【0001】
【発明の属する技術分野】
本発明は、磁気記録媒体用、特にデータストレージテープ用二軸配向ポリエステルフィルムに関し、高強度、高寸法安定性に優れたフィルムに関する。
【0002】
【従来の技術】
ポリエステルフィルムに代表される熱可塑性樹脂フィルムは、優れた成形性と機械特性とを有することから、包装用フィルム、ラベル、表示面の表面保護フィルム、セラミックスなどの製造に用いるグリーンシート、磁気記録媒体のベースフィルム、コンデンサーなどの電気絶縁用フィルムなど幅広い分野で用いられている。これらの中で、磁気記録媒体、特にデータストレージは記録容量の高容量化を目指した開発が急速に行われている。記録容量を高容量化するには、例えば、QIC、DLT、更に高容量のスーパーDLT、LTOなどで代表される磁気記録媒体では、記録密度を高密度化、すなわち、線記録密度やトラック密度をより密にしたり、記録面積を増やす、すなわち、磁気記録媒体を薄膜化して、同一容積中の磁気記録媒体の長さを長尺化しなくてはならない。
【0003】
そして、線記録密度やトラック密度をより密にするには、磁気記録媒体を構成するベースフィルムは、より平坦な表面を有することと、より高い寸法安定性を有することが求められる。また、磁気記録媒体を薄膜化すると、同じ力で引っ張られた際、より高い応力で引っ張られる状況になることから、さらに磁気記録媒体を構成するベースフィルムは、高い強度や寸法安定性を具備することが求められる。
【0004】
特に磁気記録媒体がリニアトラック方式の場合、トラック密度のアップとともにトラックピッチが短くなり、磁気記録媒体の幅方向の寸法安定性が重要で、国際公開WO00/76749号公報(特許文献1)などで、延伸や熱固定条件を駆使して、極めて狭い範囲で強度、寸法安定性および表面の平坦性をバランスさせた磁気記録媒体用フィルムが開示されている。該公報によると、この幅方向の寸法安定性には温湿度変化による幅方向の伸縮に対しては、幅方向のヤング率のアップ、またテープの長手方向の張力変化による幅方向の伸縮に対しては、長手方向のヤング率のアップが重要となる。
【0005】
しかしながら、近年のさらなる磁気記録媒体の高容量化への要求には、熱可塑性樹脂を製造する際のフィルムの延伸や熱固定条件だけでは対応が困難になりつつあり、さらなる熱可塑性樹脂フィルムの強度、寸法安定性および表面の平坦性向上が望まれてきていた。
【0006】
ところで、ナノカーボンを含有させることが、特開2002−365427号公報(特許文献2)や特表2002−544356号公報(特許文献3)などで提案されているが、上記課題は何ら検討されていなかった。
【0007】
【特許文献1】
国際公開WO00/76749号公報
【特許文献2】
特開2002−365427号公報
【特許文献3】
特表2002−544356号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記従来技術が有する問題を解決し、磁気記録媒体、特にリニアトラック方式のデジタルデータストレージ用途において、製膜安定性、引裂性に優れ、高強度、高寸法安定性に優れ、テープ幅の寸法変化によるトラックずれによるエラーが発生し難く、出力特性に優れたベースフィルムに適した熱可塑性樹脂フィルムを提供することにある。
【0009】
【課題を解決するための手段】
本発明の課題は、本発明によれば、直径(D)が0.001〜0.1μm、長さ(L)が0.01〜10μmおよびアスペクト比(L/D)が5〜1000のナノカーボンが、熱可塑性樹脂組成物の重量を基準として、0.01〜5重量%分散された熱可塑性樹脂組成物を二軸方向に配向させた二軸配向熱可塑性樹脂フィルムによって達成される。
【0010】
本発明の二軸配向熱可塑性樹脂フィルムは、その好ましい態様として、(1)ナノカーボンが、ツェッペリン型ナノカーボン、カーボンナノホーンおよびカーボンナノチューブからなる群より選ばれた少なくとも1種であること、(2)製膜方向および製膜方向に直交する方向のいずれか一方のヤング率が6〜20GPaの範囲にあること、(3)熱可塑性樹脂がポリエステル、特にポリエチレン−2,6−ナフタレートであること、(4)厚みが2〜10μmであること、および(5)磁気記録媒体の支持体に用いられることのいずれかを具備する二軸配向熱可塑性樹脂フィルムも包含するものである。
【0011】
また、本発明の課題は、本発明によれば、熱可塑性樹脂組成物からなる少なくとも2つの層が積層され、かつ二軸方向に配向された積層二軸配向熱可塑性樹脂フィルムであって、少なくとも一つの層は、直径(D)が0.001〜0.1μm、長さ(L)が0.01〜10μmおよびアスペクト比(L/D)が5〜1000のナノカーボンを、該熱可塑性樹脂組成物の重量を基準として、0.01〜5重量%分散された熱可塑性樹脂組成物からなるナノカーボン含有層である積層二軸配向熱可塑性樹脂フィルムによっても達成される。
【0012】
本発明の積層二軸配向熱可塑性樹脂フィルムは、その好ましい態様として、(1)ナノカーボン含有層の厚みが、積層二軸配向熱可塑性樹脂フィルムの厚みを基準として、5〜95%の範囲にあること、(2)製膜方向および製膜方向に直交する方向のいずれか一方のヤング率が6〜20GPaの範囲にあること、(3)熱可塑性樹脂がポリエステル、特にポリエチレン−2,6−ナフタレートであること、(4)厚みが2〜10μmであること、(5)ナノカーボン含有層とその一方の面に積層されたナノカーボンを含有しない熱可塑性樹脂組成物からなる層との2つの層からなり、ナノカーボンを含有しない熱可塑性樹脂組成物からなる層は、不活性粒子を含有しないか、平均粒径0.01〜2.0μmの不活性粒子を0.001〜1.0重量%含有する熱可塑性樹脂組成物からなること、(6)ナノカーボン含有層とその両面に積層されたナノカーボンを含有しない熱可塑性樹脂組成物からなる層との3つの層からなり、少なくとも一つのナノカーボンを含有しない熱可塑性樹脂組成物からなる層は、不活性粒子を含有しないか、平均粒径0.01〜2.0μmの不活性粒子を0.001〜1.0重量%含有する熱可塑性樹脂組成物からなること、および(7)磁気記録媒体の支持体に用いられることのいずれかを具備する積層二軸配向熱可塑性樹脂フィルムも包含するものである。
【0013】
さらにまた、本発明によれば、上記本発明の二軸配向熱可塑性樹脂フィルムまたは積層二軸配向熱可塑性樹脂フィルムと、その一方の表面に設けられた磁性層とからなる磁気記録媒体も提供される。
【0014】
【発明の実施の形態】
<熱可塑性樹脂>
本発明の二軸配向熱可塑性樹脂フィルムを構成する熱可塑性樹脂としては、フィルム、特に磁気記録媒体のベースフィルムにしたときに、必要な成形性や機械的特性を有するものであれば特に制限はされない。例えば、ポリエステル、ナイロン、ポリオレフィンなどが挙げられる。これらの中でも、磁気記録媒体のベースフィルムに必要な成形性や機械的特性を高度に具備するポリエステルが好ましい。
【0015】
本発明におけるポリエステルとしては、例えばポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリエチレン―2,6―ナフタレート、ポリエチレン―α、β―ビス(2―クロルフェノキシ)エタン―4,4′―シカルボキシレート等が挙げられる。これらの中でも、成形性や機械的特性に優れるポリエチレンテレフタレートおよびポリエチレン―2,6―ナフタレートが好ましく、特に強度が比較的高いことから、ポリエチレン―2,6―ナフタレートが最も好ましい。
【0016】
本発明におけるポリエチレン―2,6―ナフタレートは、単独でも、他のポリエステルの共重合体や、2種以上のポリエステルの混合体であってもかまわない。具体的には、その繰返し構造単位が、実質的にエチレン―2,6―ナフタレートのみならず、繰返し構造単位のモル数を基準として、10モル%以下、好ましくは5モル%以下が他の成分であるポリエチレン―2,6―ナフタレート共重合体及びポリマー混合物であってもよい。ポリエチレン―2,6―ナフタレートは、そのポリマーの固有粘度が0.40以上であることが好ましく、0.40〜0.80であることがさらに好ましい。固有粘度が0.4未満では工程切断が多発することがある。一方固有粘度が0.8を超えるためには重合時の生産性が低下し、好ましくない。
【0017】
本発明におけるポリエチレン―2,6―ナフタレートは、その製法により何ら限定されることはない。例えば、ジメチル、ジエチルまたはジプロピルなど炭素原子数が1〜3個の低級アルキルと2,6―ナフタレンジカルボン酸とのエステル化合物をエチレングリコールとエステル交換反応触媒の存在下でエステル交換反応させた後、重縮合して製造することができる。
【0018】
なお、上記説明は、ポリエチレン―2,6―ナフタレートについて行ったが、他のポリエステルはもちろん、他の熱可塑性樹脂についても同様なことが言える。
【0019】
ところで、フィルムを構成する熱可塑性樹脂には、製膜時のフィルムの巻取り性やフィルムの搬送性等を良くするため、滑剤として有機又は無機の不活性粒子を含有させてもよい。また、後述のナノカーボンを滑剤としても機能させることで、得られるフィルムに滑り性を付与することも出来る。
<ナノカーボン>
本発明の二軸配向熱可塑性樹脂フィルムは、ナノカーボンが分散されていることが必要である。本発明者らの研究によると、特定のナノカーボンを熱可塑性樹脂中に分散させ、それを二軸方向に延伸したフィルムは、驚くべきことに、カーボンナノチューブを分散させなかった熱可塑性樹脂からなるフィルムに比べ、同一製膜条件において、より高い強度を示すことが判明した。熱可塑性樹脂中にカーボンナノチューブを分散させた一軸方向に延伸したシートは、例えば、特開2002―365427号公報などでも提案されているが、該公報で開示されているのは、カーボンナノチューブによって偏光度を発現出来ることだけであり、カーボンナノチューブによって強度が向上するようなことは完全に看過されていた。
【0020】
ところで、上述のとおり、どのようなナノカーボンでも熱可塑性樹脂の強度を向上できるわけでなく、直径(D)、長さ(L)およびアスペクト比(L/D)特定の範囲にあることが必要であり、以下に、詳述する。
【0021】
本発明において、ナノカーボンは、直径(D)が0.001〜0.1μm、長さ(L)が0.01〜10μm、アスペクト比(L/D)が5〜1000である。また、ナノカーボンの熱可塑性樹脂粗生物中の割合は0.01〜5重量%である。なお、ここでいう熱可塑性組成物中の割合とは、単層フィルムの場合、フィルム全体を構成する熱可塑性組成物中の割合を意味し、2層以上の層からなる積層フィルムの場合、ナノカーボンを含有する層を構成する熱可塑性組成物中の割合を意味する。
【0022】
ナノカーボンの直径(D)が下限未満であると強度の向上は期待できない。一方、直径(D)が上限を超えるとフィルム表面が粗面化し、磁気記録媒体にしたとき、得られる磁気記録媒体の電磁変換特性が低下する。好ましいナノカーボンの直径(D)は、0.003〜0.1μm、さらに0.005〜0.05μmの範囲である。
【0023】
また、ナノカーボンの長さ(L)が下限未満であると強度の向上は期待できない。一方、長さ(L)が上限を超えるとフィルム表面が粗面化し、磁気記録媒体にしたとき、電磁変換特性が低下する。好ましいナノカーボンの長さ(L)は、0.03〜5μm、さらに0.05〜4.0μmの範囲である。
【0024】
さらにまた、ナノカーボンのアスペクト比(L/D)が下限未満であると強度の向上は期待できない。一方、アスペクト比(L/D)が上限を超えるとナノカーボンが絡まり合ったままになり易く、やはり強度の向上が期待できない。好ましいナノカーボンのアスペクト比(L/D)は、7〜900、さらに10〜800の範囲である。
【0025】
また、ナノカーボンの添加量が下限未満であると強度の向上は期待できない。一方、添加量が上限を超えると、フィルム表面が粗面化し、電磁変換特性が低下するとともにフィルムの製膜が困難となる。好ましいナノカーボンの添加量は、0.1〜4.0重量%、さらに0.5〜3.0重量%の範囲である。
【0026】
ナノカーボンは、100%炭素原子からなる六角形の網状構造を持ち、これが円筒に類似の細長い形状をした物質であり、円筒形の両端が半球(中空)状の形状をしているツェッペリン、底が丸みを持ったコップ状のナノホーン、中空の円錐台形が複数個重なった形状のカップスタック型または単層あるいは2層以上の円筒型のカーボンナノチューブ等があげられる。これらの中でも、単層あるいは2層以上の多層になっているカーボンナノチューブ等が好ましい。
【0027】
カーボンナノチューブは強度が炭素繊維の約40倍と推定されており、樹脂成形品の高強度、高弾性率化が期待された。しかし、カーボンナノチューブは、繊維が強固に絡まりあった形態をとっているため、熱可塑性樹脂に分散しても、強度向上効果は殆ど発現しなかった。しかしながら、本発明者らは、ナノカーボンを二軸配向ポリエステルフィルムに適用し、絡まりを抑制しうるナノカーボンを選択し、かつ二軸方向に延伸によって伸張することで、高強度化と寸法安定性向上が得られることを見出した。
【0028】
カーボンナノチューブはフィルム全体に含有されていてもよいが、フィルムが2層以上の積層フィルムである場合、少なくともその内の1つの層がナノカーボンを含有していればよい。例えば、ナノカーボンを含有しない層とナノカーボンを含有する層(ナノカーボン含有層)との2層構造、ナノカーボン含有層とその両表面にナノカーボンを含有しない層が積層された3層構造、ナノカーボン含有層がナノカーボンを含有しない層の両表面に積層された3層構造、およびこれらの層構造に、さらにナノカーボンを含有しない層またはナノカーボン含有層を設ける3層以上の層構造を挙げることができる。
【0029】
カーボンナノチューブの添加方法は特に制限されず、フィルムを構成する熱可塑性樹脂と同種の熱可塑性樹脂に、2〜15重量%のナノカーボンを分散させたマスターポリマーを用意し、これをフィルムを構成する熱可塑性樹脂と目的とする濃度になるよう混ぜ合わせる高濃度添加法などが、好ましく用いることが出来る。
【0030】
<二軸配向熱可塑性樹脂フィルム>
本発明の二軸配向熱可塑性樹脂フィルムは、磁気記録媒体のベースフィルとして用いる場合、少なくともフィルムの片方の露出面の表面粗さ(Ra)は、0.1〜10nm、さらには0.5〜5nmであることが好ましい。表面粗さが10nmを越えると、該表面に磁性層を設けて磁気テープとしたときに、磁性層面が粗化し、電磁変換特性が低下するので好ましくない。一方、表面粗さが0.1nm未満の場合、フィルム―フィルム間の滑り性が低下し、フィルムの巻取り性が悪化するので好ましくない。
【0031】
このような表面粗さを本発明の二軸配向熱可塑性樹脂フィルムに具備させる手段としては、二軸配向熱可塑性樹脂フィルムに含有させるナノカーボンの種類、形状、サイズおよび添加量を調整するほかに、さらに不活性粒子を添加し、その不活性粒子の種類、形状、サイズおよび添加量によっても調整することもできる。また、本発明の二軸配向熱可塑性樹脂フィルムの少なくとも一方の表面に、微細凹凸を形成する表面処理、例えば易滑塗剤のコーティング処理によっても調整することができる。不活性微粒子としては、例えば周期律表第IIA、第IIB、第IVA、第IVBの元素を含有する無機微粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素など)、シリコーン樹脂、架橋ポリスチレン等の如き耐熱性の高い高分子よりなる微粒子などが挙げられる。不活性微粒子を含有させる場合、微粒子の平均粒径は0.05〜1.0μm、さらには0.1〜0.8μmであることが好ましい。また、また不活性微粒子の含有量は0.05〜0.5重量%(対ポリマー)、さらには0.1〜0.3重量%(対ポリマー)であることが好ましい。また、種類、形状またはサイズの異なる2種類以上の不活性粒子を併用してもよい。
【0032】
本発明の二軸配向熱可塑性樹脂フィルムは、製膜方向(縦方向)および幅方向(横方向)のいずれか一方のヤング率は6GPa以上、さらに8GPa以上、特に10GPa以上であることが好ましい。縦方向および横方向のヤング率がいずれも6GPa未満だと、テープとしたときに張力変化や温度・湿度の変化によって寸法安定性が損なわれ、トラックずれなどの問題が発生しやすくなる。また、ナノカーボンを添加したことによる効果も発現しにくくなる。なお、製膜方向(縦方向)および幅方向(横方向)のヤング率の上限は特に制限されないが、通常20GPa以下であることが、直行する方向にも十分なヤング率を付与できることから好ましい。また、縦方向と横方向のヤング率の和は12GPa以上、さらに15GPa以上、特に17GPa以上であることが好ましい。このような高ヤング率は、カーボンナノチューブの添加により、従来のカーボンナノチューブを含有しないフィルムに比べ、より低倍率の延伸で得ることができる。なお、製膜方向(縦方向)および幅方向(横方向)のヤング率の和の上限は特に制限されないが、通常は高々30GPaである。
【0033】
縦方向のヤング率は、6GPa以上、さらに8GPa以上、特に10GPa以上が、テープの長手方向の張力変化による幅方向の寸法変化が抑制できることから好ましい。一方、横方向のヤング率は、6GPa以上、さらに8GPa以上、特に10GPa以上であることが、温湿度変化によるテープの幅方向の寸法変化を抑制できることから好ましい。さらに好ましい具体的なフィルムのヤング率は、例えばリニア記録方式の磁気記録媒体のベースフィルムの場合、縦方向のヤング率が6GPa以上、さらに8GPa以上、特に10GPa以上で、横方向のヤング率が4GPa以上、6GPa以上、8GPa以上でかつ縦方向のヤング率が横方向のヤング率と等しいか大きいことが好ましい。また、例えばヘリカル記録方式の磁気記録媒体のベースフィルムの場合、横方向のヤング率が6GPa以上、さらに8GPa以上、特に10GPa以上で、縦方向のヤング率が4GPa以上、6GPa以上、8GPa以上でかつ横方向のヤング率が縦方向のヤング率と等しいか大きいことが好ましい。
【0034】
本発明の二軸配向熱可塑性樹脂フィルムの厚みは、2〜10μm、さらに3〜8μm、特に4〜6μmであることが好ましい。厚みが下限未満であるとテープ強度が不足し、走行開始時の張力などでテープ幅収縮が生じ、トラックと磁気ヘッドのズレを生じ、記録の再生エラーが避けられない。また、厚みが上限を超えると、カートリッジに収納するテープ長さが短くなり、所望の記憶容量が得られなくなる。
【0035】
<積層二軸配向熱可塑性樹脂フィルム>
本発明の積層二軸配向熱可塑性樹脂フィルムは、2層以上の層からなり、少なくともその内の1つの層がナノカーボンを含有していればよい。例えば、ナノカーボンを含有しない層とナノカーボンを含有する層(ナノカーボン含有層)との2層構造、ナノカーボン含有層とその両表面にナノカーボンを含有しない層が積層された3層構造、ナノカーボン含有層がナノカーボンを含有しない層の両表面に積層された3層構造、およびこれらの層構造に、さらにナノカーボンを含有しない層またはナノカーボン含有層を設ける3層以上の層構造を挙げることができる。
【0036】
ナノカーボンの含有量は、ナノカーボン含有層を構成する熱可塑性樹脂組成物の重量を基準として、0.01〜5重量%の範囲であることが必要である。ナノカーボンの添加量が下限未満であると強度の向上は期待できない。一方、添加量が上限を超えると、フィルム表面が粗面化し、電磁変換特性が低下するとともにフィルムの製膜が困難となる。好ましいナノカーボンの添加量は、0.1〜4.0重量%、さらに0.5〜3.0重量%の範囲である。
【0037】
本発明の積層二軸配向熱可塑性樹脂フィルムを磁気記録媒体のベースフィルとして用いる場合、少なくともフィルムの一方の露出面の表面粗さ(Ra)は、0.1〜10nm、さらには0.5〜5nmであることが好ましい。表面粗さが10nmを越えると、該表面に磁性層を設けて磁気テープとしたときに、磁性層面が粗化し、電磁変換特性が低下するので好ましくない。一方、表面粗さが0.1nm未満の場合、フィルム―フィルム間の滑り性が低下し、フィルムの巻取り性が悪化するので好ましくない。なお、本発明の積層二軸配向熱可塑性樹脂フィルムの他方の表面、すなわち、磁性層を設けない表面(走行面)は、表面粗さ(Ra)は5〜30nm、更には5〜15nmが好ましい。Raが5未満であると、フィルム製造時の巻取り性が悪く、巻き姿の良い製品を得ることが困難である。また、Raが30nmを超えると磁性面の粗さに影響し、電磁変換特性が低下するので好ましくない。
【0038】
このような表面粗さは、本発明の積層二軸配向熱可塑性樹脂フィルムを構成する層、特に露出面を形成する層に含有させるナノカーボンの種類、形状、サイズおよび添加量を調整するほかに、さらに該層に不活性粒子を添加し、その不活性粒子の種類、形状、サイズおよび添加量によっても調整することができる。また、本発明の二軸配向熱可塑性樹脂フィルムの少なくとも一方の表面に、微細凹凸を形成する表面処理、例えば易滑塗剤のコーティング処理によっても調整することができる。不活性微粒子としては、上記例えば周期律表第IIA、第IIB、第IVA、第IVBの元素を含有する無機微粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素など)、シリコーン樹脂、架橋ポリスチレン等の如き耐熱性の高い高分子よりなる微粒子などが挙げられる。不活性微粒子を含有させる場合、微粒子の平均粒径は0.05〜1.0μm、さらには0.1〜0.8μmであることが好ましい。また、また不活性微粒子の含有量は0.05〜0.5重量%(対ポリマー)、さらには0.1〜0.3重量%(対ポリマー)であることが好ましい。また、種類、形状またはサイズの異なる2種類以上の不活性粒子を併用してもよい。
【0039】
本発明の積層二軸配向熱可塑性樹脂フィルムのヤング率は、前述の二軸配向熱可塑性樹脂フィルムの説明と同様なことが言える。
【0040】
本発明の積層二軸配向熱可塑性樹脂フィルムの厚みは、2〜10μm、さらに3〜8μm、特に4〜6μmであることが好ましい。厚みが下限未満であるとテープ強度が不足し、走行開始時の張力などでテープ幅収縮が生じ、トラックと磁気ヘッドのズレを生じ、記録の再生エラーが避けられない。また、厚みが上限を超えると、カートリッジに収納するテープ長さが短くなり、所望の記憶容量が得られなくなる。
【0041】
さらに、本発明の積層二軸配向熱可塑性樹脂フィルムの好ましい態様について説明する。
【0042】
まず、本発明の積層二軸配向熱可塑性樹脂フィルムは、ナノカーボン含有層とその一方の面に積層されたナノカーボンを含有しない熱可塑性樹脂組成物からなる層との2つの層からなることが好ましい。ナノカーボンは、前述の通り、フィルムの表面を粗くする。これに対して、磁気記録媒体のベースフィルムとして用いる場合、磁性層が形成される表面は、出来る限り平滑であることが好ましい。そのため、磁性層が形成される表面には、ナノカーボンを含有しない層が好ましい。
【0043】
さらに、ナノカーボンを含有しない熱可塑性樹脂組成物からなる層は、不活性粒子も含有しないか、含有しても平均粒径0.01〜2.0μm、さらに0.01〜1.0μm、特に0.05〜0.5μmの不活性粒子を0.001〜1.0重量%、さらに0.005〜0.5重量%、特に0.007〜0.3重量%の範囲で含有する熱可塑性樹脂組成物からなることが好ましい。不活性粒子の平均粒径や含有量が上限を超えると、フィルム表面が粗くなり、磁気記録媒体にしたときの電磁変換特性が低下しやすい。一方、不活性粒子の平均粒径や含有量が下限を下回ると、不活性粒子添加によるフィルムの走行性向上効果はほとんど発現しない。なお、ここでいう、不活性粒子を含有しないとは、触媒を積極的に析出させたり、外部から不活性粒子を添加したりしていないことを意味する。
【0044】
つぎに、本発明の積層二軸配向熱可塑性樹脂フィルムは、ナノカーボン含有層とその両面に積層されたナノカーボンを含有しない熱可塑性樹脂組成物からなる層との3つの層からなることが好ましい。ナノカーボンは、前述の通り、フィルムの表面を粗くする。これに対して、磁気記録媒体のベースフィルムとして用いる場合、磁性層が形成される表面は、出来る限り平滑であることが好ましい。そのため、磁性層が形成される表面には、ナノカーボンを含有しない層が好ましい。
【0045】
さらに、ナノカーボンを含有しない熱可塑性樹脂組成物からなる層は、不活性粒子も含有しないか、含有しても平均粒径0.01〜2.0μm、さらに0.01〜1.0μm、特に0.05〜0.5μmの不活性粒子を0.001〜1.0重量%、さらに0.005〜0.5重量%、特に0.007〜0.3重量%の範囲で含有する熱可塑性樹脂組成物からなることが好ましい。不活性粒子の平均粒径や含有量が上限を超えると、フィルム表面が粗くなり、磁気記録媒体にしたときの電磁変換特性が低下しやすい。一方、不活性粒子の平均粒径や含有量が下限を下回ると、不活性粒子添加によるフィルムの走行性向上効果はほとんど発現しない。なお、ここでいう、不活性粒子を含有しないとは、触媒を積極的に析出させたり、外部から不活性粒子を添加したりしていないことを意味する。
【0046】
<製膜方法>
本発明における二軸配向熱可塑性樹脂フィルムは、例えば以下ののような方法に準じて製造することができる。
【0047】
先ずナノカーボンを高濃度含有する熱可塑性樹脂のペレットとナノカーボンを含有しない熱可塑性樹脂のペレットとを所定の割合で混合し、乾燥後、例えば、熱可塑性樹脂がポリエチレン−2,6−ナフタレートの場合、溶融温度280℃〜330℃で押出し機よりTダイを経て押出し、冷却ドラム上に流延し冷却固化して未延伸フィルムを作成することができる。この未延伸フィルムを縦方向にポリエチレン―2,6―ナフタレートの場合100〜170℃の温度で3〜8倍の倍率で延伸し、次いで上記延伸方向と直角方向に115〜180℃の温度で3〜7倍の倍率で延伸する。または必要に応じて縦また横方向の延伸を2段階以上に分割実施してもよい(縦多段延伸、縦−横−縦の3段延伸、縦−横−縦−横の4段延伸等)。また同時二軸延伸にて実施してもよい。このようにして全延伸倍率は、面積延伸倍率として10〜60倍、更には20〜50倍が好ましい。また二軸配向フィルムは180〜250℃の温度で熱固定することが好ましく、更には200〜230℃で熱固定するのが好ましく、熱固定時間は1〜60秒が好ましい。
【0048】
また、本発明の積層二軸配向熱可塑性樹脂フィルムは、2台の押出し機を用い、少なくとも1台にはカーボンナノチューブを含有するペレットを送って溶融し、2層または多層ダイから押出し、その後の処置は、上記本発明の二軸配向熱可塑性樹脂フィルムと同様な操作を繰り返せばよい。
【0049】
<磁気記録媒体>
本発明の二軸配向熱可塑性樹脂フィルムおよび積層二軸配向熱可塑性樹脂フィルムは、優れたヤング率、寸法安定性、平担性、滑り性、巻取り性等を有し、高密度磁気記録媒体、特にディジタル記録型磁気機記録媒体のベースフィルムとして好ましく用いられる。
【0050】
本発明の二軸配向ポリエステルフィルムまたは積層二軸配向熱可塑性樹脂フィルムを用いた磁気記録媒体は、片側表面(積層の場合は平坦側表面)に、磁性層を塗布、あるいは真空蒸着、スパッタリング、イオンプレーティング等の方法により、鉄、コバルト、クロム又はこれらを主成分とする合金もしくは酸化物より成る強磁性金属薄膜層を形成し、またその表面に、目的、用途、必要に応じてダイアモンドライクカーボン(DLC)等の保護層、含フッ素カルボン酸系潤滑層を順次設け、更に磁性層と反対側の表面にバックコート層を設けることにより、形成される。
【0051】
【実施例】
以下、実施例に基づいて本発明をさらに説明する。尚、本発明における種々の物性値及び特性は、以下のようにして測定されたものであり、かつ定義される。
【0052】
(1)ヤング率
東洋ボールドウイン(株)の引張試験機「テンシロン」を用いて、温度20℃、湿度50%に調節された室内において、フィルムを製膜方向および幅方向に沿って試料幅10mm、長さ15cmに切り、チャック間100mmにして引張速度10mm/分、チャート速度500mm/分でフィルムの製膜方向および幅方向に引張り、得られる荷重―伸び曲線の立ち上り部の接線より、フィルムの製膜方向および幅方向のヤング率をそれぞれ計算する。
【0053】
(2)ナノカーボンの直径、長さ
直径および長さは透過電子顕微鏡(TEM)で観察し、それぞれ100個のナノカーボンを測定し、それらを平均して求める。
【0054】
(3)不活性粒子の平均粒径
島津製作所製CP―50型セントリフュグルパーティクルサイズアナライザー(Centrifugal Particle Size Analyzer)を用いて測定する。得られる遠心沈降曲線をもとに算出する各粒径の粒径とその存在量との累積曲線から、50マスパーセント(mass percent)に相当する粒径を読み取り、この値を上記平均粒径とする。
【0055】
(4)フィルム縦方向荷重印加後の幅方向の残留収縮(αW)
温度23℃、湿度50%の雰囲気下において、12.65mm(1/2インチ)にスリットしたフィルムを図1に示す通りにセットする。なお、12.65mmにスリットしたサンプルは検出器にて幅寸法が測定できるようにするため、あらかじめ表面にスパッタによって金を蒸着しておく。この状態でフィルムの片側(もう一方は固定)に22MPaの重りをつけ、そのときのフィルムの幅(L1)をキーエンス製レーザー外径測定器(本体:3100型、センサー:3060型)にて測定する。
【0056】
その後、49℃(120°F)×90%RHの高温高湿下で、片側(もう一方は固定)に170g(6oz)の重りをつけ、72hr(3日間)処理した後、重りを取り外し、温度23℃、湿度50%の雰囲気下で24hr調湿した後、再び、フィルムの片側(もう一方は固定)に22MPaの重りをつけ、そのときのフィルムの幅(L2)をキーエンス製レーザー外径測定器(本体:3100型、センサー:3060型)にて測定する。
【0057】
上記で測定した温湿度処理前後の寸法より、荷重下温湿度処理前後の幅寸法変化(αW)は、次式より算出する。
【0058】
【数1】
αW={(L1−L2)×/L1}×100(%)
【0059】
(5)温度膨張係数(αt)
フィルムサンプルをフィルム横方向に長さ15mm、幅5mmに切り出し、真空理工製 TMA3000にセットし、窒素雰囲気下、60℃で30分前処理し、その後室温まで降温させる。その後25℃から70℃まで2℃/分で昇温し、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。
【0060】
【数2】
αt={(L2−L1)/(L1×ΔT)}×106+0.5
ここで、上記式中のL1:40℃時のサンプル長(mm)、L2:60℃時のサンプル長(mm)、ΔT:20(=60−40℃)である。また、式中の0.5は石英ガラスの温度膨張係数(×10−6)である。
【0061】
(6)湿度膨張係数(αh)
フィルムサンプルをフィルム横方向に長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、窒素雰囲気下から、湿度30%RH、及び湿度70%RHの一定に保ち、その時のサンプルの長さを測定し、次式にて湿度膨張係数を算出する。
【0062】
【数3】
αh={(L2−L1)×/(L1×ΔH)}×106
ここで、上記式中のL1:湿度30%RH時のサンプル長(mm)、L2:湿度70%RH時のサンプル長(mm)、ΔH:40(=70−30%RH)である。
【0063】
[実施例1]
平均直径0.005μm、平均長さ0.05μmの平均8層の円筒状グラファイトからなるカーボンナノチューブを4.0重量%含有した固有粘度(オルトクロロフェノール、35℃)0.60のポリエチレン―2,6―ナフタレートを180℃で5時間乾燥した後、押出機ホッパーに供給し、300℃で溶融し、T型押出ダイを用いて、表面仕上げ0.3S、表面温度60℃に保持したキャスティングドラム上で急冷固化せしめて、未延伸フィルムを得た。
【0064】
このようにして得られた未延伸フィルムを120℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して5.4倍に延伸し、急冷し、続いてステンターに供給し、125℃にて横方向に4.8倍延伸した。さらに引き続いて225℃で3秒間熱固定し、厚み4.5μmの二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムのヤング率は縦方向10GPa、横方向7GPaであった。
【0065】
一方、下記に示す組成物をボールミルに入れ、16時間混練、分散した後、イソシアネート化合物(バイエル社製のデスモジュールL)5重量部を加え、1時間高速剪断分散して磁性塗料とした。
磁性塗料の組成:
針状Fe粒子 100重量部
塩化ビニル―酢酸ビニル共重合体 15重量部
(積水化学製エスレック7A)
熱可塑性ポリウレタン樹脂 5重量部
酸化クロム 5重量部
カーボンブラック 5重量部
レシチン 2重量部
脂肪酸エステル 1重量部
トルエン 50重量部
メチルエチルケトン 50重量部
シクロヘキサノン 50重量部
この磁性塗料を上述のポリエチレン―2,6―ナフタレートフイルムの片面に塗布厚さ0.5μmとなるように塗布し、次いで2500ガウスの直流磁場中で配向処理を実施し、100℃で加熱乾燥後、スーパーカレンダー処理(線圧200kg/cm、温度80℃)をして巻き取った。この巻き取ったロールを55℃のオーブン中に3日間放置した。
【0066】
さらに下記組成のバックコート層塗料を厚さ1μmに塗布し、乾燥させ、さらに6.35mm(=1′/4)に裁断し、磁気テープを得た。
バックコート層塗料の組成:
カーボンブラック 100重量部
熱可塑性ポリウレタン樹脂 60重量部
イソシアネート化合物 18重量部
(日本ポリウレタン工業社製コロネートL)
シリコーンオイル 0.5重量部
メチルエチルケトン 250重量部
トルエン 50重量部
得られた二軸配向ポリエステルフィルム及び磁気テープの特性を表1に示す。
【0067】
[実施例2]
平均直径0.05μm、平均長さ0.5μmの単層の円筒状グラファイトからなるカーボンナノチューブを2.0重量%含有したA層用ポリエチレン―2,6―ナフタレート、平均粒径0.1μmの球状シリカ粒子を0.01重量%含有したB層用ポリエチレン―2,6―ナフタレートを180℃で5時間乾燥した後、別の押出機ホッパーに供給し、溶融温度300℃で溶融し、マルチマニホールド型共押出しダイを用いてA層とB層を積層し、表面仕上げ0.3S、表面温度60℃に保持したキャスティングドラム上で急冷固化せしめて、積層未延伸フィルムを得た。各層の厚みは、A層が60%、B層が40%である。
【0068】
このようにして得られた積層未延伸フィルムを120℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して5.9倍に延伸し、急冷し、続いてステンターに供給し、125℃にて横方向に4.5倍、さらに170℃にて横方向に1.15倍に延伸し、トータル5.2倍延伸した。さらに引き続いて225℃で3秒間熱固定し、厚み4.5μmの積層二軸配向ポリエステルフィルムを得た。得られたフィルムのヤング率は縦方向11GPa 、横方向8GPaであった。
【0069】
以下は実施例1と同様の方法で熱処理後、実施例1と同じ磁性塗料をB層面に、反対面のA層面に実施例1と同じバックコートを塗布し、磁気テープを得て評価した。この結果を表1に示す。
【0070】
[実施例3]
平均直径0.01μm、平均長さ1.0μmのツェッペリン型カーボンナノチューブを1.0重量%含有したA層用ポリエチレン―2,6―ナフタレート、平均粒径0.3μmのシリコーン粒子を0.1重量%含有したB層用ポリエチレン―2,6―ナフタレートを180℃で5時間乾燥した後、別の押出機ホッパーに供給し、溶融温度300℃で溶融し、3層ダイの中央部に、B層用ポリマーを両側に配し、各層厚を1.5/2.5/0.5μmとした。
【0071】
このようにして得られた未延伸フィルムを120℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して2.3倍に延伸し、急冷し、続いてステンターに供給し、125℃にて横方向に5.0倍に延伸し、160℃で3秒間熱固定した後、140℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して3.1倍に延伸し、急冷し、続いてステンターに供給し、170℃にて横方向に1.1倍に延伸し、215℃で3秒間熱固定した後、厚み4.5μmの積層二軸配向ポリエステルフィルムを得た。得られたフィルムのヤング率は縦方向16GPa 、横方向7GPaであった。
【0072】
以下は実施例1と同様の方法で熱処理後、実施例1と同じ磁性塗料をB層面に、反対面のA層面に実施例1と同じバックコートを塗布し、磁気テープを得て評価した。この結果を表1に示す。
【0073】
[実施例4]
平均直径0.005μm、平均長さ4μmの2層のカーボンナノチューブを1.0重量%含有したA層用ポリエチレン―2,6―ナフタレート、平均粒径0.1μmの球状シリカ粒子を0.1重量%含有したB層用ポリエチレン―2,6―ナフタレートを180℃で5時間乾燥した後、別の押出機ホッパーに供給し、溶融温度300℃で溶融し、3層ダイの中央部に、B層用ポリマーを両側に配し、各層厚を1.5/1.5/1.5μmとした。
【0074】
このようにして得られた積層未延伸フィルムを120℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して2.3倍に延伸し、急冷し、続いてステンターに供給し、125℃にて横方向に5.0倍に延伸し、160℃で3秒間熱固定した後、140℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して3.1倍に延伸し、急冷し、続いてステンターに供給し、170℃にて横方向に1.3倍に延伸し、215℃で3秒間熱固定した後、厚み4.5μmの積層二軸配向ポリエステルフィルムを得た。得られたフィルムのヤング率は縦方向13GPa 、横方向8GPaであった。
【0075】
以下は実施例1と同様の方法で熱処理後、実施例1と同じ磁性塗料をB層面に、反対面のA層面に実施例1と同じバックコートを塗布し、磁気テープを得て評価した。この結果を表1に示す。
【0076】
[比較例1]
カーボンナノチューブを添加せず、平均粒径0.6μmの炭酸カルシウム粒子を0.02重量%、平均粒径0.1μmのシリカ粒子を0.2重量%含有したポリエチレン―2,6―ナフタレートを180℃で5時間乾燥した後、押出機ホッパーに供給し、実施例1と同様にして厚み4.5μmの二軸配向フィルムを得た。また磁気テープは実施例1と同様にして得た。この結果を表1に示す。
【0077】
[比較例2]
カーボンナノチューブを添加せず、平均粒径0.6μmの炭酸カルシウム粒子を0.02重量%、平均粒径0.1μmのシリカ粒子を0.2重量%含有したポリエチレン―2,6―ナフタレートを180℃で5時間乾燥した後、押出機ホッパーに供給し、未延伸フィルムを得た。
【0078】
このようにして得られた未延伸フィルムを120℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して2.3倍に延伸し、急冷し、続いてステンターに供給し、125℃にて横方向に5.0倍に延伸し、160℃で3秒間熱固定した後、140℃にて予熱し、更に低速、高速のロール間で14mm上方より830℃の表面温度の赤外線ヒーターにて加熱して3.5倍に延伸し、急冷し、続いてステンターに供給し、170℃にて横方向に1.1倍に延伸し、215℃で3秒間熱固定した後、厚み4.5μmの二軸配向フィルムを得た。得られたフィルムのヤング率は縦方向16GPa 、横方向7GPaであったが、フィルム切断が多発し、ロールサンプルは得られなかった。
【0079】
[比較例3]
カーボンナノチューブを表1に記載内容に変更した以外は実施例1と同様にして厚み4.5μmの二軸配向フィルムを得た。また磁気テープは実施例1と同様にして得た。
【0080】
[比較例4]
カーボンナノチューブを表1記載内容に変更した以外は実施例1と同様にして製膜したが、カーボンナノチューブの添加量が多く、製膜できなかった。
【0081】
[比較例5〜8]
カーボンナノチューブを表1記載内容に変更した以外は実施例1と同様にして厚み4.5μmの二軸配向フィルムを得た。また磁気テープは実施例1と同様にして得た。
【0082】
【表1】
【0083】
表1中のPENはポリエチレン−2,6−ナフタレートを示す。
【0084】
【発明の効果】
本発明によれば、トラックずれによるエラーレート発生がなく、出力特性に優れ、長時間使用に耐えるデジタルデータストレージテープとして有用な磁気記録媒体に適した二軸配向ポリエステルフィルムを提供することができる。
【図面の簡単な説明】
【図1】フィルム縦方向荷重印加後の幅方向の残留収縮(αW)を測定する装置の説明図である。
【符号の説明】
1 試料
2 荷重
3 光センサー LS−3036 受光部
4 光センサー LS−3036 発光部
5 レーザー光
6 ガラス板
7 計測器 LS3100
8 アナログ/デジタル変換器 HP3457A
9 パーソナルコンピューター[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a biaxially oriented polyester film for a magnetic recording medium, particularly for a data storage tape, and relates to a film having high strength and high dimensional stability.
[0002]
[Prior art]
Thermoplastic resin films typified by polyester films have excellent moldability and mechanical properties, so they are used for the production of packaging films, labels, surface protection films for display surfaces, ceramics and other green sheets, magnetic recording media. It is used in a wide range of fields, such as base films and electrical insulating films such as capacitors. Among them, magnetic recording media, especially data storage, are being rapidly developed with the aim of increasing the recording capacity. To increase the recording capacity, for example, in a magnetic recording medium represented by QIC, DLT, and even higher-capacity super DLT, LTO, etc., the recording density is increased, that is, the linear recording density and the track density are reduced. It is necessary to make the magnetic recording medium denser or to increase the recording area, that is, to make the magnetic recording medium thinner so that the length of the magnetic recording medium in the same volume becomes longer.
[0003]
To further increase the linear recording density and the track density, it is required that the base film constituting the magnetic recording medium has a flatter surface and higher dimensional stability. Further, when the magnetic recording medium is made thinner, when the magnetic recording medium is pulled with the same force, a state where the magnetic recording medium is pulled with higher stress is obtained. Therefore, the base film constituting the magnetic recording medium further has high strength and dimensional stability. Is required.
[0004]
In particular, when the magnetic recording medium is a linear track system, the track pitch becomes shorter as the track density increases, and the dimensional stability in the width direction of the magnetic recording medium is important, as disclosed in International Publication WO00 / 76749 (Patent Document 1) and the like. A film for a magnetic recording medium in which strength, dimensional stability and surface flatness are balanced in an extremely narrow range by making full use of stretching and heat fixing conditions is disclosed. According to the publication, the dimensional stability in the width direction is such that the expansion and contraction in the width direction due to changes in temperature and humidity is increased, and the Young's modulus in the width direction is increased. Therefore, it is important to increase the Young's modulus in the longitudinal direction.
[0005]
However, it is becoming increasingly difficult to respond to recent demands for higher capacity of magnetic recording media only by stretching and heat-setting conditions for producing a thermoplastic resin, and further increasing the strength of the thermoplastic resin film. It has been desired to improve dimensional stability and surface flatness.
[0006]
By the way, the inclusion of nanocarbon has been proposed in Japanese Patent Application Laid-Open No. 2002-365427 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2002-544356 (Patent Document 3), but the above problem has not been studied at all. Did not.
[0007]
[Patent Document 1]
International Publication WO00 / 76749
[Patent Document 2]
JP-A-2002-365427
[Patent Document 3]
JP 2002-544356 A
[0008]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art described above, and in magnetic recording media, especially in digital data storage applications of the linear track system, is excellent in film forming stability, tearability, high strength, high dimensional stability, and tape. An object of the present invention is to provide a thermoplastic resin film which is less likely to cause an error due to a track shift due to a change in width and is suitable for a base film having excellent output characteristics.
[0009]
[Means for Solving the Problems]
According to the present invention, the object of the present invention is to provide a nanometer having a diameter (D) of 0.001 to 0.1 μm, a length (L) of 0.01 to 10 μm, and an aspect ratio (L / D) of 5 to 1000. Carbon is achieved by a biaxially oriented thermoplastic resin film in which a thermoplastic resin composition in which 0.01 to 5% by weight is dispersed based on the weight of the thermoplastic resin composition is biaxially oriented.
[0010]
In a preferred embodiment of the biaxially oriented thermoplastic resin film of the present invention, (1) the nanocarbon is at least one selected from the group consisting of a zeppelin-type nanocarbon, a carbon nanohorn, and a carbon nanotube; ) That the Young's modulus of either one of the film forming direction and the direction perpendicular to the film forming direction is in the range of 6 to 20 GPa, (3) that the thermoplastic resin is polyester, particularly polyethylene-2,6-naphthalate; It also includes a biaxially oriented thermoplastic resin film having any of (4) a thickness of 2 to 10 μm and (5) a support for a magnetic recording medium.
[0011]
Further, according to the present invention, an object of the present invention is a laminated biaxially oriented thermoplastic resin film in which at least two layers made of a thermoplastic resin composition are laminated and biaxially oriented, One layer is composed of nanocarbon having a diameter (D) of 0.001 to 0.1 μm, a length (L) of 0.01 to 10 μm, and an aspect ratio (L / D) of 5 to 1000. This can also be achieved by a laminated biaxially oriented thermoplastic resin film which is a nanocarbon-containing layer composed of a thermoplastic resin composition dispersed in 0.01 to 5% by weight based on the weight of the composition.
[0012]
In a preferred embodiment of the laminated biaxially oriented thermoplastic resin film of the present invention, (1) the thickness of the nanocarbon-containing layer is in the range of 5 to 95% based on the thickness of the laminated biaxially oriented thermoplastic resin film. (2) the Young's modulus in one of the film-forming direction and the direction perpendicular to the film-forming direction is in the range of 6 to 20 GPa; (3) the thermoplastic resin is polyester, especially polyethylene-2,6- (4) a thickness of 2 to 10 μm, and (5) a nanocarbon-containing layer and a layer made of a thermoplastic resin composition not containing nanocarbon laminated on one surface thereof. The layer made of a thermoplastic resin composition containing no nanocarbon contains no inert particles, or contains 0.001 to 1.0 μm of inert particles having an average particle size of 0.01 to 2.0 μm. (6) a layer composed of a nanocarbon-containing layer and a layer composed of a thermoplastic resin composition not containing nanocarbon laminated on both sides thereof, and at least one layer composed of a nanocarbon-containing layer. The layer composed of the two nanocarbon-free thermoplastic resin compositions does not contain inert particles, or contains 0.001 to 1.0% by weight of inert particles having an average particle size of 0.01 to 2.0 μm. The present invention also encompasses a laminated biaxially oriented thermoplastic resin film which comprises any one of a thermoplastic resin composition and (7) a support for a magnetic recording medium.
[0013]
Furthermore, according to the present invention, there is also provided a magnetic recording medium comprising the above-mentioned biaxially oriented thermoplastic resin film or laminated biaxially oriented thermoplastic resin film of the present invention, and a magnetic layer provided on one surface thereof. You.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
<Thermoplastic resin>
The thermoplastic resin constituting the biaxially oriented thermoplastic resin film of the present invention is not particularly limited as long as it has the necessary moldability and mechanical properties when used as a film, especially as a base film of a magnetic recording medium. Not done. For example, polyester, nylon, polyolefin and the like can be mentioned. Among these, polyesters having high moldability and mechanical properties required for a base film of a magnetic recording medium are preferable.
[0015]
Examples of the polyester in the present invention include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethylene-α, β-bis (2-chlorophenoxy) ethane-4,4′-cycarboxylate And the like. Among these, polyethylene terephthalate and polyethylene-2,6-naphthalate, which are excellent in moldability and mechanical properties, are preferred, and polyethylene-2,6-naphthalate is most preferred because of its relatively high strength.
[0016]
The polyethylene-2,6-naphthalate in the present invention may be a single polymer, a copolymer of another polyester, or a mixture of two or more polyesters. Specifically, the repeating structural unit is substantially not only ethylene-2,6-naphthalate but also 10 mol% or less, preferably 5 mol% or less, based on the number of moles of the repeating component. Polyethylene-2,6-naphthalate copolymer and polymer mixture. Polyethylene-2,6-naphthalate preferably has a polymer intrinsic viscosity of 0.40 or more, more preferably 0.40 to 0.80. If the intrinsic viscosity is less than 0.4, process cutting may occur frequently. On the other hand, when the intrinsic viscosity exceeds 0.8, productivity during polymerization is lowered, which is not preferable.
[0017]
The polyethylene-2,6-naphthalate in the present invention is not limited at all by the production method. For example, after a transesterification reaction of an ester compound of a lower alkyl having 1 to 3 carbon atoms such as dimethyl, diethyl or dipropyl and 1,6-naphthalenedicarboxylic acid with ethylene glycol in the presence of a transesterification catalyst, It can be produced by polycondensation.
[0018]
The above description has been made for polyethylene-2,6-naphthalate, but the same can be said for other thermoplastic resins as well as other polyesters.
[0019]
By the way, the thermoplastic resin constituting the film may contain organic or inorganic inert particles as a lubricant in order to improve the winding property of the film at the time of film formation and the transportability of the film. In addition, by making nanocarbon described below also function as a lubricant, the resulting film can be provided with lubricity.
<Nanocarbon>
The biaxially oriented thermoplastic resin film of the present invention needs to have nanocarbon dispersed therein. According to the study of the present inventors, a film obtained by dispersing a specific nanocarbon in a thermoplastic resin and biaxially stretching it is made of a thermoplastic resin in which carbon nanotubes are not dispersed surprisingly. It was found that the film exhibited higher strength under the same film forming conditions than the film. A uniaxially stretched sheet in which carbon nanotubes are dispersed in a thermoplastic resin has been proposed, for example, in Japanese Patent Application Laid-Open No. 2002-365427. It was only possible to express the degree, and it was completely overlooked that the strength was improved by the carbon nanotube.
[0020]
By the way, as described above, not all types of nanocarbon can improve the strength of a thermoplastic resin, and the diameter (D), length (L), and aspect ratio (L / D) need to be within specific ranges. This will be described in detail below.
[0021]
In the present invention, the nanocarbon has a diameter (D) of 0.001 to 0.1 μm, a length (L) of 0.01 to 10 μm, and an aspect ratio (L / D) of 5 to 1000. The ratio of the nanocarbon in the crude thermoplastic resin is 0.01 to 5% by weight. In addition, the ratio in the thermoplastic composition mentioned here means, in the case of a single-layer film, the ratio in the thermoplastic composition constituting the whole film, and in the case of a laminated film composed of two or more layers, It means the ratio in the thermoplastic composition constituting the carbon-containing layer.
[0022]
If the diameter (D) of the nanocarbon is less than the lower limit, improvement in strength cannot be expected. On the other hand, if the diameter (D) exceeds the upper limit, the surface of the film becomes rough, and when it is used as a magnetic recording medium, the electromagnetic conversion characteristics of the obtained magnetic recording medium deteriorate. The diameter (D) of the preferred nanocarbon is in the range of 0.003 to 0.1 μm, more preferably 0.005 to 0.05 μm.
[0023]
If the length (L) of the nanocarbon is less than the lower limit, no improvement in strength can be expected. On the other hand, if the length (L) exceeds the upper limit, the surface of the film becomes rough, and the electromagnetic conversion characteristics of the magnetic recording medium deteriorate. The preferred length (L) of the nanocarbon is in the range of 0.03 to 5 μm, more preferably 0.05 to 4.0 μm.
[0024]
Furthermore, if the aspect ratio (L / D) of the nanocarbon is less than the lower limit, improvement in strength cannot be expected. On the other hand, if the aspect ratio (L / D) exceeds the upper limit, the nanocarbons are likely to remain entangled, so that improvement in strength cannot be expected. The preferred aspect ratio (L / D) of the nanocarbon is in the range of 7 to 900, more preferably 10 to 800.
[0025]
If the amount of nanocarbon added is less than the lower limit, improvement in strength cannot be expected. On the other hand, when the addition amount exceeds the upper limit, the film surface is roughened, the electromagnetic conversion characteristics are reduced, and the film formation becomes difficult. A preferable addition amount of the nanocarbon is in the range of 0.1 to 4.0% by weight, and more preferably 0.5 to 3.0% by weight.
[0026]
Nanocarbon has a hexagonal net-like structure consisting of 100% carbon atoms, which is a long and narrow material similar to a cylinder. Both ends of the cylinder have a hemispherical (hollow) shape. Examples thereof include a cup-shaped nanohorn having a rounded shape, a cup-stacked type in which a plurality of hollow truncated cones are overlapped, or a single-layer or two- or more-layer cylindrical carbon nanotube. Among these, carbon nanotubes and the like having a single layer or a multilayer structure of two or more layers are preferable.
[0027]
The strength of carbon nanotubes is estimated to be about 40 times that of carbon fibers, and high strength and high elastic modulus of resin molded products were expected. However, since the carbon nanotubes are in a form in which the fibers are firmly entangled with each other, even if they are dispersed in a thermoplastic resin, the strength improving effect is hardly exhibited. However, the present inventors applied nanocarbon to a biaxially oriented polyester film, selected nanocarbon capable of suppressing entanglement, and stretched by stretching in biaxial directions, thereby increasing strength and dimensional stability. It has been found that an improvement can be obtained.
[0028]
The carbon nanotubes may be contained in the entire film, but when the film is a laminated film of two or more layers, it is sufficient that at least one of the layers contains nanocarbon. For example, a two-layer structure of a layer containing no nanocarbon and a layer containing nanocarbon (a nanocarbon-containing layer), a three-layer structure in which a nanocarbon-containing layer and a layer containing no nanocarbon are laminated on both surfaces thereof, A three-layer structure in which a nanocarbon-containing layer is laminated on both surfaces of a layer that does not contain nanocarbon, and a layer structure of three or more layers in which a layer that does not contain nanocarbon or a layer that contains nanocarbon is further provided. Can be mentioned.
[0029]
The method of adding the carbon nanotubes is not particularly limited, and a master polymer in which 2 to 15% by weight of nanocarbon is dispersed in a thermoplastic resin of the same type as the thermoplastic resin forming the film is prepared, and the master polymer is formed. A high-concentration addition method in which a desired concentration is mixed with a thermoplastic resin can be preferably used.
[0030]
<Biaxially oriented thermoplastic resin film>
When the biaxially oriented thermoplastic resin film of the present invention is used as a base fill of a magnetic recording medium, at least one exposed surface of the film has a surface roughness (Ra) of 0.1 to 10 nm, and more preferably 0.5 to 10 nm. Preferably it is 5 nm. If the surface roughness exceeds 10 nm, when a magnetic layer is provided on the surface to form a magnetic tape, the surface of the magnetic layer is roughened and electromagnetic conversion characteristics are undesirably reduced. On the other hand, when the surface roughness is less than 0.1 nm, the slipperiness between the film and the film is reduced, and the winding property of the film is unfavorably deteriorated.
[0031]
As means for providing such a surface roughness to the biaxially oriented thermoplastic resin film of the present invention, besides adjusting the type, shape, size and amount of nanocarbon to be contained in the biaxially oriented thermoplastic resin film, Further, inert particles may be added, and the adjustment may be made by the type, shape, size and amount of the inert particles. In addition, it can be adjusted by a surface treatment for forming fine irregularities on at least one surface of the biaxially oriented thermoplastic resin film of the present invention, for example, a coating treatment with a lubricating agent. Examples of the inert fine particles include, for example, inorganic fine particles (for example, kaolin, alumina, titanium oxide, calcium carbonate, silicon dioxide, and the like) containing elements of Periodic Tables IIA, IIB, IVA, and IVB, silicone resins, and cross-links. Fine particles made of a polymer having high heat resistance such as polystyrene are exemplified. When inert fine particles are contained, the average particle diameter of the fine particles is preferably 0.05 to 1.0 μm, more preferably 0.1 to 0.8 μm. Further, the content of the inert fine particles is preferably 0.05 to 0.5% by weight (based on the polymer), and more preferably 0.1 to 0.3% by weight (based on the polymer). Further, two or more types of inert particles having different types, shapes or sizes may be used in combination.
[0032]
The biaxially oriented thermoplastic resin film of the present invention preferably has a Young's modulus of at least 6 GPa, more preferably at least 8 GPa, especially at least 10 GPa in the film forming direction (vertical direction) and the width direction (lateral direction). If the Young's modulus in both the vertical direction and the horizontal direction is less than 6 GPa, dimensional stability is impaired due to a change in tension and a change in temperature and humidity when the tape is used, and problems such as track misalignment are likely to occur. In addition, the effect due to the addition of nanocarbon is less likely to be exhibited. The upper limit of the Young's modulus in the film forming direction (longitudinal direction) and the width direction (horizontal direction) is not particularly limited, but is usually preferably 20 GPa or less since a sufficient Young's modulus can be imparted even in the direction perpendicular to the film. Further, the sum of the Young's modulus in the vertical direction and the horizontal direction is preferably 12 GPa or more, more preferably 15 GPa or more, and particularly preferably 17 GPa or more. Such a high Young's modulus can be obtained by drawing at a lower magnification by adding carbon nanotubes as compared with a conventional film not containing carbon nanotubes. The upper limit of the sum of the Young's modulus in the film forming direction (vertical direction) and the width direction (horizontal direction) is not particularly limited, but is usually at most 30 GPa.
[0033]
The Young's modulus in the longitudinal direction is preferably 6 GPa or more, more preferably 8 GPa or more, and particularly preferably 10 GPa or more, because the dimensional change in the width direction due to the tension change in the longitudinal direction of the tape can be suppressed. On the other hand, the Young's modulus in the horizontal direction is preferably 6 GPa or more, more preferably 8 GPa or more, and particularly preferably 10 GPa or more, because a dimensional change in the width direction of the tape due to a change in temperature and humidity can be suppressed. More preferable specific Young's modulus of the film is, for example, in the case of a base film of a magnetic recording medium of a linear recording system, the Young's modulus in the vertical direction is 6 GPa or more, further 8 GPa or more, particularly 10 GPa or more, and the Young's modulus in the horizontal direction is 4 GPa As described above, it is preferable that the Young's modulus in the vertical direction is equal to or larger than 6 GPa or 8 GPa and the Young's modulus in the horizontal direction. Further, for example, in the case of a base film of a helical recording type magnetic recording medium, the Young's modulus in the horizontal direction is 6 GPa or more, further 8 GPa or more, particularly 10 GPa or more, and the Young's modulus in the vertical direction is 4 GPa or more, 6 GPa or more, 8 GPa or more. Preferably, the Young's modulus in the horizontal direction is equal to or greater than the Young's modulus in the vertical direction.
[0034]
The thickness of the biaxially oriented thermoplastic resin film of the present invention is preferably 2 to 10 μm, more preferably 3 to 8 μm, and particularly preferably 4 to 6 μm. If the thickness is less than the lower limit, the tape strength becomes insufficient, the tape width shrinks due to the tension at the start of running, etc., causing a deviation between the track and the magnetic head, and a recording reproduction error is inevitable. On the other hand, if the thickness exceeds the upper limit, the length of the tape stored in the cartridge becomes short, and a desired storage capacity cannot be obtained.
[0035]
<Laminated biaxially oriented thermoplastic resin film>
The laminated biaxially oriented thermoplastic resin film of the present invention comprises two or more layers, and at least one of the layers may contain nanocarbon. For example, a two-layer structure of a layer containing no nanocarbon and a layer containing nanocarbon (a nanocarbon-containing layer), a three-layer structure in which a nanocarbon-containing layer and a layer containing no nanocarbon are laminated on both surfaces thereof, A three-layer structure in which a nanocarbon-containing layer is laminated on both surfaces of a layer that does not contain nanocarbon, and a layer structure of three or more layers in which a layer that does not contain nanocarbon or a layer that contains nanocarbon is further provided. Can be mentioned.
[0036]
The content of the nanocarbon needs to be in the range of 0.01 to 5% by weight based on the weight of the thermoplastic resin composition constituting the nanocarbon-containing layer. If the amount of nanocarbon added is less than the lower limit, improvement in strength cannot be expected. On the other hand, when the addition amount exceeds the upper limit, the film surface is roughened, the electromagnetic conversion characteristics are reduced, and the film formation becomes difficult. A preferable addition amount of the nanocarbon is in the range of 0.1 to 4.0% by weight, and more preferably 0.5 to 3.0% by weight.
[0037]
When the laminated biaxially oriented thermoplastic resin film of the present invention is used as a base fill of a magnetic recording medium, the surface roughness (Ra) of at least one exposed surface of the film is 0.1 to 10 nm, and more preferably 0.5 to 10 nm. Preferably it is 5 nm. If the surface roughness exceeds 10 nm, when a magnetic layer is provided on the surface to form a magnetic tape, the surface of the magnetic layer is roughened and electromagnetic conversion characteristics are undesirably reduced. On the other hand, when the surface roughness is less than 0.1 nm, the slipperiness between the film and the film is reduced, and the winding property of the film is unfavorably deteriorated. The other surface of the laminated biaxially oriented thermoplastic resin film of the present invention, that is, the surface (running surface) on which the magnetic layer is not provided, preferably has a surface roughness (Ra) of 5 to 30 nm, more preferably 5 to 15 nm. . When Ra is less than 5, the winding property at the time of film production is poor, and it is difficult to obtain a product having a good winding appearance. On the other hand, if Ra exceeds 30 nm, the roughness of the magnetic surface is affected, and the electromagnetic conversion characteristics are deteriorated.
[0038]
Such surface roughness, the layer constituting the laminated biaxially oriented thermoplastic resin film of the present invention, in addition to adjusting the type, shape, size and addition amount of nanocarbon to be contained in the layer forming the exposed surface, in particular Further, inert particles can be added to the layer, and the adjustment can be made by the kind, shape, size and amount of the inert particles. In addition, it can be adjusted by a surface treatment for forming fine irregularities on at least one surface of the biaxially oriented thermoplastic resin film of the present invention, for example, a coating treatment with a lubricating agent. Examples of the inert fine particles include inorganic fine particles (for example, kaolin, alumina, titanium oxide, calcium carbonate, silicon dioxide, etc.) containing the above elements of the periodic table Nos. IIA, IIB, IVA, and IVB, silicone resins, Fine particles made of a polymer having high heat resistance, such as cross-linked polystyrene, may be used. When inert fine particles are contained, the average particle diameter of the fine particles is preferably 0.05 to 1.0 μm, more preferably 0.1 to 0.8 μm. Further, the content of the inert fine particles is preferably 0.05 to 0.5% by weight (based on the polymer), and more preferably 0.1 to 0.3% by weight (based on the polymer). Further, two or more types of inert particles having different types, shapes or sizes may be used in combination.
[0039]
The same can be said for the Young's modulus of the laminated biaxially oriented thermoplastic resin film of the present invention as in the description of the aforementioned biaxially oriented thermoplastic resin film.
[0040]
The thickness of the laminated biaxially oriented thermoplastic resin film of the present invention is preferably 2 to 10 μm, more preferably 3 to 8 μm, and particularly preferably 4 to 6 μm. If the thickness is less than the lower limit, the tape strength becomes insufficient, the tape width shrinks due to the tension at the start of running, etc., causing a deviation between the track and the magnetic head, and a recording reproduction error is inevitable. On the other hand, if the thickness exceeds the upper limit, the length of the tape stored in the cartridge becomes short, and a desired storage capacity cannot be obtained.
[0041]
Further, a preferred embodiment of the laminated biaxially oriented thermoplastic resin film of the present invention will be described.
[0042]
First, the laminated biaxially oriented thermoplastic resin film of the present invention may be composed of two layers: a nanocarbon-containing layer and a layer composed of a thermoplastic resin composition not containing nanocarbon laminated on one surface thereof. preferable. As described above, the nanocarbon roughens the surface of the film. On the other hand, when used as a base film of a magnetic recording medium, the surface on which the magnetic layer is formed is preferably as smooth as possible. Therefore, a layer containing no nanocarbon is preferable on the surface on which the magnetic layer is formed.
[0043]
Further, the layer made of a thermoplastic resin composition containing no nanocarbon does not contain inert particles, or even if it contains inert particles, has an average particle size of 0.01 to 2.0 μm, more preferably 0.01 to 1.0 μm, particularly Thermoplastic containing 0.05 to 0.5 μm of inert particles in the range of 0.001 to 1.0% by weight, more preferably 0.005 to 0.5% by weight, especially 0.007 to 0.3% by weight It is preferable that the resin composition is composed of a resin composition. If the average particle size or the content of the inert particles exceeds the upper limit, the film surface becomes rough, and the electromagnetic conversion characteristics when used as a magnetic recording medium are likely to deteriorate. On the other hand, if the average particle size or the content of the inert particles is below the lower limit, the effect of improving the running property of the film by adding the inert particles is hardly exhibited. Here, "not containing inert particles" means that the catalyst is not actively precipitated or inert particles are not added from the outside.
[0044]
Next, the laminated biaxially oriented thermoplastic resin film of the present invention is preferably composed of three layers: a nanocarbon-containing layer and a layer composed of a thermoplastic resin composition not containing nanocarbon laminated on both surfaces thereof. . As described above, the nanocarbon roughens the surface of the film. On the other hand, when used as a base film of a magnetic recording medium, the surface on which the magnetic layer is formed is preferably as smooth as possible. Therefore, a layer containing no nanocarbon is preferable on the surface on which the magnetic layer is formed.
[0045]
Further, the layer made of a thermoplastic resin composition containing no nanocarbon does not contain inert particles, or even if it contains inert particles, has an average particle size of 0.01 to 2.0 μm, more preferably 0.01 to 1.0 μm, particularly Thermoplastic containing 0.05 to 0.5 μm of inert particles in the range of 0.001 to 1.0% by weight, more preferably 0.005 to 0.5% by weight, especially 0.007 to 0.3% by weight It is preferable that the resin composition is composed of a resin composition. If the average particle size or the content of the inert particles exceeds the upper limit, the film surface becomes rough, and the electromagnetic conversion characteristics when used as a magnetic recording medium are likely to deteriorate. On the other hand, if the average particle size or the content of the inert particles is below the lower limit, the effect of improving the running property of the film by adding the inert particles is hardly exhibited. Here, "not containing inert particles" means that the catalyst is not actively precipitated or inert particles are not added from the outside.
[0046]
<Film forming method>
The biaxially oriented thermoplastic resin film in the present invention can be produced, for example, according to the following method.
[0047]
First, a thermoplastic resin pellet containing a high concentration of nanocarbon and a thermoplastic resin pellet containing no nanocarbon are mixed at a predetermined ratio, and dried, and then, for example, the thermoplastic resin is made of polyethylene-2,6-naphthalate. In such a case, an unstretched film can be prepared by extruding through a T-die from an extruder at a melting temperature of 280 ° C. to 330 ° C., casting on a cooling drum, cooling and solidifying. In the case of polyethylene-2,6-naphthalate, the unstretched film is stretched in the longitudinal direction at a temperature of 100 to 170 ° C at a magnification of 3 to 8 times, and then at a temperature of 115 to 180 ° C in a direction perpendicular to the stretching direction. Stretch at a magnification of up to 7 times. Or, if necessary, the stretching in the vertical and horizontal directions may be performed in two or more stages (multi-stage stretching, three-stage stretching in the vertical-horizontal-vertical direction, four-stage stretching in the vertical-horizontal-vertical-horizontal direction, etc.) . Moreover, you may implement by simultaneous biaxial stretching. Thus, the total stretching ratio is preferably 10 to 60 times, more preferably 20 to 50 times as the area stretching ratio. The biaxially oriented film is preferably heat-set at a temperature of 180 to 250 ° C, more preferably at 200 to 230 ° C, and the heat-setting time is preferably 1 to 60 seconds.
[0048]
In addition, the laminated biaxially oriented thermoplastic resin film of the present invention uses two extruders, and sends and melts a pellet containing carbon nanotubes to at least one extruder, and extrudes it from a two-layer or multilayer die. The treatment may be performed by repeating the same operation as the above-described biaxially oriented thermoplastic resin film of the present invention.
[0049]
<Magnetic recording medium>
The biaxially oriented thermoplastic resin film and laminated biaxially oriented thermoplastic resin film of the present invention have excellent Young's modulus, dimensional stability, flatness, slipperiness, winding property, etc., and have a high density magnetic recording medium. In particular, it is preferably used as a base film of a digital recording type magnetic machine recording medium.
[0050]
The magnetic recording medium using the biaxially oriented polyester film or the laminated biaxially oriented thermoplastic resin film of the present invention has a magnetic layer applied to one surface (flat surface in the case of lamination), or vacuum evaporation, sputtering, ion A ferromagnetic metal thin film layer composed of iron, cobalt, chromium or an alloy or oxide containing these as a main component is formed by a method such as plating. A protective layer such as (DLC) and a fluorinated carboxylic acid-based lubricating layer are sequentially provided, and a back coat layer is further provided on the surface opposite to the magnetic layer.
[0051]
【Example】
Hereinafter, the present invention will be further described based on examples. The various physical properties and characteristics in the present invention are measured and defined as follows.
[0052]
(1) Young's modulus
Using a tensile tester “Tensilon” manufactured by Toyo Baldwin Co., Ltd., in a room adjusted to a temperature of 20 ° C. and a humidity of 50%, a film is formed to a sample width of 10 mm and a length of 15 cm along the film forming direction and the width direction. The film is pulled in the film forming direction and the width direction at a pulling speed of 10 mm / min and a chart speed of 500 mm / min with the cut and chuck being 100 mm, and the film forming direction and the width of the film are obtained from the tangent line at the rising portion of the obtained load-elongation curve. Calculate the Young's modulus of each direction.
[0053]
(2) Diameter and length of nanocarbon
The diameter and length are observed with a transmission electron microscope (TEM), 100 nanocarbons are measured for each, and the average is determined.
[0054]
(3) Average particle size of inert particles
The measurement is performed using a Shimadzu Corporation CP-50 type centrifugal particle size analyzer (Centrifugal Particle Size Analyzer). From the cumulative curve of the particle size of each particle size and its abundance calculated based on the obtained centrifugal sedimentation curve, the particle size corresponding to 50 mass percent was read, and this value was defined as the average particle size. I do.
[0055]
(4) Residual shrinkage in the width direction after application of a load in the longitudinal direction of the film (αW)
Under an atmosphere of a temperature of 23 ° C. and a humidity of 50%, a film slit to 12.65 mm (1 / inch) is set as shown in FIG. In addition, in order to measure the width dimension of the sample slit to 12.65 mm with a detector, gold is vapor-deposited on the surface in advance by sputtering. In this state, a 22 MPa weight is attached to one side of the film (the other is fixed), and the width of the film (L1) Is measured with a Keyence laser diameter measuring instrument (body: 3100 type, sensor: 3060 type).
[0056]
Then, under high temperature and high humidity of 49 ° C. (120 ° F.) × 90% RH, a weight of 170 g (6 oz) was attached to one side (the other was fixed), and after treating for 72 hr (3 days), the weight was removed. After controlling the humidity for 24 hours in an atmosphere at a temperature of 23 ° C. and a humidity of 50%, a 22 MPa weight is again attached to one side (the other is fixed) of the film, and the width of the film (L2) Is measured with a Keyence laser diameter measuring instrument (body: 3100 type, sensor: 3060 type).
[0057]
From the dimensions before and after the temperature and humidity treatment measured above, the width dimension change (αW) before and after the temperature and humidity treatment under load is calculated by the following equation.
[0058]
(Equation 1)
αW = {(L1-L2) × / L1} × 100 (%)
[0059]
(5) Thermal expansion coefficient (αt)
A film sample is cut out to a length of 15 mm and a width of 5 mm in the lateral direction of the film, set on a TMA3000 manufactured by Vacuum Riko, pretreated at 60 ° C. for 30 minutes in a nitrogen atmosphere, and then cooled to room temperature. Thereafter, the temperature is raised from 25 ° C. to 70 ° C. at a rate of 2 ° C./min, the sample length at each temperature is measured, and the thermal expansion coefficient (αt) is calculated from the following equation.
[0060]
(Equation 2)
αt = {(L2-L1) / (L1× ΔT)} × 106+0.5
Here, L in the above equation1: Sample length (mm) at 40 ° C, L2: Sample length (mm) at 60 ° C, ΔT: 20 (= 60-40 ° C). Further, 0.5 in the equation is the thermal expansion coefficient of the quartz glass (× 10-6).
[0061]
(6) Humidity expansion coefficient (αh)
A film sample was cut out to a length of 15 mm and a width of 5 mm in the lateral direction of the film, set on a TMA3000 manufactured by Vacuum Riko, and kept at a constant humidity of 30% RH and 70% RH under a nitrogen atmosphere. Is measured, and the humidity expansion coefficient is calculated by the following equation.
[0062]
(Equation 3)
αh = {(L2-L1) × / (L1× ΔH)} × 106
Here, L in the above equation1: Sample length (mm) at 30% RH and L2: Sample length (mm) at a humidity of 70% RH, ΔH: 40 (= 70-30% RH).
[0063]
[Example 1]
Polyethylene-2 having an intrinsic viscosity (orthochlorophenol, 35 ° C) of 0.60 and containing 4.0% by weight of carbon nanotubes composed of an average of eight layers of cylindrical graphite having an average diameter of 0.005 μm and an average length of 0.05 μm. After drying 6-naphthalate at 180 ° C. for 5 hours, it is supplied to an extruder hopper, melted at 300 ° C., and, using a T-type extrusion die, on a casting drum having a surface finish of 0.3 S and a surface temperature of 60 ° C. And rapidly solidified to obtain an unstretched film.
[0064]
The unstretched film thus obtained was preheated at 120 ° C., further stretched 5.4 times by heating with an infrared heater having a surface temperature of 830 ° C. from 14 mm above between low-speed and high-speed rolls, It was quenched and then supplied to a stenter and stretched 4.8 times in the transverse direction at 125 ° C. Subsequently, the film was heat-set at 225 ° C. for 3 seconds to obtain a biaxially oriented polyester film having a thickness of 4.5 μm. The resulting biaxially oriented polyester film had a Young's modulus of 10 GPa in the vertical direction and 7 GPa in the horizontal direction.
[0065]
On the other hand, the composition shown below was put into a ball mill, kneaded and dispersed for 16 hours, and then 5 parts by weight of an isocyanate compound (Desmodur L manufactured by Bayer AG) was added, followed by high-speed shearing and dispersion for 1 hour to obtain a magnetic paint.
Composition of magnetic paint:
Acicular Fe particles 100 parts by weight
15 parts by weight of vinyl chloride-vinyl acetate copolymer
(Eslec 7A manufactured by Sekisui Chemical)
5 parts by weight of thermoplastic polyurethane resin
Chromium oxide 5 parts by weight
5 parts by weight carbon black
Lecithin 2 parts by weight
1 part by weight of fatty acid ester
50 parts by weight of toluene
50 parts by weight of methyl ethyl ketone
Cyclohexanone 50 parts by weight
This magnetic paint is applied to one side of the above-mentioned polyethylene-2,6-naphthalate film so as to have a coating thickness of 0.5 μm, then subjected to an orientation treatment in a DC magnetic field of 2500 gauss, and dried by heating at 100 ° C. Thereafter, the resultant was subjected to a super calender treatment (linear pressure: 200 kg / cm, temperature: 80 ° C.) and wound up. The wound roll was left in an oven at 55 ° C. for 3 days.
[0066]
Further, a back coat layer paint having the following composition was applied to a thickness of 1 μm, dried, and further cut into 6.35 mm (= 1 ′ / 4) to obtain a magnetic tape.
Backcoat layer paint composition:
100 parts by weight of carbon black
60 parts by weight of thermoplastic polyurethane resin
18 parts by weight of isocyanate compound
(Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.)
0.5 parts by weight of silicone oil
250 parts by weight of methyl ethyl ketone
50 parts by weight of toluene
Table 1 shows the properties of the obtained biaxially oriented polyester film and magnetic tape.
[0067]
[Example 2]
Polyethylene-2,6-naphthalate for layer A containing 2.0% by weight of a single-layer cylindrical graphite carbon nanotube having an average diameter of 0.05 μm and an average length of 0.5 μm, spherical shape with an average particle diameter of 0.1 μm After drying polyethylene-2,6-naphthalate for layer B containing 0.01% by weight of silica particles at 180 ° C. for 5 hours, it is supplied to another extruder hopper and melted at a melting temperature of 300 ° C. to obtain a multi-manifold type. The A layer and the B layer were laminated using a co-extrusion die, quenched and solidified on a casting drum maintained at a surface finish of 0.3 S and a surface temperature of 60 ° C. to obtain a laminated unstretched film. The thickness of each layer is 60% for the layer A and 40% for the layer B.
[0068]
The thus obtained laminated unstretched film is preheated at 120 ° C., further stretched 5.9 times by heating with an infrared heater having a surface temperature of 830 ° C. from 14 mm above between low and high speed rolls. After quenching, the mixture was supplied to a stenter, stretched 4.5 times in the horizontal direction at 125 ° C., and further stretched 1.15 times in the horizontal direction at 170 ° C., for a total of 5.2 times. Subsequently, heat fixation was performed at 225 ° C. for 3 seconds to obtain a laminated biaxially oriented polyester film having a thickness of 4.5 μm. The resulting film had a Young's modulus of 11 GPa in the vertical direction and 8 GPa in the horizontal direction.
[0069]
After the heat treatment was performed in the same manner as in Example 1, the same magnetic paint as in Example 1 was applied to the B layer surface, and the same back coat as in Example 1 was applied to the opposite A layer surface, and a magnetic tape was obtained and evaluated. Table 1 shows the results.
[0070]
[Example 3]
Polyethylene-2,6-naphthalate for layer A containing 1.0% by weight of a zeppelin-type carbon nanotube having an average diameter of 0.01 μm and an average length of 1.0 μm, and 0.1% by weight of silicone particles having an average particle diameter of 0.3 μm % Of polyethylene-2,6-naphthalate for layer B, dried at 180 ° C. for 5 hours, fed to another extruder hopper and melted at a melting temperature of 300 ° C. The polymer for use was arranged on both sides, and each layer thickness was 1.5 / 2.5 / 0.5 μm.
[0071]
The unstretched film thus obtained was preheated at 120 ° C., further stretched 2.3 times by heating with an infrared heater having a surface temperature of 830 ° C. from 14 mm above between low-speed and high-speed rolls, It is quenched and subsequently supplied to a stenter, stretched 5.0 times in the transverse direction at 125 ° C., heat-set at 160 ° C. for 3 seconds, preheated at 140 ° C., and further cooled between low-speed and high-speed rolls. It is stretched 3.1 times by heating with an infrared heater having a surface temperature of 830 ° C. from above 14 mm, quenched, and then supplied to a stenter, stretched 1.1 times in the horizontal direction at 170 ° C. After heat setting at 3 ° C. for 3 seconds, a laminated biaxially oriented polyester film having a thickness of 4.5 μm was obtained. The resulting film had a Young's modulus of 16 GPa in the vertical direction and 7 GPa in the horizontal direction.
[0072]
After the heat treatment was performed in the same manner as in Example 1, the same magnetic paint as in Example 1 was applied to the B layer surface, and the same back coat as in Example 1 was applied to the opposite A layer surface, and a magnetic tape was obtained and evaluated. Table 1 shows the results.
[0073]
[Example 4]
Polyethylene-2,6-naphthalate for layer A containing 1.0% by weight of two layers of carbon nanotubes having an average diameter of 0.005 μm and an average length of 4 μm, and 0.1% by weight of spherical silica particles having an average diameter of 0.1 μm % Of polyethylene-2,6-naphthalate for layer B, dried at 180 ° C. for 5 hours, fed to another extruder hopper and melted at a melting temperature of 300 ° C. The polymer for use was arranged on both sides, and each layer thickness was 1.5 / 1.5 / 1.5 μm.
[0074]
The thus obtained laminated unstretched film is preheated at 120 ° C. and further stretched 2.3 times by heating with an infrared heater having a surface temperature of 830 ° C. from 14 mm above between low-speed and high-speed rolls. Quenched, then supplied to a stenter, stretched 5.0 times in the transverse direction at 125 ° C., heat-set at 160 ° C. for 3 seconds, preheated at 140 ° C., and further between low-speed and high-speed rolls. The film was heated by an infrared heater having a surface temperature of 830 ° C. from 14 mm above and stretched 3.1 times, quenched, and subsequently supplied to a stenter, and stretched 1.3 times horizontally at 170 ° C. After heat setting at 215 ° C. for 3 seconds, a laminated biaxially oriented polyester film having a thickness of 4.5 μm was obtained. The resulting film had a Young's modulus of 13 GPa in the vertical direction and 8 GPa in the horizontal direction.
[0075]
After the heat treatment was performed in the same manner as in Example 1, the same magnetic paint as in Example 1 was applied to the B layer surface, and the same back coat as in Example 1 was applied to the opposite A layer surface, and a magnetic tape was obtained and evaluated. Table 1 shows the results.
[0076]
[Comparative Example 1]
180% polyethylene-2,6-naphthalate containing 0.02% by weight of calcium carbonate particles having an average particle diameter of 0.6 μm and 0.2% by weight of silica particles having an average particle diameter of 0.1 μm without adding carbon nanotubes. After drying at 5 ° C. for 5 hours, the mixture was supplied to an extruder hopper, and a biaxially oriented film having a thickness of 4.5 μm was obtained in the same manner as in Example 1. The magnetic tape was obtained in the same manner as in Example 1. Table 1 shows the results.
[0077]
[Comparative Example 2]
180% polyethylene-2,6-naphthalate containing 0.02% by weight of calcium carbonate particles having an average particle diameter of 0.6 μm and 0.2% by weight of silica particles having an average particle diameter of 0.1 μm without adding carbon nanotubes. After drying at 5 ° C. for 5 hours, it was supplied to an extruder hopper to obtain an unstretched film.
[0078]
The unstretched film thus obtained was preheated at 120 ° C., further stretched 2.3 times by heating with an infrared heater having a surface temperature of 830 ° C. from 14 mm above between low-speed and high-speed rolls, It is quenched and subsequently supplied to a stenter, stretched 5.0 times in the transverse direction at 125 ° C., heat-set at 160 ° C. for 3 seconds, preheated at 140 ° C., and further cooled between low-speed and high-speed rolls. It is stretched 3.5 times by heating with an infrared heater having a surface temperature of 830 ° C. from above 14 mm, quenched, and subsequently supplied to a stenter, stretched 1.1 times in the horizontal direction at 170 ° C., and 215 After heat-setting at 3 ° C. for 3 seconds, a biaxially oriented film having a thickness of 4.5 μm was obtained. Although the Young's modulus of the obtained film was 16 GPa in the vertical direction and 7 GPa in the horizontal direction, the film was frequently cut, and no roll sample was obtained.
[0079]
[Comparative Example 3]
A biaxially oriented film having a thickness of 4.5 μm was obtained in the same manner as in Example 1, except that the content of the carbon nanotubes was changed to those described in Table 1. The magnetic tape was obtained in the same manner as in Example 1.
[0080]
[Comparative Example 4]
A film was formed in the same manner as in Example 1 except that the content of the carbon nanotube was changed to the content described in Table 1, but the amount of the carbon nanotube added was large and the film could not be formed.
[0081]
[Comparative Examples 5 to 8]
A biaxially oriented film having a thickness of 4.5 μm was obtained in the same manner as in Example 1 except that the carbon nanotubes were changed to the contents described in Table 1. The magnetic tape was obtained in the same manner as in Example 1.
[0082]
[Table 1]
[0083]
PEN in Table 1 indicates polyethylene-2,6-naphthalate.
[0084]
【The invention's effect】
According to the present invention, it is possible to provide a biaxially oriented polyester film suitable for a magnetic recording medium useful as a digital data storage tape which does not generate an error rate due to track deviation, has excellent output characteristics, and can be used for a long time.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an apparatus for measuring a residual shrinkage (αW) in a width direction after application of a load in a longitudinal direction of a film.
[Explanation of symbols]
1 sample
2 load
3 Light sensor LS-3036 Light receiving part
4 Light sensor LS-3036 Light emitting unit
5 Laser light
6 glass plate
7 Measuring instrument LS3100
8 analog / digital converter HP3457A
9 Personal computer