Nothing Special   »   [go: up one dir, main page]

JP2004201458A - Transformer for multiple-output power supply - Google Patents

Transformer for multiple-output power supply Download PDF

Info

Publication number
JP2004201458A
JP2004201458A JP2002369380A JP2002369380A JP2004201458A JP 2004201458 A JP2004201458 A JP 2004201458A JP 2002369380 A JP2002369380 A JP 2002369380A JP 2002369380 A JP2002369380 A JP 2002369380A JP 2004201458 A JP2004201458 A JP 2004201458A
Authority
JP
Japan
Prior art keywords
coil
power supply
transformer
primary
tertiary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002369380A
Other languages
Japanese (ja)
Other versions
JP3643581B2 (en
Inventor
Hideki Kojima
秀樹 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2002369380A priority Critical patent/JP3643581B2/en
Publication of JP2004201458A publication Critical patent/JP2004201458A/en
Application granted granted Critical
Publication of JP3643581B2 publication Critical patent/JP3643581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transformer for multiple-output power supply wherein the output voltage/current characteristics are provided with a drooping characteristic and necessity for an overcurrent protection circuit is obviated. <P>SOLUTION: The transformer is for a multiple-output power supply. The transformer comprises a non-contact power supply which is provided with a primary coil for supplying power and a secondary coil for receiving power and transmits power with the primary coil, and the secondary coil opposed to each other; and a power supply which obtains a plurality of direct-current output voltages from a tertiary coil provided coaxially with the winding axis of the primary coil. The transformer comprises the primary coil, secondary coil, and tertiary coil. The windings of the primary coil and the tertiary coil are wound on the same core shaft. The winding of the secondary coil is wound on another core shaft. A partition plate made of the core material is provided between the primary coil and the tertiary coil. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、非接触で電力を供給する電源装置と複数の直流出力電圧とを同時に得られるマルチ出力電源装置に用いるトランスに関する。
【0002】
【従来の技術】
【特許文献1】特開平9−121481号公報
【特許文献2】特開平6−169566号公報
【0003】
例えば、コードレス電話装置のように、子機はコードレスで親機から非接触で二次電池を充電する充電電池を備え、親機は子機に電力を供給する電源を備えるとともに、複数の回路に応じた直流電源を出力できるマルチ出力電源装置が用いられている。(例えば、特許文献1参照)
【0004】
部品点数が少なく、回路構成が簡単な自励発振型のマルチ出力電源装置の概略回路図を図5に示す。
図5に示すように、電力を供給する一次側は商用交流電源(AC100V 50/60Hz)から整流平滑回路を介して直流電圧を得る。その直流電圧を自励発振回路によりスイッチング素子をオンオフさせて、一次コイルL1に発生したエネルギーを、一次コイルL1と所定の間隔を隔てて対向させて配置した二次コイルL2に電力を供給し、非接触で出力端子CN2に所定の直流電圧を得る回路である。また、一次コイルL1のエネルギーを同じトランス内に設けられた三次コイルL3に伝え、出力端子CN3に所定の直流電圧を得る回路である。なお、回路図では、出力端子CN3は1出力であるが複数の出力を必要とする場合は三次コイルを複数設け、それぞれに応じた設定の直流電圧を得る。
【0005】
このような構成のマルチ出力電源装置における従来のトランスを図6に示す。
図6に示すように、図6(a)は説明のための模式図であり、図2(b)はその断面図である。
図6より、磁性材料から成る断面がT字状の一次側コア1に、巻線部1bに一次コイル3を卷回し、同じコア軸上に並べて、三次コイル4を卷回したものである。
二次コイルは磁性材料から成る断面がI字状の二次側コア9に二次コイル10を卷回したものである。そして、一次側コア(一次コイルの巻線面を含む)面1aと二次側コア(二次コイル巻線面を含む)面9aが所定の間隔を置いて、対向した状態で二次コイル10に電力を伝達する。
【0006】
このようなトランスおける磁束の流れを図7に示す。
図7に示すとおり、一次コイル3で発生する磁束は一次側コアの面1aから対向する二次側コア9、二次コイル20を経て、一次側コアの鍔1cに入る磁束のループφ1−2と、一次側コア1から一次側コアの面1aを飛び出し鍔1cに入る磁束のループφ1−3が考えられる。
これらは、一次コイル3と二次コイル4の結合係数k1−2と一次コイルと三次コイルの結合係数k1−3を測定することにより、一次コル、二次コイル、三次コイルの磁束の関係をあらわすことができる。
図6のトランスにおいて結合係数を測定した結果、一次コイルと二次コイルの結合係数K1−2は0.2〜0.4であり、一次コイルと三次コイルの結合係数K1−3は0.5〜0.8であった。
図5に示す回路図にこのトランスを用いた時、三次コイルの出力端子CN3の出力電圧電流特性は図4に示す曲線Bのようになった。
このような出力電圧電流特性では、外部負荷において短絡(ショート)した場合に過大な電流が流れ回路を焼損する恐れがある。これを防止するために保護回路を設けると回路が複雑となり大幅なコストアップとなる欠点があった。また、三次コイルに並列に共振コンデンサCo(図5 点線部)を挿入する方法があるが、一次コイルと三次コイルの結合係数k1−3が強くなりすぎて自励発振回路の発振が不安定となる。
【0007】
【発明が解決しようとする課題】
本発明は以上のような従来の欠点に鑑み、三次コイルの出力電圧電流特性に垂下特性をもたせ、過電流保護回路を不要としたマルチ出力電源装置のトランスを提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、電力を供給する一次側コイルと電力を受電する二次側コイルを備え、一次側コイルと二次側コイルとを対向させて電力の伝達をおこなう非接触電源装置と、一次側コイルの巻線軸と同軸に設けた三次側コイルから複数の直流出力電圧を得る電源装置とを併せ持つマルチ出力電源装置のトランスにおいて、トランスは一次側コイル、二次側コイル、三次側コイルを具備している。一次側コイルと三次側コイルは同一のコア軸に巻線が卷回されている。二次側コイルは他のコア軸に巻線が卷回されている。そして、一次側コイルと三次側コイルとの間にコア材の仕切り板を設けた構成である。
【0009】
【発明の実施の形態】
電力を供給する一次側コイルと電力を受け取る二次側コイルを備え、一次側コイルと二次側コイルとを対向させて電力の伝達を行なう非接触電源装置と、一次側コイルの巻線軸と同軸に設けた三次側コイルから複数の直流出力電圧を得る電源装置とを併せ持つマルチ出力電源装置のトランスにおいて、トランスは一次側コイル、二次側コイル、三次側コイルを具備している。
一次側コイルと三次側コイルは同一のコア軸に並べて巻線を卷回したり、または、一次側コイルと三次側コイルを同一のコア軸に重ねて巻線を卷回する。二次側コイルは他のコア軸に巻線を卷回する。一次側コイルと三次側コイルとの間にコア材の仕切り板を設けて磁気的結合を調整する。
仕切り板は一次側コイルと三次側コイルの結合係数を一次側コイルと二次側コイルの結合係数とほぼ同じ結合係数となるように所定の大きさとする。
または、一次側コアには、仕切り板を設けた形状のコアを一体にして形成したものを用いると部品点数を削減すると共に作業が容易となる。
【0010】
【実施例】
本発明のマルチ出力電源装置のトランスの実施例を図1から図4を用いて説明する。
【0011】
図1は一次コイルと二次コイルを巻線軸に並べて、磁気的結合を垂直方向に結合させたトランスで、図1(a)は説明のための模式図であり、図1(b)はその断面図であり、図1(c)は仕切り板の断面図である。
図1に示すように、トランスにおいて、1は磁性材料で断面がT字状に成型された一次側コア、2は磁性材料でリング状に成型された平板状の仕切り板、3は一次コイル、4は三次コイル、9は磁性材料で断面がI字状に成型された二次側コア、10は二次コイルである。
【0012】
仕切り板は一次コイルと三次コイルの結合係数k1−3が一次コイルと二次コイルの結合係数k1−2とほぼ同じになるようにコアを所定の大きさに設定したもので、その大きさは内径d2を一次側コア1の巻線部径d1とほぼ同じとし、外径w2を一次側コア1の外径w1とほぼ同じ(やや小さめ)とし、厚みtを設けたものである。
なお、本願実施において一次コイルと三次コイルの結合係数k1−3を設定する際、仕切り板の外径w2を変えると大きく結合が変わることより粗調整として予め行い、仕切り板の厚みtで微調整行うことにより設定が容易に行なえる。なお、仕切り板の外径w2を一次側コアの外形w1より大きくすると、仕切り板2が出っ張ることになり、他の部品との接触およびトランスの配置に注意を要する。
また、一次側コアはコア1と仕切り板2を一体に形成したものでもよい。
【0013】
このような構造のトランスの磁束の流れを図2に示す。
図2に示すように、一次コイル3で発生した磁束は一次側コア1から対向する二次側コア9、二次コイル10を経て、一次コイル3と三次コイル4間に設けた仕切り板2を通るループφ1−2を描く。また、一次コイルで発生した磁束φ1は二次側コア面9aと対向する一次側コアの面1aから飛び出し、仕切り板2に入る磁束のループと三次コイル4を通り一次側コアの鍔1cに入る磁束φ1−3とが考えられる。
【0014】
このように、磁性体の仕切り板2を設けることにより、一次コイル3で発生した磁束の一部は仕切り板2を通るループと三次コイル4を通るループφ1−3に分かれる。いいかえれば、仕切り板の大きさ(w2、t)によって三次コイル4を通るループφ1−3の磁束を調整することができる。
【0015】
図5の回路において、三次コイルと並列に共振コンデンサCo(点線部)を接続した共振型のマルチ出力電源装置に本願発明のトランスを用いて、三次コイルの出力端子CN3の出力電圧電流特性を測定した結果、図4の曲線Aで示す特性を得た。
図4の曲線Aに示すように垂下特性をもたせることができる。
このときの実施例である本願発明のトランスの各結合係数は、一次コイルと二次コイルの結合係数k1−2は0.25〜0.35で、一次コイル三次コイルの結合係数k1−3は0.2〜0.3であった。
【0016】
このように、本発明のマルチ出力電源装置のトランスを用いることにより、
三次コイルの出力回路に保護回路が不要となり、コスト低減となる。また、三次コイルの出力端子CN3が電力制限されるため、無負荷時の2次側出力電圧が跳ね上がらず安全である。
【0017】
次に、他の実施例であるマルチ出力電源装置のトランスを図3に示す。
図3は、一次コイルに二次コイルを重ねて卷回して高さを低く抑えた、磁気結合を水平方向に結合させたトランスで、図3(a)は説明のための模式図であり、図3(b)はその断面図であり、図3(c)は仕切り板の断面図である。
図3に示すように、トランスにおいて、1は磁性材料で断面がE字状に成型されたポット形の一次側コア、2は磁性材料で成型された筒状の仕切り板、3は一次コイル、4は三次コイル、9は磁性材料で断面がI字状に成型された二次側コア、10は二次コイルである。
仕切り板2は一次コイルと三次コイルの結合係数K1−3が一次コイルと二次コイルの結合係数k1−2より小さくなるように高さh2をコア1の脚1cと同じ高さh1寸法とし、厚みtを所定の厚みに設定する。
なお、一次側コア1は仕切り板2を一体にして形成したものでもよい。
【0018】
以上、本発明のマルチ出力電源装置のトランスの実施例を述べたが、これらの実施例に限られるものではない。例えば、コア形状を円筒で示したが、楕円、四角形、多角形を用いてもよい。一次コイル、二次コイル、三次コイルは予め巻線された空心コイルを用いてもよい。さらに、一次側コアと仕切り板の透磁率を異ならせた磁性材料を用いてもよい。さらに、自励型の共振回路を用いて説明したが他励の共振回路を用いても同様である。
【0019】
【発明の効果】
以上の説明から明らかなように、本発明のマルチ出力電源装置のトランスは、一次コイルと三次コイルを同一のコア軸に巻線が卷回されており、一次コイルと三次コイルとの間に仕切り板を設け、一次コイルと三次コイルの結合を一次コイルと二次コイルの結合をほぼ同じにすることにより、三次コイルの出力端子の出力電圧電流特性に垂下特性を持たせている。それによって過電流を回避するため、複雑な過電流保護回路を必要としない安価なマルチ出力電源装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であるマルチ出力電源装置のトランスの模式図(a)とその断面図(b)と仕切り板の断面図(c)
【図2】図1に示したトランスの磁束の流れ図
【図3】本発明の他の実施例であるマルチ出力電源装置のトランスの模式図(a)とその断面図(b)と仕切り板の断面図(c)
【図4】三次側の出力端子の出力電圧電流特性図
【図5】マルチ出力電源装置の概略回路図
【図6】従来のマルチ出力電源装置のトランスの模式図(a)とその断面図(b)
【図7】図6に示したトランスの磁束の流れ図
【符号の説明】
1 一次側コア
2 仕切り板
3 一次コイル
4 三次コイル
9 二次側コア
10 二次コイル
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply for supplying electric power in a non-contact manner and a transformer used for a multi-output power supply capable of simultaneously obtaining a plurality of DC output voltages.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 9-121481 [Patent Document 2] Japanese Patent Application Laid-Open No. 6-169566
For example, like a cordless telephone device, the slave unit is provided with a charging battery that is cordless and charges a secondary battery from the master unit in a non-contact manner, and the master unit includes a power supply that supplies power to the slave unit and includes a plurality of circuits. A multi-output power supply device capable of outputting a corresponding DC power supply is used. (For example, see Patent Document 1)
[0004]
FIG. 5 is a schematic circuit diagram of a self-excited oscillation type multi-output power supply device having a small number of components and a simple circuit configuration.
As shown in FIG. 5, the primary side that supplies power obtains a DC voltage from a commercial AC power supply (100 VAC, 50/60 Hz) via a rectifying and smoothing circuit. The DC voltage is turned on and off by a self-excited oscillation circuit, and the energy generated in the primary coil L1 is supplied to a secondary coil L2 disposed opposite to the primary coil L1 at a predetermined interval, This is a circuit for obtaining a predetermined DC voltage at the output terminal CN2 in a non-contact manner. Further, the circuit transmits the energy of the primary coil L1 to the tertiary coil L3 provided in the same transformer, and obtains a predetermined DC voltage at the output terminal CN3. In the circuit diagram, the output terminal CN3 has one output, but when a plurality of outputs are required, a plurality of tertiary coils are provided, and a DC voltage set according to each is obtained.
[0005]
FIG. 6 shows a conventional transformer in such a multi-output power supply device.
As shown in FIG. 6, FIG. 6A is a schematic diagram for explanation, and FIG. 2B is a sectional view thereof.
As shown in FIG. 6, the primary coil 3 is wound around the winding portion 1b around the primary core 1 having a T-shaped section made of a magnetic material, and the tertiary coil 4 is wound around the same core axis.
The secondary coil is formed by winding a secondary coil 10 around a secondary core 9 made of a magnetic material and having an I-shaped cross section. Then, the primary coil (including the winding surface of the primary coil) surface 1a and the secondary core (including the winding surface of the secondary coil) surface 9a are spaced apart from each other by a predetermined distance. To transmit power.
[0006]
FIG. 7 shows the flow of magnetic flux in such a transformer.
As shown in FIG. 7, the magnetic flux generated in the primary coil 3 passes from the surface 1 a of the primary core, passes through the opposed secondary core 9 and the secondary coil 20, and enters a loop φ 1-1 of the magnetic flux entering the flange 1 c of the primary core. 2, the magnetic flux loop phi 1-3 of entering the flange 1c from the primary side core 1 jump out a surface 1a of the primary side core can be considered.
These, by measuring the primary coil 3 and the coupling coefficient k 1-2 and coupling coefficient k 1-3 of the primary coil and the tertiary coil of the secondary coil 4, primary Col secondary coil, the magnetic flux of the tertiary coil relations Can be represented.
Results of the measurement of the coupling coefficient in the transformer of FIG. 6, the coupling coefficient K 1-2 of the primary coil and the secondary coil is 0.2 to 0.4, the primary coil and coupling coefficient K 1-3 of the tertiary coil 0 0.5 to 0.8.
When this transformer is used in the circuit diagram shown in FIG. 5, the output voltage-current characteristic of the output terminal CN3 of the tertiary coil is as shown by a curve B shown in FIG.
In such an output voltage-current characteristic, when a short circuit occurs in an external load, an excessive current flows and the circuit may be burned. If a protection circuit is provided to prevent this, the circuit becomes complicated and there is a disadvantage that the cost is greatly increased. Further, the resonance in parallel with the tertiary coil capacitor Co there is a method of inserting a (FIG. 5 dotted line), unstable oscillation of the self-excited oscillation circuit becomes too strong coupling coefficient k 1-3 of the primary coil and tertiary coil It becomes.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described conventional drawbacks, and has as its object to provide a transformer of a multi-output power supply device in which the output voltage-current characteristics of a tertiary coil have drooping characteristics and an overcurrent protection circuit is not required.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a primary coil for supplying electric power and a secondary coil for receiving electric power, and a non-electric power transmission device in which the primary coil and the secondary coil are opposed to each other to transmit electric power. In a transformer of a multi-output power supply device having a contact power supply device and a power supply device that obtains a plurality of DC output voltages from a tertiary coil provided coaxially with a winding axis of a primary coil, the transformer is a primary coil and a secondary coil. , A tertiary coil. The primary coil and the tertiary coil are wound around the same core shaft. The secondary coil has a winding wound around another core shaft. And it is the structure which provided the partition board of the core material between the primary side coil and the tertiary side coil.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
A non-contact power supply device that includes a primary coil that supplies power and a secondary coil that receives power, and transmits power by facing the primary coil and the secondary coil, and is coaxial with the winding axis of the primary coil. In the transformer of the multi-output power supply device having a power supply device for obtaining a plurality of DC output voltages from the tertiary coil provided in the above, the transformer includes a primary coil, a secondary coil, and a tertiary coil.
The primary side coil and the tertiary side coil are arranged side by side on the same core axis and the winding is wound, or the primary side coil and the tertiary side coil are superposed on the same core axis and the winding is wound. The secondary coil winds a winding around another core shaft. A magnetic core is adjusted by providing a partition plate made of a core material between the primary coil and the tertiary coil.
The partition plate has a predetermined size such that the coupling coefficient between the primary coil and the tertiary coil is substantially the same as the coupling coefficient between the primary coil and the secondary coil.
Alternatively, if a core formed integrally with a core having a partition plate is used as the primary side core, the number of components is reduced and the work is facilitated.
[0010]
【Example】
An embodiment of the transformer of the multi-output power supply device of the present invention will be described with reference to FIGS.
[0011]
FIG. 1 shows a transformer in which a primary coil and a secondary coil are arranged on a winding axis and a magnetic coupling is vertically coupled. FIG. 1A is a schematic diagram for explanation, and FIG. FIG. 1C is a cross-sectional view of the partition plate.
As shown in FIG. 1, in the transformer, 1 is a primary core formed of a magnetic material in a T-shaped cross section, 2 is a flat partition plate formed of a magnetic material in a ring shape, 3 is a primary coil, Reference numeral 4 denotes a tertiary coil, 9 denotes a secondary core made of a magnetic material and has an I-shaped cross section, and 10 denotes a secondary coil.
[0012]
The partition plate has a core set to a predetermined size such that the coupling coefficient k 1-3 between the primary coil and the tertiary coil is substantially the same as the coupling coefficient k 1-2 between the primary coil and the secondary coil. The inner diameter d2 is substantially the same as the winding diameter d1 of the primary core 1, the outer diameter w2 is substantially the same as (slightly smaller than) the outer diameter w1 of the primary core 1, and the thickness t is provided.
Incidentally, when setting the coupling coefficient k 1-3 of the primary coil and the tertiary coil in the present application embodiment, performed in advance as coarse than to increase binding changing the outer diameter w2 of the partition plate is changed, the fine in the thickness of the partition plate t Setting can be easily performed by performing adjustment. If the outer diameter w2 of the partition plate is larger than the outer diameter w1 of the primary core, the partition plate 2 will protrude, and attention must be paid to contact with other components and arrangement of the transformer.
Further, the primary side core may be one in which the core 1 and the partition plate 2 are integrally formed.
[0013]
FIG. 2 shows the flow of the magnetic flux of the transformer having such a structure.
As shown in FIG. 2, the magnetic flux generated in the primary coil 3 passes through the secondary core 9 and the secondary coil 10 from the primary core 1 to the partition plate 2 provided between the primary coil 3 and the tertiary coil 4. draw a loop φ 1-2 through. Further, the magnetic flux φ1 generated by the primary coil jumps out of the primary core surface 1a facing the secondary core surface 9a, passes through the loop of the magnetic flux entering the partition plate 2 and the tertiary coil 4, and enters the primary core flange 1c. The magnetic flux φ 1-3 can be considered.
[0014]
Thus, by providing the partition plate 2 of the magnetic body, a part of the magnetic flux generated by the primary coil 3 is divided into a loop phi 1-3 through the loop and tertiary coil 4 through the partition plate 2. In other words, it is possible to adjust the magnetic flux loop phi 1-3 through the tertiary coil 4 by the size (w2, t) of the partition plate.
[0015]
In the circuit of FIG. 5, the output voltage-current characteristic of the output terminal CN3 of the tertiary coil is measured using the transformer of the present invention in a resonance type multi-output power supply device in which a resonance capacitor Co (dotted line) is connected in parallel with the tertiary coil. As a result, the characteristic shown by the curve A in FIG. 4 was obtained.
As shown by the curve A in FIG. 4, a drooping characteristic can be provided.
Each coupling coefficient of the transformer of the present invention is an example of this case, the coupling coefficient k 1-2 of the primary coil and the secondary coil is 0.25-0.35, the coupling coefficient of the primary coil tertiary coil k 1- 3 was 0.2-0.3.
[0016]
Thus, by using the transformer of the multi-output power supply device of the present invention,
The protection circuit is not required in the output circuit of the tertiary coil, and the cost is reduced. In addition, since the power of the output terminal CN3 of the tertiary coil is limited, the output voltage on the secondary side during no-load does not jump up and is safe.
[0017]
Next, FIG. 3 shows a transformer of a multi-output power supply device according to another embodiment.
FIG. 3 shows a transformer in which a secondary coil is superposed and wound on a primary coil to keep the height low, and magnetic coupling is coupled in the horizontal direction. FIG. 3 (a) is a schematic diagram for explanation. FIG. 3B is a cross-sectional view thereof, and FIG. 3C is a cross-sectional view of a partition plate.
As shown in FIG. 3, in the transformer, 1 is a pot-shaped primary core formed of a magnetic material in a cross section of an E-shape, 2 is a cylindrical partition plate formed of a magnetic material, 3 is a primary coil, Reference numeral 4 denotes a tertiary coil, 9 denotes a secondary core made of a magnetic material and has an I-shaped cross section, and 10 denotes a secondary coil.
Partitioning plate 2 is the primary coil and the same height h1 dimension the height h2 to be smaller than the coupling coefficient k 1-2 leg 1c of the core 1 of the coupling coefficient K 1-3 primary and secondary coils of the tertiary coil And the thickness t is set to a predetermined thickness.
In addition, the primary side core 1 may be formed by integrally forming the partition plate 2.
[0018]
Although the embodiments of the transformer of the multi-output power supply device of the present invention have been described above, the present invention is not limited to these embodiments. For example, although the core shape is shown as a cylinder, an ellipse, a square, or a polygon may be used. As the primary coil, the secondary coil, and the tertiary coil, an air-core coil wound in advance may be used. Further, a magnetic material having different magnetic permeability between the primary core and the partition plate may be used. Furthermore, the self-excited resonance circuit has been described, but the same applies to the use of a separately-excited resonance circuit.
[0019]
【The invention's effect】
As is apparent from the above description, the transformer of the multi-output power supply device of the present invention has a primary coil and a tertiary coil wound around the same core shaft, and a partition is provided between the primary coil and the tertiary coil. By providing a plate and making the coupling between the primary coil and the tertiary coil substantially the same as the coupling between the primary coil and the secondary coil, the output voltage / current characteristic of the output terminal of the tertiary coil has a drooping characteristic. Thus, an inexpensive multi-output power supply device that does not require a complicated overcurrent protection circuit to avoid overcurrent can be provided.
[Brief description of the drawings]
FIG. 1A is a schematic view of a transformer of a multi-output power supply device according to one embodiment of the present invention, FIG. 1B is a cross-sectional view thereof, and FIG.
FIG. 2 is a flow diagram of the magnetic flux of the transformer shown in FIG. 1. FIG. 3 is a schematic view (a) and a cross-sectional view (b) of a transformer of a multi-output power supply device according to another embodiment of the present invention. Sectional view (c)
FIG. 4 is an output voltage-current characteristic diagram of an output terminal on the tertiary side. FIG. 5 is a schematic circuit diagram of a multi-output power supply device. FIG. 6 is a schematic diagram (a) of a transformer of a conventional multi-output power supply device and a sectional view thereof. b)
7 is a flow chart of the magnetic flux of the transformer shown in FIG.
DESCRIPTION OF SYMBOLS 1 Primary core 2 Partition plate 3 Primary coil 4 Tertiary coil 9 Secondary core 10 Secondary coil

Claims (5)

電力を供給する一次側コイルと電力を受電する二次側コイルを備え、該一次側コイルと該二次側コイルとを対向させて電力の伝達を行なう非接触電源装置と、該一次側コイルの巻線軸と同軸に設けた二次側コイルから複数の直流出力電圧を得る電源装置とを併せ持つマルチ出力電源装置のトランスにおいて、
該トランスは一次側コイル、二次側コイル、三次側コイルを具備してなり、
該一次側コイルと該三次側コイルは同一のコア軸に巻線が卷回され、該二次側コイルは他のコア軸に巻線が卷回され、
該一次側コイルと該三次側コイルとの間にコア材の仕切り板を設けたことを特徴とするマルチ出力電源装置のトランス。
A non-contact power supply device comprising a primary coil for supplying power and a secondary coil for receiving power, and a non-contact power supply device for transmitting power by facing the primary coil and the secondary coil; and In a transformer of a multi-output power supply device having a power supply device for obtaining a plurality of DC output voltages from a secondary coil provided coaxially with a winding axis,
The transformer includes a primary coil, a secondary coil, and a tertiary coil,
The primary coil and the tertiary coil are wound around the same core axis, and the secondary coil is wound around another core axis.
A multi-output power supply transformer, wherein a partition plate made of a core material is provided between the primary coil and the tertiary coil.
電力を供給する一次側コイルと電力を受電する二次側コイルを備え、該一次側コイルと該二次側コイルとを対向させて電力の伝達を行なう非接触電源装置と、該一次側コイルの巻線軸と同軸に設けた二次側コイルから複数の直流出力電圧を得る電源装置とを併せ持つマルチ出力電源装置のトランスにおいて、
該トランスは一次側コイル、二次側コイル、三次側コイルを具備してなり、
該一次側コイルと該三次側コイルは同一コア軸に並べて巻線が卷回され、
該二次側コイルは他のコア軸に巻線が卷回され、
該一次側コイルと該三次側コイルとの間にコア材の仕切り板を設けたことを特徴とするマルチ出力電源装置のトランス。
A non-contact power supply device that includes a primary coil that supplies power and a secondary coil that receives power, and that transmits power by facing the primary coil and the secondary coil; and In a transformer of a multi-output power supply device having a power supply device for obtaining a plurality of DC output voltages from a secondary coil provided coaxially with a winding axis,
The transformer includes a primary coil, a secondary coil, and a tertiary coil,
The primary coil and the tertiary coil are wound around the same core axis,
The secondary side coil is wound around another core shaft,
A transformer for a multi-output power supply device, wherein a partition plate made of a core material is provided between the primary coil and the tertiary coil.
電力を供給する一次側コイルと電力を受電する二次側コイルを備え、該一次側コイルと該二次側コイルとを対向させて電力の伝達を行なう非接触電源装置と、該一次側コイルの巻線軸と同軸に設けた二次側コイルから複数の直流出力電圧を得る電源装置とを併せ持つマルチ出力電源装置のトランスにおいて、
該トランスは一次側コイル、二次側コイル、三次側コイルを具備してなり、
該一次側コイルと該三次側コイルは同一コア軸に重ねて巻線が卷回され、該二次側コイルは他のコア軸に巻線が卷回され、該一次側コイルと該三次側コイルとの間にコア材の仕切り板を設けたことを特徴とするマルチ出力電源装置のトランス。
A non-contact power supply device that includes a primary coil that supplies power and a secondary coil that receives power, and that transmits power by facing the primary coil and the secondary coil; and In a transformer of a multi-output power supply device having a power supply device for obtaining a plurality of DC output voltages from a secondary coil provided coaxially with a winding axis,
The transformer includes a primary coil, a secondary coil, and a tertiary coil,
The primary coil and the tertiary coil are wound around the same core axis, and a winding is wound around the core coil. The secondary coil is wound around another core axis, and the primary coil and the tertiary coil are wound around the core coil. A transformer for a multi-output power supply device, wherein a partition plate made of a core material is provided between the transformer.
前記一次側コイルと三次側コイルを卷回するコアは仕切り板を一体にして成型したことを特徴とする請求項1、請求項2、請求項3記載のマルチ出力電源装置のトランス。4. The transformer for a multi-output power supply device according to claim 1, wherein the core around which the primary coil and the tertiary coil are wound is formed by integrating a partition plate. 前記仕切り板は一次側コイルと三次側コイルの結合係数を一次側コイルと二次側コイルの結合係数とほぼ同じになるように所定の大きさとしたことを特徴とする請求項1、請求項2、請求項3、請求項4記載のマルチ出力電源装置のトランス。3. The partition plate according to claim 1, wherein the coupling coefficient between the primary side coil and the tertiary side coil has a predetermined size so as to be substantially equal to the coupling coefficient between the primary side coil and the secondary side coil. 5. The transformer of the multi-output power supply device according to claim 3, wherein:
JP2002369380A 2002-12-20 2002-12-20 Multi-output power supply transformer Expired - Fee Related JP3643581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369380A JP3643581B2 (en) 2002-12-20 2002-12-20 Multi-output power supply transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369380A JP3643581B2 (en) 2002-12-20 2002-12-20 Multi-output power supply transformer

Publications (2)

Publication Number Publication Date
JP2004201458A true JP2004201458A (en) 2004-07-15
JP3643581B2 JP3643581B2 (en) 2005-04-27

Family

ID=32765620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369380A Expired - Fee Related JP3643581B2 (en) 2002-12-20 2002-12-20 Multi-output power supply transformer

Country Status (1)

Country Link
JP (1) JP3643581B2 (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
JP2018174704A (en) * 2008-09-27 2018-11-08 ウィトリシティ コーポレーション Wireless energy transfer system
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11837961B2 (en) 2019-05-24 2023-12-05 Denso Corporation Power conversion apparatus

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US11685270B2 (en) 2005-07-12 2023-06-27 Mit Wireless energy transfer
US8772972B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across a distance to a moving device
US8772971B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across variable distances with high-Q capacitively-loaded conducting-wire loops
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US8760007B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer with high-Q to more than one device
US8766485B2 (en) 2005-07-12 2014-07-01 Massachusetts Institute Of Technology Wireless energy transfer over distances to a moving device
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US11685271B2 (en) 2005-07-12 2023-06-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10666091B2 (en) 2005-07-12 2020-05-26 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8791599B2 (en) 2005-07-12 2014-07-29 Massachusetts Institute Of Technology Wireless energy transfer to a moving device between high-Q resonators
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US11958370B2 (en) 2008-09-27 2024-04-16 Witricity Corporation Wireless power system modules
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
JP2018174704A (en) * 2008-09-27 2018-11-08 ウィトリシティ コーポレーション Wireless energy transfer system
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems
US11837961B2 (en) 2019-05-24 2023-12-05 Denso Corporation Power conversion apparatus

Also Published As

Publication number Publication date
JP3643581B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP2004201458A (en) Transformer for multiple-output power supply
EP2675038B1 (en) Contactless electrical-power-supplying device
US5923544A (en) Noncontact power transmitting apparatus
JP4135299B2 (en) Non-contact power transmission device
US9742199B2 (en) Contactless power supply system and contactless extension plug
CA2374244A1 (en) Integrated direct current converter
JP4676409B2 (en) Non-contact power transmission device
JP2002199598A (en) Contactless battery charger
MXPA00007519A (en) Current sensor for an electrical device.
RU2000124803A (en) SWITCHING POWER CIRCUIT AND SEPARATE TRANSFORMER OF THE CONVERTER
US4786853A (en) Brushless capacitor excited generator
WO2008080405A1 (en) A headset with a rechargeable battery, a base unit adapted to charge a rechargeable battery and a communications unit
KR101595774B1 (en) Composite Coil Module for Transmitting Wireless Power
JPH03284135A (en) Power supply device
JP3910807B2 (en) Power supply
JP3442937B2 (en) Non-contact power supply device for ground moving objects
US20030080643A1 (en) Brushless rotating electric machine
KR970011864B1 (en) Switching network of transformer
JP3330222B2 (en) Non-contact power transmission device
CA2243258A1 (en) Arc welding apparatus with constant current and voltage characteristics
US11955812B2 (en) Non-contact power feeding device
WO2014061113A1 (en) Transformer and converter
JP3604505B2 (en) Multi-output switching power supply
JPH11260658A (en) Electric power unit
JP2005102378A (en) Inductive power receiving circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees