JP2004288478A - 直流遮断器 - Google Patents
直流遮断器 Download PDFInfo
- Publication number
- JP2004288478A JP2004288478A JP2003079384A JP2003079384A JP2004288478A JP 2004288478 A JP2004288478 A JP 2004288478A JP 2003079384 A JP2003079384 A JP 2003079384A JP 2003079384 A JP2003079384 A JP 2003079384A JP 2004288478 A JP2004288478 A JP 2004288478A
- Authority
- JP
- Japan
- Prior art keywords
- current
- circuit
- circuit breaker
- saturable reactor
- commutation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
Abstract
【解決手段】直流回路に直列接続された可飽和リアクトル10および真空遮断器1と、前記可飽和リアクトル10と前記真空遮断器1の直列回路に並列に接続されたコンデンサ4、転流スイッチ5からなる転流回路とを備え、前記真空遮断器1の遮断時、前記直流回路の電流に前記転流回路からの転流電流を重畳させ、前記電流が減少して定格電流以下であって、定格電流の75%〜10%の範囲までに減少したとき、前記可飽和リアクトル10が磁気飽和状態から非飽和状態となるようにしたことを特徴としている。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、真空遮断器で直流回路を遮断するにあたり、遮断特性を向上し得る直流遮断器に関する。
【0002】
【従来の技術】
直流回路の遮断においては、直流回路に転流回路から転流電流を注入し、強制的に電流零点をつくり電流零点で遮断を行う直流遮断器が用いられている。
【0003】
この直流遮断器は、図9に示すように、直流回路のP−N間に直列に真空遮断器1および可飽和リアクトル2が接続されている。そして、真空遮断器1および可飽和リアクトル2の直列回路に並列に、リアクトル3、コンデンサ4および転流スイッチ5を直列接続した転流回路を接続している。この転流スイッチ5は、真空遮断器1の両電極間の絶縁距離が確保された開極位置で、制御回路からの信号により動作するものである。なお、真空遮断器1および可飽和リアクトル2の直列回路には、更に電磁エネルギーを吸収するためのエネルギー吸収素子6が並列に接続されている。
【0004】
このような回路構成において、図10に示すように、直流回路に過大な事故電流iaが流れた場合、真空遮断器1に制御回路から遮断指令が発せられ、真空遮断器1の一方の電極から他方の電極が開離し、両電極間にアークが発生する。そして、両電極間が時間t1の転流動作位置に達すると、制御回路からの信号により転流スイッチ5が閉じられ、転流回路からの逆方向転流電流が重畳され、事故電流iaは急激に減少する。
【0005】
ここで、従来の直流遮断器では、事故電流iaを遮断するまでの過程において、この事故電流iaに転流電流を注入し、定格電流i0を超える所定電流値i1まで減少すると、可飽和リアクトル2が磁気飽和状態から非飽和状態となりリアクタンスが大きくなり、時間t2からは電流変化率di/dtが小さくなるようになっている(例えば、特許文献1参照。)。そして、充分にdi/dtが小さくなった電流零点の時間t3での遮断を容易にしている。
【0006】
【特許文献1】
特許第2846402号公報(第2頁、第1図)
【0007】
【発明が解決しようとする課題】
上記の従来の直流遮断器においては、以下のような問題がある。
【0008】
前記可飽和リアクトル2の磁気飽和状態が解除されるt2からt3までの時間では、可飽和リアクトル2の磁気飽和状態が解除される電流値が定格電流i0より大きいため、高い電流値からdi/dtを小さくしている。そのため、t2からt3の時間のうち高い電流値となる時間が長くなり、この際に電極間に発生するアークエネルギーに対応した構成とする必要があった。この構成の例として2つ説明する。先ず、真空遮断器の電極を大きくし、真空遮断器を大容量化とする方法である。次には、可飽和リアクトルの磁気飽和が解除された際のインダクタンスを大きくする方法である。この場合、t2からt3までの時間が長くなり、t2近傍の電流が高くアークエネルギーが大きい期間の影響が、電流を遮断するt3において小さくなる。これらの構成では、真空遮断器、可飽和リアクトルが大型のものとなる。
【0009】
従って、本発明の目的は、可飽和リアクトルの飽和状態が解除されてから遮断までのアークエネルギーを抑制し、遮断特性を向上し得る直流遮断器を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、第1の発明の直流遮断器は、直流回路に直列接続された可飽和リアクトルおよび真空遮断器と、前記可飽和リアクトルと前記真空遮断器の直列回路に並列に接続されたコンデンサ、転流スイッチからなる転流回路とを備え、前記真空遮断器の遮断時、前記直流回路の電流に前記転流回路からの転流電流を重畳させ、前記電流が減少して定格電流以下であって、定格電流の75%〜10%の範囲まで減少したとき、前記可飽和リアクトルが磁気飽和状態から非飽和状態となるようにしたことを特徴としている。
【0011】
このような構成によれば、真空遮断器が事故電流の遮断を始めて主回路の電流が定格電流以下の所定電流値まで減少すると、可飽和リアクトルが磁気飽和状態から非飽和状態となるので、低い電流値からdi/dtが小さくなり、また、この継続時間が短くなるので、電極間に発生するアークエネルギーが抑えられ、遮断特性を向上し得ることができる。
【0012】
また、第2の発明の直流遮断器は、直流回路に直列接続された第1の可飽和リアクトルおよび真空遮断器と、前記第1の可飽和リアクトルおよび前記真空遮断器の直列回路に並列に接続され、前記第1の可飽和リアクトルと共用のコアで逆方向の磁束を生じる第2の可飽和リアクトル、コンデンサおよび転流スイッチからなる転流回路とを備え、前記真空遮断器の遮断時、前記直流回路の電流に前記転流回路からの転流電流を重畳させ、前記電流が減少して定格電流以下であって、定格電流の75%〜10%の範囲まで減少したとき、前記第1、第2の可飽和リアクトルの磁気飽和状態を解除させるようにしたことを特徴としている。
【0013】
このような構成によれば、真空遮断器が事故電流の遮断を始めて主回路の電流が定格電流以下の所定電流値まで減少すると、第1、第2の可飽和リアクトルが磁気飽和状態から非磁気飽和状態となるので、低い電流値からdi/dtが小さくなり、また、この継続時間が短くなるので、電極間に発生するアークエネルギーが抑えられ、遮断特性を向上し得ることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。なお、各図において、従来と同様の構成部分については、同一符号を付した。
【0015】
(第1の実施の形態)
先ず、本発明の第1の実施の形態に係る直流遮断器を図1乃至図3を参照して説明する。図1は、本発明の第1の実施の形態に係る直流遮断器の回路構成図、図2は、本発明の第1の実施の形態に係る直流遮断器の可飽和リアクトルを示す斜視図、図3は、本発明の第1の実施の形態に係る直流遮断器の動作を説明するための説明図である。
【0016】
図1に示すように、直流回路のP−N間の電源側に可飽和リアクトル10および負荷側に真空遮断器1が直列接続されている。そして、真空遮断器1および可飽和リアクトル10の直列回路に並列には、リアクトル3、コンデンサ4および転流スイッチ5を直列接続した転流回路を接続している。また、この真空遮断器1および可飽和リアクトル10の直列回路には、更に電磁エネルギーを吸収するためのエネルギー吸収素子6が並列に接続されている。
【0017】
可飽和リアクトル10は、図2に示すように、ギャップを介して、ロ字形の閉磁路を形成する積層ケイ素鋼鈑からなるコア12の中空部に、主回路電流を通電する導体11を挿通し構成されている。また、コア12の両側面には、サポート板13が固定され、支持碍子14で絶縁支持されている。
【0018】
このような回路構成において、図3に示すように、直流回路に過大な事故電流iaが流れた場合、真空遮断器1に制御回路から遮断指令が発せられ、真空遮断器1の一方の電極から他方の電極が開離し、両電極間にはアークが発生する。そして、両電極間が時間t1の転流動作位置に達すると、制御回路からの信号により転流スイッチ5が閉じられ、事故電流iaに転流回路からの逆方向転流電流が重畳する。これにより、事故電流iaは、急激に減少する。
【0019】
ここで、可飽和リアクトル10は、過大な事故電流iaの通電時には磁気飽和状態となるが、特に定格電流i0を下回る所定電流値i2まで減少した後、磁気飽和状態から非飽和状態となり大きなインダクタンスになるようになっている。そして、所定電流値i2に対応した時間t4からは、このインダクタンスにより電流変化率di/dtが暫時小さくなり、電流零点となる時間t5でdi/dtが充分に小さくなり遮断を容易にしている。このような磁気飽和状態と磁気飽和状態の解除を制御する手段として、例えば導体11で発生する磁束が結合するコア12の磁路を変化させればよく、磁路を短くすることやギャップを小さくすることによって小さい通電電流で磁気飽和状態が起きるようになる。
【0020】
これにより、前記真空遮断器1の電極間には、時間t1までの事故電流ia、および転流電流注入時のt1から可飽和リアクトル10の磁気飽和状態が解除される時間t4を経由して電流零点になる時間t5までの事故電流iaが流れる。このため、電極間に発生するアークエネルギーは、開極動作位置に達する時間t1までは従来と変らないものの、磁気飽和状態から非飽和状態となりdi/dtが小さくなるt4からt5までの継続時間が短くなり、また、時間t4のときの電流値が下がって、アークエネルギーが抑制される。
【0021】
しかしながら、非飽和状態が定格電流i0を僅かに低下する所定電流値i2では、アークエネルギーを充分に抑制することができない。このため、所定電流値i2を定格電流i0の75%まで低下させると、非飽和状態となりdi/dtが小さくなる領域のアークエネルギーを充分に抑制することができる。即ち、di/dtがある一定値と仮定すると、所定電流値i2を75%まで低下させると、アークの継続時間も比例して約75%に短くなり、その結果、アークエネルギーが約1/2となる。これにより、真空遮断器1の電極接点から生じる金属蒸気量を極めて抑制させることができる。
【0022】
なお、所定電流値i2を10%以下まで低下させると、小さいdi/dtが得られるもののt4以降の電流値が小さくアークの継続時間が短く、電極間のアークの金属蒸気が充分に拡散されず、遮断できなくなる恐れがあるので好ましくない。
【0023】
上記第1の実施の形態の直流遮断器によれば、直流回路に直列接続した可飽和リアクトル10の磁気飽和状態から非飽和状態となる電流値を定格電流の75%から10%としているので、磁気飽和状態が解除される電流値が低く、また、遮断完了するまでの継続時間が短くなる。その結果、電極間に発生するアークエネルギーが抑制され、電流零点付近では充分に小さいdi/dtが得られ遮断特性を向上し得ることができる。また、可飽和リアクトル10の磁気飽和状態から非飽和状態となる電流値を低くできるため、可飽和リアクトル10の小型化が可能となる。
【0024】
なお、上記実施の形態では、転流回路にリアクトル3、コンデンサ4および転流スイッチ5を直列接続したが、大きな転流電流を得るためにリアクトル3を省いて、コンデンサ4および転流スイッチ5を直列接続した転流回路においても、可飽和リアクトル10の磁気飽和状態から非飽和状態となる電流値を定格電流の75%から10%にすれば、遮断特性を向上し得ることができる。
【0025】
また、上記実施の形態では、可飽和リアクトル10を直流回路の電源側に設けたが、直流回路の負荷側に設けてもよく、これにより、定格電流の75%から10%の所定電流値で磁気飽和状態から非飽和状態とし、遮断特性を向上し得ることができる。
【0026】
(第2の実施の形態)
次に、本発明の第2の実施の形態に係る直流遮断器を図4乃至図5を参照して説明する。図4は、本発明の第2の実施の形態に係る直流遮断器の回路構成図、図5は、本発明の第2の実施の形態に係る直流遮断器の可飽和リアクトルを示す斜視図である。この第2の実施の形態が第1の実施の形態と異なる点は、可飽和リアクトルを転流回路にも接続していることである。
【0027】
図4に示すように、直流回路のP−N間には、電源側に第1の可飽和リアクトル15および負荷側に真空遮断器1が直列接続されている。そして、真空遮断器1に並列にリアクトル3、コンデンサ4、転流スイッチ5、および第2の可飽和リアクトル16を直列接続してなる転流回路を接続している。また、第1の可飽和リアクトル15と真空遮断器1の直列回路に、並列に電磁エネルギーを吸収するためのエネルギー吸収素子6が接続されている。
【0028】
第1の可飽和リアクトル15および第2の可飽和リアクトル16は、図5に示すように構成されている。即ち、主回路の第1の導体17、転流回路の第2の導体18とは互いに離隔して配置され、且つギャップを介してロ字形の閉磁路を形成する積層ケイ素鋼鈑からなるコア19の中空部に、第1、第2の導体17、18を挿通して構成されている。また、コア19の両側面には、サポート板20が固定され、支持碍子21で絶縁支持されている。
【0029】
ここで、第1の導体17の主回路の電流の向きを図に示すように実線の方向とすれば、第2の導体18の転流電流の向きは点線の方向としている。即ち、第1の導体17と第2の導体18との電流の向きを逆方向としており、それによりコア19に生じる磁束の向きが逆方向となる。両者による合成磁束は、第1の導体17と第2の導体18に流れる電流を加算した電流がコア19に作る磁束と等価である。この電流は、真空遮断器1に流れる電流と等しい。
【0030】
このような回路構成において、再び図3を用いて説明する。
【0031】
図3に示すように、直流回路の真空遮断器1に過大な事故電流iaが流れた場合、第1の実施の形態と同様に、真空遮断器1に遮断指令が発せられ、時間t1の開極動作位置に達すると、転流スイッチ5が閉じられ逆方向転流電流が重畳され事故電流iaが交流波形となり急激に減衰する。
【0032】
ここで、第1の可飽和リアクトル15および第2の可飽和リアクトル16は、過大な事故電流および転流電流の通電により夫々生じる磁束がコア19内で打ち消されるので磁気非飽和状態が得られ易くなる。即ち、夫々導体17、18に大きな電流が流れているのにも関らず、コア19内の磁束が少ないので透磁率が大きくなり、その結果、夫々導体17、18に発生するインダクタンスが大きくなる。そして、真空遮断器1に流れる事故電流iaが定格電流i0を下回る所定電流値i2まで減少すると、コア19内の磁束は事故電流と転流電流で生じる磁束の和が小さくなるためコア19は磁気飽和状態から非飽和状態となる。
【0033】
この所定電流値i2に対応した時間t4からは、磁気飽和状態が解除された第1、第2の可飽和リアクトル15、16が大きなインダクタンスを生じて電流変化率di/dtが暫時小さくなり、また、電流零点となる時間t5でdi/dtが充分に小さくなり遮断を容易にしている。
【0034】
上記第2の実施の形態の直流遮断器によれば、直流回路および転流回路に共通のコア19を利用して構成した第1、第2の可飽和リアクトル15、16を設けて、互いの導体17、18に流れる電流の向きを逆方向として、磁束の向きを逆方向にしてコア19内の磁束を打ち消し、また、磁気飽和状態から非飽和状態となる電流値を定格電流の75%から10%の所定電流値i2としているので、第1の実施の形態と同様の効果が得られる。
【0035】
なお、上記実施の形態では、転流回路のリアクトル3、コンデンサ4、転流スイッチ5、および第2の可飽和リアクトル16を直列接続したが、大きな転流電流を得るためにリアクトル3を省いて、コンデンサ4、転流スイッチ5、および第2の可飽和リアクトル16を直列接続した転流回路においても、磁気飽和状態から非飽和状態となる電流値を定格電流の75%から10%の所定電流値i2にすれば、遮断特性を向上し得ることができる。
【0036】
また、上記実施の形態では、第1の可飽和リアクトル15を直流回路の電源側に設けたが、直流回路の負荷側に設けてもよく、これにより、定格電流の75%から10%の所定電流値i2で磁気飽和状態から非飽和状態とし、遮断特性を向上し得ることができる。
【0037】
なお、本発明は、上記実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲で、種々変形して実施することができる。第1の実施の形態では、主回路の導体11とコア12間を気中で離隔して絶縁した可飽和リアクトル10について説明したが、磁気飽和状態から非飽和状態となる所定電流値を下げるため、磁路を短くして絶縁距離が充分に確保されない場合には、図6に示すように、導体11が貫通するコア12内面に絶縁層22を設け、導体11とコア12間の絶縁補強をしてもよい。また、図7に示すように、コア12を貫通する導体11の表面に絶縁層23を設けてもよい。
【0038】
また、第2の実施の形態による第1、第2の可飽和リアクトル15、16においても、上記と同様にコア19と導体17、18間に絶縁補強をすればコア19の磁路を短くすることができる。
【0039】
更に、図8に示すように、ケイ素鋼鈑を連続的に筒状に積層するコア24とすれば、ケイ素鋼鈑の板厚を薄くできるので渦電流損が減少し、コア24のうち表皮効果により有効に作用しない部分を減少した可飽和リアクトルにすることができる。
【0040】
【発明の効果】
以上述べたように、本発明によれば、直流回路に直列に可飽和リアクトルと真空遮断器を接続し、この真空遮断器が事故電流の遮断時、定格電流の75%から10%の所定電流値で可飽和リアクトルが磁気飽和状態から非飽和状態となるようにしているので、電極間で発生するアークエネルギーが抑制され、また、電流零点近傍でのdi/dtが充分に小さくなり、遮断特性を向上し得る直流遮断器を提供することができる。
【0041】
更に、本発明によれば、直流回路に直列に第1の可飽和リアクトルと真空遮断器を接続し、また、転流回路に第1の可飽和リアクトルと共用のコアで逆方向の磁束を生じる第2の可飽和リアクトルを接続しており、事故電流の遮断時、定格電流の75%から10%の所定電流値まで減少すると、磁気飽和状態から非飽和状態となるようにしているので、電極間で発生するアークエネルギーが抑制され、また、電流零点近傍でのdi/dtが充分に小さくなり、遮断特性を向上し得る直流遮断器を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る直流遮断器の回路構成図。
【図2】本発明の第1の実施の形態に係る直流遮断器の可飽和リアクトルを示す斜視図。
【図3】本発明の実施の形態に係る直流遮断器の動作を説明するための説明図。
【図4】本発明の第2の実施の形態に係る直流遮断器の回路構成図。
【図5】本発明の第2の実施の形態に係る直流遮断器の可飽和リアクトルを示す斜視図。
【図6】本発明の変形例に係る直流遮断器の可飽和リアクトルを示す斜視図。
【図7】本発明の変形例に係る直流遮断器の可飽和リアクトルを示す斜視図。
【図8】本発明の変形例に係る直流遮断器の可飽和リアクトルのコアを示す斜視図。
【図9】従来の直流遮断器の回路構成図。
【図10】従来の直流遮断器の動作を説明するための説明図。
【符号の説明】
1 真空遮断器
2、10、 可飽和リアクトル
3 リアクトル
4 コンデンサ
5 転流スイッチ
6 エネルギー吸収素子
11 導体
12、19、24 コア
13、20 サポート板
14、21 支持碍子
15 第1の可飽和リアクトル
16 第2の可飽和リアクトル
17 第1の導体
18 第2の導体
22、23 絶縁層
Claims (3)
- 直流回路に直列接続された可飽和リアクトルおよび真空遮断器と、
前記可飽和リアクトルと前記真空遮断器の直列回路に並列に接続されたコンデンサ、転流スイッチからなる転流回路とを備え、
前記真空遮断器の遮断時、前記直流回路の電流に前記転流回路からの転流電流を重畳させ、前記電流が減少して定格電流以下であって、定格電流の75%〜10%の範囲までに減少したとき、磁気飽和状態の前記可飽和リアクトルが非飽和状態になるようにしたことを特徴とする直流遮断器。 - 直流回路に直列接続された第1の可飽和リアクトルおよび真空遮断器と、
前記第1の可飽和リアクトルおよび前記真空遮断器の直列回路に並列に接続され、前記第1の可飽和リアクトルと共用のコアで逆方向の磁束を生じる第2の可飽和リアクトル、コンデンサおよび転流スイッチからなる転流回路とを備え、
前記真空遮断器の遮断時、前記直流回路の電流に前記転流回路からの転流電流を重畳させ、前記電流が減少して定格電流以下であって、定格電流の75%〜10%の範囲までに減少したとき、磁気飽和状態の前記第1、第2の可飽和リアクトルの磁気飽和状態を解除させるようにしたことを特徴とする直流遮断器。 - 前記可飽和リアクトルのコアと通電導体間に絶縁層を設け、前記コアの磁路を短くしたことを特徴とする請求項1または請求項2記載の直流遮断器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003079384A JP4413512B2 (ja) | 2003-03-24 | 2003-03-24 | 直流遮断器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003079384A JP4413512B2 (ja) | 2003-03-24 | 2003-03-24 | 直流遮断器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004288478A true JP2004288478A (ja) | 2004-10-14 |
JP4413512B2 JP4413512B2 (ja) | 2010-02-10 |
Family
ID=33293507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003079384A Expired - Fee Related JP4413512B2 (ja) | 2003-03-24 | 2003-03-24 | 直流遮断器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4413512B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008004373A (ja) * | 2006-06-22 | 2008-01-10 | Hitachi Ltd | 転流式直流遮断器 |
JP2008220160A (ja) * | 2007-02-08 | 2008-09-18 | Hitachi Ltd | 転流式直流遮断器を有する直流回路用配電盤 |
CN102420084A (zh) * | 2011-08-25 | 2012-04-18 | 许继集团有限公司 | 一种自源式直流快速断路器 |
WO2016056274A1 (ja) * | 2014-10-09 | 2016-04-14 | 三菱電機株式会社 | 直流遮断器 |
US20160315467A1 (en) * | 2013-12-20 | 2016-10-27 | Siemens Aktiengesellschaft | Apparatus and method for switching a direct current |
CN108767832A (zh) * | 2018-07-13 | 2018-11-06 | 合肥朗辉电气有限公司 | 一种基于快速开关采用强迫过零原理的快速限流电路 |
JP2018538677A (ja) * | 2015-12-28 | 2018-12-27 | サイブレーク アーベーScibreak Ab | 電流を遮断する装置、システム及び方法 |
-
2003
- 2003-03-24 JP JP2003079384A patent/JP4413512B2/ja not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008004373A (ja) * | 2006-06-22 | 2008-01-10 | Hitachi Ltd | 転流式直流遮断器 |
JP4641287B2 (ja) * | 2006-06-22 | 2011-03-02 | 株式会社日立製作所 | 転流式直流遮断器 |
JP2008220160A (ja) * | 2007-02-08 | 2008-09-18 | Hitachi Ltd | 転流式直流遮断器を有する直流回路用配電盤 |
CN102420084A (zh) * | 2011-08-25 | 2012-04-18 | 许继集团有限公司 | 一种自源式直流快速断路器 |
US10243357B2 (en) * | 2013-12-20 | 2019-03-26 | Siemens Aktiengesellschaft | Apparatus and method for switching a direct current |
US20160315467A1 (en) * | 2013-12-20 | 2016-10-27 | Siemens Aktiengesellschaft | Apparatus and method for switching a direct current |
JP6049913B2 (ja) * | 2014-10-09 | 2016-12-21 | 三菱電機株式会社 | 直流遮断器 |
JPWO2016056274A1 (ja) * | 2014-10-09 | 2017-04-27 | 三菱電機株式会社 | 直流遮断器 |
WO2016056274A1 (ja) * | 2014-10-09 | 2016-04-14 | 三菱電機株式会社 | 直流遮断器 |
US10403449B2 (en) | 2014-10-09 | 2019-09-03 | Mitsubishi Electric Corporation | Direct-current circuit breaker |
JP2018538677A (ja) * | 2015-12-28 | 2018-12-27 | サイブレーク アーベーScibreak Ab | 電流を遮断する装置、システム及び方法 |
JP7017510B2 (ja) | 2015-12-28 | 2022-02-08 | サイブレーク アーベー | 電流を遮断する装置、システム及び方法 |
CN108767832A (zh) * | 2018-07-13 | 2018-11-06 | 合肥朗辉电气有限公司 | 一种基于快速开关采用强迫过零原理的快速限流电路 |
Also Published As
Publication number | Publication date |
---|---|
JP4413512B2 (ja) | 2010-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3811681B2 (ja) | 高電圧パルス発生回路 | |
EP2888749B1 (en) | Apparatus arranged to break an electrical current | |
CN109378812B (zh) | 一种高电感变比的磁饱和铁芯直流故障限流器及限流方法 | |
JPS5949663B2 (ja) | 高電圧直流しや断装置 | |
Wu et al. | Bidirectional current injection MVDC circuit breaker: Principle and analysis | |
JPH05282973A (ja) | 真空遮断器 | |
JP2004288478A (ja) | 直流遮断器 | |
JP2010017016A (ja) | 磁気飽和型限流器 | |
JP2009181908A (ja) | 直流高速真空遮断装置 | |
Chen et al. | Asymmetrical winding configuration to reduce inrush current with appropriate short-circuit current in transformer | |
KR20090026900A (ko) | 자계 스위칭을 이용한 직류 차단기용 순간 전류 제한기 | |
Ou et al. | A novel transformer structure used in a 1.4 MHz LLC resonant converter with GaNFETs | |
JP2000048686A (ja) | 転流式直流遮断器 | |
CN113872170B (zh) | 可二次主动限流的磁饱和铁心直流故障限流器及限流方法 | |
Kim et al. | Comparison of inverse current injecting HVDC curcuit breaker | |
JP4418212B2 (ja) | 高電圧パルス発生回路 | |
JP4128806B2 (ja) | 直流遮断装置 | |
Eladawy et al. | DC‐presaturated fault current limiter for high voltage direct current transmission systems | |
CN113872169A (zh) | 磁耦合快速吸能式饱和铁心直流故障限流器及限流方法 | |
CN112564071A (zh) | 一种新型快速响应直流限流器及限流方法 | |
JP6709143B2 (ja) | パルス電源装置 | |
JP2019204607A (ja) | 直流遮断器 | |
JPWO2005041389A1 (ja) | パルス発生回路 | |
CN216904287U (zh) | 一种基于快速开关的变压器涌流抑制装置 | |
Eladawy et al. | Permanent Magnet Biased Fault Current Limiter used for HVDC Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050415 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050606 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080711 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091027 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121127 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4413512 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131127 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |