The sucked air is purified by the temporary filter unit 30 into clean air from which radioactive iodine has been removed. The purified air is sent to the exhaust pipe 23 through the exhaust duct 34 and discharged to the outside. The exhaust duct 34 is provided with a connection nozzle 31 for the temporary filter unit 30 so that the temporary filter unit 30 can be easily connected and disconnected in advance and removed, so that the temporary filter unit 30 is connected to and removed from the exhaust duct 34. There is an effect that the working efficiency of the worker engaged in the work can be improved. Other details are the same as in the first embodiment.
[0057]
FIG. 6 shows a configuration of a ventilation air conditioning system for a nuclear power plant turbine building employing a boiling water reactor according to a fourth embodiment of the present invention. The fourth embodiment is a modification of the first embodiment, and the changes are as follows. That is, closing dampers 35a, 35b, 35c are provided at each inlet of each exhaust duct 42, and damper driving mechanisms 36a, 36b, 36c for opening and closing the closing dampers 35a, 35b, 35c are provided.
[0058]
Each of the damper drive mechanisms 36a, 36b, 36c is electrically connected to the controller 9, and each of the damper drive mechanisms 36a, 36b, 36c receives the stop signal transmitted from the controller 9 to operate the respective closing dampers 35a, 35b, 35c. A structure for driving to a closed state is provided. The stop signal is transmitted immediately after the controller 9 receives the high radiation signal from the radiation detector 10. Other configurations are the same as those of the first embodiment.
[0059]
In such a fourth embodiment, the damper drive mechanisms 36a to 36c may be driven by an electric motor, for example. For example, the radioactivity of the operation floor space 25 abnormally increases when an abnormality occurs, and the radiation detector 10 According to the measurement, a stop signal is issued from the controller 9 to stop the exhaust fans 6a to 6c. For example, in the case of a method of shutting off the power to the drive motors of the damper drive mechanisms 36a to 36c, The exhaust fans 6a to 6c continue to rotate due to inertia due to inertial force, and the exhaust fans 6a to 6c face the negative pressure of the operating floor space 25 maintained by the exhaust action through the exhaust duct 19 dedicated to the operating floor. Some radioactive material may be released to the outside air through the exhaust duct 42 when the pressure for sucking air 25 is generated.
[0060]
In such a case, according to the present embodiment, by closing the flow paths of the respective exhaust ducts 42 in which the radioactive substance may flow out to the outside air by the respective closing dampers 35a, 35b, 35c, the radioactivity to the outside air environment is reduced. It has the effect of blocking material outflow. Other details are the same as in the first embodiment.
[0061]
FIG. 7 shows a configuration of a ventilation and air conditioning system for a turbine building of a nuclear power plant employing a boiling water reactor according to a fifth embodiment of the present invention. The fifth embodiment is a modification of the first embodiment, and the modifications are as follows. That is, the pressure adjusting damper 38 is installed in the exhaust duct 19 dedicated to the operating floor. The pressure adjustment damper 38 is a pressure adjustment damper that controls the pressure difference between the operating floor space 25 and the outside world outside the turbine building 1, that is, the degree of negative pressure in the operating floor space 25. The controller 9 is electrically connected to a drive mechanism of the pressure adjustment damper 38 that drives the damper plate of the pressure adjustment damper 38 to adjust the opening of the pressure adjustment damper 38. Therefore, when the drive mechanism of the pressure adjustment damper 38 receives the stop signal transmitted from the controller 9, the drive mechanism of the pressure adjustment damper 38 drives the damper plate of the pressure adjustment damper 38 based on the stop signal, and The drive mechanism is provided with a control mechanism for bringing the opening 38 into a predetermined large opening state.
[0062]
Further, a timer 37 is connected to the controller 9, counts down a predetermined time when a stop signal is received from the controller 9, and transmits a timer signal to notify the controller 9 of the end after the countdown ends. Have been.
[0063]
The controller 9 that has received the timer signal transmits a signal to the driving mechanism of the pressure adjustment damper 38 to return the opening to the original opening before the opening is set to the large opening state. When the drive mechanism of the pressure adjustment damper 38 receives a signal for returning to the original opening degree, the drive mechanism of the pressure adjustment damper 38 changes the opening degree of the pressure adjustment damper 38 to the original opening degree based on the signal. The drive mechanism of the pressure adjustment damper 38 is provided with a structure for driving the damper plate until returning. Other configurations are the same as those of the first embodiment.
[0064]
In the fifth embodiment, a stop signal is transmitted from the controller 9 to the drive mechanism of the exhaust fans 6a to 6c in response to a high radiation signal generated based on the measurement of the radiation detector 10, and the exhaust fans 6a to 6c are stopped. . At the same time, the drive mechanism of the pressure adjustment damper 38 that has received the stop signal from the controller 9 is opened to a preset opening. The set opening degree is a range in which the negative pressure degree of the operating floor can be made larger than the pumping force when the exhaust fans 6a to 6c continue to rotate even after the stop signal is issued due to the inertial force. .
[0065]
The pressure adjustment damper 38 opened with a larger opening than in the normal operation is returned to the original opening as follows. That is, the controller 9 receives a signal indicating the end of the countdown transmitted from the timer 37 a fixed time after the generation of the stop signal, and then transmits a signal for returning the opening to the drive mechanism of the pressure adjusting damper 38. Upon receiving the signal, the drive mechanism of the pressure adjustment damper 38 returns the opening of the pressure adjustment damper 38 to the opening during normal operation. The certain time to be set in the timer 37 is a time from when a stop signal is transmitted from the controller 9 to the drive mechanism of the exhaust fans 6a to 6c to when the exhaust fans 6a to 6c are stopped.
[0066]
In the fifth embodiment, the air in the operating floor space can be exhausted through the exhaust duct 19 more immediately after the exhaust fans 6a to 6c start the stop in response to the stop signal. Can be shifted to a negative pressure more than ever. Therefore, it is possible to minimize the air in the operating floor space 25 that passes through the exhaust duct 42 to the outside by inertia between the time when the exhaust fans 6a to 6c receive the stop signal and start the stop and the time when the stop occurs. Immediately after the exhaust fans 6a to 6c stop, the pressure is returned to the original pressure state. Thus, the pressure adjusting damper 38 is used as a means for controlling the degree of the pressure (negative pressure) in the operating floor space 25. By such pressure control, the degree of negative pressure in the operating floor space 25 is adjusted, and there is an effect that the outflow of radioactive substances into the outside air environment can be prevented. Other details are the same as in the first embodiment.
[0067]
FIG. 8 shows a configuration of a ventilation air conditioning system for a nuclear power plant turbine building employing a boiling water reactor according to a sixth embodiment of the present invention. The sixth embodiment is a modification of the first embodiment, and is different from the first embodiment in that the controller 9 is electrically connected to a temperature detector 39 provided in the operating floor space 25. That is, the temperature detector 39 disposed in the operating floor space 25 measures the ambient temperature of the operating floor space 25, converts the measurement result into an electric signal, and transmits the electric signal to the controller 9. The controller 9 has a microcomputer. In the microcomputer, during normal operation, data in which a predetermined temperature range is associated with exhaust fans 6a to 6c that operate and stop in the temperature range are stored. ing. When the program set in the microcomputer is operating, the following processing is performed based on the program.
[0068]
That is, each time the controller 9 receives the temperature measurement result from the temperature detector, the temperature measurement result is input to the microcomputer, and which exhaust fan is driven and which exhaust fan is stopped in a range including the temperature. The determination is made by comparing the aforementioned data stored by the microcomputer with the temperature measurement result, and a drive signal or a stop signal is transmitted from the controller 9 to each of the exhaust fans 6a to 6c based on the determination result. Any of the exhaust fans 6a to 6c receiving the drive signal is continuously driven, and any of the exhaust fans 6a to 6c receiving the stop signal is stopped. If the controller 9 receives a high radiation signal from the radiation detector 10 during this time, the controller 9 performs processing to switch to transmitting a stop signal to all the exhaust fans 6a to 6c.
[0069]
As described above, if the number of operation and stop of the exhaust fans 6a to 6c is determined depending on the temperature in the operating floor space 25, for example, when the temperature of the atmosphere in the operating floor space is low, the operation of only the exhaust fan 6a is performed. Accordingly, the outside air supply amount from the louvers 5a, 5b is suppressed, and when the temperature of the atmosphere in the driving floor space is higher than that, the operation of only the exhaust fans 6a, 6b reduces the outside air supply amount from the louvers 5a, 5b. With a further increase, the atmosphere of the driving floor space 25 can be maintained in an appropriate temperature range. As described above, according to the present embodiment, since the number of operating and stopping the exhaust fans 6a to 6c can be controlled, the ambient temperature of the operating floor space 25 can be controlled and the driving energy of the exhaust fans can be reduced. The effect is obtained.
[0070]
【The invention's effect】
As described above, according to the present invention, stable ventilation can be reliably performed in any operation pattern during normal operation, abnormal operation, and periodic inspection.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a ventilation air conditioning system configuration of a turbine building of a nuclear power plant employing a boiling water reactor according to a first embodiment of the present invention during normal operation.
FIG. 2 is a conceptual diagram of an abnormal condition in a ventilation air conditioning system configuration of a turbine building of a nuclear power plant employing a boiling water reactor according to a first embodiment of the present invention.
FIG. 3 is a conceptual diagram at the time of a periodic inspection in a configuration of a ventilation and air conditioning system of a turbine building of a nuclear power plant employing a boiling water reactor according to a first embodiment of the present invention.
FIG. 4 is a conceptual diagram of a configuration of a ventilation air conditioning system of a turbine building of a nuclear power plant employing a boiling water reactor according to a second embodiment of the present invention.
FIG. 5 is a conceptual diagram at the time of a periodic inspection in a configuration of a ventilation air conditioning system of a nuclear power plant turbine building employing a boiling water reactor according to a third embodiment of the present invention.
FIG. 6 is a conceptual diagram of a configuration of a ventilation air conditioning system for a nuclear power plant turbine building employing a boiling water reactor according to a fourth embodiment of the present invention.
FIG. 7 is a conceptual diagram of a configuration of a ventilation air conditioning system for a turbine building of a nuclear power plant employing a boiling water reactor according to a fifth embodiment of the present invention.
FIG. 8 is a conceptual diagram of a ventilation air conditioning system configuration of a nuclear power plant turbine building employing a boiling water reactor according to a sixth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Turbine building, 2 ... Turbine, 3 ... Condenser, 4 ... Operating floor, 5a, 5b,
11 Louver, 6a-6c ... exhaust fan, 7a-7c ... remote switch, 8 ... operation panel, 9 ... controller, 10 ... radiation detector, 12 ... air supply filter, 13 ... heating coil, 14 ... cooling Coil, 15 ... Air supply processing device, 16a-16c ... Blower, 17, 17a, 17b, 17c ... Air supply duct, 18, 18a, 18b, 18c, 19, 34 ... Exhaust duct, 20, 40 ... Filter, 21 ... Exhaust treatment device, 22a to 22c: exhaust fan, 23: exhaust tube, 24a, 24b: transfer opening, 25: operating floor space, 26, 27, 28a, 28b: area under operating floor, 29: turbine casing, 30 ... Temporary filter unit, 31 ... connection nozzle, 32, 33, 35a to 35c ... closing damper, 36a to 36c ... damper driving mechanism, 37 ... timer, 38 ... pressure adjustment Lymphoma, 39 ... temperature detector.

Claims (6)

原子力発電所のタービン建屋の運転階空間に外気を導くように前記タービン建屋に装備されたルーバと、
前記運転階空間の空気を前記タービン建屋外へ導く排気流路と、
前記運転階空間の空気を排気するように前記排気流路に備えた排気ファンと、
前記タービン建屋の運転階の下に外気を導く給気ダクトと、
前記タービン建屋の運転階の下に外気を送気するように前記給気ダクトに備えた送風機と、
前記タービン建屋の運転階の下の空気を放射性物質を除去する第1濾過装置を経由して前記タービン建屋外へ導く第1排気ダクトと、
前記タービン建屋の運転階の下の空気を前記タービン建屋外へ送気するように前記第1排気ダクトに備えた排風機と、
前記運転階空間の空気を前記タービン建屋外へ送気するように、前記運転階から前記第1濾過装置を経由して前記排風機に連通接続した第2排気ダクトと、
を備えている原子力発電所タービン建屋の給排気設備。
A louver mounted on the turbine building to guide the outside air to the operating floor space of the turbine building of the nuclear power plant,
An exhaust passage for guiding the air in the operating floor space to the outside of the turbine building,
An exhaust fan provided in the exhaust passage so as to exhaust air in the operating floor space;
An air supply duct that guides outside air below an operation floor of the turbine building;
A blower provided in the air supply duct so as to blow outside air below the operating floor of the turbine building,
A first exhaust duct that guides air below the operating floor of the turbine building to the outside of the turbine building via a first filtering device that removes radioactive materials;
An exhaust fan provided in the first exhaust duct so as to supply air below an operation floor of the turbine building to the outside of the turbine building;
A second exhaust duct connected to the exhaust from the operating floor via the first filtering device so as to supply air in the operating floor space to the outside of the turbine building;
Nuclear power plant turbine building air supply and exhaust equipment.
請求項1において、前記運転階空間と前記運転階の下の外側周辺の区域とを連通する通気口を運転床に備えてある原子力発電所タービン建屋の給排気設備。The air supply / exhaust facility of a turbine building of a nuclear power plant according to claim 1, wherein the operating floor is provided with a ventilation hole that communicates the operating floor space with an outer peripheral area below the operating floor. 請求項1又は請求項2において、前記運転階空間の雰囲気の前記第2排気ダクトに、前記運転階空間から流入する空気に含まれている放射性物質を除去する第2濾過装置を接続した原子力発電所タービン建屋の給排気設備。The nuclear power plant according to claim 1 or 2, wherein a second filtration device for removing radioactive substances contained in air flowing from the operating floor space is connected to the second exhaust duct having an atmosphere in the operating floor space. Supply and exhaust equipment of the turbine building. 請求項1から請求項3までのいずれか一項において、前記運転階空間に装備された放射線検出器と、前記放射線検出器からの信号に基づいて前記排気ファンを停止させるとともに前記排気ファンに通じる排気流路に装備された閉止ダンパを開状態から閉止状態へ駆動させる制御手段とを備えている原子力発電所タービン建屋の給排気設備。The radiation detector according to any one of claims 1 to 3, further comprising: a radiation detector provided in the driving floor space; and stopping the exhaust fan based on a signal from the radiation detector and communicating with the exhaust fan. Control means for driving a closing damper provided in an exhaust passage from an open state to a closed state; and a supply / exhaust facility for a turbine building of a nuclear power plant. 請求項1から請求項3までのいずれか一項において、前記運転階に装備された放射線検出器と、前記第2排気ダクトに装備された圧力調整ダンパと、前記放射線検出器からの信号に基づいて前記排気ファンを停止させるとともに前記圧力調整ダンパを開度の増大方向に予め定めた時間だけ駆動させる制御手段とを備えている原子力発電所タービン建屋の給排気設備。The radiation detector according to any one of claims 1 to 3, wherein the radiation detector is provided on the driving floor, the pressure adjustment damper is provided on the second exhaust duct, and a signal from the radiation detector is provided. Control means for stopping the exhaust fan and driving the pressure adjusting damper in a direction of increasing the opening for a predetermined time. 請求項1から請求項5までのいずれか一項において、複数台の前記排気ファンと、前記運転階空間に装備された温度検出器と、前記温度検出器による検出温度に基づいて前記排気ファンの運転台数とその停止を制御する制御手段を備えている原子力発電所タービン建屋の給排気設備。The exhaust fan according to any one of claims 1 to 5, wherein a plurality of the exhaust fans, a temperature detector provided in the operating floor space, and a temperature detected by the temperature detector. A supply / exhaust system for a turbine building of a nuclear power plant equipped with control means for controlling the number of operating units and their stoppage.
JP2002371272A 2002-12-24 2002-12-24 Supply and exhaust equipment for turbine building of nuclear power plant Expired - Lifetime JP4003637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371272A JP4003637B2 (en) 2002-12-24 2002-12-24 Supply and exhaust equipment for turbine building of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371272A JP4003637B2 (en) 2002-12-24 2002-12-24 Supply and exhaust equipment for turbine building of nuclear power plant

Publications (2)

Publication Number Publication Date
JP2004205229A true JP2004205229A (en) 2004-07-22
JP4003637B2 JP4003637B2 (en) 2007-11-07

Family

ID=32810196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371272A Expired - Lifetime JP4003637B2 (en) 2002-12-24 2002-12-24 Supply and exhaust equipment for turbine building of nuclear power plant

Country Status (1)

Country Link
JP (1) JP4003637B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249357A (en) * 2007-03-29 2008-10-16 High Energy Accelerator Research Organization Method for reducing corrosion of radiation field installation and high radiation facility
KR20120047343A (en) * 2010-10-22 2012-05-14 대우조선해양 주식회사 Ventilation system for mud pump room and mud tanks of arctic vessel
KR20120049959A (en) * 2010-11-04 2012-05-18 대우조선해양 주식회사 Heating load reduction ventilation system for high heat generation compartment of ship
CN112539503A (en) * 2020-11-10 2021-03-23 中广核工程有限公司 Hot chamber ventilation system of nuclear fuel circulation facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249357A (en) * 2007-03-29 2008-10-16 High Energy Accelerator Research Organization Method for reducing corrosion of radiation field installation and high radiation facility
JP4742227B2 (en) * 2007-03-29 2011-08-10 大学共同利用機関法人 高エネルギー加速器研究機構 Method for reducing corrosion of radiation field installation and high radiation facility
KR20120047343A (en) * 2010-10-22 2012-05-14 대우조선해양 주식회사 Ventilation system for mud pump room and mud tanks of arctic vessel
KR101722592B1 (en) * 2010-10-22 2017-04-03 대우조선해양 주식회사 Ventilation system for mud pump room and mud tanks of arctic vessel
KR20120049959A (en) * 2010-11-04 2012-05-18 대우조선해양 주식회사 Heating load reduction ventilation system for high heat generation compartment of ship
KR101722594B1 (en) * 2010-11-04 2017-04-03 대우조선해양 주식회사 Ventilation system for the hot heating area of ship
CN112539503A (en) * 2020-11-10 2021-03-23 中广核工程有限公司 Hot chamber ventilation system of nuclear fuel circulation facility
CN112539503B (en) * 2020-11-10 2022-03-01 中广核工程有限公司 Hot chamber ventilation system of nuclear fuel circulation facility

Also Published As

Publication number Publication date
JP4003637B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
KR102060633B1 (en) Air circulation system with air cleaning technology
JP5607878B2 (en) Filtration of supply air into the reactor survivable space
KR101115314B1 (en) Ventilating apparatus with smoke removal function on fire
JP4731650B2 (en) Ventilation method and ventilation equipment for semiconductor manufacturing equipment
KR100928047B1 (en) Energy Saving Fully Automatic Air Conditioner
KR102055298B1 (en) Air circulation system with toilet and bathroom exhaust
JP2012202558A (en) Clean room air conditioning system
JP6505551B2 (en) Clean room exhaust unit
KR101261322B1 (en) Ventilation control system for decentralized ventilation of separated space and ventilation method using this
KR100582457B1 (en) Heat exchanger with clean mode
JP2010266085A (en) Temperature control system for computer-server room and temperature control method of the computer-server room using the system
JP3561191B2 (en) Clean room
KR20100119056A (en) A ventilation system for heat exchange
JP4003637B2 (en) Supply and exhaust equipment for turbine building of nuclear power plant
KR101282771B1 (en) A method for controlling face velocity of fume hood
US11435109B2 (en) Ventilator
JP2016070528A (en) Air supply device
WO2001009555A1 (en) Modular air handling system and method for providing humidity and pressure control
JP3521801B2 (en) Clean room equipment
JP5305819B2 (en) Ventilation air conditioning equipment for nuclear power plant and air conditioning air volume control method thereof
JP3091519B2 (en) Nuclear power plant turbine building ventilation and air conditioning equipment
JPH05215365A (en) Ventilating air-conditioning equipment for atomic power plant
JP2012143184A (en) Air conditioning facility for animal-rearing chamber and air conditioning method for the animal-rearing chamber
JP2007139336A (en) Ventilation device and building
KR20230021948A (en) Ventilating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R151 Written notification of patent or utility model registration

Ref document number: 4003637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

EXPY Cancellation because of completion of term