Nothing Special   »   [go: up one dir, main page]

JP2004203646A - Low temperature-fired ceramic and electronic component - Google Patents

Low temperature-fired ceramic and electronic component Download PDF

Info

Publication number
JP2004203646A
JP2004203646A JP2002372632A JP2002372632A JP2004203646A JP 2004203646 A JP2004203646 A JP 2004203646A JP 2002372632 A JP2002372632 A JP 2002372632A JP 2002372632 A JP2002372632 A JP 2002372632A JP 2004203646 A JP2004203646 A JP 2004203646A
Authority
JP
Japan
Prior art keywords
low
weight
fired porcelain
phase
temperature fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002372632A
Other languages
Japanese (ja)
Inventor
Takeshi Obuchi
武志 大渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002372632A priority Critical patent/JP2004203646A/en
Publication of JP2004203646A publication Critical patent/JP2004203646A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve the Q value of Ba-Al-Si-Zn-based low temperature-fired ceramic having a low dielectric constant. <P>SOLUTION: The Ba-Al-Si-Zn-based low temperature-fired ceramic has a dielectric constant εr of ≤10 and contains boron in an amount of ≥0.05 and ≤0.3 wt.% expressed in terms of B<SB>2</SB>O<SB>3</SB>. Alternatively, the low temperature-fired ceramic has a dielectric constant εr of ≤10 and contains a BaSi<SB>2</SB>O<SB>5</SB>phase and a BaAl<SB>2</SB>Si<SB>2</SB>O<SB>8</SB>phase, wherein the content of the amorphous phase is ≤70 parts by weight when the content of the crystal phase is set to be 100 parts by weight. The amorphous phase contains at least one kind of element selected from the group of barium, aluminum, silicon, zinc and boron. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、誘電率が低く、品質係数Qが大きい低温焼成磁器、およびこれを用いた電子部品に関するものである。
【0002】
【従来の技術】携帯電話機等の高周波回路無線機器においては、高周波回路フィルターとして、例えばトップフィルター、送信用段間フィルター、ローカルフィルター、受信用段間フィルター等として、積層型誘電体フィルターが使用されている。
【0003】誘電体積層フィルターを製造するためには、誘電体を構成するセラミック粉末の成形体を複数作製し、各成形体に対して、所定の導体ペーストを塗布することによって所定の電極パターンを各成形体に作製する。次いで、各成形体を積層して積層体を得、この積層体を焼成することによって、導体ペースト層と各成形体とを同時に焼成し、緻密化させる。
【0004】この際、電極は一般的に銀系導体、銅系導体、ニッケル系導体のような低融点金属の導体を使用しているが、これらの融点は例えば1100℃以下であり、930℃程度まで低下する場合もある。このため、電極を構成する低融点金属よりも低い焼成温度で誘電体を焼結させることが必要である。
【0005】ストレー容量を低減し、遅延時間を低減し、内蔵共振器およびコンデンサーの高周波損失を低減するために、低温焼成磁器の誘電率εrを低くし、かつ品質係数Qを増加させることが望まれている。本出願人は、特許文献1において、1000℃以下の最適焼成温度を有しており、誘電率εrが10以下であり、品質係数Qが2500以上である低温焼成磁器を開示した。
【特許文献1】
特開2000−211969号公報
【0006】また、本出願人は、特許文献2において、品質係数Qが一層改善された低温焼成磁器を開示した。
【特許文献2】
特開2002−265267号公報
【0007】
【発明が解決しようとする課題】特許文献1、2に記載のような低温焼成磁器を製造する際には、通常は、Ba−Al−Si−Znの各酸化物の混合物を仮焼し、仮焼物を粉砕した後、これにSiO、BおよびZnOからなるガラス粉末を添加し、焼成している。しかし、このようにして得られた磁器のQ値には限界があった。
【0008】本発明の課題は、Ba−Al−Si−Zn系の低誘電率の低温焼成磁器においてQ値を一層向上させることである。
【0009】
【課題を解決するための手段】第一の発明は、誘電率εrが10以下であるBa−Al−Si−Zn系低温焼成磁器であって、ホウ素の含有量がBに換算して0.05重量%以上、0.3重量%以下であることを特徴とする。
【0010】通常は、Ba−Al−Si−Znの各酸化物の混合物を仮焼し、仮焼物を粉砕した後、これにSiO、BおよびZnOからなるガラス粉末を添加し、焼成している。
【0011】このガラス粉末は、焼成過程において主結晶相と反応し、新たにQ値の低い非晶質相を生成させ、粒子を結合させている。こうした非晶質相はQ値を低減させる作用があった。しかし、このガラス粉末は、通常は磁気の低温での焼成(例えば1050℃以下での焼成)に必要なものと考えられてきている。従って、ガラス粉末量を減らすと、磁器の焼結性が悪くなり、Q値や強度が低下するものと考えられてきた。
【0012】本発明者は、このガラス粉末に着目し、定量的に検討を加えることによって、ガラス量を低減することでQ値を向上させ得ること、そして焼結性の低下は他の添加剤によって解決できることを見いだし、本発明に到達した。
【0013】本発明においては、ガラスを構成する成分のうち、焼結性と非晶質相の生成に最も大きな影響を与えるホウ素の含有量に着目しており、そのB含有量を0.3重量%以下とすることによって、Q値を向上させ得る。この観点からは、ホウ素含有量をBに換算して0.28重量%以下とすることが更に好ましい。また、ホウ素含有量がBに換算して0.05重量%未満になると、Q値がかえって低下する。
【0014】また、第二の発明は、誘電率εrが10以下である低温焼成磁器であって、BaSi25 相およびBaAl2Si28相を結晶相として含有しており、結晶相の含有量を100重量部としたときの非晶質相の含有量が70重量%以下であり、この非晶質相が、バリウム、アルミニウム、珪素、亜鉛およびホウ素からなる群より選ばれた一種以上の元素を含むことを特徴とする。
【0015】前記と同様の観点から、本発明者は、磁器中に存在する非晶質相の量とQ値との関係に着目した。そして、非晶質相の含有率を70重量%以下とすることによって、磁器のQ値を向上させ得ることを見いだした。
【0016】第二の発明の磁器は、BaSi25相およびBaAl2Si28相を結晶相として含有している。これらの結晶相は、粉末X線回折法によって、以下のICDD No.によって同定される。
BaSi25:26-0176、 BaAl2Si28:74-1677
【0017】
【発明の実施の形態】好適な実施形態においては、磁器にCuO、MoO、WOおよびVからなる群より選ばれた一種以上の添加剤を含有させる。これらの添加剤は、磁器粒子間の結合促進成分として作用する。これらの添加により、酸化ホウ素含有低融点ガラスを一層減量化しつつ、磁器焼結性を保持し、最適焼成温度を低く維持できる。更に、これらの添加剤を使用すると、本発明の磁器を異種材料と接合した場合のケミカルボンディング材となり、異種材料との相間剥離を抑制できる。
【0018】また、上記の粒子間の結合促進材は、主結晶相が仮焼により形成された後に、粉砕工程或いはテープ成形用バインダー混合過程及びプレス体成形用バインダー混合過程にて添加することにより、より効果を発揮する。
【0019】好適な実施形態においては、粉末X線回折測定法において、ICDD No.81−0511またはNo.79−1810に適合するピーク分布を有する結晶相が検出される。これらのピークは、BaCu(Si410)、Bi2CuO4およびこれらの類似組成の結晶相に対応する。これらの結晶相が析出すると、粒子間の結合がさらに促進されるとともに、共振周波数の温度係数が改善される。
【0020】磁器のQ値は特に限定されないが、3500以上であることが好ましく、4000以上であることが一層好ましい。また4800以上であれば、さらに一層好ましい。(3GHz換算)。
【0021】また、本発明により、磁器の強度を高く維持することができる。磁器の強度は特に限定はされないが、例えば磁器からなる基板の強度を250MPa以上とすることができる。
【0022】本発明の低温焼成磁器においては、珪素成分をSiOに換算して15.0重量%以上含有させることが好ましく、これによって誘電率を10以下に制御できる。誘電率を一層低くするという観点からは、珪素成分をSiOに換算して25.0重量%以上含有させることが好ましい。また、珪素成分をSiOに換算して60.0重量%以下含有させることが好ましく、これによって磁器の最適焼成温度を低くできる。この観点からは、50重量%以下とすることが一層好ましい。
【0023】本発明の低温焼成磁器においては、アルミニウム成分をAlに換算して0.1重量%以上含有させることが好ましく、これによって磁器からなる基板の強度を上昇させることができる。この観点からは、アルミニウム成分をAlに換算して0.5重量%以上含有させることが好ましい。また、磁器の適正焼成温度を低下させるという観点からは、アルミニウム成分をAlに換算して20.0重量%以下含有させることが好ましく、15.0重量%以下含有させることが更に好ましい。
【0024】本発明の低温焼成磁器においては、バリウム成分をBaOに換算して30.0重量%以上含有させることが好ましく、これによって磁器の品質係数Qを一層高くすることができる。この観点からは、バリウム成分をBaOに換算して40.0重量%以上含有させることが好ましい。また、バリウム成分をBaOに換算して65.0重量%以下含有させることが好ましく、これによって10以下の誘電率εrを確保できる。誘電率εrを一層低くするという観点からは、バリウム成分をBaOに換算して60.0重量%以下含有させることが更に好ましい。
【0025】亜鉛成分をZnOに換算して0.5重量%以上(特に好ましくは1.0重量%以上)含有させることによって、低温焼成磁器の熱膨張係数が減少し、焼結し易くなることから、低温焼成が可能となる。亜鉛成分をZnOに換算して20.0重量%以下(特に好ましくは15.0重量%以下)含有させることによって、磁器の品質係数Qを一層向上させることができる。
【0026】ビスマス成分を含有させることによって、磁器におけるクラックの発生率が減少する。この作用効果は、本発明の磁器に対して金属電極を積層させる場合、あるいは磁器の成形体に金属電極を接触させた状態で磁器の成形体を焼成した場合、あるいは磁器の成形体中に金属電極を埋設した状態で磁器の成形体を焼成した場合に顕著である。ビスマス成分は蛍光X線分析法によって検出可能であれば良い。好ましくは、ビスマス成分の含有量は、Biに換算して0.10 重量%以上であることが好ましく、0.5重量%以上であることが更に好ましく、1.0重量%以上であることが特に好ましい。
【0027】ビスマス成分をBiに換算して10.0重量%以下含有させることにより、品質係数Qを一層増大させることができる。この観点からは、 8.0重量%以下が特に好ましい。
【0028】CuO、MoO、WOおよびV25からなる群より選ばれた一種以上の添加剤の含有量は、前記観点から、0.05重量%以上であることが好ましく、0.1重量%以上であることが更に好ましい。しかし、この含有量が多すぎると、磁器の強度が低下してくる傾向があるので、この観点からは、10.0重量%以下であることが好ましい。
【0029】本発明の磁器は、実質的にバリウム成分、珪素成分、アルミニウム成分、ホウ素成分、亜鉛成分およびビスマス成分からなっていてよい。しかし、この場合にも、各金属原料中に含まれる不可避的不純物は含有されていてよい。また、上記成分以外の酸化物や金属成分を含有していてよい。こうした酸化物や金属成分としては、例えば、MgO、CaO、SrO、Y、MnO、Mn、CoO、NiO、Nd、Sm 、La、Ag、Cu、Ni、Pdがある。
【0030】電子部品において使用できる金属電極は限定されないが、銀電極、銅電極、ニッケル電極、またはこれらの合金からなる電極が好ましく、銀または銀合金からなる電極が更に好ましく、銀電極が特に好ましい。
【0031】本発明の電子部品においては、本発明の低温焼成磁器を、他の低温焼成磁器、例えば誘電率εrが10−150の他の低温焼成磁器と一体化することができる。
【0032】他の誘電体層を構成する低温焼成磁器の組成系は、以下のものが特に好ましい。
BaO−TiO−ZnO−SiO−B
BaO−TiO−Bi−Nd−ZnO−SiO−B
BaO−TiO−Bi−La−Sm−ZnO−SiO −B
MgO−CaO−TiO−ZnO−Al−SiO−B
【0033】本発明の対象となる電子部品は特に限定されないが、例えば積層誘電体フィルター、多層配線基板、誘電体アンテナ、誘電体カプラー、誘電体複合モジュールを例示できる。
【0034】本発明の低温焼成磁器を製造する際には、好ましくは、各金属成分の原料を所定比率で混合して混合粉末を得、混合粉末を800−1200℃で仮焼し、仮焼体を粉砕し、セラミック粉末を得る。そして、好ましくは、セラミック粉末と、SiO、BおよびZnOからなる低融点ガラス粉末とを使用して、グリーンシートを作製し、グリーンシートを850−930℃で焼成する。各金属成分の原料としては、各金属の酸化物、硝酸塩、炭酸塩、硫酸塩などを使用できる。本発明の観点からは、前記低融点ガラスの割合は、セラミック100重量部に対して、1.5以下とすることが好ましく、1.0以下とすることが一層好ましい。
【0035】
【実施例】(セラミック粉末の製造)
炭酸バリウム、アルミナ、酸化珪素、酸化亜鉛、酸化ビスマスの各粉末を、所定の組成になるように秤量し、湿式混合する。この混合粉末を900〜1000℃で仮焼し、仮焼体を得る。仮焼物の結晶相とその結晶性を調べるために、粉末X線回折測定を行う。その後、仮焼粉末を、ボールミルにて、所定粒度まで粉砕し、粉末を乾燥し、セラミック粉末を得る。
【0036】(低融点ガラス粉末の製造)
酸化亜鉛、酸化ホウ素および酸化珪素の各粉末を秤量し、乾式混合し、混合粉末を白金ルツボ中で溶融させ、溶融物を水中に投下して急速冷却し、塊状のガラスを得る。このガラスを湿式粉砕し、低融点ガラス粉末を得る。
【0037】(誘電特性評価用サンプルの製造)
得られたセラミック粉末と低融点ガラス粉末とを、イオン交換水、有機バインダーと共に、アルミナポット、アルミナボールを使用して混合し、スラリーを得、スラリーを乾燥して粉体を得る。得られた粉体を金型プレスにて所定の形状に成形し、900〜930℃にて焼成する。焼成体を所定形状に加工する。3GHz換算での誘電率εr、品質係数Q値、τfを測定する。
【0038】(基板強度の測定)
また、焼成体を加工し、寸法30mm×4mm×1mmの測定用サンプルを作製した。このサンプルについて、JIS R 1601に従って基板強度を測定する。
【0039】(相間剥離の有無)
本発明組成からなるグリーンシートとBa6-3XR8+2XTi18O54(X=0.0〜0.8)系組成からなるグリーンシートを85℃×20MPaの条件でCIPにより接合し、50mm角に切断し、920℃で焼成後、超音波探傷装置により、相間剥離を検査した。
【0040】(各結晶相のピークの検出)
以下のX線回折装置および条件を用いて,各結晶相を検出した。
装置名称:リガク製X線回折装置「RAD-X1」
測定形式:2θ-θ
出力:35KV 20mA
発散スリット:1/2°
散乱スリット:1/2°
受光スリット:0.15mm
スキャン方法:ステッフ゜スキャン(FT)
ステッフ゜幅:0.02°
計数時間:2sec
【0041】(非晶質相の含有量)
上述のX線回折測定装置および条件を用い、非晶質相の含有量を測定した。
ただし、非晶質相は、X線回折ピークでは、ハローパターンと呼ばれるブロードなピークの形で検出される。従って、非晶質相の含有量は、X線検量線法と呼ばれる以下の方法にて決定した。
(検量線の作成)
磁器を構成する主結晶相(BaSi25 相およびBaAl2Si28相)の粉体に対して、前記低融点ガラス粉末を添加し、乳鉢にて10分間混合し、混合粉末を得る。得られた混合粉末について、X線回折装置にて、2θで10°〜60°まで測定する。測定したデータをピーク分離ソフトウエアにより、バックグランドと非晶質相とにピーク分離する。ピーク分離する上で、非晶質相はアモルファス相として分離させる。
主結晶相からなる粉末の重量を100重量部とし、低融点ガラスの添加量(外配:重量部)を種々変更する。そして、各混合粉末について、低融点ガラスのピーク強度と添加量との関係をプロットし、検量線とする。
図1は、本実施例での磁器系における検量線の例を示す。
【0042】(非晶質相の含有量の測定)
次に、被測定サンプルをX線回折装置にて2θで10°〜60°まで測定し、非晶質相のピーク強度を測定する。ここで、磁器サンプルから得られた非晶質相のピーク強度が、検量線上での低融点ガラスのピーク強度と同じである場合には、磁器サンプル中の非晶質相の含有量が、前記混合粉末中の低融点ガラスの含有量と同じであるものとする。従って、磁器サンプルから非晶質相のピーク強度を測定すれば、この測定値を検量線上に載せることによって、磁器サンプル中の非晶質相の含有量を決定できる。
【0043】(Agとの同時焼成)
各磁器の適正焼成温度を求めた。適正焼成温度は、焼成温度の変化に対する誘電率εrの変化が0.1/℃以内となる温度とした。適正焼成温度が920℃以下の場合には、「Agとの同時焼成」の欄を「○」とし、その他の場合は「×」とした。
【0044】
【表1】

Figure 2004203646
【0045】表1のA1〜A7においては、主としてCuOの添加量を変更した。A1においては、CuOの割合が0.02重量%と低く、焼成温度が若干上がり、相間剥離も生ずる。しかしQ値は比較的に高い。A7においては、CuOの添加量が12.0重量%であるが、適正焼成温度が若干上がる傾向がある。A2〜A6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0046】表1のB1〜B7においては、主としてBaOの添加量を変更した。B1においては、BaOの割合が25重量%であるが、焼成温度が若干上がり、強度が低下する。B7においては、BaOの添加量が70重量%であるが、適正焼成温度が若干上がる傾向がある。B2〜B6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0047】
【表2】
Figure 2004203646
【0048】表2のC1〜C7においては、主としてAlの添加量を変更した。C1においては、Alの割合が0.05重量%であるが、若干強度が低いことを除けば他の例と遜色ない。C7においては、Alの添加量が25重量%であるが、適正焼成温度が若干上がり、強度が若干低下する。C2〜C6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0049】表2のD1〜D7においては、主としてSiOの添加量を変更した。D1においては、SiOの割合が12重量%であるが、Q値、強度が低くなっている。D7においては、SiOの添加量が63重量%であるが、適正焼成温度が若干上がり、Q値、強度が低下する。D2〜D6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0050】
【表3】
Figure 2004203646
【0051】表3のE1〜E7においては、主としてZnOの添加量を変更した。E1においては、ZnOの割合が0.2重量%であるが、適正焼成温度が若干高くなっている。E7においては、ZnOの添加量が23重量%であるが、適正焼成温度が若干上がる。E2〜E6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0052】表3のF1〜F7においては、主としてBiの添加量を変更した。F1においては、Biの割合が0.05重量%であるが、若干強度が低く、適正焼成温度が上昇する。F2〜F7においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0053】
【表4】
Figure 2004203646
【0054】表4のG1〜G7においては、主としてBの添加量を変更した。G1においては、Bの割合が0.02重量%であるが、非晶質相含有量が大きく、適正焼成温度が上昇し、Q値、強度が低い。G7においては、非晶質相含有量が73重量部であり、Q値が低い。G2〜G7においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0055】表4のH1〜H7においては、主としてWOの添加量を変更した。H1においては、WOの割合が0.02重量%であるが、適正成温度が上昇し、強度が低い。H7においては、適正焼成温度が高く,Q値が若干低い。H2〜H6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0056】
【表5】
Figure 2004203646
【0057】表5のJ1〜J7においては、主としてMoOの添加量を変更した。J1においては、MoOの割合が0.02重量%であるが、適正成温度が上昇し、強度が低い。J7においては、適正焼成温度が高く,Q値が低い。J2〜J6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。
【0058】表5のK1〜K7においては、主としてVの添加量を変更した。K1においては、Vの割合が0.02重量%であるが、適正成温度が上昇し、強度、Q値が低く、相間剥離が見られる。K7においては、適正焼成温度が高く、強度、Q値が低い。K2〜K6においては、全体にQ値、強度が高く、τfは低くなっており、適正焼成温度が低く、相間剥離も見られない。なお、上述の全例において、BaSi25 相およびBaAl2Si28相が検出された。
【0059】次に、上記と同様にして低温焼成磁器を作成した。ただし、以下のセラミック組成Aを採用した。
BaO46.3重量%
SiO42.0重量%
Al2.5重量%
ZnO 5.2重量%
Bi3.0重量%
【0060】そして、セラミック組成Aを上記のように仮焼し、仮焼体を粉砕した後、下記のような組成で添加剤を添加した。
(比較例1)
組成Aのセラミック+前記低融点ガラス粉末3重量%(焼結温度920℃)
(実施例1)
組成Aのセラミック+前記低融点ガラス1重量%+CuO 0.75重量%(焼成温度920℃)
(実施例2)
組成Aのセラミック+前記低融点ガラス0.2重量%+Bi2O3 0.61重量%+CuO 0.01重量%(焼成温度920℃)
(比較例2)
組成Aのセラミックのみ(焼成温度1100℃)
【0061】各例の磁器について、前述のように非晶質相の含有量、Q値、τfを測定し、結果を表6に示す。また、非晶質相の含有量とQ値との関係を図2に示す。比較例1に対して、実施例1では、低融点ガラスの添加量を2重量%減らし、CuOを0.75重量%添加した。この結果、非晶質相の含有量は比較例1に比べて低下した。磁器のQ値は上昇し、τfの絶対値は低下した。
【表6】
Figure 2004203646
【0062】比較例1に対して、実施例2では、低融点ガラスの添加量を2.8重量%減らし、その代わりにBi2O3を0.61重量%とCuOを0.01重量%とを添加した。この結果、磁器の非晶質相含有量は一層低下し、Q値は一層向上した。比較例2では、1100℃焼成で、ガラス成分を含まないので非晶質相が含有されておらず、磁器のQ値は一層上昇した。但し、ICDD No.81−0511またはNo.79−1810に相当するBa-Cu-O系或いはBa-Cu-Si-O系化合物を含まないために、τfの絶対値は低下しなかった。
【0063】
【発明の効果】以上述べたように、本発明によれば、Ba−Al−Si−Zn系の低誘電率の低温焼成磁器において、Q値を一層向上させることができる。
【図面の簡単な説明】
【図1】非晶質相含有量とX線回折強度との関係を示す検量線である。
【図2】磁器の非晶質相含有量とQ値との関係を示すグラフである。[0001]
The present invention relates to a low-temperature fired porcelain having a low dielectric constant and a large quality factor Q, and an electronic component using the same.
[0002]
2. Description of the Related Art In high frequency circuit radio equipment such as cellular phones, a laminated dielectric filter is used as a high frequency circuit filter, for example, as a top filter, a transmission interstage filter, a local filter, a reception interstage filter, or the like. ing.
[0003] In order to manufacture a dielectric laminated filter, a plurality of compacts of ceramic powder constituting a dielectric are prepared, and a predetermined conductor pattern is applied to each compact to form a predetermined electrode pattern. It is produced for each molded body. Next, the respective compacts are laminated to obtain a laminate, and the laminate is fired, so that the conductive paste layer and the respective compacts are simultaneously fired and densified.
[0004] At this time, the electrode is generally made of a conductor of a low melting point metal such as a silver-based conductor, a copper-based conductor, and a nickel-based conductor, and their melting points are, for example, 1100 ° C or less, and 930 ° C. To some extent. For this reason, it is necessary to sinter the dielectric at a firing temperature lower than the low melting point metal forming the electrode.
[0005] In order to reduce the stray capacity, reduce the delay time, and reduce the high-frequency loss of the built-in resonator and the capacitor, it is desired to lower the dielectric constant εr of the low-temperature fired porcelain and increase the quality factor Q. It is rare. The present applicant has disclosed in Patent Document 1 a low-temperature fired porcelain having an optimum firing temperature of 1000 ° C. or less, a dielectric constant εr of 10 or less, and a quality factor Q of 2500 or more.
[Patent Document 1]
[0006] In Japanese Patent Application Laid-Open No. 2000-211969, the present applicant has disclosed a low-temperature fired porcelain in which the quality factor Q is further improved.
[Patent Document 2]
JP-A-2002-265267
When a low-temperature fired porcelain as described in Patent Documents 1 and 2 is manufactured, a mixture of Ba-Al-Si-Zn oxides is usually calcined, After pulverizing the calcined product, a glass powder composed of SiO 2 , B 2 O 3 and ZnO is added to the calcined product, followed by firing. However, there is a limit to the Q value of the porcelain thus obtained.
[0008] An object of the present invention is to further improve the Q value of a Ba-Al-Si-Zn-based low-dielectric-constant low-temperature fired porcelain.
[0009]
A first aspect of the present invention is a Ba-Al-Si-Zn low-temperature fired porcelain having a dielectric constant εr of 10 or less, wherein the boron content is converted into B 2 O 3. Between 0.05% and 0.3% by weight.
Usually, a mixture of each oxide of Ba-Al-Si-Zn is calcined, and the calcined material is pulverized, and then a glass powder composed of SiO 2 , B 2 O 3 and ZnO is added thereto. Firing.
The glass powder reacts with the main crystal phase during the firing process to form a new amorphous phase having a low Q value and bind the particles. Such an amorphous phase had an effect of reducing the Q value. However, this glass powder is generally considered to be necessary for firing at a low magnetic temperature (for example, firing at 1050 ° C. or lower). Therefore, it has been considered that when the amount of the glass powder is reduced, the sinterability of the porcelain deteriorates, and the Q value and the strength decrease.
The present inventor has paid attention to this glass powder, and by quantitatively examining it, can improve the Q value by reducing the amount of glass. The present inventors have found that the present invention can solve the problem and arrived at the present invention.
In the present invention, among the components constituting the glass, is focused on the content of boron that have the greatest effect on the generation of the sinterability and an amorphous phase, the content of B 2 O 3 By setting the content to 0.3% by weight or less, the Q value can be improved. From this viewpoint, it is more preferable that the boron content be 0.28% by weight or less in terms of B 2 O 3 . When the boron content is less than 0.05% by weight in terms of B 2 O 3 , the Q value is rather lowered.
[0014] The second invention is a low-temperature fired porcelain having a dielectric constant εr of 10 or less, which contains a BaSi 2 O 5 phase and a BaAl 2 Si 2 O 8 phase as a crystal phase. Is 100% by weight or less when the content of the amorphous phase is 70% by weight or less, and the amorphous phase is a kind selected from the group consisting of barium, aluminum, silicon, zinc and boron. It is characterized by containing the above elements.
From the same viewpoint as above, the present inventor paid attention to the relationship between the amount of the amorphous phase present in the porcelain and the Q value. It has been found that the Q value of the porcelain can be improved by setting the content of the amorphous phase to 70% by weight or less.
The porcelain of the second invention contains a BaSi 2 O 5 phase and a BaAl 2 Si 2 O 8 phase as crystal phases. These crystal phases were analyzed by powder X-ray diffraction to obtain the following ICDD No. Identified by
BaSi 2 O 5 : 26-0176, BaAl 2 Si 2 O 8 : 74-1677
[0017]
In a preferred embodiment, the porcelain contains one or more additives selected from the group consisting of CuO, MoO 3 , WO 3 and V 2 O 5 . These additives act as binding promoting components between the porcelain particles. By these additions, the porcelain sinterability can be maintained and the optimum firing temperature can be kept low while further reducing the amount of the low melting glass containing boron oxide. Further, when these additives are used, the porcelain of the present invention becomes a chemical bonding material when it is bonded to a different material, and the phase separation from the different material can be suppressed.
After the main crystal phase is formed by calcination, the above-mentioned bond promoting material between particles is added in a pulverizing step or a binder mixing step for tape molding and a binder mixing step for press molding. , More effective.
In a preferred embodiment, in the powder X-ray diffraction measurement method, the ICDD No. 81-0511 or No. 81. A crystalline phase having a peak distribution matching 79-1810 is detected. These peaks correspond to BaCu (Si 4 O 10 ), Bi 2 CuO 4 and crystalline phases of similar composition thereof. When these crystal phases are precipitated, the coupling between the particles is further promoted, and the temperature coefficient of the resonance frequency is improved.
The Q value of the porcelain is not particularly limited, but is preferably 3500 or more, and more preferably 4000 or more. If it is 4800 or more, it is even more preferable. (3GHz conversion).
Further, according to the present invention, the strength of the porcelain can be maintained high. The strength of the porcelain is not particularly limited. For example, the strength of the substrate made of porcelain can be 250 MPa or more.
In the low-temperature fired porcelain of the present invention, the silicon component is preferably contained in an amount of 15.0% by weight or more in terms of SiO 2 , whereby the dielectric constant can be controlled to 10 or less. From the viewpoint of further lowering the dielectric constant, it is preferable that the silicon component be contained in an amount of 25.0% by weight or more in terms of SiO 2 . Further, it is preferable that the silicon component is contained in an amount of 60.0% by weight or less in terms of SiO 2 , whereby the optimum firing temperature of the porcelain can be lowered. From this viewpoint, the content is more preferably 50% by weight or less.
In the low-temperature fired porcelain of the present invention, the aluminum component is preferably contained in an amount of 0.1% by weight or more in terms of Al 2 O 3 , whereby the strength of the substrate made of the porcelain can be increased. From this viewpoint, it is preferable to contain the aluminum component in an amount of 0.5% by weight or more in terms of Al 2 O 3 . Further, from the viewpoint of lowering the proper firing temperature of the porcelain, the aluminum component is preferably contained in an amount of not more than 20.0% by weight, more preferably not more than 15.0% by weight in terms of Al 2 O 3 .
In the low-temperature fired porcelain of the present invention, it is preferable that the barium component be contained in an amount of 30.0% by weight or more in terms of BaO, whereby the quality factor Q of the porcelain can be further increased. From this viewpoint, it is preferable to contain the barium component in an amount of 40.0% by weight or more in terms of BaO. Further, it is preferable to contain the barium component in an amount of 65.0% by weight or less in terms of BaO, whereby a dielectric constant εr of 10 or less can be secured. From the viewpoint of further lowering the dielectric constant εr, it is more preferable to contain the barium component in an amount of 60.0% by weight or less in terms of BaO.
When the zinc component is contained in an amount of 0.5% by weight or more (particularly preferably 1.0% by weight or more) in terms of ZnO, the coefficient of thermal expansion of the low-temperature fired porcelain decreases, and sintering becomes easy. Becomes possible. By including the zinc component in an amount of 20.0% by weight or less (particularly preferably 15.0% by weight or less) in terms of ZnO, the quality factor Q of the porcelain can be further improved.
By including a bismuth component, the rate of occurrence of cracks in porcelain decreases. This effect is obtained when the metal electrode is laminated on the porcelain of the present invention, when the porcelain compact is fired in a state where the metal electrode is in contact with the porcelain compact, or when the metal This is remarkable when the porcelain molded body is fired with the electrodes buried. The bismuth component only needs to be detectable by X-ray fluorescence analysis. Preferably, the content of the bismuth component is preferably 0.10% by weight or more, more preferably 0.5% by weight or more, and particularly preferably 1.0% by weight or more in terms of Bi 2 O 3 .
By including the bismuth component in an amount of 10.0% by weight or less in terms of Bi 2 O 3 , the quality factor Q can be further increased. In this respect, the content is particularly preferably 8.0% by weight or less.
From the above viewpoint, the content of one or more additives selected from the group consisting of CuO, MoO 3 , WO 3 and V 2 O 5 is preferably at least 0.05% by weight, and more preferably 0.1% by weight. % Is more preferable. However, if the content is too large, the strength of the porcelain tends to decrease, and from this viewpoint, the content is preferably 10.0% by weight or less.
[0029] The porcelain of the present invention may consist essentially of a barium component, a silicon component, an aluminum component, a boron component, a zinc component and a bismuth component. However, also in this case, unavoidable impurities contained in each metal raw material may be contained. Further, it may contain an oxide or a metal component other than the above components. Such oxides and metal components include, for example, MgO, CaO, SrO 2 , Y 2 O 3 , MnO, Mn 2 O 3 , CoO, NiO, Nd 2 O 3 , Sm 2 O 3 , La 2 O 3 , Ag , Cu, Ni, and Pd.
The metal electrode that can be used in the electronic component is not limited, but is preferably a silver electrode, a copper electrode, a nickel electrode, or an electrode made of an alloy thereof, more preferably an electrode made of silver or a silver alloy, and particularly preferably a silver electrode. .
In the electronic component of the present invention, the low-temperature fired porcelain of the present invention can be integrated with another low-temperature fired porcelain, for example, another low-temperature fired porcelain having a dielectric constant εr of 10 to 150.
The following are particularly preferred as the composition system of the low-temperature fired porcelain constituting another dielectric layer.
BaO-TiO 2 -ZnO-SiO 2 -B 2 O 3
BaO-TiO 2 -Bi 2 O 3 -Nd 2 O 3 -ZnO-SiO 2 -B 2 O 3
BaO-TiO 2 -Bi 2 O 3 -La 2 O 3 -Sm 2 O 3 -ZnO-SiO 2 -B 2 O 3
MgO-CaO-TiO 2 -ZnO- Al 2 O 3 -SiO 2 -B 2 O 3
The electronic component to which the present invention is applied is not particularly limited, and examples thereof include a laminated dielectric filter, a multilayer wiring board, a dielectric antenna, a dielectric coupler, and a dielectric composite module.
In producing the low-temperature fired porcelain of the present invention, preferably, the raw materials of the respective metal components are mixed at a predetermined ratio to obtain a mixed powder, and the mixed powder is calcined at 800 to 1200 ° C. Crush the body to obtain ceramic powder. Then, preferably, a green sheet is produced using ceramic powder and a low-melting glass powder composed of SiO 2 , B 2 O 3 and ZnO, and the green sheet is fired at 850-930 ° C. As a raw material of each metal component, an oxide, a nitrate, a carbonate, a sulfate, or the like of each metal can be used. From the viewpoint of the present invention, the ratio of the low-melting glass is preferably 1.5 or less, more preferably 1.0 or less based on 100 parts by weight of the ceramic.
[0035]
[Example] (Production of ceramic powder)
Each powder of barium carbonate, alumina, silicon oxide, zinc oxide, and bismuth oxide is weighed so as to have a predetermined composition and wet-mixed. This mixed powder is calcined at 900 to 1000 ° C. to obtain a calcined body. In order to examine the crystal phase of the calcined product and its crystallinity, powder X-ray diffraction measurement is performed. Thereafter, the calcined powder is pulverized to a predetermined particle size by a ball mill, and the powder is dried to obtain a ceramic powder.
(Production of low melting point glass powder)
Each powder of zinc oxide, boron oxide and silicon oxide is weighed and dry-mixed, the mixed powder is melted in a platinum crucible, and the melt is dropped into water and rapidly cooled to obtain a lump glass. The glass is wet-pulverized to obtain a low-melting glass powder.
(Manufacture of Sample for Evaluating Dielectric Properties)
The obtained ceramic powder and low-melting glass powder are mixed with ion-exchanged water and an organic binder using an alumina pot and alumina balls to obtain a slurry, and the slurry is dried to obtain a powder. The obtained powder is formed into a predetermined shape by a die press and fired at 900 to 930 ° C. The fired body is processed into a predetermined shape. The dielectric constant εr, quality factor Q value, and τf in 3 GHz conversion are measured.
(Measurement of substrate strength)
Further, the fired body was processed to prepare a measurement sample having a size of 30 mm × 4 mm × 1 mm. The substrate strength of this sample is measured according to JIS R 1601.
(Presence or absence of phase separation)
A green sheet composed of the composition of the present invention and a green sheet composed of Ba 6-3X R 8 + 2X Ti 18 O 54 (X = 0.0-0.8) are bonded by CIP under the conditions of 85 ° C. × 20 MPa and cut into 50 mm square. After baking at 920 ° C., interphase separation was inspected by an ultrasonic flaw detector.
(Detection of peak of each crystal phase)
Each crystal phase was detected using the following X-ray diffractometer and conditions.
Apparatus name: Rigaku X-ray diffractometer "RAD-X1"
Measurement format: 2θ-θ
Output: 35KV 20mA
Divergence slit: 1/2 °
Scattering slit: 1/2 °
Light receiving slit: 0.15mm
Scan method: Step scan (FT)
Step width: 0.02 °
Counting time: 2sec
(Content of amorphous phase)
The content of the amorphous phase was measured using the above-mentioned X-ray diffraction measurement apparatus and conditions.
However, the amorphous phase is detected in the form of a broad peak called a halo pattern in the X-ray diffraction peak. Therefore, the content of the amorphous phase was determined by the following method called X-ray calibration curve method.
(Creation of calibration curve)
To the powder of the main crystal phase (BaSi 2 O 5 phase and BaAl 2 Si 2 O 8 phase) constituting the porcelain, the low melting point glass powder is added and mixed in a mortar for 10 minutes to obtain a mixed powder. . The obtained mixed powder is measured with an X-ray diffractometer at 2θ from 10 ° to 60 °. The measured data is subjected to peak separation into a background and an amorphous phase by peak separation software. Upon peak separation, the amorphous phase is separated as an amorphous phase.
The weight of the powder composed of the main crystal phase is set to 100 parts by weight, and the addition amount of the low melting point glass (external part: parts by weight) is variously changed. Then, for each mixed powder, the relationship between the peak intensity of the low-melting glass and the amount of addition is plotted and used as a calibration curve.
FIG. 1 shows an example of a calibration curve in a porcelain system in the present embodiment.
(Measurement of content of amorphous phase)
Next, the sample to be measured is measured with an X-ray diffractometer at 2θ from 10 ° to 60 °, and the peak intensity of the amorphous phase is measured. Here, when the peak intensity of the amorphous phase obtained from the porcelain sample is the same as the peak intensity of the low melting point glass on the calibration curve, the content of the amorphous phase in the porcelain sample is It shall be the same as the content of the low melting point glass in the mixed powder. Therefore, if the peak intensity of the amorphous phase is measured from the porcelain sample, the content of the amorphous phase in the porcelain sample can be determined by placing the measured value on a calibration curve.
(Simultaneous firing with Ag)
The appropriate firing temperature for each porcelain was determined. The appropriate firing temperature was a temperature at which the change in the dielectric constant εr with respect to the change in the firing temperature was within 0.1 / ° C. When the appropriate firing temperature was 920 ° C. or lower, the column of “Simultaneous firing with Ag” was marked with “○”, and in other cases, it was marked with “×”.
[0044]
[Table 1]
Figure 2004203646
In A1 to A7 of Table 1, the addition amount of CuO was mainly changed. In A1, the proportion of CuO is as low as 0.02% by weight, the firing temperature is slightly increased, and phase separation occurs. However, the Q value is relatively high. In A7, the addition amount of CuO is 12.0% by weight, but the appropriate firing temperature tends to slightly increase. In A2 to A6, the Q value and the strength were high as a whole, τf was low, the appropriate firing temperature was low, and no interphase separation was observed.
In B1 to B7 of Table 1, the amount of BaO added was mainly changed. In B1, the ratio of BaO is 25% by weight, but the firing temperature slightly increases and the strength decreases. In B7, the amount of BaO added is 70% by weight, but the appropriate firing temperature tends to slightly increase. In B2 to B6, the Q value and the strength were high as a whole, and τf was low, the appropriate firing temperature was low, and no interphase separation was observed.
[0047]
[Table 2]
Figure 2004203646
In C1 to C7 of Table 2, the addition amount of Al 2 O 3 was mainly changed. In C1, the proportion of Al 2 O 3 is 0.05% by weight, but it is comparable to other examples except that the strength is slightly low. In C7, the addition amount of Al 2 O 3 is 25% by weight, but the appropriate firing temperature slightly increases and the strength slightly decreases. In C2 to C6, the Q value and the strength are high as a whole, τf is low, the appropriate firing temperature is low, and no interphase separation is observed.
In D1 to D7 of Table 2, the addition amount of SiO 2 was mainly changed. In D1, the ratio of SiO 2 is 12% by weight, but the Q value and strength are low. In D7, the addition amount of SiO 2 is 63% by weight, but the appropriate firing temperature slightly increases, and the Q value and the strength decrease. In D2 to D6, the Q value and the strength were high as a whole, τf was low, the appropriate firing temperature was low, and no interphase separation was observed.
[0050]
[Table 3]
Figure 2004203646
In E1 to E7 of Table 3, the addition amount of ZnO was mainly changed. In E1, the proportion of ZnO is 0.2% by weight, but the appropriate firing temperature is slightly higher. In E7, the amount of ZnO added was 23% by weight, but the appropriate firing temperature slightly increased. In E2 to E6, the Q value and the strength were high as a whole, τf was low, the appropriate firing temperature was low, and no interphase separation was observed.
In F1 to F7 of Table 3, the addition amount of Bi 2 O 3 was mainly changed. In F1, the proportion of Bi 2 O 3 is 0.05% by weight, but the strength is slightly lower and the appropriate firing temperature increases. In F2 to F7, the Q value and the strength are high as a whole, τf is low, the appropriate firing temperature is low, and no interphase separation is observed.
[0053]
[Table 4]
Figure 2004203646
In G1 to G7 of Table 4, the addition amount of B 2 O 3 was mainly changed. In G1, although the ratio of B 2 O 3 is 0.02% by weight, the content of the amorphous phase is large, the appropriate firing temperature is increased, and the Q value and the strength are low. In G7, the content of the amorphous phase was 73 parts by weight, and the Q value was low. In G2 to G7, the Q value and the strength are high as a whole, τf is low, the appropriate firing temperature is low, and no interphase separation is observed.
[0055] In H1~H7 of Table 4, was mainly change the amount of WO 3. In H1, the proportion of WO 3 is 0.02% by weight, but the proper forming temperature increases and the strength is low. In H7, the appropriate firing temperature is high and the Q value is slightly low. In H2 to H6, the Q value and the strength were high as a whole, τf was low, the appropriate firing temperature was low, and no interphase separation was observed.
[0056]
[Table 5]
Figure 2004203646
In J1 to J7 of Table 5, the addition amount of MoO 3 was mainly changed. In J1, the ratio of MoO 3 is 0.02% by weight, but the proper forming temperature increases and the strength is low. In J7, the appropriate firing temperature is high and the Q value is low. In J2 to J6, the Q value and the strength were high as a whole, τf was low, the appropriate firing temperature was low, and no interphase separation was observed.
In K1 to K7 of Table 5, the added amount of V 2 O 5 was mainly changed. In K1, the proportion of V 2 O 5 is 0.02% by weight, but the proper forming temperature increases, the strength and Q value are low, and interphase separation is observed. In K7, the appropriate firing temperature is high, and the strength and Q value are low. In K2 to K6, the Q value and the strength were high as a whole, and τf was low, the proper firing temperature was low, and no interphase separation was observed. In all of the above examples, a BaSi 2 O 5 phase and a BaAl 2 Si 2 O 8 phase were detected.
Next, a low-temperature fired porcelain was prepared in the same manner as described above. However, the following ceramic composition A was employed.
BaO46.3% by weight
42.0% by weight of SiO 2
Al 2 O 3 2.5% by weight
5.2% by weight of ZnO
Bi 2 O 3 3.0% by weight
Then, the ceramic composition A was calcined as described above, and the calcined body was pulverized, and then additives having the following composition were added.
(Comparative Example 1)
Ceramic of composition A + 3% by weight of low melting glass powder (sintering temperature 920 ° C)
(Example 1)
Ceramic of composition A + 1% by weight of low melting point glass + 0.75% by weight of CuO (firing temperature 920 ° C)
(Example 2)
Ceramic of composition A + 0.2% by weight of the low melting glass + 0.61% by weight of Bi2O3 + 0.01% by weight of CuO (firing temperature 920 ° C)
(Comparative Example 2)
Only ceramic of composition A (firing temperature 1100 ° C)
For the porcelain of each example, the content of amorphous phase, Q value, and τf were measured as described above, and the results are shown in Table 6. FIG. 2 shows the relationship between the content of the amorphous phase and the Q value. In comparison with Comparative Example 1, in Example 1, the addition amount of the low-melting glass was reduced by 2% by weight, and CuO was added by 0.75% by weight. As a result, the content of the amorphous phase was lower than that of Comparative Example 1. The Q value of the porcelain increased, and the absolute value of τf decreased.
[Table 6]
Figure 2004203646
In comparison with Comparative Example 1, in Example 2, the addition amount of the low-melting glass was reduced by 2.8% by weight, and instead, 0.61% by weight of Bi2O3 and 0.01% by weight of CuO were added. As a result, the content of the amorphous phase in the porcelain was further reduced, and the Q value was further improved. In Comparative Example 2, firing at 1100 ° C. did not include a glass component, and thus did not include an amorphous phase, thus further increasing the Q value of the porcelain. However, ICDD No. 81-0511 or No. 81. Since no Ba-Cu-O-based or Ba-Cu-Si-O-based compound corresponding to 79-1810 was included, the absolute value of τf did not decrease.
[0063]
As described above, according to the present invention, the Q value can be further improved in a low-temperature Ba-Al-Si-Zn-based low-temperature fired porcelain.
[Brief description of the drawings]
FIG. 1 is a calibration curve showing the relationship between amorphous phase content and X-ray diffraction intensity.
FIG. 2 is a graph showing a relationship between an amorphous phase content of a porcelain and a Q value.

Claims (13)

誘電率εrが10以下であるBa−Al−Si−Zn系低温焼成磁器であって、
ホウ素の含有量がBに換算して0.05重量%以上、0.3重量%以下であることを特徴とする、低温焼成磁器。
A Ba-Al-Si-Zn-based low-temperature fired porcelain having a dielectric constant εr of 10 or less,
A low-temperature fired porcelain having a boron content of 0.05% by weight or more and 0.3% by weight or less in terms of B 2 O 3 .
結晶相の含有量を100重量部としたときの非晶質相の含有量が70重量%以下であり、この非晶質相が、バリウム、アルミニウム、珪素、亜鉛およびホウ素からなる群より選ばれた一種以上の元素を含むことを特徴とする、請求項1記載の低温焼成磁器。The content of the amorphous phase is 70% by weight or less when the content of the crystalline phase is 100 parts by weight, and the amorphous phase is selected from the group consisting of barium, aluminum, silicon, zinc and boron. The low-temperature fired porcelain according to claim 1, comprising one or more elements. CuO、MoO、WOおよびV25からなる群より選ばれた一種以上の添加剤を含むことを特徴とする、請求項1または2記載の低温焼成磁器。CuO, MoO 3, WO 3 and V, characterized in that it comprises one or more additives selected from the group consisting of 2 O 5, claim 1 or 2 low-temperature fired porcelain according. 粉末X線回折測定法において、ICDD No.81−0511またはNo.79−1810に適合するピーク分布を有する結晶相を含むことを特徴とする、請求項3記載の低温焼成磁器。In the powder X-ray diffraction measurement method, ICDD No. 81-0511 or No. The low-temperature fired porcelain according to claim 3, comprising a crystal phase having a peak distribution conforming to 79-1810. 誘電率εrが10以下である低温焼成磁器であって、BaSi25相およびBaAl2Si28相を含有しており、結晶相の含有量を100重量部としたときの非晶質相の含有量が70重量部以下であり、この非晶質相が、バリウム、アルミニウム、珪素、亜鉛およびホウ素からなる群より選ばれた一種以上の元素を含むことを特徴とする、低温焼成磁器。A low-temperature fired porcelain having a dielectric constant εr of 10 or less, comprising a BaSi 2 O 5 phase and a BaAl 2 Si 2 O 8 phase, and having an amorphous content of 100 parts by weight. Low-temperature-fired porcelain, wherein the content of the phase is 70 parts by weight or less, and the amorphous phase contains at least one element selected from the group consisting of barium, aluminum, silicon, zinc and boron. . CuO、MoO、WOおよびV25からなる群より選ばれた一種以上の添加剤を0.05重量%以上、10.0重量%以下含有することを特徴とする、請求項5記載の低温焼成磁器。6. The composition according to claim 5 , wherein one or more additives selected from the group consisting of CuO, MoO 3 , WO 3 and V 2 O 5 are contained in an amount of 0.05% by weight or more and 10.0% by weight or less. Low temperature porcelain. 粉末X線回折測定法において、ICDD No.81−0511またはNo.79−1810に適合するピーク分布を有する結晶相を含むことを特徴とする、請求項6記載の低温焼成磁器。In the powder X-ray diffraction measurement method, ICDD No. 81-0511 or No. The low-temperature fired porcelain according to claim 6, comprising a crystal phase having a peak distribution conforming to 79-1810. バリウム成分をBaOに換算して30.0−65.0重量%、
珪素成分をSiOに換算して15.0−60.0重量%、
アルミニウム成分をAlに換算して0.1−20.0重量%、
亜鉛成分をZnOに換算して0.5−20.0重量%、および
ビスマス成分をBiに換算して10.0重量%以下含有していることを特徴とする、請求項1〜7のいずれか一つの請求項に記載の低温焼成磁器。
The barium component is converted into BaO to 30.0-65.0% by weight,
15.0-60.0% by weight in terms of the silicon component to the SiO 2,
0.1-20.0% by weight of aluminum component in terms of Al 2 O 3 ,
0.5-20.0 wt% in terms of zinc components ZnO, and wherein the bismuth component in terms of Bi 2 O 3 containing 10.0 wt% or less, one of the claim 1 A low-temperature fired porcelain according to the claim.
品質係数Qが3500以上であることを特徴とする、請求項1〜8のいずれか一つの請求項に記載の低温焼成磁器。The low-temperature fired porcelain according to any one of claims 1 to 8, wherein the quality factor Q is 3500 or more. 共振周波数の温度係数τfの絶対値が55ppm/℃以下であることを特徴とする、請求項1〜9のいずれか一つの請求項に記載の低温焼成磁器。The low-temperature fired porcelain according to any one of claims 1 to 9, wherein the absolute value of the temperature coefficient τf of the resonance frequency is 55 ppm / ° C or less. 請求項1〜10のいずれか一つの請求項に記載の低温焼成磁器によって少なくとも一部が構成されていることを特徴とする、電子部品。An electronic component comprising at least a part of the low-temperature fired porcelain according to any one of claims 1 to 10. 金属電極を備えていることを特徴とする、請求項11記載の電子部品。The electronic component according to claim 11, further comprising a metal electrode. 前記低温焼成磁器からなる低誘電率層と、この低誘電率層と接合されている他の誘電体層とを備えており、他の誘電体層が、誘電率εrが10−150の他の低温焼成磁器からなることを特徴とする、請求項11または12記載の電子部品。A low dielectric constant layer made of the low-temperature fired porcelain; and another dielectric layer bonded to the low dielectric constant layer. The other dielectric layer has a dielectric constant 13. The electronic component according to claim 11, wherein the electronic component is made of low-temperature fired porcelain.
JP2002372632A 2002-12-24 2002-12-24 Low temperature-fired ceramic and electronic component Pending JP2004203646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372632A JP2004203646A (en) 2002-12-24 2002-12-24 Low temperature-fired ceramic and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372632A JP2004203646A (en) 2002-12-24 2002-12-24 Low temperature-fired ceramic and electronic component

Publications (1)

Publication Number Publication Date
JP2004203646A true JP2004203646A (en) 2004-07-22

Family

ID=32811183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372632A Pending JP2004203646A (en) 2002-12-24 2002-12-24 Low temperature-fired ceramic and electronic component

Country Status (1)

Country Link
JP (1) JP2004203646A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250728A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Ceramic laminated device and its fabrication process
JP2007269540A (en) * 2006-03-31 2007-10-18 Soshin Electric Co Ltd Method for manufacturing ceramic porcelain, ceramic porcelain and electronic component
WO2009041166A1 (en) * 2007-09-28 2009-04-02 Soshin Electric Co., Ltd. Ceramic multilayer substrate
JP2011126767A (en) * 2009-11-18 2011-06-30 Ngk Insulators Ltd Ceramic sintered compact, method of manufacturing the same and ceramic structure
JP2012069575A (en) * 2010-09-21 2012-04-05 Tdk Corp Laminate type electronic component
WO2016185921A1 (en) * 2015-05-15 2016-11-24 株式会社村田製作所 Low-temperature-sintering ceramic material, ceramic sintered body, and ceramic electronic component
US10017422B1 (en) * 2017-03-15 2018-07-10 Huazhong University Of Science And Technology Regulator for regulating frequency-temperature characteristics of microwave dielectric ceramics and low temperature co-fired ceramic material comprising the same
CN111410524A (en) * 2020-03-17 2020-07-14 广东风华高新科技股份有限公司 L TCC microwave dielectric material and preparation method thereof
CN115231943A (en) * 2022-05-19 2022-10-25 东南大学 Preparation method of low-temperature porous ceramic material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250728A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Ceramic laminated device and its fabrication process
EP1986481A1 (en) * 2006-03-15 2008-10-29 Matsushita Electric Industrial Co., Ltd. Ceramic laminated device and method for manufacturing same
EP1986481A4 (en) * 2006-03-15 2012-11-28 Panasonic Corp Ceramic laminated device and method for manufacturing same
JP2007269540A (en) * 2006-03-31 2007-10-18 Soshin Electric Co Ltd Method for manufacturing ceramic porcelain, ceramic porcelain and electronic component
JP2009088089A (en) * 2007-09-28 2009-04-23 Soshin Electric Co Ltd Ceramic multilayer substrate
US8040657B2 (en) 2007-09-28 2011-10-18 Ngk Insulators, Ltd. Ceramic multilayer substrate
WO2009041166A1 (en) * 2007-09-28 2009-04-02 Soshin Electric Co., Ltd. Ceramic multilayer substrate
KR101215920B1 (en) 2007-09-28 2012-12-27 엔지케이 인슐레이터 엘티디 Ceramic multilayer substrate
JP2011126767A (en) * 2009-11-18 2011-06-30 Ngk Insulators Ltd Ceramic sintered compact, method of manufacturing the same and ceramic structure
JP2012069575A (en) * 2010-09-21 2012-04-05 Tdk Corp Laminate type electronic component
JPWO2016185921A1 (en) * 2015-05-15 2018-01-18 株式会社村田製作所 Low temperature sintered ceramic materials, ceramic sintered bodies and ceramic electronic components
WO2016185921A1 (en) * 2015-05-15 2016-11-24 株式会社村田製作所 Low-temperature-sintering ceramic material, ceramic sintered body, and ceramic electronic component
US10906839B2 (en) 2015-05-15 2021-02-02 Murata Manufacturing Co., Ltd. Low temperature cofired ceramic material, ceramic sintered body, and ceramic electronic component
US10017422B1 (en) * 2017-03-15 2018-07-10 Huazhong University Of Science And Technology Regulator for regulating frequency-temperature characteristics of microwave dielectric ceramics and low temperature co-fired ceramic material comprising the same
CN111410524A (en) * 2020-03-17 2020-07-14 广东风华高新科技股份有限公司 L TCC microwave dielectric material and preparation method thereof
CN111410524B (en) * 2020-03-17 2022-03-04 广东风华高新科技股份有限公司 LTCC microwave dielectric material and preparation method thereof
JP2022529563A (en) * 2020-03-17 2022-06-23 広東風華高新科技股▲フン▼有限公司 LTCC microwave dielectric material and its manufacturing method
JP7254195B2 (en) 2020-03-17 2023-04-07 広東風華高新科技股▲フン▼有限公司 LTCC microwave dielectric material and manufacturing method thereof
CN115231943A (en) * 2022-05-19 2022-10-25 东南大学 Preparation method of low-temperature porous ceramic material

Similar Documents

Publication Publication Date Title
JP4883228B2 (en) Low-temperature sintered ceramic sintered body and multilayer ceramic substrate
KR20110095402A (en) Ceramic material for low-temperature sintering, and ceramic substrate
JP2004203646A (en) Low temperature-fired ceramic and electronic component
JP2004284941A (en) Dielectric composition for low temperature firing, and electronic component
KR20080106528A (en) Dielectric ceramic composition
JP3838541B2 (en) Low-temperature fired porcelain and electronic components
WO2007119312A1 (en) Ceramic laminated device and method for manufacturing same
US8652982B2 (en) Ceramic sintered body and method for producing ceramic sintered body
US7727920B2 (en) Process for production of ceramic porcelains, ceramic procelains and electronic components
US6893728B2 (en) Low temperature-fired porcelain and electronic parts
JP4645935B2 (en) Low-temperature fired porcelain composition and method for producing the same
US7098160B2 (en) Dielectric ceramic composition and ceramic electronic component employing the same
JP3741556B2 (en) Low-temperature fired porcelain and electronic component equipped with the same
JP2010109056A (en) Compound sintered compact of magnetic body and dielectric, and lc composite electronic component using the same
JP3917770B2 (en) Low-temperature fired porcelain and electronic component equipped with the same
JP4409165B2 (en) Microwave dielectric ceramic composition and microwave dielectric ceramic composition for substrate
JP2004203645A (en) Low-temperature fired ceramic and electronic component
JPH10189828A (en) Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic
JPH11100262A (en) Dielectric ceramic composition and layered product
JP3909367B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2004026590A (en) Dielectric porcelain composition
JP2001253775A (en) Method for manufacturing low-dielectric constant porcelain, low-dielectric constant porcelain and electronic part
JP2006143505A (en) Dielectric ceramic composition and ceramic electronic part using the same
JPH09315851A (en) Dielectric ceramics composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081204