JP2004290249A - 超音波撮像装置及び超音波撮像方法 - Google Patents
超音波撮像装置及び超音波撮像方法 Download PDFInfo
- Publication number
- JP2004290249A JP2004290249A JP2003083176A JP2003083176A JP2004290249A JP 2004290249 A JP2004290249 A JP 2004290249A JP 2003083176 A JP2003083176 A JP 2003083176A JP 2003083176 A JP2003083176 A JP 2003083176A JP 2004290249 A JP2004290249 A JP 2004290249A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- boundary
- scanning
- scanning line
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
- G01S7/5206—Two-dimensional coordinated display of distance and direction; B-scan display
- G01S7/52063—Sector scan display
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52046—Techniques for image enhancement involving transmitter or receiver
- G01S7/52047—Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52085—Details related to the ultrasound signal acquisition, e.g. scan sequences
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
【課題】必要な情報を取得しつつ、被検体を高速に走査することができる超音波撮像装置等を提供する。
【解決手段】この超音波撮像装置は、超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子10と、超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、超音波用探触子から送信される超音波ビームによって、設定された走査線密度で被検体を走査させる発火タイミングコントローラ20と、超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得る位相整合演算部42と、位相整合演算部42によって得られた複数の検出信号に基づいて被検体内に存在する媒質の境界の連続性を判定する不連続領域判定部43と、前記発火タイミングコントローラに第1の走査線密度を設定した後に、不連続領域判定部43の判定結果に応じて第1の走査線密度よりも高い第2の走査線密度を設定する走査制御部44とを含む。
【選択図】 図1
【解決手段】この超音波撮像装置は、超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子10と、超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、超音波用探触子から送信される超音波ビームによって、設定された走査線密度で被検体を走査させる発火タイミングコントローラ20と、超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得る位相整合演算部42と、位相整合演算部42によって得られた複数の検出信号に基づいて被検体内に存在する媒質の境界の連続性を判定する不連続領域判定部43と、前記発火タイミングコントローラに第1の走査線密度を設定した後に、不連続領域判定部43の判定結果に応じて第1の走査線密度よりも高い第2の走査線密度を設定する走査制御部44とを含む。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、超音波を送受信することにより生体内臓器の診断や非破壊検査を行うために用いられる超音波撮像装置及び超音波撮像方法に関する。
【0002】
【従来の技術】
医療分野においては、被検体の内部を観察して診断を行うために、様々な画像技術が開発されている。その中でも、超音波を送受信することによって被検体の内部情報を取得する超音波撮像は、X線写真やRI(radio isotope)シンチレーションカメラ等の他の医用画像技術と異なり、放射線による被曝がない。そのため、超音波撮像は、安全性の高い画像技術として、産科領域における胎児診断、婦人科系、循環器系、消化器系等を含む幅広い領域において利用されている。
【0003】
また、超音波撮像においては、上記のX線写真等の画像技術と異なり、探触子を用いて取得された超音波情報をディスプレイ装置にリアルタイムに表示することが可能である。そのため、例えば、循環器系のように、様子が刻々と変化する臓器を観察する等の場合に特に有利である。
【0004】
【発明が解決しようとする課題】
しかしながら、超音波撮像においては、臓器等の観察を行っている間に、被検体である患者は拘束されているため、患者の身体的負担は大きい。そこで、高速に超音波撮像を行うために走査間隔を一律に粗くすると、診断に必要な詳細な情報が漏れてしまう恐れがある。そのため、診断に必要な情報を取得しつつ、全体として被検体を高速に超音波撮像することができる装置や方法の開発が望まれている。
そこで、上記の点に鑑み、本発明は、必要な情報を取得しつつ、被検体を高速に走査することができる超音波撮像装置及び超音波撮像方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の課題を解決するため、本発明に係る超音波撮像装置は、複数の駆動信号に従ってそれぞれ動作する複数の超音波トランスデューサによって超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子と、該超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、超音波用探触子から送信される超音波ビームによって、設定された走査線密度で被検体を走査させる送信側信号処理手段と、超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得る受信側信号処理手段と、該受信側信号処理手段によって得られた複数の検出信号に基づいて、被検体内に存在する媒質の境界の連続性を判定する判定手段と、送信側信号処理手段に対し、第1の走査線密度を設定した後に、判定手段の判定結果に応じて、第1の走査線密度よりも高い第2の走査線密度を設定する制御手段とを具備する。
【0006】
また、本発明に係る超音波撮像方法は、複数の駆動信号に従ってそれぞれ動作する複数の超音波トランスデューサによって超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子を用いて、被検体を撮像する超音波撮像方法であって、超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、超音波用探触子から送信される超音波ビームによって第1の走査線密度で被検体を走査するステップ(a)と、超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得るステップ(b)と、ステップ(b)において得られた複数の検出信号に基づいて、被検体内に存在する媒質の境界の連続性を判定するステップ(c)と、ステップ(c)における判定結果に応じて、走査線の密度を第1の走査線密度よりも高い第2の走査線密度に変更して被検体を走査するステップ(d)とを具備する。
【0007】
本発明によれば、検出された媒質の境界の連続性に応じて走査線密度をアダプティブに変更するので、重要な情報が含まれる領域について詳細な超音波情報を取得しつつ、走査領域の全体を高速に走査できる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。
図1は、本発明の第1の実施形態に係る超音波撮像装置の構成を示すブロック図である。この超音波撮像装置は、例えば、人体等の診察用の超音波診断装置や工業用の探傷装置として用いられる。
【0009】
図1に示すように、この超音波撮像装置は、被検体に当接させて用いられる超音波用探触子10を含んでいる。超音波用探触子10は、2次元状(N×N)に配置されて2次元トランスデューサアレイを構成する複数(N2個)の超音波トランスデューサ10aを備えている。各超音波トランスデューサ10aは、入力される駆動信号に基づいて超音波を発生すると共に、被検体から反射されて生じた超音波エコーを受信して検出信号を出力する。超音波トランスデューサ10aとしては、例えば、PZT(Pb(lead) zirconate titanate:チタン酸ジルコン酸鉛)等のセラミック圧電材やPVDF(polyvinyl difluoride:ポリフッ化ビニリデン)等の高分子圧電材を材料とする圧電素子を用いることができる。本実施形態においては、1つの超音波トランスデューサが超音波の送信と受信の両方に用いられるが、超音波の送信と受信のために別々の超音波トランスデューサを備えるようにしても良い。
【0010】
あるいは、このような圧電素子を超音波の送信素子として用い、微細な光ファイバーの先端にそれぞれ形成されたファブリーペロー共振器(FPRと略称)又はファイバーブラッググレーティング等を超音波の受信素子として用い、これらを組み合わせて超音波用探触子10を構成しても良い。なお、本実施形態においては2次元トランスデューサアレイを用いているが、これ以外に、1次元、又は、1.5次元等のトランスデューサアレイを用いても良い。
【0011】
また、この超音波撮像装置は、発火タイミングコントローラ20と、複数のパルサ回路21と、複数のレシーバ30とを含んでいる。
複数のパルサ回路21及び複数のレシーバ30は、複数の超音波トランスデューサ10aにそれぞれ接続されている。
発火タイミングコントローラ20は、所定のタイミングで複数の発火信号を複数のパルサ回路21にそれぞれ供給する。本実施形態において、発火タイミングコントローラ20は、電子回路によって構成されているが、パターンジェネレータ等によって構成されても良い。
【0012】
複数のパルサ回路21は、発火タイミングコントローラ20から供給される発火信号に従って、複数の駆動信号を超音波用探触子10に出力する。パルサ回路としては、高い繰り返し周期(例えば、3MHz〜10MHz)で連続的に駆動信号を出力できる高速パルサ回路を用いることが望ましい。
複数のパルサ回路21から駆動信号を供給されると、超音波用探触子10に含まれる複数の超音波トランスデューサ10aは、対応するパルサ回路12から出力された駆動信号に基づいて超音波パルスを発生する。これらの超音波パルスの合波により、所望の方向に偏向された送信ビーム(走査線)が形成される。
【0013】
複数のレシーバ30は、対応する超音波トランスデューサ10aが出力した検出信号について、信号処理を行う。各レシーバ30は、プリアンプ31、TGC(time gain compensation:時間利得補償)増幅器32及びA/Dコンバータ33を含んでいる。超音波トランスデューサ10aから出力された検出信号は、対応するレシーバ30に含まれるプリアンプ31及びTGC増幅器32においてアナログ処理を施される。このアナログ処理により、これらの検出信号のレベルが、A/Dコンバータ33の入力信号レベルに整合される。TGC増幅器32から出力されたアナログ信号は、A/Dコンバータ33によってそれぞれディジタル信号(データ)に変換される。
【0014】
また、この超音波撮像装置は、システム制御部40と、メモリ41と、位相整合演算部42と、不連続領域判定部43と、走査制御部44と、表示画像演算部45と、画像表示部46とを含んでいる。システム制御部40は、この超音波撮像装置の各部を制御している。
メモリ41は、複数のレシーバ30にそれぞれ対応する複数のラインを含んでおり、それぞれのレシーバ30から出力された検出データを時系列に記憶する。
【0015】
位相整合演算部42は、検出データの位相を整合するための演算処理、即ち、受信フォーカス処理を行う。位相整合演算部42は、メモリ41に記憶されている複数の検出データに所望の遅延を与えて加算する。これにより、所望の走査線に沿った超音波情報を表す音線データが生成される。位相整合演算部42は、シフトレジスタ遅延線、ディジタル微小遅延器、若しくは、CPU(central processing unit:中央演算装置)とソフトウエア、又は、これらの組み合わせによって構成されている。
【0016】
不連続領域判定部43は、位相整合演算部42によって生成された音線データに基づいて、被検体内に存在する媒質の境界を検出し、近隣の複数の領域における媒質の境界の連続性を判定することにより、媒質の境界が不連続となっている領域を検出する。
走査制御部44は、不連続領域判定部43の判定結果に基づいて、被検体内の走査領域及び走査線密度を設定する。
【0017】
表示画像演算部45は、位相整合演算部42から出力された音線データに対して、検出波形の検波や、所定の画像処理を行う。また、表示画像演算部45は、画像処理されたデータについて走査フォーマットの変換を行うことにより、超音波ビームの走査空間の画像データを物理空間の画像データに変換する。なお、3次元画像の表示を行う場合には、走査フォーマットの変換の前に、複数枚の断層データから、ある体積についてのデータであるボクセルデータ(voxel データ)を生成する処理を行っても良い。
【0018】
画像表示部46は、表示画像演算部45によって走査フォーマットが変換された画像データをD/A変換によってアナログ信号に変換し、これらの信号に基づいて超音波画像を表示する。
【0019】
次に、本発明の第1の実施形態に係る超音波撮像方法について、図1〜図8を参照しながら説明する。
本実施形態に係る超音波撮像方法は、被検体内に存在する媒質の境界の連続性に応じて、走査線密度をアダプティブに変化させて被検体を走査するものである。ここで、一般に、超音波診断において反射源の形状や大きさを把握する場合には、反射源の輪郭が連続的に変化する領域よりも、不連続に変化する領域の方が重要である。例えば、図2に示すように、セクタ領域1内に反射源2が存在する場合に、反射源に関する位置情報が緩やかに変化する領域Bよりも、位置情報が不連続であったり、連続的であっても急峻に変化する領域Aや領域Cの方に、多くの重要な情報が含まれている。そこで、本実施形態に係る超音波撮像方法においては、反射源に関する位置情報が連続的に変化する領域については、低い走査線密度で粗く走査し、位置情報が不連続に変化する領域については、高い走査線密度で細かく走査することにより、超音波情報を得ている。
【0020】
図3は、本実施形態に係る超音波撮像方法を示すフローチャートである。
まず、ステップS1において、超音波撮像装置は、被検体内の走査領域を、低い走査線密度で走査する。即ち、図4に示すように、走査対象であるセクタ領域1を走査する場合に、通常、走査線間隔がΔθとなるように走査するところを、本実施形態においては、図5に示すように、例えば、走査線間隔が3×Δθとなるように走査する。そのために、走査制御部44の制御により、発火タイミングコントローラ20から複数のパルサ回路21に発火信号が供給される。これに応じて、それぞれのパルサ回路21は、供給された発火信号に基づいて、対応する超音波トランスデューサ10aに駆動信号を出力する。これにより、3×Δθの間隔で超音波ビームが順次送信される。
【0021】
また、複数の超音波トランスデューサ10aは、送信された超音波ビームが反射源から反射されることによって生じた超音波エコーを受信し、検出信号を出力する。これらの検出信号は、対応するレシーバ30において、それぞれ信号処理された後にディジタルデータに変換され、メモリ44に時系列に記憶される。さらに、位相整合演算部42は、メモリ44に記憶されている検出データを用いて、超音波ビームの送信方向に対応する受信フォーカス処理を行う。これにより、それぞれの走査線に沿った超音波情報を表す音線データが生成される。
【0022】
このように、図3に示すステップS1における超音波ビームの送受信を、送信方向を変えながら順次行うことにより、セクタ領域1の全範囲が粗く走査される。
次に、ステップS2において、不連続領域判定部43は、セクタ領域1を低い走査線間隔で走査することによって得られた複数の音線データに基づいて、セクタ領域1内に現れた媒質の境界に不連続となる領域が存在するか否か判定を行う。
【0023】
ここで、不連続領域の判定方法について、図6〜図9を参照しながら説明する。図6に示すように、セクタ領域1に反射源2が存在する場合に、例えば、走査線TA(6)の方向に送信された超音波ビームは、境界B1及び境界B2において反射される。その場合に、それらの反射領域からのエコー信号の強度は、周囲の領域よりも高くなる。従って、図7に示すように、走査線TA(6)に関する超音波情報を表すRF信号のエンベロープには、境界B1及び境界B2において生じた超音波エコーを表す突起が現れる。また、走査線TA(9)に関する超音波情報を表すRF信号のエンベロープには、境界B3及び境界B4において生じた超音波エコーを表す突起が現れる。或いは、超音波エコーが浮腫等から反射されたものである場合には、その反射領域からのエコー信号の強度は、周囲の領域よりも低くなる。その場合には、図8に示すように、境界B1や境界B2を表す信号は、低エコー(アンチエコーとも呼ばれる)となる。図7及び図8において、グラフの横軸tは超音波エコー信号の検出時刻を示しており、tの値が大きいほど、被検体の深部において生じた超音波エコーであることを表している。また、グラフの縦軸は、超音波エコー信号の強度を示している。
【0024】
そこで、まず、不連続領域判定部44は、判定対象である走査線について、媒質の境界が存在するか否かを判定する。即ち、図7に示すように、不連続領域判定部43は、ある超音波エコー信号の振幅hSが、その前後の信号の振幅hBに対して一定の増減がある場合に、その時間軸上の位置に媒質の境界が存在すると判定する。例えば、不連続領域判定部43は、次式(1)を満たす場合に、媒質の境界が存在すると判定する。
|(hS−hB)/hB|>0.1 …(1)
式(1)においては、閾値を0.1としているが、この数値は、包絡線の幅等に基づいて設定される。
【0025】
次に、不連続領域判定部43は、隣接する走査線に関する音線データを比較し、両者に現れた媒質の境界が連続するか否かを判定する。判定は、次のように行う。図9に示すように、不連続領域判定部43は、走査線TA(6)について、境界の存在を表す信号がハイレベルとなった位置(深さ)を検出する。なお、図9においては、位置(深さ)は、検出信号の検出時刻t1及びt2によって表されている。次に、不連続領域判定部43は、走査線TA(6)に隣接する走査線TA(9)において、境界が存在する範囲を設定する。境界が存在する範囲は、境界の位置t1及びt2に対して±Δtとなる範囲である。そして、走査線TA(9)において、範囲t1±Δt及びt2±Δt内にハイレベルの信号が現れれば連続、現れなければ不連続と判断する。同様に、走査線TA(12)についても、走査線TA(9)におけるハイレベル信号の位置t1’、t2’に基づいて、境界の連続性が判断される。その結果、図9に示す場合には、走査線TA(6)と走査線TA(9)とにおける境界は連続、走査線TA(9)と走査線TA(12)とにおける境界は不連続と判断される。
【0026】
再び、図3を参照すると、ステップS3において、超音波撮像装置は、境界が不連続となる走査線TA(0)と走査線TA(3)との間、及び、走査線TA(9)と走査線TA(12)との間の領域について、高い走査線密度で走査を行う。これより、図10に示すように、走査線TA(1)、TA(2)、TA(10)、TA(11)の方向に超音波ビームが送受信され、それぞれの走査線に関する音線データが取得される。
【0027】
本実施形態においては、最初に走査領域の全体を粗く走査した後に、境界が不連続となった領域を補間するように細かく走査する。このように、検出された境界の連続性に応じて走査線密度をアダプティブに変更することにより、重要な領域について詳細な超音波情報を取得しつつ、全範囲に関する超音波情報を、高速且つ効率良く取得することができる。また、最初に粗く走査領域の全体を走査するので、撮像対象の概要を早期に把握することができる。
【0028】
次に、本発明の第2の実施形態に係る超音波撮像方法について、図11及び図12を参照しながら説明する。本実施形態に係る超音波撮像方法は、図1に示す超音波撮像装置において用いることができる。図11は、本実施形態に係る超音波撮像方法を示すフローチャートである。
【0029】
ステップS11において、図12に示すように、超音波撮像装置は、セクタ領域1について、低い走査線密度による走査を開始する。これにより、複数の走査線TB(1)、TB(2)、…に関する音線データが順次生成される。
次に、ステップS12において、不連続領域判定部43は、ステップS11において新しく得られた走査線TB(n)に関する音線データと、その前に得られた走査線TB(n−1)に関する音線データとを比較し、隣接する2つの走査線のいずれかに媒質の境界が現れている場合に、それらの境界が不連続となるか否かを判定する。不連続領域の判定方法については、図7〜図10を参照しながら説明したものと同様である。
【0030】
ステップS12において、境界が現れない場合、又は、現れた境界が不連続とならない場合に、超音波撮像装置は、ステップS11に戻り、再び低い走査線密度でセクタ領域1を走査する(ステップS14)。
【0031】
一方、現れた境界が不連続であった場合には、ステップS13において、超音波撮像装置は、走査線TB(n)と走査線TB(n−1)との間に領域について、高い走査線密度で走査を行う。
この領域について、高い走査線密度による走査が終了すると、超音波撮像装置は、ステップS11に戻り、再び低い走査線密度によりセクタ領域1を走査する。ステップS11に戻る場合には、走査線TB(n)に隣接する走査線TB(n+1)から走査が開始される。また、セクタ領域1の全範囲の走査が終了した場合には、動作を終了する(ステップS14)。
【0032】
本実施形態においては、図12に示すように、セクタ領域1を粗く走査し、媒質の境界が不連続となる領域が検出されるたびに、その領域を高い走査線密度で走査する。従って、重要な領域について詳細な超音波情報を取得しつつ、走査領域の全体を、一方の側から順に、高速に走査することができる。
【0033】
以上説明した第1及び第2の実施形態においては、2次元セクタ領域を走査する場合について説明した。しかしながら、その他の2次元領域や、3次元領域を走査する場合においても、これらの実施形態と同様に、得られた音線データに基づいて不連続領域を判断し、その結果に基づいて走査線密度をアダプティブに変更して走査を行うことにより、走査領域の全体を高速に走査することができる。
【0034】
次に、本発明の第3の実施形態に係る超音波撮像装置について説明する。図13は、本実施形態に係る超音波撮像装置の構成を示すブロック図である。この超音波撮像装置は、図1に示す超音波撮像装置に境界予測演算部47を付加したものである。その他の構成については、図1に示す超音波撮像装置と同様である。境界予測演算部47は、不連続領域判定部43において検出された媒質の境界位置に基づいて、次に走査する領域における境界の位置を予測するための演算を行う。
【0035】
次に、本実施形態に係る超音波撮像方法について説明する。本実施形態に係る超音波撮像方法は、本発明の第1又は第2の実施形態に係る超音波撮像方法と同様に、被検体内の走査領域を低い走査線密度で走査し、それによって検出された媒質の境界の不連続領域を高い走査線密度で走査するものである。その境界の不連続領域を検出する際に、境界予測演算部47によって予測された境界の存在範囲を用いることに特徴を有している。
【0036】
図14は、本実施形態に係る超音波撮像方法において境界の不連続領域を検出する方法を示すフローチャートである。また、図15は、本実施形態において走査されるセクタ領域を示す図である。
ステップS21において、超音波撮像装置は、反射源4が存在するセクタ領域3を走査することにより、走査線TC(0)、TC(2)、…、TC(8)に関する音線データを得る。不連続領域判定部43は、これらの音線データに基づいて、それぞれ走査線TC(0)、TC(2)、…、TC(8)における境界の位置を検出する。境界位置の検出方法については、本発明の第1の実施形態において図7及び図8を参照しながら説明したものと同様である。これにより、図16に示すように、境界の存在を表す信号D2a及びD2b、D4a及びD4b、D6a及びD6b、D8a及びD8bが得られる。
【0037】
次に、ステップS22において、境界予測演算部47は、境界が検出された走査線TC(2)〜TC(8)における境界の存在を表す信号に基づいて、走査線TC(10)における境界の位置の範囲を予測するための演算を行う。即ち、一連の信号D2a、D4a、D6a、D8a、及び、信号D2b、D4b、D6b、D8bを用いて、走査線TC(10)における境界が存在する範囲R10a及びR10bをそれぞれ求める。
【0038】
境界の位置は、例えば、次に示す演算を行うことによって予測することができる。まず、図17に示すように、ステップS21において得られた境界の存在を表す信号(図16)をセクタ画像に変換し、信号D2a〜D8bをプロットする。次に、最新の走査によって得られた信号D8bと、その前の走査によって得られた信号D6bとを直線で結び、その延長線と走査線TC(10)との交点Pを求める。次に、交点Pを中心とし、所定の半径を有する円を描く。この半径の値としては、例えば、過去の推定値と実際の境界位置とのズレの最大値が用いられる。図16において、この円に対応する範囲を、走査線TC(10)における境界が存在する範囲R10bとする。境界が存在する範囲R10aについても、信号D6a及びD8aを用いて同様に求める。
【0039】
また、ある走査線を走査したときに、境界が新たに検出された場合(例えば、図17の走査線TC(2)における信号D2a及びD2b)には、次のように境界の存在する範囲を求める。図18に示すように、走査線TC(X)上の位置Xに新たに境界が検出された場合に、隣接する走査線TC(X+1)における境界の位置X’は位置Xと同じ深度dに存在すると仮定する。そして、位置X’を中心とし、位置Xを通る円、即ち、X−X’間の距離rを半径とする円を描く。この円を、隣接する走査線TC(X+1)における境界が存在する範囲Rとする。なお、ステップS22における演算処理としては、このほかにも、一般的に知られている様々な位置予測演算法を用いることができる。
【0040】
再び、図14を参照すると、ステップS23において、超音波撮像装置は、走査線TC(10)を走査することにより、音線データを得る。
次に、ステップS24において、不連続領域判定部43は、ステップS23において得られた音線データに基づいて、走査線TC(10)における境界の位置を検出する。境界の位置の検出方法については、ステップS21と同様である。
【0041】
次に、ステップS25において、不連続領域判定部43は、ステップS24において得られた走査線TC(10)における境界の位置を表す信号が、ステップS22において求められた境界が存在する範囲R10a又はR10bに含まれるか否かを判定する。即ち、境界の位置を表す信号が範囲R10a又はR10bに含まれる場合には、走査線TC(8)と走査線TC(10)との間の境界が連続すると判断される。一方、境界の位置を表す信号が範囲R10a又はR10bに含まれない場合には、上記境界が不連続であると判断される。また、ステップS24において、走査線TC(10)に境界が検出されなかった場合にも、上記境界が不連続と判断される。
【0042】
再び、図13を参照すると、超音波撮像装置は、このようにして判定された不連続領域について、高い走査線密度で走査を行う。走査方法としては、図10に示すように、1回目にセクタ領域3の全範囲を粗く走査し、2回目に、不連続と判定された領域について細かく走査する方法でも良い。また、図12に示すように、セクタ領域3を粗く走査する間に、領域が不連続と判定される度に、その領域に戻って細かく走査する方法でも良い。
【0043】
本実施形態によれば、先に検出された境界の位置情報に基づいて、次の走査線上の境界位置を推定し、実測値と比較するので、境界の連続性をより正確に判定することができる。
なお、本実施形態においては、最新の走査によって得られた境界位置情報と、そのひとつ前の走査によって得られた境界位置情報とに基づいて、次の走査線における境界位置を予測しているが、さらに過去に取得された境界位置情報まで遡って用いても良い。
【0044】
次に本発明の第4の実施形態に係る超音波撮像装置について説明する。本実施形態に係る超音波撮像方法は、マルチビーム方式、即ち、複数の超音波ビームを複数の方向に同時に送信することにより、被検体の3次元領域を高速に走査するものである。
【0045】
マルチビーム方式においては、1つの方向に送信された第1の超音波ビームが反射源に反射されて生じる超音波エコーを受信する際に、他の方向に送信された第2の超音波ビームが反射源に反射されて生じる超音波エコーが同時に受信される場合に、クロストークが問題となる。そのため、マルチビーム方式による本格的な超音波撮像を行う前に、クロストークの原因となるような反射源が存在するか否かについて、事前撮像により、被検体の概要を把握しておくことが行われる。この事前撮像は、クロストークの影響を避けるために、シングルビームによって行う必要があるので、撮像時間が長くかかってしまう。そこで、本実施形態においては、この事前撮像を高速に行うための方法を採用している。
【0046】
図19は、本実施形態に係る超音波撮像装置の構成を示すブロック図である。この超音波撮像装置は、図1に示す超音波撮像装置における位相整合演算部42の替わりに位相整合演算部50を、また、走査制御部44の替わりに走査制御部52有しており、さらに、クロストーク判定部51を有している。その他の構成については、図1に示す超音波撮像装置と同様である。
【0047】
位相整合演算部50は、メモリ41に記憶されている検出データの位相を整合するために演算処理を行う。位相整合演算部42には、送信ビームの数に対応して複数の系統が設けられている。位相整合演算部50の各系統は、各超音波トランスデューサ10aから出力される検出信号に基づいて得られた一連の検出データに所定の遅延を与え、それらをディジタル加算する。このように、複数の系統を有する位相整合演算部50を用いることにより、被検体内の複数の方向に関する受信フォーカスを同時に達成することができる。
【0048】
クロストーク判定部51は、被検体をプリスキャンすることにより事前撮像を行った場合に、その結果得られた画像情報に基づいて、クロストークの原因となる反射源が存在しているか否かを判定する。
また、走査制御部52は、事前走査の際に、不連続領域判定部43の判定結果に基づいて走査線密度及び走査領域を設定すると共に、本格的な撮像において、クロストーク判定部51の判定結果に基づいて、送信される超音波の送信タイミングや送信方向を含む走査条件を設定する。
【0049】
次に、本発明の第4の実施形態に係る超音波撮像方法について、図19〜図22を参照しながら説明する。図20は、本実施形態に係る超音波撮像方法を示すフローチャートである。また、図21及び図22は、本実施形態に係る超音波撮像方法を説明するための図である。
ここで、図21の(a)及び図22の(a)は、被検体の3次元領域に向けて超音波ビームが送信される様子を示しており、矢印は、超音波ビームTX1〜TX4の軌跡を表している。また、図21の(b)及び図22の(b)は、深度Pの画像領域に含まれる複数のブロックP1〜P4を示しており、丸印は、複数のブロックP1〜P4を走査する超音波ビームTX1〜TX4のビームスポットを表し、矢印は、超音波ビームTX1〜TX4の走査方向を表している。ここで、図21の(a)、(b)及び図22の(a)、(b)において、黒丸印は深度Pの画像領域に存在する反射源OB1及びOB2を表している。さらに、図21の(c)及び図22の(c)は、送信された超音波ビームに対応して取得されたエコー信号のタイムチャートを示している。
【0050】
まず、ステップS31において、図21の(a)に示すように、被検体内の3次元領域を構成する1つの画像領域を1つの超音波ビームTX1によって走査することにより、事前撮像を行う。事前撮像においては、本発明の第1又は第2の実施形態に係る超音波撮像方法が用いられる。
【0051】
この事前撮像により、図21の(c)に示すエコー信号のタイムチャートが得られる。これにより、深度Pの画像領域に反射源OB1及びOB2が存在することが把握される。図21の(c)において、t1及びt2は、図21の(a)に示すx1及びx2方向の各々に向けて送信された超音波ビームTX1の送信時刻を示している。
このような複数の走査線に関する音線データは、クロストーク判定部51に入力される。
【0052】
次に、ステップS32において、クロストークの判定を行う。ここで、発火タイミングコントローラ20には、例えば、図22の(a)に示すように、1回のマルチビーム送信において、θ0及びφ0ずつ離れている超音波ビームTX1、TX2、TX3、TX4が同時に送信されるように、送信タイミング及び送信方向が初期設定されているものとする。
【0053】
まず、クロストーク判定部51は、入力された音線データに基づいて、互いに隣接する領域に反射源が存在するか否かを判定する。
例えば、図21の(c)に示すタイムチャートにより、x1方向及びx2方向に、反射源OB1及びOB2がそれぞれ存在していることがわかる。これらの反射源OB1及びOB2は、超音波ビームを送信してから超音波エコーを受信するまでの時間がほぼ等しいことから、図21の(a)に示すように、送信ビームの送信点からの距離がほぼ等しい位置、即ち、深度の等しい画像領域上に存在していることがわかる。このx1方向とx2方向との間隔が、同時に送信される複数の超音波ビームの送信間隔θ0やφ0にほぼ等しい場合に、x1方向及びx2方向に向けて同時に超音波ビームを送信すると、反射源OB1に反射されて生じた超音波エコーの検出信号と、反射源OB2に反射されて生じた超音波エコーの検出信号とが重なって検出されてしまう。
そのような場合に、クロストーク判定部51は、x1方向とx2方向との間でクロストークが生じるものと判断し、その結果を走査制御部52に入力する。
【0054】
次に、ステップS33において、走査条件の再設定を行う。走査制御部52は、クロストーク判定部51から入力された判定結果に基づいて、本格的な撮像の際に送信される超音波ビームの走査条件を発火タイミングコントローラ20に対して再設定する。即ち、図22の(c)に示すように、走査制御部52は、x1及びx2を含む方向に超音波ビームを送信する際に、超音波ビームTX1、TX3、TX4を同時に送信し、これらの送信時刻のΔt時間後に超音波ビームTX2を送信するように、送信タイミングを設定する。
【0055】
次に、ステップS34において、本格的な撮像を行う。即ち、複数のパルサ回路21は、走査制御部52によって走査条件が再設定された発火タイミングコントローラ20の制御に従って、複数のパルサ回路21にそれぞれ接続されている複数の超音波トランスデューサ10aに駆動信号を出力する。これにより、時刻t0に、複数の超音波ビームTX1、TX3、TX4がx1、x3、x4方向に向けて送信され、そのΔt時間後である時刻t0+Δtに、超音波ビームTX2がx2方向に向けて送信される。
【0056】
マルチビーム送信された複数の超音波ビームは、被検体内においてそれぞれ反射され、それによって生じた超音波エコーが超音波用探触子10に受信される。超音波用探触子10に含まれる複数の超音波トランスデューサ10aは、受信した超音波エコーに基づいて複数の検出信号をそれぞれ出力する。これらの検出信号は、対応するレシーバ30にそれぞれ入力され、所定の信号処理を施され、メモリ41で一旦記憶された後、位相整合演算部50の各系統に並列に入力される。
【0057】
位相整合演算部50は、入力された一連の検出データに基づいて、x1、x2、x3、x4方向から戻ってきた超音波エコーがそれぞれ受信焦点を形成するように受信ビームフォーミングを行うことにより、送信ビームにそれぞれ対応する音線データを生成する。これにより、図22の(c)に示すように、反射源OB1に反射されて生じた超音波エコーの検出信号と、反射源OB2に反射されて生じた超音波エコーの検出信号とが分離して取得される。
【0058】
さらに、表示画像演算部45は、位相整合演算部50において受信フォーカス処理を施された音線データについて所定の画像処理を行い、画像表示部46は、画像処理された画像データに基づいて超音波画像を表示する。
【0059】
以上説明したように、本実施形態によれば、事前撮像を高速に行うことができるので、全体の超音波撮像に要する時間を短縮することができる。また、事前撮像の結果に基づいて、超音波ビームの送信タイミングを含む走査条件を再設定するので、隣接する複数の領域において反射されて生じた超音波エコーの検出信号を分離することができ、クロストークの影響が抑制された良質な画像データをマルチビーム送信によって高速に取得することができる。
【0060】
本実施形態においては、クロストーク判定部の結果に基づいて、超音波ビームが送信されるタイミングをずらすように走査条件を再設定したが、超音波ビームの送信方向を変更したり、タイミング及び送信方向の両方を変更するように、走査条件を再設定しても良い。
【0061】
また、本実施形態においては、マルチビーム方式による超音波撮像を行うための事前撮像として第1又は第2の実施形態に係る超音波撮像方法を用いたが、これらの超音波撮像方法は、その他にも、様々な超音波撮像における事前撮像として用いることができる。
【0062】
【発明の効果】
以上説明したように、本発明によれば、検出された媒質の境界の連続性に応じて走査線密度をアダプティブに変更するので、重要な情報が含まれる領域について詳細な超音波情報を取得しつつ、走査領域の全体を高速に走査できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る超音波撮像装置の構成を示すブロック図である。
【図2】被検体内の走査対象であるセクタ領域を示す図である。
【図3】本発明の第1の実施形態に係る超音波撮像方法を示すフローチャートである。
【図4】通常の走査における走査線密度を示す図である。
【図5】本発明の第1の実施形態に係る超音波撮像方法において行われる低い走査線密度による走査を説明するための図である。
【図6】境界の連続性を判定する方法を説明するための図である。
【図7】走査線上に境界が存在するか否かを判定する方法を説明するための図である。
【図8】走査線上に境界が存在するか否かを判定する方法を説明するための図である。
【図9】隣接する走査線上に存在する境界が連続するか否かを判定する方法を説明するための図である。
【図10】本発明の第1の実施形態に係る超音波撮像方法において行われる高い走査線密度による走査を説明するための図である。
【図11】本発明の第2の実施形態に係る超音波撮像方法を示すフローチャートである。
【図12】本発明の第2の実施形態に係る超音波撮像方法において行われる走査を説明するための図である。
【図13】本発明の第3の実施形態に係る超音波撮像装置の構成を示すブロック図である。
【図14】本発明の第3の実施形態に係る超音波撮像方法における不連続領域の検出方法を示すフローチャートである。
【図15】本発明の第3の実施形態に係る超音波撮像方法において走査される領域を示す図である。
【図16】境界位置の予測方法を説明するための図である。
【図17】境界位置の予測方法を説明するための図である。
【図18】境界位置の予測方法を説明するための図である。
【図19】本発明の第4の実施形態に係る超音波撮像装置の構成を示すブロック図である。
【図20】本発明の第4の実施形態に係る超音波撮像方法を示すフローチャートである。
【図21】本発明の第4の実施形態に係る超音波撮像方法を説明するための図である。
【図22】本発明の第4の実施形態に係る超音波撮像方法を説明するための図である。
【符号の説明】
1、3 走査領域(セクタ領域)
2、4 反射源
10 超音波用探触子
10a 超音波トランスデューサアレイ
20 発火タイミングコントローラ
21 パルサ回路
30 レシーバ
31 プリアンプ
32 TGC増幅器
33 A/D変換器
40 システム制御部
41 メモリ
42、50 位相整合演算部
43 不連続領域判定部
44、52 走査制御部
45 表示画像演算部
46 画像表示部
47 境界予測演算部
51 クロストーク判定部
【発明の属する技術分野】
本発明は、超音波を送受信することにより生体内臓器の診断や非破壊検査を行うために用いられる超音波撮像装置及び超音波撮像方法に関する。
【0002】
【従来の技術】
医療分野においては、被検体の内部を観察して診断を行うために、様々な画像技術が開発されている。その中でも、超音波を送受信することによって被検体の内部情報を取得する超音波撮像は、X線写真やRI(radio isotope)シンチレーションカメラ等の他の医用画像技術と異なり、放射線による被曝がない。そのため、超音波撮像は、安全性の高い画像技術として、産科領域における胎児診断、婦人科系、循環器系、消化器系等を含む幅広い領域において利用されている。
【0003】
また、超音波撮像においては、上記のX線写真等の画像技術と異なり、探触子を用いて取得された超音波情報をディスプレイ装置にリアルタイムに表示することが可能である。そのため、例えば、循環器系のように、様子が刻々と変化する臓器を観察する等の場合に特に有利である。
【0004】
【発明が解決しようとする課題】
しかしながら、超音波撮像においては、臓器等の観察を行っている間に、被検体である患者は拘束されているため、患者の身体的負担は大きい。そこで、高速に超音波撮像を行うために走査間隔を一律に粗くすると、診断に必要な詳細な情報が漏れてしまう恐れがある。そのため、診断に必要な情報を取得しつつ、全体として被検体を高速に超音波撮像することができる装置や方法の開発が望まれている。
そこで、上記の点に鑑み、本発明は、必要な情報を取得しつつ、被検体を高速に走査することができる超音波撮像装置及び超音波撮像方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の課題を解決するため、本発明に係る超音波撮像装置は、複数の駆動信号に従ってそれぞれ動作する複数の超音波トランスデューサによって超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子と、該超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、超音波用探触子から送信される超音波ビームによって、設定された走査線密度で被検体を走査させる送信側信号処理手段と、超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得る受信側信号処理手段と、該受信側信号処理手段によって得られた複数の検出信号に基づいて、被検体内に存在する媒質の境界の連続性を判定する判定手段と、送信側信号処理手段に対し、第1の走査線密度を設定した後に、判定手段の判定結果に応じて、第1の走査線密度よりも高い第2の走査線密度を設定する制御手段とを具備する。
【0006】
また、本発明に係る超音波撮像方法は、複数の駆動信号に従ってそれぞれ動作する複数の超音波トランスデューサによって超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子を用いて、被検体を撮像する超音波撮像方法であって、超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、超音波用探触子から送信される超音波ビームによって第1の走査線密度で被検体を走査するステップ(a)と、超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得るステップ(b)と、ステップ(b)において得られた複数の検出信号に基づいて、被検体内に存在する媒質の境界の連続性を判定するステップ(c)と、ステップ(c)における判定結果に応じて、走査線の密度を第1の走査線密度よりも高い第2の走査線密度に変更して被検体を走査するステップ(d)とを具備する。
【0007】
本発明によれば、検出された媒質の境界の連続性に応じて走査線密度をアダプティブに変更するので、重要な情報が含まれる領域について詳細な超音波情報を取得しつつ、走査領域の全体を高速に走査できる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。
図1は、本発明の第1の実施形態に係る超音波撮像装置の構成を示すブロック図である。この超音波撮像装置は、例えば、人体等の診察用の超音波診断装置や工業用の探傷装置として用いられる。
【0009】
図1に示すように、この超音波撮像装置は、被検体に当接させて用いられる超音波用探触子10を含んでいる。超音波用探触子10は、2次元状(N×N)に配置されて2次元トランスデューサアレイを構成する複数(N2個)の超音波トランスデューサ10aを備えている。各超音波トランスデューサ10aは、入力される駆動信号に基づいて超音波を発生すると共に、被検体から反射されて生じた超音波エコーを受信して検出信号を出力する。超音波トランスデューサ10aとしては、例えば、PZT(Pb(lead) zirconate titanate:チタン酸ジルコン酸鉛)等のセラミック圧電材やPVDF(polyvinyl difluoride:ポリフッ化ビニリデン)等の高分子圧電材を材料とする圧電素子を用いることができる。本実施形態においては、1つの超音波トランスデューサが超音波の送信と受信の両方に用いられるが、超音波の送信と受信のために別々の超音波トランスデューサを備えるようにしても良い。
【0010】
あるいは、このような圧電素子を超音波の送信素子として用い、微細な光ファイバーの先端にそれぞれ形成されたファブリーペロー共振器(FPRと略称)又はファイバーブラッググレーティング等を超音波の受信素子として用い、これらを組み合わせて超音波用探触子10を構成しても良い。なお、本実施形態においては2次元トランスデューサアレイを用いているが、これ以外に、1次元、又は、1.5次元等のトランスデューサアレイを用いても良い。
【0011】
また、この超音波撮像装置は、発火タイミングコントローラ20と、複数のパルサ回路21と、複数のレシーバ30とを含んでいる。
複数のパルサ回路21及び複数のレシーバ30は、複数の超音波トランスデューサ10aにそれぞれ接続されている。
発火タイミングコントローラ20は、所定のタイミングで複数の発火信号を複数のパルサ回路21にそれぞれ供給する。本実施形態において、発火タイミングコントローラ20は、電子回路によって構成されているが、パターンジェネレータ等によって構成されても良い。
【0012】
複数のパルサ回路21は、発火タイミングコントローラ20から供給される発火信号に従って、複数の駆動信号を超音波用探触子10に出力する。パルサ回路としては、高い繰り返し周期(例えば、3MHz〜10MHz)で連続的に駆動信号を出力できる高速パルサ回路を用いることが望ましい。
複数のパルサ回路21から駆動信号を供給されると、超音波用探触子10に含まれる複数の超音波トランスデューサ10aは、対応するパルサ回路12から出力された駆動信号に基づいて超音波パルスを発生する。これらの超音波パルスの合波により、所望の方向に偏向された送信ビーム(走査線)が形成される。
【0013】
複数のレシーバ30は、対応する超音波トランスデューサ10aが出力した検出信号について、信号処理を行う。各レシーバ30は、プリアンプ31、TGC(time gain compensation:時間利得補償)増幅器32及びA/Dコンバータ33を含んでいる。超音波トランスデューサ10aから出力された検出信号は、対応するレシーバ30に含まれるプリアンプ31及びTGC増幅器32においてアナログ処理を施される。このアナログ処理により、これらの検出信号のレベルが、A/Dコンバータ33の入力信号レベルに整合される。TGC増幅器32から出力されたアナログ信号は、A/Dコンバータ33によってそれぞれディジタル信号(データ)に変換される。
【0014】
また、この超音波撮像装置は、システム制御部40と、メモリ41と、位相整合演算部42と、不連続領域判定部43と、走査制御部44と、表示画像演算部45と、画像表示部46とを含んでいる。システム制御部40は、この超音波撮像装置の各部を制御している。
メモリ41は、複数のレシーバ30にそれぞれ対応する複数のラインを含んでおり、それぞれのレシーバ30から出力された検出データを時系列に記憶する。
【0015】
位相整合演算部42は、検出データの位相を整合するための演算処理、即ち、受信フォーカス処理を行う。位相整合演算部42は、メモリ41に記憶されている複数の検出データに所望の遅延を与えて加算する。これにより、所望の走査線に沿った超音波情報を表す音線データが生成される。位相整合演算部42は、シフトレジスタ遅延線、ディジタル微小遅延器、若しくは、CPU(central processing unit:中央演算装置)とソフトウエア、又は、これらの組み合わせによって構成されている。
【0016】
不連続領域判定部43は、位相整合演算部42によって生成された音線データに基づいて、被検体内に存在する媒質の境界を検出し、近隣の複数の領域における媒質の境界の連続性を判定することにより、媒質の境界が不連続となっている領域を検出する。
走査制御部44は、不連続領域判定部43の判定結果に基づいて、被検体内の走査領域及び走査線密度を設定する。
【0017】
表示画像演算部45は、位相整合演算部42から出力された音線データに対して、検出波形の検波や、所定の画像処理を行う。また、表示画像演算部45は、画像処理されたデータについて走査フォーマットの変換を行うことにより、超音波ビームの走査空間の画像データを物理空間の画像データに変換する。なお、3次元画像の表示を行う場合には、走査フォーマットの変換の前に、複数枚の断層データから、ある体積についてのデータであるボクセルデータ(voxel データ)を生成する処理を行っても良い。
【0018】
画像表示部46は、表示画像演算部45によって走査フォーマットが変換された画像データをD/A変換によってアナログ信号に変換し、これらの信号に基づいて超音波画像を表示する。
【0019】
次に、本発明の第1の実施形態に係る超音波撮像方法について、図1〜図8を参照しながら説明する。
本実施形態に係る超音波撮像方法は、被検体内に存在する媒質の境界の連続性に応じて、走査線密度をアダプティブに変化させて被検体を走査するものである。ここで、一般に、超音波診断において反射源の形状や大きさを把握する場合には、反射源の輪郭が連続的に変化する領域よりも、不連続に変化する領域の方が重要である。例えば、図2に示すように、セクタ領域1内に反射源2が存在する場合に、反射源に関する位置情報が緩やかに変化する領域Bよりも、位置情報が不連続であったり、連続的であっても急峻に変化する領域Aや領域Cの方に、多くの重要な情報が含まれている。そこで、本実施形態に係る超音波撮像方法においては、反射源に関する位置情報が連続的に変化する領域については、低い走査線密度で粗く走査し、位置情報が不連続に変化する領域については、高い走査線密度で細かく走査することにより、超音波情報を得ている。
【0020】
図3は、本実施形態に係る超音波撮像方法を示すフローチャートである。
まず、ステップS1において、超音波撮像装置は、被検体内の走査領域を、低い走査線密度で走査する。即ち、図4に示すように、走査対象であるセクタ領域1を走査する場合に、通常、走査線間隔がΔθとなるように走査するところを、本実施形態においては、図5に示すように、例えば、走査線間隔が3×Δθとなるように走査する。そのために、走査制御部44の制御により、発火タイミングコントローラ20から複数のパルサ回路21に発火信号が供給される。これに応じて、それぞれのパルサ回路21は、供給された発火信号に基づいて、対応する超音波トランスデューサ10aに駆動信号を出力する。これにより、3×Δθの間隔で超音波ビームが順次送信される。
【0021】
また、複数の超音波トランスデューサ10aは、送信された超音波ビームが反射源から反射されることによって生じた超音波エコーを受信し、検出信号を出力する。これらの検出信号は、対応するレシーバ30において、それぞれ信号処理された後にディジタルデータに変換され、メモリ44に時系列に記憶される。さらに、位相整合演算部42は、メモリ44に記憶されている検出データを用いて、超音波ビームの送信方向に対応する受信フォーカス処理を行う。これにより、それぞれの走査線に沿った超音波情報を表す音線データが生成される。
【0022】
このように、図3に示すステップS1における超音波ビームの送受信を、送信方向を変えながら順次行うことにより、セクタ領域1の全範囲が粗く走査される。
次に、ステップS2において、不連続領域判定部43は、セクタ領域1を低い走査線間隔で走査することによって得られた複数の音線データに基づいて、セクタ領域1内に現れた媒質の境界に不連続となる領域が存在するか否か判定を行う。
【0023】
ここで、不連続領域の判定方法について、図6〜図9を参照しながら説明する。図6に示すように、セクタ領域1に反射源2が存在する場合に、例えば、走査線TA(6)の方向に送信された超音波ビームは、境界B1及び境界B2において反射される。その場合に、それらの反射領域からのエコー信号の強度は、周囲の領域よりも高くなる。従って、図7に示すように、走査線TA(6)に関する超音波情報を表すRF信号のエンベロープには、境界B1及び境界B2において生じた超音波エコーを表す突起が現れる。また、走査線TA(9)に関する超音波情報を表すRF信号のエンベロープには、境界B3及び境界B4において生じた超音波エコーを表す突起が現れる。或いは、超音波エコーが浮腫等から反射されたものである場合には、その反射領域からのエコー信号の強度は、周囲の領域よりも低くなる。その場合には、図8に示すように、境界B1や境界B2を表す信号は、低エコー(アンチエコーとも呼ばれる)となる。図7及び図8において、グラフの横軸tは超音波エコー信号の検出時刻を示しており、tの値が大きいほど、被検体の深部において生じた超音波エコーであることを表している。また、グラフの縦軸は、超音波エコー信号の強度を示している。
【0024】
そこで、まず、不連続領域判定部44は、判定対象である走査線について、媒質の境界が存在するか否かを判定する。即ち、図7に示すように、不連続領域判定部43は、ある超音波エコー信号の振幅hSが、その前後の信号の振幅hBに対して一定の増減がある場合に、その時間軸上の位置に媒質の境界が存在すると判定する。例えば、不連続領域判定部43は、次式(1)を満たす場合に、媒質の境界が存在すると判定する。
|(hS−hB)/hB|>0.1 …(1)
式(1)においては、閾値を0.1としているが、この数値は、包絡線の幅等に基づいて設定される。
【0025】
次に、不連続領域判定部43は、隣接する走査線に関する音線データを比較し、両者に現れた媒質の境界が連続するか否かを判定する。判定は、次のように行う。図9に示すように、不連続領域判定部43は、走査線TA(6)について、境界の存在を表す信号がハイレベルとなった位置(深さ)を検出する。なお、図9においては、位置(深さ)は、検出信号の検出時刻t1及びt2によって表されている。次に、不連続領域判定部43は、走査線TA(6)に隣接する走査線TA(9)において、境界が存在する範囲を設定する。境界が存在する範囲は、境界の位置t1及びt2に対して±Δtとなる範囲である。そして、走査線TA(9)において、範囲t1±Δt及びt2±Δt内にハイレベルの信号が現れれば連続、現れなければ不連続と判断する。同様に、走査線TA(12)についても、走査線TA(9)におけるハイレベル信号の位置t1’、t2’に基づいて、境界の連続性が判断される。その結果、図9に示す場合には、走査線TA(6)と走査線TA(9)とにおける境界は連続、走査線TA(9)と走査線TA(12)とにおける境界は不連続と判断される。
【0026】
再び、図3を参照すると、ステップS3において、超音波撮像装置は、境界が不連続となる走査線TA(0)と走査線TA(3)との間、及び、走査線TA(9)と走査線TA(12)との間の領域について、高い走査線密度で走査を行う。これより、図10に示すように、走査線TA(1)、TA(2)、TA(10)、TA(11)の方向に超音波ビームが送受信され、それぞれの走査線に関する音線データが取得される。
【0027】
本実施形態においては、最初に走査領域の全体を粗く走査した後に、境界が不連続となった領域を補間するように細かく走査する。このように、検出された境界の連続性に応じて走査線密度をアダプティブに変更することにより、重要な領域について詳細な超音波情報を取得しつつ、全範囲に関する超音波情報を、高速且つ効率良く取得することができる。また、最初に粗く走査領域の全体を走査するので、撮像対象の概要を早期に把握することができる。
【0028】
次に、本発明の第2の実施形態に係る超音波撮像方法について、図11及び図12を参照しながら説明する。本実施形態に係る超音波撮像方法は、図1に示す超音波撮像装置において用いることができる。図11は、本実施形態に係る超音波撮像方法を示すフローチャートである。
【0029】
ステップS11において、図12に示すように、超音波撮像装置は、セクタ領域1について、低い走査線密度による走査を開始する。これにより、複数の走査線TB(1)、TB(2)、…に関する音線データが順次生成される。
次に、ステップS12において、不連続領域判定部43は、ステップS11において新しく得られた走査線TB(n)に関する音線データと、その前に得られた走査線TB(n−1)に関する音線データとを比較し、隣接する2つの走査線のいずれかに媒質の境界が現れている場合に、それらの境界が不連続となるか否かを判定する。不連続領域の判定方法については、図7〜図10を参照しながら説明したものと同様である。
【0030】
ステップS12において、境界が現れない場合、又は、現れた境界が不連続とならない場合に、超音波撮像装置は、ステップS11に戻り、再び低い走査線密度でセクタ領域1を走査する(ステップS14)。
【0031】
一方、現れた境界が不連続であった場合には、ステップS13において、超音波撮像装置は、走査線TB(n)と走査線TB(n−1)との間に領域について、高い走査線密度で走査を行う。
この領域について、高い走査線密度による走査が終了すると、超音波撮像装置は、ステップS11に戻り、再び低い走査線密度によりセクタ領域1を走査する。ステップS11に戻る場合には、走査線TB(n)に隣接する走査線TB(n+1)から走査が開始される。また、セクタ領域1の全範囲の走査が終了した場合には、動作を終了する(ステップS14)。
【0032】
本実施形態においては、図12に示すように、セクタ領域1を粗く走査し、媒質の境界が不連続となる領域が検出されるたびに、その領域を高い走査線密度で走査する。従って、重要な領域について詳細な超音波情報を取得しつつ、走査領域の全体を、一方の側から順に、高速に走査することができる。
【0033】
以上説明した第1及び第2の実施形態においては、2次元セクタ領域を走査する場合について説明した。しかしながら、その他の2次元領域や、3次元領域を走査する場合においても、これらの実施形態と同様に、得られた音線データに基づいて不連続領域を判断し、その結果に基づいて走査線密度をアダプティブに変更して走査を行うことにより、走査領域の全体を高速に走査することができる。
【0034】
次に、本発明の第3の実施形態に係る超音波撮像装置について説明する。図13は、本実施形態に係る超音波撮像装置の構成を示すブロック図である。この超音波撮像装置は、図1に示す超音波撮像装置に境界予測演算部47を付加したものである。その他の構成については、図1に示す超音波撮像装置と同様である。境界予測演算部47は、不連続領域判定部43において検出された媒質の境界位置に基づいて、次に走査する領域における境界の位置を予測するための演算を行う。
【0035】
次に、本実施形態に係る超音波撮像方法について説明する。本実施形態に係る超音波撮像方法は、本発明の第1又は第2の実施形態に係る超音波撮像方法と同様に、被検体内の走査領域を低い走査線密度で走査し、それによって検出された媒質の境界の不連続領域を高い走査線密度で走査するものである。その境界の不連続領域を検出する際に、境界予測演算部47によって予測された境界の存在範囲を用いることに特徴を有している。
【0036】
図14は、本実施形態に係る超音波撮像方法において境界の不連続領域を検出する方法を示すフローチャートである。また、図15は、本実施形態において走査されるセクタ領域を示す図である。
ステップS21において、超音波撮像装置は、反射源4が存在するセクタ領域3を走査することにより、走査線TC(0)、TC(2)、…、TC(8)に関する音線データを得る。不連続領域判定部43は、これらの音線データに基づいて、それぞれ走査線TC(0)、TC(2)、…、TC(8)における境界の位置を検出する。境界位置の検出方法については、本発明の第1の実施形態において図7及び図8を参照しながら説明したものと同様である。これにより、図16に示すように、境界の存在を表す信号D2a及びD2b、D4a及びD4b、D6a及びD6b、D8a及びD8bが得られる。
【0037】
次に、ステップS22において、境界予測演算部47は、境界が検出された走査線TC(2)〜TC(8)における境界の存在を表す信号に基づいて、走査線TC(10)における境界の位置の範囲を予測するための演算を行う。即ち、一連の信号D2a、D4a、D6a、D8a、及び、信号D2b、D4b、D6b、D8bを用いて、走査線TC(10)における境界が存在する範囲R10a及びR10bをそれぞれ求める。
【0038】
境界の位置は、例えば、次に示す演算を行うことによって予測することができる。まず、図17に示すように、ステップS21において得られた境界の存在を表す信号(図16)をセクタ画像に変換し、信号D2a〜D8bをプロットする。次に、最新の走査によって得られた信号D8bと、その前の走査によって得られた信号D6bとを直線で結び、その延長線と走査線TC(10)との交点Pを求める。次に、交点Pを中心とし、所定の半径を有する円を描く。この半径の値としては、例えば、過去の推定値と実際の境界位置とのズレの最大値が用いられる。図16において、この円に対応する範囲を、走査線TC(10)における境界が存在する範囲R10bとする。境界が存在する範囲R10aについても、信号D6a及びD8aを用いて同様に求める。
【0039】
また、ある走査線を走査したときに、境界が新たに検出された場合(例えば、図17の走査線TC(2)における信号D2a及びD2b)には、次のように境界の存在する範囲を求める。図18に示すように、走査線TC(X)上の位置Xに新たに境界が検出された場合に、隣接する走査線TC(X+1)における境界の位置X’は位置Xと同じ深度dに存在すると仮定する。そして、位置X’を中心とし、位置Xを通る円、即ち、X−X’間の距離rを半径とする円を描く。この円を、隣接する走査線TC(X+1)における境界が存在する範囲Rとする。なお、ステップS22における演算処理としては、このほかにも、一般的に知られている様々な位置予測演算法を用いることができる。
【0040】
再び、図14を参照すると、ステップS23において、超音波撮像装置は、走査線TC(10)を走査することにより、音線データを得る。
次に、ステップS24において、不連続領域判定部43は、ステップS23において得られた音線データに基づいて、走査線TC(10)における境界の位置を検出する。境界の位置の検出方法については、ステップS21と同様である。
【0041】
次に、ステップS25において、不連続領域判定部43は、ステップS24において得られた走査線TC(10)における境界の位置を表す信号が、ステップS22において求められた境界が存在する範囲R10a又はR10bに含まれるか否かを判定する。即ち、境界の位置を表す信号が範囲R10a又はR10bに含まれる場合には、走査線TC(8)と走査線TC(10)との間の境界が連続すると判断される。一方、境界の位置を表す信号が範囲R10a又はR10bに含まれない場合には、上記境界が不連続であると判断される。また、ステップS24において、走査線TC(10)に境界が検出されなかった場合にも、上記境界が不連続と判断される。
【0042】
再び、図13を参照すると、超音波撮像装置は、このようにして判定された不連続領域について、高い走査線密度で走査を行う。走査方法としては、図10に示すように、1回目にセクタ領域3の全範囲を粗く走査し、2回目に、不連続と判定された領域について細かく走査する方法でも良い。また、図12に示すように、セクタ領域3を粗く走査する間に、領域が不連続と判定される度に、その領域に戻って細かく走査する方法でも良い。
【0043】
本実施形態によれば、先に検出された境界の位置情報に基づいて、次の走査線上の境界位置を推定し、実測値と比較するので、境界の連続性をより正確に判定することができる。
なお、本実施形態においては、最新の走査によって得られた境界位置情報と、そのひとつ前の走査によって得られた境界位置情報とに基づいて、次の走査線における境界位置を予測しているが、さらに過去に取得された境界位置情報まで遡って用いても良い。
【0044】
次に本発明の第4の実施形態に係る超音波撮像装置について説明する。本実施形態に係る超音波撮像方法は、マルチビーム方式、即ち、複数の超音波ビームを複数の方向に同時に送信することにより、被検体の3次元領域を高速に走査するものである。
【0045】
マルチビーム方式においては、1つの方向に送信された第1の超音波ビームが反射源に反射されて生じる超音波エコーを受信する際に、他の方向に送信された第2の超音波ビームが反射源に反射されて生じる超音波エコーが同時に受信される場合に、クロストークが問題となる。そのため、マルチビーム方式による本格的な超音波撮像を行う前に、クロストークの原因となるような反射源が存在するか否かについて、事前撮像により、被検体の概要を把握しておくことが行われる。この事前撮像は、クロストークの影響を避けるために、シングルビームによって行う必要があるので、撮像時間が長くかかってしまう。そこで、本実施形態においては、この事前撮像を高速に行うための方法を採用している。
【0046】
図19は、本実施形態に係る超音波撮像装置の構成を示すブロック図である。この超音波撮像装置は、図1に示す超音波撮像装置における位相整合演算部42の替わりに位相整合演算部50を、また、走査制御部44の替わりに走査制御部52有しており、さらに、クロストーク判定部51を有している。その他の構成については、図1に示す超音波撮像装置と同様である。
【0047】
位相整合演算部50は、メモリ41に記憶されている検出データの位相を整合するために演算処理を行う。位相整合演算部42には、送信ビームの数に対応して複数の系統が設けられている。位相整合演算部50の各系統は、各超音波トランスデューサ10aから出力される検出信号に基づいて得られた一連の検出データに所定の遅延を与え、それらをディジタル加算する。このように、複数の系統を有する位相整合演算部50を用いることにより、被検体内の複数の方向に関する受信フォーカスを同時に達成することができる。
【0048】
クロストーク判定部51は、被検体をプリスキャンすることにより事前撮像を行った場合に、その結果得られた画像情報に基づいて、クロストークの原因となる反射源が存在しているか否かを判定する。
また、走査制御部52は、事前走査の際に、不連続領域判定部43の判定結果に基づいて走査線密度及び走査領域を設定すると共に、本格的な撮像において、クロストーク判定部51の判定結果に基づいて、送信される超音波の送信タイミングや送信方向を含む走査条件を設定する。
【0049】
次に、本発明の第4の実施形態に係る超音波撮像方法について、図19〜図22を参照しながら説明する。図20は、本実施形態に係る超音波撮像方法を示すフローチャートである。また、図21及び図22は、本実施形態に係る超音波撮像方法を説明するための図である。
ここで、図21の(a)及び図22の(a)は、被検体の3次元領域に向けて超音波ビームが送信される様子を示しており、矢印は、超音波ビームTX1〜TX4の軌跡を表している。また、図21の(b)及び図22の(b)は、深度Pの画像領域に含まれる複数のブロックP1〜P4を示しており、丸印は、複数のブロックP1〜P4を走査する超音波ビームTX1〜TX4のビームスポットを表し、矢印は、超音波ビームTX1〜TX4の走査方向を表している。ここで、図21の(a)、(b)及び図22の(a)、(b)において、黒丸印は深度Pの画像領域に存在する反射源OB1及びOB2を表している。さらに、図21の(c)及び図22の(c)は、送信された超音波ビームに対応して取得されたエコー信号のタイムチャートを示している。
【0050】
まず、ステップS31において、図21の(a)に示すように、被検体内の3次元領域を構成する1つの画像領域を1つの超音波ビームTX1によって走査することにより、事前撮像を行う。事前撮像においては、本発明の第1又は第2の実施形態に係る超音波撮像方法が用いられる。
【0051】
この事前撮像により、図21の(c)に示すエコー信号のタイムチャートが得られる。これにより、深度Pの画像領域に反射源OB1及びOB2が存在することが把握される。図21の(c)において、t1及びt2は、図21の(a)に示すx1及びx2方向の各々に向けて送信された超音波ビームTX1の送信時刻を示している。
このような複数の走査線に関する音線データは、クロストーク判定部51に入力される。
【0052】
次に、ステップS32において、クロストークの判定を行う。ここで、発火タイミングコントローラ20には、例えば、図22の(a)に示すように、1回のマルチビーム送信において、θ0及びφ0ずつ離れている超音波ビームTX1、TX2、TX3、TX4が同時に送信されるように、送信タイミング及び送信方向が初期設定されているものとする。
【0053】
まず、クロストーク判定部51は、入力された音線データに基づいて、互いに隣接する領域に反射源が存在するか否かを判定する。
例えば、図21の(c)に示すタイムチャートにより、x1方向及びx2方向に、反射源OB1及びOB2がそれぞれ存在していることがわかる。これらの反射源OB1及びOB2は、超音波ビームを送信してから超音波エコーを受信するまでの時間がほぼ等しいことから、図21の(a)に示すように、送信ビームの送信点からの距離がほぼ等しい位置、即ち、深度の等しい画像領域上に存在していることがわかる。このx1方向とx2方向との間隔が、同時に送信される複数の超音波ビームの送信間隔θ0やφ0にほぼ等しい場合に、x1方向及びx2方向に向けて同時に超音波ビームを送信すると、反射源OB1に反射されて生じた超音波エコーの検出信号と、反射源OB2に反射されて生じた超音波エコーの検出信号とが重なって検出されてしまう。
そのような場合に、クロストーク判定部51は、x1方向とx2方向との間でクロストークが生じるものと判断し、その結果を走査制御部52に入力する。
【0054】
次に、ステップS33において、走査条件の再設定を行う。走査制御部52は、クロストーク判定部51から入力された判定結果に基づいて、本格的な撮像の際に送信される超音波ビームの走査条件を発火タイミングコントローラ20に対して再設定する。即ち、図22の(c)に示すように、走査制御部52は、x1及びx2を含む方向に超音波ビームを送信する際に、超音波ビームTX1、TX3、TX4を同時に送信し、これらの送信時刻のΔt時間後に超音波ビームTX2を送信するように、送信タイミングを設定する。
【0055】
次に、ステップS34において、本格的な撮像を行う。即ち、複数のパルサ回路21は、走査制御部52によって走査条件が再設定された発火タイミングコントローラ20の制御に従って、複数のパルサ回路21にそれぞれ接続されている複数の超音波トランスデューサ10aに駆動信号を出力する。これにより、時刻t0に、複数の超音波ビームTX1、TX3、TX4がx1、x3、x4方向に向けて送信され、そのΔt時間後である時刻t0+Δtに、超音波ビームTX2がx2方向に向けて送信される。
【0056】
マルチビーム送信された複数の超音波ビームは、被検体内においてそれぞれ反射され、それによって生じた超音波エコーが超音波用探触子10に受信される。超音波用探触子10に含まれる複数の超音波トランスデューサ10aは、受信した超音波エコーに基づいて複数の検出信号をそれぞれ出力する。これらの検出信号は、対応するレシーバ30にそれぞれ入力され、所定の信号処理を施され、メモリ41で一旦記憶された後、位相整合演算部50の各系統に並列に入力される。
【0057】
位相整合演算部50は、入力された一連の検出データに基づいて、x1、x2、x3、x4方向から戻ってきた超音波エコーがそれぞれ受信焦点を形成するように受信ビームフォーミングを行うことにより、送信ビームにそれぞれ対応する音線データを生成する。これにより、図22の(c)に示すように、反射源OB1に反射されて生じた超音波エコーの検出信号と、反射源OB2に反射されて生じた超音波エコーの検出信号とが分離して取得される。
【0058】
さらに、表示画像演算部45は、位相整合演算部50において受信フォーカス処理を施された音線データについて所定の画像処理を行い、画像表示部46は、画像処理された画像データに基づいて超音波画像を表示する。
【0059】
以上説明したように、本実施形態によれば、事前撮像を高速に行うことができるので、全体の超音波撮像に要する時間を短縮することができる。また、事前撮像の結果に基づいて、超音波ビームの送信タイミングを含む走査条件を再設定するので、隣接する複数の領域において反射されて生じた超音波エコーの検出信号を分離することができ、クロストークの影響が抑制された良質な画像データをマルチビーム送信によって高速に取得することができる。
【0060】
本実施形態においては、クロストーク判定部の結果に基づいて、超音波ビームが送信されるタイミングをずらすように走査条件を再設定したが、超音波ビームの送信方向を変更したり、タイミング及び送信方向の両方を変更するように、走査条件を再設定しても良い。
【0061】
また、本実施形態においては、マルチビーム方式による超音波撮像を行うための事前撮像として第1又は第2の実施形態に係る超音波撮像方法を用いたが、これらの超音波撮像方法は、その他にも、様々な超音波撮像における事前撮像として用いることができる。
【0062】
【発明の効果】
以上説明したように、本発明によれば、検出された媒質の境界の連続性に応じて走査線密度をアダプティブに変更するので、重要な情報が含まれる領域について詳細な超音波情報を取得しつつ、走査領域の全体を高速に走査できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る超音波撮像装置の構成を示すブロック図である。
【図2】被検体内の走査対象であるセクタ領域を示す図である。
【図3】本発明の第1の実施形態に係る超音波撮像方法を示すフローチャートである。
【図4】通常の走査における走査線密度を示す図である。
【図5】本発明の第1の実施形態に係る超音波撮像方法において行われる低い走査線密度による走査を説明するための図である。
【図6】境界の連続性を判定する方法を説明するための図である。
【図7】走査線上に境界が存在するか否かを判定する方法を説明するための図である。
【図8】走査線上に境界が存在するか否かを判定する方法を説明するための図である。
【図9】隣接する走査線上に存在する境界が連続するか否かを判定する方法を説明するための図である。
【図10】本発明の第1の実施形態に係る超音波撮像方法において行われる高い走査線密度による走査を説明するための図である。
【図11】本発明の第2の実施形態に係る超音波撮像方法を示すフローチャートである。
【図12】本発明の第2の実施形態に係る超音波撮像方法において行われる走査を説明するための図である。
【図13】本発明の第3の実施形態に係る超音波撮像装置の構成を示すブロック図である。
【図14】本発明の第3の実施形態に係る超音波撮像方法における不連続領域の検出方法を示すフローチャートである。
【図15】本発明の第3の実施形態に係る超音波撮像方法において走査される領域を示す図である。
【図16】境界位置の予測方法を説明するための図である。
【図17】境界位置の予測方法を説明するための図である。
【図18】境界位置の予測方法を説明するための図である。
【図19】本発明の第4の実施形態に係る超音波撮像装置の構成を示すブロック図である。
【図20】本発明の第4の実施形態に係る超音波撮像方法を示すフローチャートである。
【図21】本発明の第4の実施形態に係る超音波撮像方法を説明するための図である。
【図22】本発明の第4の実施形態に係る超音波撮像方法を説明するための図である。
【符号の説明】
1、3 走査領域(セクタ領域)
2、4 反射源
10 超音波用探触子
10a 超音波トランスデューサアレイ
20 発火タイミングコントローラ
21 パルサ回路
30 レシーバ
31 プリアンプ
32 TGC増幅器
33 A/D変換器
40 システム制御部
41 メモリ
42、50 位相整合演算部
43 不連続領域判定部
44、52 走査制御部
45 表示画像演算部
46 画像表示部
47 境界予測演算部
51 クロストーク判定部
Claims (10)
- 超音波撮像装置であって、
複数の駆動信号に従ってそれぞれ動作する複数の超音波トランスデューサによって超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子と、
前記超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、前記超音波用探触子から送信される超音波ビームによって、設定された走査線密度で被検体を走査させる送信側信号処理手段と、
超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得る受信側信号処理手段と、
前記受信側信号処理手段によって得られた複数の検出信号に基づいて、被検体内に存在する媒質の境界の連続性を判定する判定手段と、
前記送信側信号処理手段に対し、第1の走査線密度を設定した後に、前記判定手段の判定結果に応じて、第1の走査線密度よりも高い第2の走査線密度を設定する制御手段と、
を具備する超音波撮像装置。 - 前記判定手段が、所定の走査領域を第1の走査線密度で走査することによって得られた複数の検出信号に基づいて媒質の境界の連続性を判定することにより、該境界の不連続領域を検出し、
前記制御手段が、前記判定手段によって検出された境界の不連続領域を第1の走査線密度よりも高い第2の走査線密度で走査するように前記送信側信号処理手段を制御する、請求項1記載の超音波撮像装置。 - 前記制御手段が、所定の走査領域を第1の走査線密度で走査した後に、前記判定手段によって検出された境界の不連続領域を第1の走査線密度よりも高い第2の走査線密度で走査するように前記送信側信号処理手段を制御する、請求項2記載の超音波撮像装置。
- 前記制御手段が、前記判定手段によって境界の不連続領域が検出されたときに、残りの走査領域よりも先に該境界の不連続領域を第1の走査線密度よりも高い第2の走査線密度で走査するように前記送信側信号処理手段を制御する、請求項2記載の超音波撮像装置。
- 前記判定手段が、複数の走査線に関する複数の検出信号の各々において、時間軸上の位置における該検出信号の振幅の変化率が所定の値より大きい場合に、その時間軸上の位置に媒質の境界が存在すると判断し、第1の検出信号において媒質の境界が存在すると判断された時間軸上の位置が、隣接する走査線に関する第2の検出信号において媒質の境界が存在すると判断された時間軸上の位置を基準とする所定の期間内に含まれる場合に、第1の検出信号と第2の検出信号とにおいて媒質の境界が連続すると判定する、請求項1〜4のいずれか1項記載の超音波撮像装置。
- 少なくとも第1及び第2の走査線に関する第1及び第2の検出信号を用いて、第3の走査線において媒質の境界が存在する位置を予測するための演算を行う演算手段をさらに具備し、
前記判定手段が、前記演算手段によって予測された位置に基づいて、第2の走査線における媒質の境界と第3の走査線における媒質の境界とが連続するか否かを判定する、
請求項1〜5のいずれか1項記載の超音波撮像装置。 - 前記制御手段が、所定の走査領域を第1の走査線密度で走査し、前記判定手段によって検出された境界の不連続領域を第1の走査線密度よりも高い第2の走査線密度で走査することによって事前撮像を行い、該事前撮像によって得られた複数の走査線に関する検出信号に基づいて本格的な撮像を行うように、前記送信側信号処理手段を制御する、請求項2〜6のいずれか1項記載の超音波撮像装置。
- 事前撮像により得られた検出信号に基づいて、異なる複数の反射源にそれぞれ反射されて生じた複数の超音波エコーが前記超音波用探触子に受信される際に互いに干渉するような反射源が存在するか否かを判定する第2の判定手段をさらに具備し、
前記制御手段が、前記第2の判定手段の判定結果に基づいて、所定の期間内に複数の方向にそれぞれ送信される複数の超音波ビームの送信タイミングを含む走査条件を設定し、
前記送信側信号処理手段が、前記制御手段によって設定された走査条件に従って、前記超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、前記超音波用探触子から複数の超音波ビームを送信することによって被検体の複数の領域をそれぞれ走査させる、
請求項7記載の超音波撮像装置。 - 複数の駆動信号に従ってそれぞれ動作する複数の超音波トランスデューサによって超音波ビームを形成して被検体に送信すると共に、被検体から反射される超音波エコーを受信する超音波用探触子を用いて、被検体を撮像する超音波撮像方法であって、
前記超音波用探触子に供給される複数の駆動信号に遅延を与えることにより、前記超音波用探触子から送信される超音波ビームによって第1の走査線密度で被検体を走査するステップ(a)と、
超音波エコーの受信によって得られる複数の検出信号を処理することにより、複数の走査線に沿った超音波情報をそれぞれ表す複数の検出信号を得るステップ(b)と、
ステップ(b)において得られた複数の検出信号に基づいて、被検体内に存在する媒質の境界の連続性を判定するステップ(c)と、
ステップ(c)における判定結果に応じて、走査線の密度を第1の走査線密度よりも高い第2の走査線密度に変更して被検体を走査するステップ(d)と、
を具備する超音波撮像方法。 - ステップ(c)が、ステップ(b)において得られた複数の検出信号の各々において、1つの時間軸上の位置における該検出信号の振幅の変化率が、所定の値より大きい場合に、その時間軸上の位置に媒質の境界が存在すると判断し、第1の検出信号において媒質の境界が存在すると判断された時間軸上の位置が、隣接する走査線に関する第2の検出信号において媒質の境界が存在すると判断された時間軸上の位置を基準とする所定の期間内に含まれる場合に、第1の検出信号と第2の検出信号とにおいて媒質の境界が連続すると判定することを含む、請求項9記載の超音波撮像方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083176A JP2004290249A (ja) | 2003-03-25 | 2003-03-25 | 超音波撮像装置及び超音波撮像方法 |
US10/805,213 US6973831B2 (en) | 2003-03-25 | 2004-03-22 | Ultrasonic imaging apparatus and ultrasonic imaging method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083176A JP2004290249A (ja) | 2003-03-25 | 2003-03-25 | 超音波撮像装置及び超音波撮像方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004290249A true JP2004290249A (ja) | 2004-10-21 |
Family
ID=32985040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003083176A Withdrawn JP2004290249A (ja) | 2003-03-25 | 2003-03-25 | 超音波撮像装置及び超音波撮像方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US6973831B2 (ja) |
JP (1) | JP2004290249A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007111316A (ja) * | 2005-10-21 | 2007-05-10 | Toshiba Corp | 3次元超音波診断装置及びそのレベル調整方法 |
JP2008079885A (ja) * | 2006-09-28 | 2008-04-10 | Aloka Co Ltd | 超音波診断装置 |
JP2012024426A (ja) * | 2010-07-27 | 2012-02-09 | Canon Inc | 測定装置 |
CN104739446A (zh) * | 2015-03-31 | 2015-07-01 | 苏州佳世达电通有限公司 | 超音波扫描系统及超音波扫描方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7331234B2 (en) * | 2002-11-13 | 2008-02-19 | Fujifilm Corporation | Ultrasonic imaging method and ultrasonic imaging apparatus |
DE102004059856B4 (de) | 2004-12-11 | 2006-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur zerstörungsfreien Untersuchung eines Prüfkörpers mittels Ultraschall |
JP4969985B2 (ja) * | 2006-10-17 | 2012-07-04 | 株式会社東芝 | 超音波診断装置、及び超音波診断装置の制御プログラム |
US9404893B2 (en) * | 2008-03-14 | 2016-08-02 | Cidra Corporate Services Inc. | Flow and pipe management using velocity profile measurement and/or pipe wall thickness and wear monitoring |
KR101097607B1 (ko) * | 2010-01-12 | 2011-12-22 | 삼성메디슨 주식회사 | 스캔 각도, 스캔 깊이 및 스캔 속도를 설정하는 초음파 시스템 및 방법 |
US8683865B2 (en) * | 2011-05-26 | 2014-04-01 | General Electric Company | Ultrasonic scanning with local gain intervals |
WO2013068894A1 (en) * | 2011-11-10 | 2013-05-16 | Koninklijke Philips Electronics N.V. | Steady frame rate volumetric ultrasound imaging |
CN105877783B (zh) * | 2015-02-15 | 2019-04-16 | 深圳开立生物医疗科技股份有限公司 | 二维剪切波弹性成像方法和装置 |
DE112016006252T5 (de) * | 2016-01-19 | 2018-09-27 | Sound Technology Inc. | Interconnect für ein ultraschallwandlerarray |
CN111671462A (zh) * | 2020-06-18 | 2020-09-18 | 京东方科技集团股份有限公司 | 超声成像数据采集的扫描间隔计算方法及其设备、装置 |
CN113282314B (zh) * | 2021-05-12 | 2024-04-12 | 聚融医疗科技(杭州)有限公司 | 一种超声扫描控制参数下发方法及系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5140558A (en) * | 1988-08-29 | 1992-08-18 | Acoustic Imaging Technologies Corporation | Focused ultrasound imaging system and method |
JP2772045B2 (ja) * | 1989-07-06 | 1998-07-02 | 株式会社東芝 | 超音波診断装置 |
JP2001327505A (ja) * | 2000-05-22 | 2001-11-27 | Toshiba Corp | 超音波診断装置 |
EP1162476A1 (de) * | 2000-06-06 | 2001-12-12 | Kretztechnik Aktiengesellschaft | Verfahren zur Untersuchung von Objekten mit Ultraschall |
-
2003
- 2003-03-25 JP JP2003083176A patent/JP2004290249A/ja not_active Withdrawn
-
2004
- 2004-03-22 US US10/805,213 patent/US6973831B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007111316A (ja) * | 2005-10-21 | 2007-05-10 | Toshiba Corp | 3次元超音波診断装置及びそのレベル調整方法 |
JP2008079885A (ja) * | 2006-09-28 | 2008-04-10 | Aloka Co Ltd | 超音波診断装置 |
JP2012024426A (ja) * | 2010-07-27 | 2012-02-09 | Canon Inc | 測定装置 |
CN104739446A (zh) * | 2015-03-31 | 2015-07-01 | 苏州佳世达电通有限公司 | 超音波扫描系统及超音波扫描方法 |
Also Published As
Publication number | Publication date |
---|---|
US6973831B2 (en) | 2005-12-13 |
US20040187582A1 (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5719098B2 (ja) | 超音波診断装置 | |
US11439368B2 (en) | Acoustic wave processing device, signal processing method for acoustic wave processing device, and program | |
JP6389963B2 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP2004290249A (ja) | 超音波撮像装置及び超音波撮像方法 | |
EP1235080B1 (en) | Ultrasonic imaging method and ultrasonic imaging apparatus | |
US20080168839A1 (en) | Ultrasonic diagnostic apparatus | |
JP2009056140A (ja) | 超音波診断装置 | |
US10231711B2 (en) | Acoustic wave processing device, signal processing method for acoustic wave processing device, and program | |
US11134920B2 (en) | Ultrasound diagnostic apparatus and method for determination of an imaging part | |
JP2012192077A (ja) | 超音波診断装置および超音波画像生成方法 | |
JP2012010943A (ja) | 超音波診断装置及び超音波診断方法 | |
JP5148194B2 (ja) | 超音波診断装置 | |
JP2002336246A (ja) | 超音波撮像方法及び超音波撮像装置 | |
JP4090370B2 (ja) | 超音波撮像装置及び超音波撮像方法 | |
JP2012161569A (ja) | 超音波診断装置および超音波画像生成方法 | |
JP2005087266A (ja) | 超音波撮像装置 | |
US10912538B2 (en) | Ultrasound diagnostic apparatus and method of producing ultrasound image | |
JP5836241B2 (ja) | 超音波検査装置、超音波検査装置の信号処理方法およびプログラム | |
JP6552724B2 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP2004223109A (ja) | 超音波撮像装置及び超音波撮像方法 | |
JP5450488B2 (ja) | 超音波診断装置および超音波画像生成方法 | |
JP2012249929A (ja) | 超音波画像生成方法 | |
JP2004113694A (ja) | 超音波撮像装置及び超音波撮像方法 | |
JP2569024B2 (ja) | 超音波診断装置 | |
JP2012249925A (ja) | 超音波画像生成方法および超音波画像診断装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060606 |