【0001】
【発明の属する技術分野】
本発明は、平行なディスク面を持つ金属製リング状部品を得るのに好適である金属製リング状素形材の製造方法に関する。
【0002】
【従来の技術】
金属製リング状部品としては、自動車用皿ばねや自動車用ブレーキディスクが代表的なものとして挙げられる。自動車用皿ばねは、オートマチックトランスミッションに組み付けてクラッチ接続時の衝撃を和らげるために用いられる。このために外形を皿状とし、所定のばね特性を得ている。これに対してブレーキディスクは、軸に組み付けてブレーキディスクをコの字状部材で挟んで挟圧することによって自動車を停止させる部品の一つである。そこで、ブレーキディスクには、硬度や耐摩耗性などの性質に加えて、高い厚み精度およびブレーキディスク自体の平坦度が必要とされる。
【0003】
このような金属製リング状部品は、帯板を素材として用い、リング状部材に使用場所に応じた各種加工や熱処理を施して部品とするのが一般的であった。
例えば、皿ばねのような部品は、金属からなる帯板を素材とし、帯板の幅方向に曲げ成形して円環状となし、次いで端面同士を突き合わせ溶接してリング状部材となし、リング状部材に加熱加圧成形を施して切頭円錐形状に成形し、その後、更に焼戻してリング状部品としている(特許文献1参照)。
【0004】
一方、ブレーキディスクのような平行なディスク面を持つ金属製リング状部品は、一般に図6に示す製造工程を経て製造される。
図6は、従来の金属製リング状素形材23の製造工程を説明する模式図であって、(a)は板面上方から見た平面図、(b)はY−Y断面図、(c)はリング状素形材23の斜視図である。図6で符号21は、所定の断面寸法a、bを有する帯板であり、帯板21の材料としては、例えばステンレス鋼などの耐摩耗性金属が用いられる。符号22は、帯板21からプレス加工により打ち抜いてスクラップとされる円板を示し、符号23は、プレス加工により打ち抜いた、内径がd1 、外径がd2 のリング状素形材を示す。プレス加工後の帯板24はスクラップとされる。
【0005】
リング状素形材23には、その後、必要に応じて角部に生じたバリを機械加工により除去するバリ取り処理や焼き入れ処理が施される。さらに厳しい条件下で使用されるものは、リング状素形材23のディスク面に研削加工を施して、平坦度や厚み寸法を所定とする仕上げ加工が施され、平行なディスク面を持つ金属製リング状部品とされる。
【0006】
従来、平行なディスク面を持つリング状部品に用いるリング状素形材は、良好な平坦度と高厚み精度を有する帯板21を用い、プレス加工により円環状に打ち抜いて製造されていた。
このように、帯板をプレス加工により円環状に打ち抜いてリング状素形材を得る製造方法は、生産効率が良く、また円環状に打ち抜く際の、形状および厚み変化が小さく、リング状素形材の寸法精度および形状精度が良いために、その後、平行なディスク面を持つリング部品を得る際の機械加工による仕上げ加工工数を少なくすることができるという利点がある。
【0007】
【特許文献1】
特開平6-106277号公報
【0008】
【発明が解決しようとする課題】
しかしながら、従来の金属製リング状素形材の製造方法は、広幅の帯板を用い、外径d1 を持つ円板22と、プレス加工後の帯板24をスクラップとするために、リング状素形材を得る際の材料歩留まりが極めて低いという問題があった。
一方、皿ばねを製造する際の加熱加圧成形は、得られる素形材の形状が皿状であり、平行なディスク面を持つリング部品を経済的に得ることが困難で、金属製リング状素形材の製造方法として採用するには問題があった。
【0009】
本発明は、上記従来技術の問題点を解消することにあり、平行なディスク面を持つリング状部品を経済的に得ることができると共に、リング状素形材を製造する際の材料歩留まりを向上することができ、かつ高寸法精度のリング状部品を効率良く製造するのに好適な金属製リング状素形材の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、素材として金属からなる帯板を用い、該帯板の幅方向に曲げ成形して円環状となし、次いで端面同士を突き合わせ溶接して、厚みが外面から内面に向かって漸増するリング状部材となし、該リング状部材に一対の圧下ローラーで前記リング状部材の厚み偏差を小さくする回転圧延成形を施すことを特徴とする金属製リング状素形材の製造方法である。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態に係る金属製リング状素形材の製造方法について、図1〜図3を用いて説明する。
図1は3ロール式曲げ加工機により帯板1を帯板の幅方向に曲げ成形した際の模式図であって、(a)は板面上方から見た曲げ成形途中の帯板1の形状を示す平面図、(b)は、曲げ成形終了後の帯板1の一巻き目の形状を示す平面図である。素材としては、目的および用途に応じて、金属からなる所定の厚みA0 、幅Bの帯板1を用いる。
【0012】
また、図2(a)は、曲げ成形して円環状となし、端面同士を突き合わせ溶接して得たリング状部材2の平面図、図2(b)は、X−X断面図である。図3は、本発明おける回転圧延成形を説明する概略斜視図である。
このように、本発明の実施の形態に係るリング状素形材の製造方法では、帯板1を用い、帯板1の幅方向に曲げ成形して円環状となし、端面同士を突き合わせ溶接して溶接部6を有し、厚みが外面から内面に向かって漸増するリング状部材2となしている。
【0013】
ここで、曲げ成形して円環状となし、リング状部材2を得るには、例えば、図1(a)に示すように配置した3つの曲げローラ7を備えた3ロール式曲げ加工機を用いるのが効率的にかつ精度よく帯板1を帯板の幅方向に曲げ成形して円環状とすることができるので好ましい。図1(b)で破線は切断位置を示し、この位置で切断することにより帯板素材1の円環状とすることができなかった先端部を除去すると共に円環状とされた部材を帯板1から切り離している。
【0014】
その際に帯板1の長さは、図4に示すリング状素形材3を少なくとも一つ以上製造することができる長さとする。リング状素形材3の内径は、D1 −2β、外径はD2 +2α、厚みはA3 として示した。なお、短尺長さに切断された帯板1を用いた場合、条件によっては従来より材料歩留まりを向上することができるが、長い帯板1を用い、連続して曲げ加工を行って螺旋状に巻いた後、螺旋状に巻いた部材を円環毎に切断するようにするのが材料歩留まりを顕著に向上させることができるのでより好ましい。円環状とされた部材の切断は、特に規定する必要はないが、例えばバンドソー等の鋸切断により行うことができる。このような切断方法によれば、材料の歩留まり低下が小さいので望ましい。
【0015】
このようにして得た円環状部材の端面同士を突き合わせ溶接して図2に示すような、溶接部6を有し、かつ厚みが外面から内面に向かって漸増するリング状部材2とする。リング状部材2は、曲げ成形により内面側が周方向に縮んだ結果、内面側の厚みが帯板素材1の厚みA0 より増え、一方、外面側が周方向に伸ばされた結果、外面側の厚みが帯板素材1の厚みA0 より減る。そこで、リング状部材2の厚みは、A1 <A0 <A2 となる。A1 は、リング状部材2の外周での厚み寸法であり、A2 はリング状部材2の内周での厚み寸法である。
【0016】
このようなリング状部材2の内面側と外面側との厚み偏差を材料歩留まりを低下させずに効率的に小さくすることが重要である。
そこで、本発明では、図3に示すようにリング状部材2に一対の圧下ローラー8で厚み偏差を小さくする回転圧延成形を施している。図3で符号8A、8Bは、一対の圧下ローラー8の軸芯を示し、圧下ローラーは軸芯を中心として回転する。
【0017】
本発明では、回転圧延成形を施すことによってリング状素形材3を得る際に、内径、外径が若干変化するので、リング状部材2には、その寸法変化を予め見込んでおくようにする。このようにすることにより、厚みがA0 、幅がBの帯板1から所定の寸法:厚みA3 、内径D1 −2β、外径D2 +2αを有するリング状素形材3を得ることができる。なお、2α、2βはリング状素形材3の内、外面の切断代である。
【0018】
ここで、図3中、符号9で示す矢印は圧下ローラ8の回転方向を示し、符号10で示す矢印は、回転圧延成形中のリング状部材2の回転方向を示す。回転圧延成形では、駆動回転させた、一対の圧下ローラー8によりリング状部材2の厚みを圧下しつつ、リング状部材2を周方向に従動回転させることにより周方向に亘りリング状部材2の厚み偏差を小さくするようにしている。
【0019】
符号2Aは、従動回転するリング状部材2の回転中心を示す。圧下ローラー8は、その軸芯8A、8Bが回転中心2Aと交わるように配置されている。また、一対の圧下ローラー8の幅は、リング状部材2の厚みを半径方向に亘り一度に圧下できる寸法とされている。勿論、一対の圧下ローラー8間のロールギャップは内面側と外面側の厚みを均一にすることができるように圧延荷重に応じて設定されている。このようにすることにより回転圧延成形によりリング状部材2の厚み偏差を安定して小さくすることができる。ここで、回転圧延成形は、一対の圧下ローラー8を駆動回転させ、リング状部材2を周方向に従動回転させることが圧下ローラー8の周速とリング状部材2の周速を同調させる速度調整を行う必要がないので好ましい。また回転圧延成形は、リング状部材2の内面での厚み圧下量がA2 −A1 で外面での厚み圧下量が0となるようにリング状部材2の内、外面に対応する位置の負荷時ロールギャップをA1 に設定するのが効率的に内面側と外面側の厚みを均一にすることができるので望ましい。
【0020】
このようにして得たリング状素形材3の断面形状を図4に示した。図5に示すリング状素形材4は、図4に示すリング状素形材3の内面および外面にせん断加工を施したものである。せん断加工は、例えば、図4(b)と図5(b)を比較してわかるように周面に形成された断面円弧状の出っ張りを除去する加工である。内面側の切断代2β、外面側の切断代2αは、バルジング量を若干超える量とされている。この断面円弧状の出っ張りは、回転圧延成形により厚みを均一にするに際し、内周面および外周面が自由端面であるためにバルジング変形により形成されたものである。
【0021】
但し、せん断加工は必須ではなく、行わなくてもよい。あるいは、回転圧延成形中に内周面および外周面を成形ローラーにより角部が直角となるように成形することにより、せん断加工を省略することもできる。
また、回転圧延成形は、リング状部材2を適宜な加熱手段により加熱して熱間状態としてから圧下ローラー8で圧下することもできるし、あるいは加熱せずに、冷間状態で圧下ローラー8により圧下することもできる。
【0022】
このようにして製造されたリング状素形材は、所定の厚み精度と所定の形状を有する。その後、必要な熱処理などの処理を施すことによって、所定の機械的性質と所定の寸法精度を有するリング状部品とするに際し、リング状素形材の平坦度や厚みを所定とする仕上げ加工工数を少なくすることができる。
以上説明したように、本発明では素材として、狭幅の帯板を用い、円環状に曲げ成形し、端面同士を突き合わせ溶接してリング状部材となし、リング状部材にリング状部材の厚み偏差を小さくする回転圧延成形を施するようにした。
【0023】
このために帯板からリング状素形材を製造する際の材料歩留まりを顕著に向上することができ、従来のように広幅の帯板をプレス加工により円環状に打ち抜いてリング状素形材を製造する場合に比べてリング状素形材を経済的に製造することができる。
【0024】
【実施例】
幅が350 mm、厚みが5mmのステンレス製の帯板をプレス加工により円環状に打ち抜いて内径d1 が250mm 、外径d2 が300mm 、厚みaが5mmであるリング状素形材を得た従来の製造方法では、帯板素材の75%がスクラップとして処理され、材料歩留まりが25%であった。
【0025】
これに対して、従来と同程度の平坦度と寸法精度を有するリング状素形材を得るに当たり、幅が60mm、厚みが5mmの帯板をステンレス製の帯板を用い、円環状に曲げ成形し、端面同士を突き合わせ溶接してリング状部材となし、リング状部材に回転圧延成形を施して、リング状部材の厚み偏差を小さくするようにした発明例の製造方法では、曲げ成形→切断→突き合わせ溶接→回転圧延成形と工程数は増えるが、帯板の材料歩留まりを95%に向上することができた。
【0026】
その際に、圧下ローラー8の直径を100 mmとし、冷間でリング状部材に厚み偏差を小さくする回転圧延成形を施して、0.85mm以上であったリング状部材の厚み偏差を±0.1mm 以下とすることができた。回転圧延成形中における最大圧延荷重は、9800kN程度であった。
また、特開平6-106277号公報に示されている加熱加圧成形方法は、上記と同様な寸法のリング状部材の成形する際のプレス荷重は板厚を均一化するための荷重としては、回転圧延成形中における最大圧延荷重の数十倍と推定されるうえに、得られる素形材の形状が皿状であり、平行なディスク面を持つ金属製リング状部品の素形材の成形方法としては不適あるために採用しなかった。
【0027】
【発明の効果】
本発明によれば、リング状素形材を製造する際の材料歩留まりを向上することができ、かつ高寸法精度のリング状素形材を効率良く製造することができる。
この結果、安価なリング状素形材を使用し、機械加工による仕上げ加工工数を増やすことがなく、平行なディスク面を持つリング部品を得ることができるので、金属製リング状部品のコストを下げることが可能となる。
【図面の簡単な説明】
【図1】図1は、3ロール式曲げ加工機により帯板を幅方向に曲げ成形した際の模式図であって、(a)は板面上方から見た曲げ成形途中の帯板1の形状を示す平面図、(b)は、曲げ成形された帯板1の一巻き目の形状を示す平面図である。
【図2】図2(a)、図2(b)は、リング状部材の平面図、同X−X断面図である。
【図3】図3は、本発明における回転圧延成形を説明する概略斜視図である。
【図4】本発明により得たリング状素形材の外形形状を示す図であって、(a)は縦断面図、(b)は要部断面図である。
【図5】本発明により得たリング状素形材にせん断加工を施した素形材の外形形状を示す図であって、(a)は縦断面図、(b)は要部断面図である。
【図6】従来の金属製リング状素形材の製造工程を説明する模式図であって、(a)は板面上方から見た平面図、(b)はY−Y断面図、(c)はリング状素形材の斜視図である。
【符号の説明】
1 帯板
2 リング状部材
2A リング状部材2の回転中心
3 リング状素形材
4 せん断加工後のリング状素形材
6 溶接部
7 曲げローラ
8 圧下ローラ
8A 上圧下ローラの軸芯
8B 下圧下ローラの軸芯
9 圧下ローラの回転方向を示す矢印
10 回転圧延成形中のリング状部材2の回転方向を示す矢印
A0 帯板1の厚み寸法
B 帯板1の幅寸法
A1 、A2 リング状部材2の厚み寸法
A3 リング状素形材3の厚み寸法
D1 リング状素形材4の内径寸法
D2 リング状素形材4の外径寸法
α、β せん断代
21 帯板
22 円板
23 リング状素形材
24 プレス加工後の帯板
a 帯板21の厚み寸法
b 帯板21の幅寸法
d1 リング状素形材23の内径寸法
d2 リング状素形材23の外形寸法[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a metal ring-shaped material suitable for obtaining a metal ring-shaped component having parallel disk surfaces.
[0002]
[Prior art]
Typical examples of the metal ring-shaped component include a disc spring for automobiles and a brake disc for automobiles. 2. Description of the Related Art A disc spring for an automobile is used in an automatic transmission to reduce an impact when a clutch is connected. For this purpose, the outer shape is dish-shaped, and a predetermined spring characteristic is obtained. On the other hand, the brake disc is one of the components that stop the automobile by being assembled to a shaft and sandwiching the brake disc with a U-shaped member and pressing the brake disc. Therefore, in addition to properties such as hardness and abrasion resistance, the brake disc is required to have high thickness accuracy and flatness of the brake disc itself.
[0003]
In general, such a metal ring-shaped component is obtained by using a band plate as a raw material and subjecting the ring-shaped member to various processing and heat treatment in accordance with a place of use.
For example, a component such as a disc spring is made of a metal strip, bent in the width direction of the strip to form an annular shape, and then butt-welded end faces to form a ring-shaped member. The member is heated and pressed to form a frustoconical shape, and then tempered to form a ring-shaped part (see Patent Document 1).
[0004]
On the other hand, a metal ring-shaped component having a parallel disk surface such as a brake disk is generally manufactured through a manufacturing process shown in FIG.
FIGS. 6A and 6B are schematic views illustrating a manufacturing process of a conventional metal ring-shaped material 23, where FIG. 6A is a plan view as viewed from above the plate surface, FIG. (c) is a perspective view of the ring shaped material 23. In FIG. 6, reference numeral 21 denotes a strip having predetermined cross-sectional dimensions a and b. As the material of the strip 21, a wear-resistant metal such as stainless steel is used. Reference numeral 22 denotes a disk which is punched out of the strip 21 by pressing to form a scrap, and reference numeral 23 denotes a ring-shaped base material having an inner diameter d 1 and an outer diameter d 2 punched out by pressing. . The strip 24 after the pressing is scrapped.
[0005]
After that, the ring-shaped raw material 23 is subjected to a deburring process or a quenching process for removing burrs generated at corners by machining as required. For those used under more severe conditions, the disk surface of the ring-shaped shaped material 23 is subjected to grinding processing, finished with predetermined flatness and thickness dimensions, and made of metal with parallel disk surfaces It is a ring-shaped part.
[0006]
Conventionally, a ring-shaped material used for a ring-shaped component having a parallel disk surface has been manufactured by using a strip 21 having good flatness and high thickness accuracy and punching it into an annular shape by press working.
As described above, the production method of punching a strip into an annular shape by press working to obtain a ring-shaped material has good production efficiency, and has a small change in shape and thickness when punching into an annular shape. Since the dimensional accuracy and the shape accuracy of the material are good, there is an advantage that the number of finishing steps by machining after obtaining a ring component having a parallel disk surface can be reduced.
[0007]
[Patent Document 1]
JP-A-6-106277
[Problems to be solved by the invention]
However, the conventional method of manufacturing a metal ring-shaped formed and fabricated material, using a wide strip, a circular plate 22 having an outer diameter d 1, to the strip 24 after pressing the scrap ring There is a problem that the material yield when obtaining the shaped material is extremely low.
On the other hand, the heat and pressure molding for manufacturing a disc spring is difficult to obtain a ring component having a parallel disk surface economically because the shape of the obtained material is a dish shape. There was a problem in adopting it as a method for producing a shaped material.
[0009]
An object of the present invention is to solve the above-mentioned problems of the prior art, and can economically obtain a ring-shaped part having parallel disk surfaces and improve a material yield when manufacturing a ring-shaped material. It is an object of the present invention to provide a method for manufacturing a metal ring-shaped material suitable for efficiently manufacturing a ring-shaped component having high dimensional accuracy.
[0010]
[Means for Solving the Problems]
The present invention uses a metal strip as a material, forms a ring by bending the strip in the width direction, and then butt-welds the end faces together to gradually increase the thickness from the outer face toward the inner face. A method for producing a metal ring-shaped material, comprising: forming a ring-shaped member, and subjecting the ring-shaped member to rotary rolling by using a pair of rolling rollers to reduce the thickness deviation of the ring-shaped member.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing a metal ring-shaped material according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a schematic diagram when a strip 1 is bent in the width direction of the strip by a three-roll bending machine, and FIG. 1A shows the shape of the strip 1 in the middle of bending as viewed from above the plate surface. (B) is a plan view showing the shape of the first turn of the strip 1 after the completion of the bending. As the material, the strip 1 having a predetermined thickness A 0 and a predetermined width B made of metal is used according to the purpose and application.
[0012]
FIG. 2A is a plan view of a ring-shaped member 2 obtained by bending and forming an annular shape and butt-welding the end faces, and FIG. 2B is a cross-sectional view along XX. FIG. 3 is a schematic perspective view illustrating the rotary rolling forming in the present invention.
As described above, in the method of manufacturing the ring-shaped shaped material according to the embodiment of the present invention, the belt 1 is used to bend in the width direction of the belt 1 to form an annular shape, and the end faces are butt-welded. To form a ring-shaped member 2 having a welded portion 6 and a thickness gradually increasing from an outer surface to an inner surface.
[0013]
Here, in order to obtain the ring-shaped member 2 by bending into an annular shape, for example, a three-roll bending machine equipped with three bending rollers 7 arranged as shown in FIG. This is preferable because the band plate 1 can be efficiently and accurately bent in the width direction of the band plate to form an annular shape. In FIG. 1B, a broken line indicates a cutting position, and by cutting at this position, the tip of the band plate material 1 that could not be formed into a ring shape is removed, and the ring-shaped member is formed into a band shape. Disconnected from.
[0014]
At this time, the length of the strip 1 is set to a length that enables at least one or more ring-shaped members 3 shown in FIG. 4 to be manufactured. The inner diameter of the ring shaped material 3 was represented by D 1-2 β, the outer diameter was represented by D 2 + 2α, and the thickness was represented by A 3 . In addition, when the strip 1 cut into a short length is used, the material yield can be improved as compared with the related art depending on the conditions. However, the long strip 1 is used to perform continuous bending to form a spiral. After the winding, it is more preferable to cut the spirally wound member for each ring because the material yield can be remarkably improved. The cutting of the annular member is not particularly limited, but can be performed by, for example, sawing with a band saw or the like. Such a cutting method is desirable because the yield of the material is less reduced.
[0015]
The end faces of the annular members thus obtained are butt-welded to form a ring-shaped member 2 having a welded portion 6 as shown in FIG. 2 and having a thickness gradually increasing from the outer surface to the inner surface. The ring-shaped member 2 has a thickness on the inner surface side that is larger than the thickness A 0 of the strip material 1 as a result of the inner surface side contracted in the circumferential direction by bending, and a thickness on the outer surface side as a result of the outer surface side being elongated in the circumferential direction. Is smaller than the thickness A 0 of the strip material 1. Therefore, the thickness of the ring-shaped member 2 is A 1 <A 0 <A 2 . A 1 is the thickness dimension on the outer periphery of the ring-shaped member 2, and A 2 is the thickness dimension on the inner periphery of the ring-shaped member 2.
[0016]
It is important that the thickness deviation between the inner surface side and the outer surface side of the ring-shaped member 2 be efficiently reduced without lowering the material yield.
Therefore, in the present invention, as shown in FIG. 3, the ring-shaped member 2 is subjected to rotary rolling by a pair of pressing rollers 8 to reduce the thickness deviation. In FIG. 3, reference numerals 8A and 8B denote the axis of the pair of pressing rollers 8, and the pressing rollers rotate about the axis.
[0017]
In the present invention, when the ring-shaped raw material 3 is obtained by performing the rotary rolling, the inner diameter and the outer diameter slightly change. Therefore, the dimensional change of the ring-shaped member 2 is expected in advance. . In this manner, a ring-shaped material 3 having predetermined dimensions: thickness A 3 , inner diameter D 1-2 β, and outer diameter D 2 + 2α is obtained from the strip 1 having the thickness A 0 and the width B. Can be. 2α and 2β are cutting margins of the inner and outer surfaces of the ring shaped material 3.
[0018]
Here, in FIG. 3, the arrow indicated by reference numeral 9 indicates the rotation direction of the pressing roller 8, and the arrow indicated by reference numeral 10 indicates the rotation direction of the ring-shaped member 2 during rotary rolling. In the rotational rolling forming, the thickness of the ring-shaped member 2 is circumferentially driven by rotating the ring-shaped member 2 in a circumferential direction while the thickness of the ring-shaped member 2 is reduced by a pair of pressing rollers 8 that are driven and rotated. The deviation is reduced.
[0019]
Reference numeral 2A indicates the center of rotation of the ring-shaped member 2 that is driven and rotated. The pressing roller 8 is arranged such that its axis 8A, 8B intersects with the center of rotation 2A. Further, the width of the pair of reduction rollers 8 is set to a size that allows the thickness of the ring-shaped member 2 to be reduced at one time in the radial direction. Of course, the roll gap between the pair of pressing rollers 8 is set according to the rolling load so that the thickness on the inner surface side and the outer surface side can be made uniform. By doing so, the thickness deviation of the ring-shaped member 2 can be stably reduced by rotational rolling. Here, in the rotational rolling, the pair of pressing rollers 8 are driven to rotate, and the ring-shaped member 2 is driven to rotate in the circumferential direction. The speed adjustment for synchronizing the peripheral speed of the pressing roller 8 and the peripheral speed of the ring-shaped member 2 is performed. This is preferable because it is not necessary to carry out. The rotating roll forming, among the thickness reduction amount of the inner surface of the ring-shaped member 2 of the ring-shaped member 2 to a thickness reduction amount is 0 at the outer surface in the A 2 -A 1, the load at the position corresponding to the outer surface desirable because it is possible to set the roll gap a 1 when is efficiently uniform the thickness of the inner surface and outer surface side.
[0020]
FIG. 4 shows the cross-sectional shape of the ring shaped material 3 thus obtained. The ring shaped material 4 shown in FIG. 5 is obtained by subjecting the inner surface and the outer surface of the ring shaped material 3 shown in FIG. The shearing process is, for example, a process of removing a projecting arc-shaped cross section formed on the peripheral surface as can be seen by comparing FIG. 4B and FIG. 5B. The cutting margin 2β on the inner side and the cutting margin 2α on the outer side are slightly larger than the bulging amount. The protrusion having an arcuate cross section is formed by bulging deformation because the inner and outer peripheral surfaces are free end surfaces when the thickness is made uniform by rotary rolling.
[0021]
However, shearing is not essential and need not be performed. Alternatively, the shearing process can be omitted by forming the inner peripheral surface and the outer peripheral surface with a forming roller so that the corners are at a right angle during the rotational rolling.
In the rotary rolling, the ring-shaped member 2 may be heated by a suitable heating means to be in a hot state and then reduced by a reduction roller 8 or, without heating, by a reduction roller 8 in a cold state. It can also be reduced.
[0022]
The ring shaped material manufactured in this way has a predetermined thickness accuracy and a predetermined shape. After that, by performing a necessary heat treatment or the like, when a ring-shaped part having predetermined mechanical properties and predetermined dimensional accuracy is obtained, finishing work man-hours for setting the flatness and thickness of the ring-shaped raw material to a predetermined value. Can be reduced.
As described above, in the present invention, a narrow band plate is used as a material, formed into an annular shape, and the end faces are butt-welded to form a ring-shaped member. Is reduced by rotary rolling.
[0023]
For this reason, the material yield when manufacturing the ring-shaped material from the strip can be remarkably improved. The ring shaped material can be manufactured more economically than in the case of manufacturing.
[0024]
【Example】
A stainless steel strip having a width of 350 mm and a thickness of 5 mm was punched out into an annular shape by pressing to obtain a ring-shaped material having an inner diameter d 1 of 250 mm, an outer diameter d 2 of 300 mm and a thickness of 5 mm. In the conventional manufacturing method, 75% of the strip material was treated as scrap, and the material yield was 25%.
[0025]
On the other hand, in order to obtain a ring shaped material with the same level of flatness and dimensional accuracy as the conventional one, a 60 mm wide and 5 mm thick band was bent into a ring shape using a stainless steel band. Then, the end surfaces are butt-welded to form a ring-shaped member, and the rolling process is performed on the ring-shaped member to reduce the thickness deviation of the ring-shaped member. Although the number of processes increased from butt welding to rotary rolling, the material yield of the strip could be improved to 95%.
[0026]
At that time, the diameter of the pressing roller 8 was set to 100 mm, and the ring-shaped member was subjected to rotary rolling forming to reduce the thickness deviation in a cold state, and the thickness deviation of the ring-shaped member which was 0.85 mm or more was ± 0.1 mm or less. And could be. The maximum rolling load during rotary rolling was about 9800 kN.
Further, in the heating and pressing molding method shown in JP-A-6-106277, the press load when forming a ring-shaped member having the same dimensions as above is used as a load for equalizing the plate thickness. In addition to being estimated to be several tens of times the maximum rolling load during rotary rolling, the shape of the resulting shaped material is dish-shaped, and the method for forming the shaped material of a metal ring-shaped part having parallel disk surfaces Not adopted because it was unsuitable.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the material yield at the time of manufacturing a ring-shaped raw material can be improved, and a ring-shaped raw material with high dimensional accuracy can be manufactured efficiently.
As a result, a ring component having a parallel disk surface can be obtained without using an inexpensive ring-shaped material and increasing the number of finishing steps by machining, thereby reducing the cost of the metal ring-shaped component. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic view when a strip is bent in a width direction by a three-roll bending machine, and FIG. 1 (a) is a view of a strip 1 in the middle of bending as viewed from above the plate surface. FIG. 2B is a plan view showing the shape, and FIG. 2B is a plan view showing the shape of the first turn of the bent strip 1.
FIGS. 2A and 2B are a plan view and a cross-sectional view taken along line XX of the ring-shaped member.
FIG. 3 is a schematic perspective view for explaining rotary rolling in the present invention.
4A and 4B are diagrams showing the outer shape of a ring shaped material obtained according to the present invention, wherein FIG. 4A is a longitudinal sectional view, and FIG.
FIG. 5 is a view showing the outer shape of a shaped material obtained by subjecting a ring-shaped shaped material obtained by the present invention to shearing, wherein (a) is a longitudinal sectional view and (b) is a sectional view of a main part. is there.
6A and 6B are schematic views illustrating a manufacturing process of a conventional metal ring shaped material, wherein FIG. 6A is a plan view as viewed from above a plate surface, FIG. 6B is a YY cross-sectional view, and FIG. () Is a perspective view of a ring shaped material.
[Explanation of symbols]
1 strip 2 ring-shaped member
2A Rotation center of ring-shaped member 2 Ring-shaped base material 4 Ring-shaped base material after shearing 6 Welded part 7 Bending roller 8 Press-down roller
8A Upper core of lower roller
8B Shaft core of lower pressure roller 9 Arrow indicating rotation direction of lower roller
10 Arrow A indicating the rotation direction of the ring-shaped member 2 during rotary rolling and molding A 0 Thickness B of the strip 1 Width A 1 of the strip 1 , A 2 Thickness A of the ring 2 A 3 Ring-shaped base material 3 Thickness dimension D 1 Inner diameter dimension of ring-shaped workpiece 4 D 2 Outer diameter dimension of ring-shaped workpiece 4 α, β Shear allowance
21 Strip
22 disk
23 Ring shaped material
24 Strip after pressing a Thickness b of strip 21 b Width d of strip 21 1 Inner diameter d of ring shaped material 23 2 Dimension of ring shaped material 23