Nothing Special   »   [go: up one dir, main page]

JP2004292857A - Non-heat treated seamless steel tube - Google Patents

Non-heat treated seamless steel tube Download PDF

Info

Publication number
JP2004292857A
JP2004292857A JP2003084410A JP2003084410A JP2004292857A JP 2004292857 A JP2004292857 A JP 2004292857A JP 2003084410 A JP2003084410 A JP 2003084410A JP 2003084410 A JP2003084410 A JP 2003084410A JP 2004292857 A JP2004292857 A JP 2004292857A
Authority
JP
Japan
Prior art keywords
toughness
strength
seamless steel
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084410A
Other languages
Japanese (ja)
Other versions
JP3969328B2 (en
Inventor
Kunio Kondo
邦夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003084410A priority Critical patent/JP3969328B2/en
Priority to CN200410030007.4A priority patent/CN1240867C/en
Priority to US10/806,391 priority patent/US20040238075A1/en
Publication of JP2004292857A publication Critical patent/JP2004292857A/en
Application granted granted Critical
Publication of JP3969328B2 publication Critical patent/JP3969328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-heat treated seamless steel tube by which high strength and high toughness can be combined without requiring strict control of tube-making draft and tube-making temperature in the course of tube making and further superior weldability can be secured. <P>SOLUTION: The non-heat treated seamless steel tube has a composition which consists of, by weight, 0.10 to <0.20% C, 0.05 to 1.0% Si, 0.5 to 2.5% Mn, ≤0.03% P, ≤0.05% S, 0.5 to 1.5% Cr, 0.03 to 0.3% V, 0.003 to 0.10% Al, 0.001 to 0.02% N, ≤0.003% O and the balance Fe with impurities and in which the carbon equivalent Ceq.(%) defined by equation Ceq.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 is made to 0.60 to 0.85%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、機械構造用等に使用される継目無鋼管に関し、特に熱間製管のままで使用でき、高強度および高靭性を有し、さらに溶接性に優れた非調質継目無鋼管に関するものである。
【0002】
【従来の技術】
従来、高強度で靭性が要求される用途に用いられる継目無鋼管は、次のように製造されていた。すなわち、まず、ビレットから熱間加工での穿孔工程および圧延工程を経て継目無鋼管を製造する。その後、この鋼管に対して焼入れ、焼戻し処理を施すことにより、所定の強度レベルと靭性を付与して製品としていた。
【0003】
上記の継目無鋼管の製造では、製管後に熱処理工程が必要になるので、コストが高くなり、加えて納期も長くなる。このような問題点の解消のために、熱処理を行なわない、すなわち非調質で高強度、高靭性を有する継目無鋼管の要求が高くなっている。
【0004】
非調質で高強度、高靭性を有する継目無鋼管は、例えば、特開平05−202447号公報、特開平09−25541号公報、特開平10−130783号公報、特開平10−204571号公報、特開平10−324946号公報、特開平11−36017号公報、特開2000−328192号公報、特開2001−323338号公報、特開2001−247931号公報、特開2001−262275号公報に開示されている。
【0005】
【特許文献1】
特開平05−202447号公報
【0006】
【特許文献2】
特開平09−25541号公報
【0007】
【特許文献3】
特開平10−130783号公報
【0008】
【特許文献4】
特開平10−204571号公報
【0009】
【特許文献5】
特開平10−324946号公報
【0010】
【特許文献6】
特開平11−36017号公報
【0011】
【特許文献7】
特開2000−328192号公報
【0012】
【特許文献8】
特開2001−323338号公報
【0013】
【特許文献9】
特開2001−247931号公報
【0014】
【特許文献10】
特開2001−262275号公報
【0015】
【発明が解決しようとする課題】
特開平05−202447号公報、特開平09−25541号公報、特開平10−130783号公報、特開平10−204571号公報、特開平10−324946号公報、特開平11−36017号公報および特開2000−328192号公報は、いずれも、非調質で高強度と靭性とを両立させるために、成分調整や熱間での製管方法を開示している。また、これらの公報に開示された技術に共通するところは、炭素(C)を0.2%以上添加し、中炭素系の成分設計をしていることである。これらの従来技術では、0.2%以上の炭素を含むことから、強度レベルに対して靭性が十分ではない。特に、溶接部では焼入れ硬化して靭性が低下したり、溶接割れを引き起こしたりする。
【0016】
特開2001−323338号公報は、広範囲の炭素添加量の鋼を対象とし、熱間加工性と切削性と靭性を両立させることを開示している。しかしながら、この公報に開示された鋼管にはバナジウム(V)が添加されていないので、十分な強度を確保できないことを指摘できる。
【0017】
特開2001−247931号公報および特開2001−262275号公報は、広範囲の炭素添加量の鋼を対象とし、熱間での製管温度を規定して金属組織をコントロールすることにより強度、靭性を確保する技術や、熱間加工性を確保する技術を開示している。しかしながら、これらの公報に提案されている低温製管を実施するためには、従来の設備ではモーターパワーが不足して設備改造が必要である。また、一旦冷却した後に再加熱して製管するためには、再加熱炉等の設備が必要になる等の問題点を指摘できる。
【0018】
なお、特開2001−247931号公報では、請求の範囲において広範囲の炭素添加量を規定しているものの、実施例では炭素添加量は0.2%以上となっている。
【0019】
本発明の目的は、非調質で高強度と高靭性とを両立し、さらに良好な溶接性を確保できる非調質継目無鋼管を提供することである。特に、途中の製管加工度や製管温度を厳しく限定しなくても、高強度と高靭性とを両立し、溶接部における割れや靭性の低下を防止できるようにすることを狙いとする。
【0020】
【課題を解決するための手段】
本願発明者は、上記の目的を達成するために、以下のことが有効であることを見出した。
【0021】
(1)炭素含有量を低下させる。そして、炭素含有量の低下に伴う強度を補うために、マンガン(Mn)とクロム(Cr)とバナジウム(V)を複合添加する。これにより、高強度が得られ、かつ溶接部を含めて良好な靭性が得られる。
【0022】
(2)炭素含有量を低下させた上で、炭素当量(Ceq.)を所定の範囲に調整する。
【0023】
非調質鋼の金属組織はフェライト・パーライト鋼が標準であるが、高強度化の要求に応えるために高炭素化を行なうと、靭性が低下することが判明した。そこで、本願発明者は、炭素含有量を低減し、強度を補うためにMn、Cr、Vを複合添加した。このようにして得られた非調質鋼の金属組織は、ベイナイト主体の組織になり、高強度と高靭性とを確保できるようになる。なお、「ベイナイト主体の組織」とは、ベイナイトが100%存在する組織を含むことはもちろんであるが、ベイナイトとフェライトの混合組織でフェライトが50体積%以下のものも含むものである。
【0024】
本発明の骨子は、次の点にある。
【0025】
(1)炭素含有量を0.2%未満に抑制すること。
【0026】
(2)マンガン(Mn)とクロム(Cr)とバナジウム(V)とを複合添加すること。
【0027】
(3)金属組織がベイナイト主体の組織となり、その中でも高強度と高靭性とを両立できる成分組成範囲として、以下の式で規定される炭素当量Ceq.(%)が0.60以上で0.85以下を満足すること。
【0028】
Ceq.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15
強度を確保するためには、Ceq.が0.60〜0.85の範囲であればよく、それを満たす方法としては種々の合金元素添加量の調整で可能である。本願発明者は、その中でも特にMn、Cr、Vに関しては、同時に複合添加すると強度と靭性とのバランスが良好になることを見出した。すなわち、同じ炭素含有量のとき、MnとCrの添加だけで狙いとする炭素当量Ceq.を達成するよりも、MnとCrの量を低下させながらVを添加して狙いとする炭素当量Ceq.を達成したほうが、良好な靭性が得られる。従って、MnとCrとVに関しては、複合添加することが重要である。
【0029】
以上の観点から、本発明に従った非調質継目無鋼管は、重量基準で、C:0.10〜0.20%未満、Si:0.05〜1.0%、Mn:0.5〜2.5%、P:0.03%以下、S:0.05%以下、Cr:0.5〜1.5%、V:0.03〜0.3%、Al:0.003〜0.10%、N:0.001〜0.02%、O:0.003%以下を含有し、残部がFeおよび不純物からなり、下記の式で定義される炭素当量Ceq.(%)が0.60〜0.85%であることを特徴とする。
【0030】
Ceq.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15
Feの一部を、Ni:0.05〜1.5%、Mo:0.05〜1.5%、Cu:0.05〜1.5%、B:0.0003〜0.01%のうちから選ばれた1種または2種以上に置換してもよい。
【0031】
あるいは、Feの一部を、Ti:0.005〜0.2%、Nb:0.005〜0.2%のうちから選ばれた1種または2種に置換してもよい。
【0032】
さらに、Feの一部を、Ni:0.05〜1.5%、Mo:0.05〜1.5%、Cu:0.05〜1.5%、B:0.0003〜0.01%のうちから選ばれた1種または2種以上、およびTi:0.005〜0.2%、Nb:0.005〜0.2%のうちから選ばれた1種または2種に置換してもよい。
【0033】
上記の限定理由を以下に説明する。
【0034】
C:0.10〜0.20%未満
Cは、強度を増加する元素であるが、靭性、溶接性を低下させる元素である。そのため、高強度レベルで靭性および溶接性を確保するには、Cの含有量を0.20%未満に制限する必要がある。靭性および溶接性の観点から見ればCの含有量は低いほど好ましいが、0.10%未満になると強度の確保が困難になる。かかる理由で、Cの含有量を0.10〜0.20%未満の範囲に限定した。最も良好な強度−靭性バランスを確保する観点からは、Cの含有量を0.13〜0.17%の範囲にするのがよい。
【0035】
Si:0.05〜1.0%
Siは、脱酸剤として作用するとともに強度を向上させる作用を有する。しかし、0.05%未満ではその効果が得られず、1.0%を超えると靭性が低下する。かかる理由から、Siの含有量を0.05〜1.0%の範囲に限定した。最も良好な強度−靭性バランスを確保する観点からは、Siの含有量を0.1〜0.4%の範囲にするのがよい。
【0036】
Mn:0.5〜2.5%
Mnは、Cを低減した鋼において、Cr、Vと併せて複合添加することによって、靭性を低下させずに強度を増加させる元素である。所定の強度を確保するためには、0.5%以上の含有が必要である。一方、2.5%を超えると、溶接性および靭性が低下する。かかる理由から、Mnの含有量を0.5〜2.5%の範囲に限定した。最も良好な強度−靭性バランスを確保する観点からは、Mnの含有量を1.5〜2.0%の範囲にするのがよい。
【0037】
P:0.03%以下
Pは、凝固時に最終凝固位置近傍に濃化し、かつ粒界に偏析して熱間加工性や靭性を低下させる不純物元素である。従って可及的に低減するのが好ましいが、0.03%までは許容できるのでPの含有量を0.03%以下とした。ただし、さらに高靭性を確保するためには、0.02%以下にするのが好ましく、より好ましくは、0.01%以下にするのがよい。
【0038】
S:0.05%以下
Sは、Pと同様に凝固時に粒界に偏析して熱間加工性や靭性を低下させる不純物元素である。従って可及的に低減するのが好ましいが、0.05%までは許容できるのでSの含有量を0.05%以下とした。ただし、低減しすぎると切削性が低下することがあるので、切削性を重視する場合のSの下限値は0.01%とするのが好ましい。一方、切削性よりも靭性を特に重視する場合には、Sの含有量を0.02%以下、より好ましくは0.01%以下にするのがよい。
【0039】
Cr:0.5〜1.5%
Crは、Cを低減した鋼において、Mn、Vと併せて複合添加することによって、靭性を低下させずに強度を増加させる元素である。所定の強度を確保するためには、0.5%以上の含有が必要である。一方、1.5%を超えると、溶接性および靭性が低下する。かかる理由から、Crの含有量を0.5〜1.5%の範囲に限定した。最も良好な強度−靭性バランスを確保する観点からは、Crの含有量を0.9〜1.4%の範囲にするのがよい。
【0040】
V:0.03〜0.3%
Vは、微細なV炭化物を析出させて強度を増大するので添加する。Mn、Crと併せて複合添加すれば、高強度でありながら靭性の低下を小さく抑えることができる。この効果を得るためには、0.03%以上の添加が必要である。一方、0.3%を超えると靭性が低下するので、Vの含有量を0.03〜0.3%の範囲に限定した。最も良好な強度ー靭性バランスを確保する観点からは、Vの含有量を0.05〜0.15%の範囲にするのがよい。
【0041】
Al:0.003〜0.10%
Alは、脱酸剤として作用する。この効果を得るためには、0.003%以上の含有が必要である。0.10%を超えると、アルミナ系介在物が増加し表面欠陥が多発する懸念がある。かかる理由から、Alの含有量を0.003〜0.10%の範囲に限定した。なお、安定した表面品質を確保するためには、0.003〜0.05%の範囲が好ましい。
【0042】
N:0.001〜0.02%
Nは、Al、Tiと共存して結晶粒を微細化させ、靭性を向上させる作用を有する。ただし、0.001%未満ではその効果が小さく、0.02%を超えるとかえって靭性が低下する。かかる理由から、Nの含有量を0.001〜0.02%の範囲に限定した。
【0043】
O:0.003%以下
Oは、0.003%を超えて含有すると、靭性及び疲労強度を低下させる。そこで、Oの含有量を0.003%以下とした。
【0044】
Ni:0.05〜1.5%、Mo:0.05〜1.5%、Cu:0.05〜1.5%、B:0.0003〜0.01%のうちから選ばれた1種または2種以上
Ni、Mo、Cu、Bは、いずれも焼入れ性を向上させて鋼の強度を増加させる元素であり、必要に応じて1種または2種以上を添加できる。添加する場合は、Ni、Mo、Cuに関しては0.05%以上、Bに関しては0.0003%以上で効果を発揮する。一方、Ni、Mo、Cuに関して1.5%を超えて添加すると、Niは強度上昇効果が飽和するとともにコストアップになり、Moは溶接性、靭性を低下させ、Cuは熱間加工性を低下させる。このため、Ni、Mo、Cuの上限値をそれぞれ1.5%とした。Bは0.01%を超えて添加すると靭性が低下するので、0.01%を上限とした。
【0045】
Ti:0.005〜0.2%、Nb:0.005〜0.2%のうちから選ばれた1種または2種
Ti、Nbは、いずれも炭化物を形成して組織を微細化し靭性を向上させるとともに、基地中に析出して強度を増加させ高強度化に寄与する元素である。従って、必要に応じて、上記の1種または2種を添加できる。いずれの元素も、0.005%以上の添加で効果が得られる。一方、0.2%を超えて添加すると、靭性を低下させる。かかる理由から、いずれもその範囲を0.005〜0.2%の範囲に限定した。
【0046】
炭素当量Ceq.(%):0.60〜0.85%
Ceq.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15
合金元素量は、それぞれ、質量%で定義される。上記した成分組成の限定に加えて、強度と靭性と溶接性を良好に保つ観点から、Ceq.を0.60〜0.85%の範囲に限定するのが好ましい。Ceq.が0.60%を下回ると強度が確保できず、Ceq.が0.85%を超えると靭性が低下するとともに溶接割れが発生しやすくなる。なお、高強度の観点からは、0.65〜0.85%が好ましく、さらに0.70〜0.85%にするとより好ましい。
【0047】
残部は、Feおよび不純物である。
【0048】
不純物の中には、Ca、Mg、REM(希土類金属)をそれぞれ0.01%を上限として含有することができる。これらの元素は、強度、靭性、溶接性に大きな影響を与えないが、鋳造時、特に丸ビレットに鋳込むときにタンディッシュのノズル詰まりを防止するので、添加する場合がある。これらの元素の含有量が0.01%を超えると表面性状を悪化して歩留まりを低下させる。従って、それぞれ0.01%を上限に不純物として含有してもよい。
【0049】
本発明に従った継目無鋼管は、次のようにして製造できる。すなわち、上記の組成の鋼を転炉、電気炉、または真空溶解炉で溶製し、連続鋳造法または造塊法で凝固させる。この凝固物をそのまま、あるいは分塊して鋼管素材とし、通常の継目無鋼管の製造プロセスを経て鋼管とした後、空冷することにより得られる。
【0050】
熱間圧延後の冷却は、自然放冷による空冷が好ましいが、衝風(風除けカバーで覆いながら冷却)等の暖冷却、または風冷(多少の風を送りながら冷却)を施してもよい。
【0051】
【実施例】
表1に示す化学組成の鋼を溶製し、インゴットに鋳込んだ後、鍛造にてビレットを作成した。これらのビレットを1250℃に加熱して、マンネスマンマンドレル方式のミルで造管し、外径150mm×肉厚24.2mmの継目無鋼管とした。これらの鋼管は、圧延後に空冷した。造管のままで、これらの鋼管の機械的性質(引張特性、シャルピー試験による衝撃特性)、および溶接割れ性を調査した。
【0052】
なお、溶接割れ性は、JIS Z 3158「Y形溶接割れ試験」に準拠して予熱無しで入熱20kJ/cmの被覆アーク溶接法により溶接を行ない、割れの有無を調査した。これらの試験結果も合わせて表1に示す。表中、TS(MPa)は引張強度を示す。また、2uE20(J)は、靭性の指標として、JIS Z 2202およびJIS Z 2242に準拠したシャルピー破断エネルギー値を示し、2mmのUノッチ試験片に対する20℃試験でのシャルピー破断エネルギー値(J)に対応する。
【0053】
【表1】

Figure 2004292857
【0054】
表1中、試料番号(試番)1〜21が本発明例であり、引張強度は、最低でも700MPaを超えており、最高900MPa近くにまで達している。このように高強度であっても、衝撃値で評価した靭性は、50J以上を確保でき、また溶接割れも発生しなかった。
【0055】
試料番号(試番)22〜28は比較例である。試番22、23は、従来のフェライト・パーライト鋼となる中炭素系成分の例である。この場合、強度は確保できるものの、靭性は低く、溶接割れも発生した。また、試番24〜27は、Mn、Cr、Vが複合添加されていないか、規定の範囲から外れた例である。溶接割れは起こらなかったが、靭性が不足した。試番28は、成分組成範囲を満足するものの、炭素当量Ceq.が低い例である。強度が700MPaを大幅に下回り、高強度非調質継目無鋼管の用途には使用できない。
【0056】
【発明の効果】
以上のようにこの発明によれば、途中の製管加工度や製管温度を厳しく制御しなくても、高強度と高靭性とを両立し、さらに良好な溶接性を確保できる非調質継目無鋼管を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seamless steel pipe used for a machine structure or the like, and more particularly to a non-heat treated seamless steel pipe which can be used as it is as a hot pipe, has high strength and high toughness, and is excellent in weldability. Things.
[0002]
[Prior art]
Conventionally, seamless steel pipes used for applications requiring high strength and toughness have been manufactured as follows. That is, first, a seamless steel pipe is manufactured from a billet through a piercing step and a rolling step in hot working. Thereafter, the steel pipe is quenched and tempered to give a predetermined strength level and toughness, thereby obtaining a product.
[0003]
In the production of the above-mentioned seamless steel pipe, a heat treatment step is required after the pipe production, so that the cost increases and the delivery time becomes longer. In order to solve such problems, there is an increasing demand for a seamless steel pipe that does not undergo heat treatment, that is, has high strength and high toughness without heat treatment.
[0004]
Non-heat-treated, high-strength, seamless steel pipes having high toughness include, for example, Japanese Patent Application Laid-Open Nos. 05-20247, 09-25541, 10-130783, and 10-204571. JP-A-10-324946, JP-A-11-36017, JP-A-2000-328192, JP-A-2001-323338, JP-A-2001-247793, and JP-A-2001-262275. ing.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 05-20247
[Patent Document 2]
JP-A-09-25554
[Patent Document 3]
Japanese Patent Application Laid-Open No. Hei 10-130783
[Patent Document 4]
JP-A-10-204571
[Patent Document 5]
JP-A-10-324946
[Patent Document 6]
JP-A-11-36017
[Patent Document 7]
JP 2000-328192 A
[Patent Document 8]
JP 2001-323338 A
[Patent Document 9]
JP 2001-247931 A
[Patent Document 10]
JP 2001-262275 A
[Problems to be solved by the invention]
JP-A-Heisei 05-20247, JP-A-09-25541, JP-A-10-130784, JP-A-10-204571, JP-A-10-324946, JP-A-11-36017 and JP-A-11-36017 Japanese Patent Application Laid-Open No. 2000-328192 discloses a method of adjusting components and hot pipe production in order to achieve both high strength and toughness without heat treatment. Further, what is common to the technologies disclosed in these publications is that carbon (C) is added in an amount of 0.2% or more and a medium carbon component is designed. Since these conventional technologies contain 0.2% or more of carbon, the toughness is not sufficient for the strength level. In particular, quenching and hardening in the welded portion lowers the toughness and causes weld cracking.
[0016]
Japanese Patent Application Laid-Open No. 2001-323338 discloses that a steel with a wide range of carbon addition is compatible with hot workability, machinability and toughness. However, it can be pointed out that sufficient strength cannot be ensured because vanadium (V) is not added to the steel pipe disclosed in this publication.
[0017]
JP-A-2001-247931 and JP-A-2001-262275 are directed to steels with a wide range of carbon addition, and strength and toughness are controlled by controlling the metal structure by regulating the hot pipe-forming temperature. It discloses a technology for securing and a technology for securing hot workability. However, in order to carry out the low-temperature pipe production proposed in these publications, motor power is insufficient in the conventional equipment, and the equipment needs to be modified. In addition, in order to form a pipe by reheating after cooling once, a facility such as a reheating furnace is required.
[0018]
In addition, in Japanese Patent Application Laid-Open No. 2001-247931, although a wide range of the amount of added carbon is specified in the claims, in the examples, the amount of added carbon is 0.2% or more.
[0019]
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-heat treated seamless steel pipe which has both high strength and high toughness without heat treatment and can further secure good weldability. In particular, the present invention aims at achieving both high strength and high toughness and preventing cracks and a decrease in toughness at a welded portion without severely limiting the degree of pipe forming and the pipe forming temperature in the middle.
[0020]
[Means for Solving the Problems]
The present inventor has found that the following is effective in achieving the above object.
[0021]
(1) Reduce the carbon content. Then, manganese (Mn), chromium (Cr), and vanadium (V) are added in a composite manner in order to compensate for the strength accompanying the decrease in the carbon content. Thereby, high strength is obtained and good toughness including a weld is obtained.
[0022]
(2) After reducing the carbon content, the carbon equivalent (Ceq.) Is adjusted to a predetermined range.
[0023]
Ferritic / pearlite steel is the standard metal structure of non-heat-treated steel, but it has been found that toughening is reduced when carbonization is performed to meet the demand for higher strength. Then, the inventor of the present application added Mn, Cr, and V in combination to reduce the carbon content and supplement the strength. The metal structure of the non-heat treated steel obtained in this way becomes a structure mainly composed of bainite, and high strength and high toughness can be secured. The "structure mainly composed of bainite" naturally includes a structure in which 100% of bainite is present, but also includes a mixed structure of bainite and ferrite in which ferrite is 50% by volume or less.
[0024]
The gist of the present invention lies in the following points.
[0025]
(1) To suppress the carbon content to less than 0.2%.
[0026]
(2) Complex addition of manganese (Mn), chromium (Cr) and vanadium (V).
[0027]
(3) The metal structure becomes a structure mainly composed of bainite, and among these, as a component composition range capable of achieving both high strength and high toughness, a carbon equivalent Ceq. (%) Is not less than 0.60 and not more than 0.85.
[0028]
Ceq. = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15
In order to secure the strength, Ceq. Should be in the range of 0.60 to 0.85, and a method for satisfying the condition can be adjusted by adjusting the amount of addition of various alloying elements. The inventor of the present application has found that, among them, Mn, Cr, and V in particular, when combined, simultaneously improve the balance between strength and toughness. That is, when the carbon content is the same, the target carbon equivalent Ceq. Is achieved, V is added while decreasing the amounts of Mn and Cr, and the target carbon equivalent Ceq. , Good toughness can be obtained. Therefore, it is important to add Mn, Cr and V in combination.
[0029]
In view of the above, the non-heat-treated seamless steel pipe according to the present invention has, on a weight basis, C: 0.10 to less than 0.20%, Si: 0.05 to 1.0%, and Mn: 0.5. 2.5%, P: 0.03% or less, S: 0.05% or less, Cr: 0.5 to 1.5%, V: 0.03 to 0.3%, Al: 0.003 to 0.10%, N: 0.001 to 0.02%, O: 0.003% or less, the balance being Fe and impurities, and the carbon equivalent Ceq. Defined by the following formula. (%) Is 0.60 to 0.85%.
[0030]
Ceq. = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15
Part of Fe is Ni: 0.05 to 1.5%, Mo: 0.05 to 1.5%, Cu: 0.05 to 1.5%, and B: 0.0003 to 0.01%. One or two or more selected from them may be substituted.
[0031]
Alternatively, part of Fe may be replaced with one or two selected from Ti: 0.005 to 0.2% and Nb: 0.005 to 0.2%.
[0032]
Further, a part of Fe is Ni: 0.05 to 1.5%, Mo: 0.05 to 1.5%, Cu: 0.05 to 1.5%, B: 0.0003 to 0.01. %, One or two or more selected from Ti: 0.005 to 0.2%, and Nb: 0.005 to 0.2%. You may.
[0033]
The reasons for the above limitation will be described below.
[0034]
C: 0.10 to less than 0.20% C is an element that increases strength, but is an element that reduces toughness and weldability. Therefore, in order to ensure toughness and weldability at a high strength level, it is necessary to limit the content of C to less than 0.20%. From the viewpoints of toughness and weldability, the lower the C content, the better. However, if it is less than 0.10%, it becomes difficult to secure strength. For this reason, the content of C is limited to the range of 0.10 to less than 0.20%. From the viewpoint of ensuring the best balance between strength and toughness, the content of C is preferably in the range of 0.13 to 0.17%.
[0035]
Si: 0.05 to 1.0%
Si acts as a deoxidizing agent and has an effect of improving strength. However, if the content is less than 0.05%, the effect cannot be obtained, and if it exceeds 1.0%, the toughness is reduced. For this reason, the content of Si is limited to the range of 0.05 to 1.0%. From the viewpoint of ensuring the best balance between strength and toughness, the content of Si is preferably in the range of 0.1 to 0.4%.
[0036]
Mn: 0.5-2.5%
Mn is an element that increases the strength without lowering the toughness by adding it together with Cr and V to steel with reduced C. In order to secure a predetermined strength, the content must be 0.5% or more. On the other hand, if it exceeds 2.5%, the weldability and toughness decrease. For this reason, the Mn content is limited to the range of 0.5 to 2.5%. From the viewpoint of ensuring the best balance between strength and toughness, the content of Mn is preferably in the range of 1.5 to 2.0%.
[0037]
P: 0.03% or less P is an impurity element that is concentrated near the final solidification position during solidification and segregates at grain boundaries to reduce hot workability and toughness. Therefore, it is preferable to reduce the content as much as possible. However, the content of P is set to 0.03% or less because it is allowable up to 0.03%. However, in order to further secure high toughness, the content is preferably set to 0.02% or less, more preferably 0.01% or less.
[0038]
S: 0.05% or less S, like P, is an impurity element that segregates at the grain boundary during solidification and reduces hot workability and toughness. Therefore, it is preferable to reduce the content as much as possible, but the content of S is set to 0.05% or less because it is allowable up to 0.05%. However, if the content is excessively reduced, the machinability may be reduced. Therefore, when the machinability is emphasized, the lower limit of S is preferably set to 0.01%. On the other hand, when the toughness is more important than the machinability, the S content is preferably set to 0.02% or less, more preferably 0.01% or less.
[0039]
Cr: 0.5 to 1.5%
Cr is an element that increases the strength without decreasing the toughness by adding it in combination with Mn and V to steel with reduced C. In order to secure a predetermined strength, the content must be 0.5% or more. On the other hand, if it exceeds 1.5%, the weldability and the toughness decrease. For this reason, the content of Cr is limited to the range of 0.5 to 1.5%. From the viewpoint of ensuring the best balance between strength and toughness, the content of Cr is preferably in the range of 0.9 to 1.4%.
[0040]
V: 0.03-0.3%
V is added because it precipitates fine V carbides and increases the strength. If Mn and Cr are added in combination, the decrease in toughness can be suppressed to a small level while having high strength. In order to obtain this effect, it is necessary to add 0.03% or more. On the other hand, if it exceeds 0.3%, the toughness decreases, so the V content is limited to the range of 0.03 to 0.3%. From the viewpoint of ensuring the best strength-toughness balance, the V content is preferably in the range of 0.05 to 0.15%.
[0041]
Al: 0.003 to 0.10%
Al acts as a deoxidizing agent. In order to obtain this effect, the content of 0.003% or more is necessary. If it exceeds 0.10%, there is a concern that alumina-based inclusions increase and surface defects frequently occur. For this reason, the Al content is limited to the range of 0.003 to 0.10%. In order to secure stable surface quality, the range of 0.003 to 0.05% is preferable.
[0042]
N: 0.001 to 0.02%
N coexists with Al and Ti to refine the crystal grains and has the effect of improving the toughness. However, if the content is less than 0.001%, the effect is small, and if it exceeds 0.02%, the toughness is reduced. For this reason, the content of N is limited to the range of 0.001 to 0.02%.
[0043]
O: 0.003% or less When O is contained in excess of 0.003%, toughness and fatigue strength are reduced. Therefore, the content of O is set to 0.003% or less.
[0044]
Ni: 0.05 to 1.5%, Mo: 0.05 to 1.5%, Cu: 0.05 to 1.5%, B: 0.0003 to 0.01% Any one or more of Ni, Mo, Cu, and B are elements that improve the hardenability and increase the strength of steel, and one or more of them can be added as necessary. When added, the effect is exhibited at 0.05% or more for Ni, Mo, and Cu, and 0.0003% or more for B. On the other hand, when Ni, Mo, and Cu are added in excess of 1.5%, Ni saturates the effect of increasing strength and increases cost, Mo decreases weldability and toughness, and Cu decreases hot workability. Let it. Therefore, the upper limits of Ni, Mo, and Cu are each set to 1.5%. If B is added in excess of 0.01%, the toughness decreases, so the upper limit was made 0.01%.
[0045]
One or two kinds of Ti and Nb selected from Ti: 0.005 to 0.2% and Nb: 0.005 to 0.2% all form carbides to refine the structure and improve toughness. It is an element that improves the strength and precipitates in the matrix to increase the strength and contribute to the high strength. Therefore, if necessary, one or two of the above can be added. The effect can be obtained by adding all elements at 0.005% or more. On the other hand, if added in excess of 0.2%, the toughness decreases. For this reason, the range is limited to the range of 0.005 to 0.2%.
[0046]
Carbon equivalent Ceq. (%): 0.60 to 0.85%
Ceq. = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15
The alloy element amounts are each defined by mass%. In addition to the above-mentioned limitation of the component composition, from the viewpoint of maintaining good strength, toughness and weldability, Ceq. Is preferably limited to the range of 0.60 to 0.85%. Ceq. Is less than 0.60%, the strength cannot be secured, and Ceq. Exceeds 0.85%, the toughness is reduced and weld cracks are liable to occur. In addition, from a viewpoint of high strength, 0.65 to 0.85% is preferable, and more preferably 0.70 to 0.85%.
[0047]
The balance is Fe and impurities.
[0048]
Among the impurities, each of Ca, Mg, and REM (rare earth metal) can be contained with an upper limit of 0.01%. These elements do not significantly affect the strength, toughness, and weldability, but may be added at the time of casting, particularly when casting into a round billet, because they prevent nozzle clogging of the tundish. If the content of these elements exceeds 0.01%, the surface properties are deteriorated and the yield is reduced. Therefore, each may be contained as an impurity with the upper limit being 0.01%.
[0049]
The seamless steel pipe according to the present invention can be manufactured as follows. That is, steel having the above composition is melted in a converter, an electric furnace, or a vacuum melting furnace, and solidified by a continuous casting method or an ingot-making method. This solidified product is obtained as it is or by agglomerating into a steel pipe raw material, and then subjected to an ordinary seamless steel pipe manufacturing process to form a steel pipe, followed by air cooling.
[0050]
The cooling after hot rolling is preferably air cooling by natural cooling, but warm cooling such as blast (cooling while covering with a windshield cover) or wind cooling (cooling while sending some wind) may be performed.
[0051]
【Example】
Steel having the chemical composition shown in Table 1 was melted and cast into an ingot, and then a billet was formed by forging. These billets were heated to 1250 ° C. and formed into a tube with a Mannes mandrel type mill to form a seamless steel tube having an outer diameter of 150 mm and a wall thickness of 24.2 mm. These steel tubes were air cooled after rolling. The as-made pipes were examined for mechanical properties (tensile properties, impact properties by Charpy test) and weld cracking properties of these steel pipes.
[0052]
In addition, welding crackability was examined by a covered arc welding method with a heat input of 20 kJ / cm without preheating in accordance with JIS Z 3158 "Y-type welding crack test" to check for cracks. Table 1 also shows the results of these tests. In the table, TS (MPa) indicates tensile strength. 2uE20 (J) indicates a Charpy rupture energy value based on JIS Z 2202 and JIS Z 2242 as an index of toughness. Corresponding.
[0053]
[Table 1]
Figure 2004292857
[0054]
In Table 1, sample numbers (test numbers) 1 to 21 are examples of the present invention, and the tensile strength exceeds 700 MPa at the minimum and reaches nearly 900 MPa at the maximum. Even with such a high strength, the toughness evaluated by the impact value could secure 50 J or more, and no welding cracks occurred.
[0055]
Sample numbers (test numbers) 22 to 28 are comparative examples. Test Nos. 22 and 23 are examples of medium carbon-based components that become conventional ferrite-pearlite steels. In this case, although the strength could be ensured, the toughness was low and welding cracks also occurred. Test numbers 24 to 27 are examples in which Mn, Cr, and V are not added in a composite manner or are out of the specified range. No weld cracking occurred, but the toughness was insufficient. Test No. 28 satisfies the component composition range, but has a carbon equivalent Ceq. Is a low example. The strength is significantly lower than 700 MPa and cannot be used for high strength non-heat treated seamless steel pipe applications.
[0056]
【The invention's effect】
As described above, according to the present invention, a non-refined seam that can achieve both high strength and high toughness and secure good weldability without strictly controlling the degree of pipe forming and the pipe forming temperature in the middle. Steel-free pipe can be obtained.

Claims (4)

質量%で、
C:0.10〜0.20%未満、
Si:0.05〜1.0%、
Mn:0.5〜2.5%、
P:0.03%以下、
S:0.05%以下、
Cr:0.5〜1.5%、
V:0.03〜0.3%、
Al:0.003〜0.10%、
N:0.001〜0.02%、
O:0.003%以下を含有し、
残部がFeおよび不純物からなり、
下記の式で定義される炭素当量Ceq.(%)が0.60〜0.85%であることを特徴とする、非調質継目無鋼管。
Ceq.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15
In mass%,
C: less than 0.10 to 0.20%,
Si: 0.05 to 1.0%,
Mn: 0.5-2.5%,
P: 0.03% or less,
S: 0.05% or less,
Cr: 0.5 to 1.5%,
V: 0.03-0.3%,
Al: 0.003 to 0.10%,
N: 0.001 to 0.02%,
O: contains 0.003% or less,
The balance consists of Fe and impurities,
The carbon equivalent Ceq. (%) Is 0.60 to 0.85%, non-heat-treated seamless steel pipe characterized by the above-mentioned.
Ceq. = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15
Feの一部を、
Ni:0.05〜1.5%、
Mo:0.05〜1.5%、
Cu:0.05〜1.5%、
B:0.0003〜0.01%のうちから選ばれた1種または2種以上に置換したことを特徴とする、請求項1に記載の非調質継目無鋼管。
Part of Fe,
Ni: 0.05-1.5%,
Mo: 0.05-1.5%,
Cu: 0.05-1.5%,
B: The non-heat-treated seamless steel pipe according to claim 1, wherein the pipe is replaced with one or more kinds selected from 0.0003 to 0.01%.
Feの一部を、
Ti:0.005〜0.2%、
Nb:0.005〜0.2%のうちから選ばれた1種または2種に置換したことを特徴とする、請求項1に記載の非調質継目無鋼管。
Part of Fe,
Ti: 0.005 to 0.2%,
The non-heat-treated seamless steel pipe according to claim 1, wherein one or two kinds selected from Nb: 0.005 to 0.2% are substituted.
Feの一部を、
Ni:0.05〜1.5%、
Mo:0.05〜1.5%、
Cu:0.05〜1.5%、
B:0.0003〜0.01%のうちから選ばれた1種または2種以上、およびTi:0.005〜0.2%、
Nb:0.005〜0.2%のうちから選ばれた1種または2種に置換したことを特徴とする、請求項1に記載の非調質継目無鋼管。
Part of Fe,
Ni: 0.05-1.5%,
Mo: 0.05-1.5%,
Cu: 0.05-1.5%,
B: one or more selected from 0.0003 to 0.01%, and Ti: 0.005 to 0.2%,
The non-heat-treated seamless steel pipe according to claim 1, wherein one or two kinds selected from Nb: 0.005 to 0.2% are substituted.
JP2003084410A 2003-03-26 2003-03-26 Non-tempered seamless steel pipe Expired - Fee Related JP3969328B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003084410A JP3969328B2 (en) 2003-03-26 2003-03-26 Non-tempered seamless steel pipe
CN200410030007.4A CN1240867C (en) 2003-03-26 2004-03-17 Non quenched and tempered seamless steel pipe
US10/806,391 US20040238075A1 (en) 2003-03-26 2004-03-23 Non-heat treated seamless steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084410A JP3969328B2 (en) 2003-03-26 2003-03-26 Non-tempered seamless steel pipe

Publications (2)

Publication Number Publication Date
JP2004292857A true JP2004292857A (en) 2004-10-21
JP3969328B2 JP3969328B2 (en) 2007-09-05

Family

ID=33399586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084410A Expired - Fee Related JP3969328B2 (en) 2003-03-26 2003-03-26 Non-tempered seamless steel pipe

Country Status (3)

Country Link
US (1) US20040238075A1 (en)
JP (1) JP3969328B2 (en)
CN (1) CN1240867C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114413A1 (en) 2006-03-28 2007-10-11 Nippon Steel Corporation High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
CN102560283A (en) * 2012-02-21 2012-07-11 张芝莲 Big-caliber seamless alloy steel pipe
JP2013533919A (en) * 2010-04-07 2013-08-29 アスコメタル Steel high-performance machine parts and their manufacturing methods

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443615C (en) * 2005-09-13 2008-12-17 鞍钢股份有限公司 Weldable high-strength non-quenched and tempered oil well pipe and manufacturing method thereof
UA90947C2 (en) * 2007-03-30 2010-06-10 Сумитомо Мэтал Индастриз, Лтд. Low-alloyed steel, seamless steel pipes of oil-field gage and method for producton of seamless steel pipe
KR100925608B1 (en) 2007-08-13 2009-11-06 주식회사 포스코 Ultra High Strength Welding Joint of 950??? grade Having Excellent Low Temperature Toughness
CN101694250B (en) * 2009-10-13 2011-04-06 天津钢管集团股份有限公司 500MPa-grade VN alloying non-tempering seamless steel tube and manufacturing method thereof
CN102676947B (en) * 2012-05-17 2014-05-14 莱芜钢铁集团有限公司 Welded structural steel and manufacturing method thereof
US10640856B2 (en) 2014-09-08 2020-05-05 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
CN106687613A (en) * 2014-09-08 2017-05-17 杰富意钢铁株式会社 High strength seamless steel pipe for use in oil wells and manufacturing method thereof
US10920297B2 (en) 2014-11-18 2021-02-16 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
MX2017008361A (en) 2014-12-24 2017-10-24 Jfe Steel Corp High-strength seamless steel pipe for oil wells, and production method for high-strength seamless steel pipe for oil wells.
US10876182B2 (en) 2014-12-24 2020-12-29 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
CN104878307A (en) * 2015-04-30 2015-09-02 内蒙古包钢钢联股份有限公司 Production method of bainite wear-resistance hot-rolled seamless steel pipe
CN104846261A (en) * 2015-05-28 2015-08-19 攀钢集团成都钢钒有限公司 Steel tube and manufacturing method thereof
KR101758470B1 (en) * 2015-11-12 2017-07-17 주식회사 포스코 Non-quenched and tempered wire rod having excellent cold workability and method for manufacturing same
WO2017110027A1 (en) 2015-12-22 2017-06-29 Jfeスチール株式会社 High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
DE102016104295A1 (en) * 2016-03-09 2017-09-14 Salzgitter Flachstahl Gmbh High strength air-hardening steel for use as filler metal
DE102016108633A1 (en) * 2016-05-10 2017-11-30 Benteler Steel/Tube Gmbh Fuel injection line and tubular duct
CN109112427B (en) * 2017-06-26 2021-05-14 宝山钢铁股份有限公司 High-strength high-toughness non-quenched and tempered steel pipe for geological drilling and manufacturing method thereof
CN110218956A (en) * 2019-05-23 2019-09-10 江苏永钢集团有限公司 One kind is directly cut with low-carbon bainite non-hardened and tempered steel and its production method
CN115074634B (en) * 2022-07-08 2023-01-06 北京高创智信冶金科技有限公司 High-strength non-quenched and tempered steel front shaft for heavy-duty automobile and production process thereof
CN115354234B (en) * 2022-09-20 2023-06-20 江苏常宝钢管股份有限公司 Seamless steel tube for non-quenched and tempered non-excavated drill rod and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166949A (en) * 1986-12-27 1988-07-11 Aichi Steel Works Ltd Non-heattreated steel for hot forging
JPH01177339A (en) * 1987-12-30 1989-07-13 Aichi Steel Works Ltd Non-heat treated steel for hot forging
JPH05202447A (en) * 1992-01-27 1993-08-10 Nkk Corp Seamless tube on non-heat-treated high tensile strength steel for cylinder
JPH07316720A (en) * 1994-05-26 1995-12-05 Sumitomo Metal Ind Ltd Non-heat treated steel having high durability ratio and high strength, and its production
JP2003003223A (en) * 2001-04-11 2003-01-08 Miura Gokin Kogyosho:Kk Lead-free alloy for external electrode of metallized plastic film capacitor
JP2003003233A (en) * 2001-06-20 2003-01-08 Sumitomo Metal Ind Ltd High strength steel and production method therefor
JP2003064449A (en) * 2001-06-15 2003-03-05 Sumitomo Metal Ind Ltd Heat-resisting low-alloy steel tube and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166949A (en) * 1986-12-27 1988-07-11 Aichi Steel Works Ltd Non-heattreated steel for hot forging
JPH01177339A (en) * 1987-12-30 1989-07-13 Aichi Steel Works Ltd Non-heat treated steel for hot forging
JPH05202447A (en) * 1992-01-27 1993-08-10 Nkk Corp Seamless tube on non-heat-treated high tensile strength steel for cylinder
JPH07316720A (en) * 1994-05-26 1995-12-05 Sumitomo Metal Ind Ltd Non-heat treated steel having high durability ratio and high strength, and its production
JP2003003223A (en) * 2001-04-11 2003-01-08 Miura Gokin Kogyosho:Kk Lead-free alloy for external electrode of metallized plastic film capacitor
JP2003064449A (en) * 2001-06-15 2003-03-05 Sumitomo Metal Ind Ltd Heat-resisting low-alloy steel tube and manufacturing method therefor
JP2003003233A (en) * 2001-06-20 2003-01-08 Sumitomo Metal Ind Ltd High strength steel and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114413A1 (en) 2006-03-28 2007-10-11 Nippon Steel Corporation High-strength seamless steel pipe for mechanical structure which has excellent toughness and weldability, and method for manufacture thereof
JP2013533919A (en) * 2010-04-07 2013-08-29 アスコメタル Steel high-performance machine parts and their manufacturing methods
CN102560283A (en) * 2012-02-21 2012-07-11 张芝莲 Big-caliber seamless alloy steel pipe

Also Published As

Publication number Publication date
CN1532300A (en) 2004-09-29
JP3969328B2 (en) 2007-09-05
CN1240867C (en) 2006-02-08
US20040238075A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4475440B1 (en) Seamless steel pipe and manufacturing method thereof
JP3969328B2 (en) Non-tempered seamless steel pipe
JP4259347B2 (en) Manufacturing method of high strength non-tempered seamless steel pipe
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
WO2013044640A1 (en) Steel plate with low yield ratio high toughness and manufacturing method thereof
JP2009041079A (en) Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
EP1182268B1 (en) High strength, high toughness, seamless steel pipe for line pipe
EP4186990A1 (en) Steel for ball-cage type universal joint retainer and production method therefor
CN102560284A (en) High-strength high-toughness X100 pipeline steel hot-rolled steel strip and manufacturing method thereof
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP5151693B2 (en) Manufacturing method of high-strength steel
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP4123597B2 (en) Manufacturing method of steel with excellent strength and toughness
JPH06279928A (en) High strength rail excellent in toughness and ductility and its production
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
JP3491148B2 (en) High strength and high toughness seamless steel pipe for line pipe
JPH10130783A (en) Non-heat treated high strength seamless steel tube
CN114318129B (en) 890 MPa-level easily-welded seamless steel pipe and manufacturing method thereof
KR101185289B1 (en) High strength steel exellent in low-temperature toughness welding part and method of manufacturing the high strength steel
JP5126790B2 (en) Steel material excellent in fatigue crack growth resistance and method for producing the same
JP2001158936A (en) Thin steel sheet excellent in hydrogen induced cracking resistance and producing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3969328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees