Nothing Special   »   [go: up one dir, main page]

JP2004286658A - Non-destructive inspection apparatus - Google Patents

Non-destructive inspection apparatus Download PDF

Info

Publication number
JP2004286658A
JP2004286658A JP2003080694A JP2003080694A JP2004286658A JP 2004286658 A JP2004286658 A JP 2004286658A JP 2003080694 A JP2003080694 A JP 2003080694A JP 2003080694 A JP2003080694 A JP 2003080694A JP 2004286658 A JP2004286658 A JP 2004286658A
Authority
JP
Japan
Prior art keywords
refrigerator
inspection apparatus
magnetic flux
destructive inspection
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003080694A
Other languages
Japanese (ja)
Inventor
Naoko Kasai
直子 葛西
Yoshi Hatsukade
好 廿日出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003080694A priority Critical patent/JP2004286658A/en
Publication of JP2004286658A publication Critical patent/JP2004286658A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-destructive inspection apparatus for solving the problem of safety and experience, without the risk of an inspector suffering suffocation or low-temperature burn by a coolant, and for detecting defects in the depths, even with respect to high-resistivity materials. <P>SOLUTION: The non-destructive inspection apparatus, using a SQUID device, comprises a coil for applying an AC magnetic field to a sample from the outside, a magnetic flux density multiplication means for multiplying magnetic flux density generated in the coil for applying it to the inside of the sample, and a refrigerator which operates electrically for cooling the SQUID device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、SQUID素子を用いた非破壊検査装置に関するものである。
【0002】
【従来の技術】
従来、非破壊検査として用いられている手法に、X線検査、超音波検査、SQUID非破壊検査の各手法が知られている。
X線検査では、内部の二次元的あるいは三次元的な視覚情報を得ることができる。この手法は金属を対象とした場合、数十mmの厚板にも適用が可能である。しかし、カーボンなどの軽元素材料ではコントラストが低下して使用できないという欠点がある。また、検査員が被爆したり、試料の背面にフィルムを取り付けなければならないという問題がある。
【0003】
また、超音波検査は、深部欠陥が検出可能であり、非接触検査が可能であり、金属を対象とした場合、数十mmの厚板に適用可能である利点がある。しかし、この手法は、積層構造に対してはその界面で超音波が反射するため内部減衰が大きく実用に供し得ない、超音波を伝達するために水などの媒介が必要で非接触検査ができないという問題がある。
【0004】
SQUID非破壊検査は、深部の欠陥の検出が可能で非接触検査が可能であり、金属を対象とした場合、数十mmの厚板にも適用可能である利点がある。しかし、この手法は、カーボンなどの高抵抗材料に対しては渦電流の発生が困難なため適用することができず、また、検査員が冷却剤による窒息や低温やけどを負う危険性があり、それを回避するための知識、習熟が必要であるという問題がある。
【0005】
前記SQUID非破壊検査は、非接触の渦流探傷法であり、大型構造物の非破壊検査において広範囲を走査するために検査スピードを確保することができる利点がある。この検査において用いる誘導コイルが十分な感度を得るためには、通常10kHz〜100kHz以上の周波数磁界が使用される。このため、金属材料に適用する場合、表皮効果により表面近傍1mm以下の深さの欠陥しか検査が行えないという問題があった。
【0006】
一方、建築や航空宇宙分野などの様々な分野において、近年ではCFRPやC/Cのような炭素繊維系複合材料の使用が増加している。これらの複合材料では積層構造がよく用いられているが、このような構造体には衝撃に対する脆弱性が指摘されており、低速度で低エネルギーの衝撃であっても、内部に欠陥が発生しやすいという問題がある。この点からも非接触な検査が強く望まれている。しかしこれらの複合材料は電気抵抗率が金属材料と比較しておよそ1桁〜3桁程度高い。したがって、通常の誘導コイルを用いた渦流探傷法ではその欠陥検出のために十分な量の渦電流を発生させることが金属材料よりも困難である。電気抵抗率が高い材料の方が表皮効果による電流の深さ方向の減衰は小さいため、より高い周波数の誘導磁界を用いることで渦電流の増加が可能であるが、例えば炭素繊維系複合材料の導電率として電気抵抗率10−5[Ωm]を仮定し、この材料に1MHzの誘導磁界を適用した場合、電流の侵入深さは6mm程度となる。このように金属材料及び複合材料の欠陥、特に10mmを超えるような深部欠陥探傷法はこれまで確立されていなかった。
【0007】
【発明が解決しようとする課題】
本発明は、このような従来技術の問題点に鑑みてなされたもので、検査員が冷却剤による窒息や低温やけどを負う危険がなく、安全性、習熟の問題を解決することができ、しかも高抵抗率材料に対しても深部欠陥が検出可能な非破壊検査装置を提供することをその課題とする。
【0008】
【課題を解決するための手段】
本発明によれば、上記課題は下記の技術的手段により解決される。
(1)SQUID素子を用いた非破壊検査装置において、試料に外部から交流磁界を印加するコイルと、該コイルで発生する磁束密度を増倍して試料内部に印加する磁束密度増倍手段と、SQUID素子を冷却するために電気的に作動する冷凍機とを具備することを特徴とする非破壊検査装置。
(2)前記磁束密度増倍手段が高透磁率材料から構成されていることを特徴とする前記(1)に記載の非破壊検査装置。
(3)前記高透磁率材料として、U字型形状のフェライトを用いることを特徴とする前記(2)に記載の非破壊検査装置。
(4)前記冷凍機が、パルスチューブ冷凍機からなることを特徴とする前記(1)〜(3)のいずれかに記載の非破壊検査装置。
(5)前記冷凍機が、パルスチューブ冷凍機本体と、冷却部を真空に保つ取外し可能なクライオスタットと、該冷凍機本体から切り離されたバルブ切り替えモータと、冷却用ガスの運搬及びガス冷却を行うコンプレッサーからなることを特徴とする前記(4)に記載の非破壊検査装置。
【0009】
【発明の実施の形態】
以下、本発明の非破壊検査装置について詳述する。
本発明の非破壊検査装置は、SQUID素子を用いた非破壊検査装置において、試料に外部から交流磁界を印加するコイルと、該コイルで発生する磁束密度を増倍して試料内部に印加する磁束密度増倍手段と、SQUID素子を冷却するために電気的に作動する冷凍機とを具備することを特徴とするものである。
【0010】
本発明の非破壊検査装置では、フェライトコアと誘導コイルを組み合わせた電磁石を用いた渦電流誘導システムを利用する。一般的なSQUID素子を用いた非破壊検査では、誘導コイルから交流磁界を発生させ、この磁束を導電性サンプルに鎖交させて検査対象物内部に渦電流を誘導させ、欠陥があった場合に、その欠陥による渦電流の乱れを磁気による欠陥信号としてSQUID素子で検出するが、本発明では誘導コイルにフェライトコアを組み合わせて使用する。これにより測定対象物に外部から強力な磁界を印加し、高抵抗材料からなる測定対象物への深部欠陥の検出を可能とする。
【0011】
SQUIDを用いた非破壊検査において、渦電流を利用する場合、一般に、誘導磁界の磁束が直接SQUID素子に鎖交し、また欠陥がない部分で発生した渦電流による磁束がSQUIDに鎖交することにより、SQUID素子の広いダイナミックレンジを活かせなく、磁束量がダイナミックレンジを超えるとFLL回路が正常動作しなくなり測定不能となる問題が発生することがある。これに対しては、本発明の一実施形態では、2個のピックアップコイルに鎖交する磁束の差分を検出するSQUIDグラジオメータを用い、2個のピックアップコイルに鎖交する磁束量の総和が零になるように配置させることにより、磁界を発生する電磁石がSQUIDグラジオメータ近傍に存在してもSQUIDグラジオメータの出力が零となるようにし、誘導磁界をSQUIDに対して不感とする。また、U字状フェライトコアを採用することにより、欠陥がない部分で発生した渦電流による磁束をSQUIDグラジオメータに対して不感とさせる。そして欠陥により渦電流分布が乱されたときのみ電流の対称性が崩れ、それの欠陥信号を検出することにより非破壊検査を行う。
【0012】
本発明において、測定対象に印加する交流磁界の周波数は1Hz〜数kHzであり、測定対象に印加する磁束密度は数〜数十mTである。このような範囲の磁界周波数及び磁束密度であると、測定対象の深部欠陥検出が可能となる。
【0013】
また、現場で利用できるSQUID非破壊検査システムのためにSQUID素子を冷却しなければならないが、本発明では小型パルスチューブ冷凍機を用いてその冷却を行う。非破壊検査のセンサに用いるHTS−SQUIDの超伝導臨界温度Tcは高品質な場合でも90K程度であり、十分な特性を持った状態で使用するには80K以下に冷却する必要がある。このため、従来は液体窒素等が使用されていた。しかし、液体窒素等の冷媒を扱うには窒息や凍傷などの危険を回避しなければならず、そのための知識と扱いの習熟が要求されていた。また、大型の構造物における欠陥検出のためには小型で扱いの容易なSQUID冷却手段が必要となる。そこで、本発明では、冷却部から磁性体モータを分離した構造を持ち、他の冷凍機と比較して低振動で小型なパルスチューブ冷凍機を用いる。
【0014】
図1に本発明で用いるパルスチューブ冷凍機の概略構成を示す。このパルスチューブ冷凍機は、パルスチューブ冷凍機本体と、冷却部(コールドヘッド)を真空に保つ取外し可能なクライオスタット(低温真空容器)と、本体から切り離されたバルブ切り替えモータと、冷却用ガスである気体ヘリウムの運搬及びガス冷却を行うコンプレッサーから構成される。このようなパルスチューブ冷凍機は、冷凍機由来の磁気ノイズ、冷凍機の振動、コンプレッサーやモータからの磁気ノイズを可能な限り低減させ、高い温度安定性を有している。この冷凍機の冷却部到達温度は55Kである。本発明では、冷却部とサンプルステージを分離し、銅線で接続した機構を用い、これにより磁気ノイズ発生源からSQUID素子を遠ざけ、振動の影響を低減させ、SQUID素子の温度安定性を確保する。また、振動の影響をより低減させるため、ガス管の振動が小さい同軸型パルスチューブ冷凍機を用いる。
【0015】
【実施例】
以下実施例に基づき本発明を詳述する。
(実施例1)
図2は、本発明による第1の実施例に係る非破壊検査装置の概略構成を模式的に示す図で、SQUID素子と、これを冷却するための冷凍機と、誘導コイルを巻回したU字状フェライトコアから構成される。このような構成において、測定対象物(サンプル)に本非破壊検査装置を設置し、交流電流を、フェライトコアに巻回した誘導コイルに印加し、フェライトコア端面から交流誘導磁界を発生させる。この誘導磁界をフェライトコアの測定対象物に印加し、測定対象物内に渦電流を誘起させる。測定対象物に欠陥がない場合、SQUID素子は不感となる。測定対象物に欠陥がある場合、その欠陥が渦電流の流れを乱し、それを冷凍機冷却したSQUID素子が検出する。
このような構成によれば、カーボン等の高電気抵抗材料の深部欠陥が検出可能となり、また検査員が冷却剤による窒息や低温やけどの危険性を被ることがなくなり、極めて安全に非破壊検査を行うことができる。
【0016】
(実施例2)
図3は、本発明による第2の実施例に係る非破壊検査装置の概略構成を模式的に示す図で、2つのU字型フェライトコアを用いたケースである。冷凍機の両脇に配置したフェライトコアに巻回した誘導コイルに交流電流を印加して、フェライトコア端面から交流誘導磁界を発生させる。この誘導磁界をフェライトコアの測定対象物に印加し、測定対象物内に渦電流を誘起させる。測定対象物に欠陥がない場合、SQUID素子は不感となる。測定対象物に欠陥がある場合、その欠陥が渦電流の流れを乱し、それを冷凍機冷却したSQUID素子が検出する。
このような構成によれば、第1の実施例と同様、カーボン等の高電気抵抗材料の深部欠陥が検出可能となり、また検査員が冷却剤による窒息や低温やけどの危険性を被ることがなくなり、極めて安全に非破壊検査を行うことができる。
【0017】
(実施例3)
図4は、本発明による第3の実施例に係る非破壊検査装置の概略構成を模式的に示す図で、水道管やガス管などのパイプ状の測定対象物に対して検査を行うケースである。測定対象物(サンプル)をフェライトコアの両端面で挟み込むように本非破壊検査装置を設置し、交流電流を、フェライトコアに巻回した誘導コイルに印加し、フェライトコア端面から交流誘導磁界を発生させる。この誘導磁界をフェライトコアの測定対象物に印加し、測定対象物内に渦電流を誘起させる。測定対象物に欠陥がない場合、SQUID素子は不感となる。測定対象物に欠陥がある場合、その欠陥が渦電流の流れを乱し、それを冷凍機冷却したSQUID素子が検出する。
このような構成によれば、管状の高電気抵抗材料の深部欠陥が検出可能となり、また検査員が冷却剤による窒息や低温やけどの危険性を被ることがなくなり、極めて安全に非破壊検査を行うことができる。
【0018】
【発明の効果】
以上詳細に説明したように、本発明によれば上記構成を採用したので、検査員が冷却剤による窒息や低温やけどを負う危険がなく、安全性、習熟の問題を解決することができ、しかも高抵抗率材料に対しても深部欠陥が検出可能な非破壊検査装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の非破壊検査装置において用いる冷却機の概略構成を示す図である。
【図2】本発明による第1の実施例に係る非破壊検査装置の概略構成を示す図である。
【図3】本発明による第2の実施例に係る非破壊検査装置の概略構成を示す図である。
【図4】本発明による第3の実施例に係る非破壊検査装置の概略構成を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nondestructive inspection device using a SQUID element.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, X-ray inspection, ultrasonic inspection, and SQUID nondestructive inspection are known as methods used as nondestructive inspection.
In the X-ray inspection, internal two-dimensional or three-dimensional visual information can be obtained. This method can be applied to a thick plate of several tens of mm when targeting a metal. However, a light element material such as carbon has a disadvantage that the contrast is lowered and cannot be used. In addition, there are problems that the inspector is exposed to the radiation and that a film must be attached to the back of the sample.
[0003]
Further, the ultrasonic inspection has an advantage that a deep defect can be detected, a non-contact inspection can be performed, and when a metal is targeted, it can be applied to a tens of mm thick plate. However, this method has a large internal attenuation and cannot be used for practical use due to the reflection of ultrasonic waves at the interface of the laminated structure. Non-contact inspection is not possible due to the need for media such as water to transmit ultrasonic waves There is a problem.
[0004]
The SQUID nondestructive inspection has an advantage that it can detect a defect in a deep part and can perform a noncontact inspection, and when it is applied to a metal, it can be applied to a thick plate of several tens of mm. However, this method cannot be applied to high-resistance materials such as carbon due to the difficulty of generating eddy currents, and there is a risk that the inspector may be suffocated by the coolant or burned at low temperatures. There is a problem that knowledge and proficiency are required to avoid it.
[0005]
The SQUID nondestructive inspection is a non-contact eddy current flaw detection method, and has an advantage that the inspection speed can be secured to scan a wide area in the nondestructive inspection of a large structure. In order for the induction coil used in this test to obtain sufficient sensitivity, a frequency magnetic field of 10 kHz to 100 kHz or more is usually used. For this reason, when applied to a metal material, there is a problem that only a defect having a depth of 1 mm or less near the surface can be inspected due to a skin effect.
[0006]
On the other hand, in various fields such as the construction and aerospace fields, the use of carbon fiber composite materials such as CFRP and C / C has been increasing in recent years. Laminated structures are often used in these composite materials, but such structures have been shown to be vulnerable to impact, and internal defects can occur even at low speed and low energy impact. There is a problem that it is easy. From this point, a non-contact inspection is strongly desired. However, these composite materials have an electrical resistivity about one to three orders of magnitude higher than that of a metal material. Therefore, it is more difficult to generate a sufficient amount of eddy current for detecting a defect in the eddy current flaw detection method using a normal induction coil than in a metal material. Since a material having a higher electrical resistivity has a smaller current attenuation in the depth direction due to the skin effect, it is possible to increase an eddy current by using a higher-frequency induced magnetic field. Assuming an electric resistivity of 10 −5 [Ωm] as the conductivity, and when a 1 MHz induction magnetic field is applied to this material, the penetration depth of the current is about 6 mm. As described above, a defect detection method for a defect in a metal material and a composite material, particularly, a deep defect inspection method exceeding 10 mm has not been established.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the related art, and there is no danger that an inspector suffers suffocation or low-temperature burn due to a coolant, and can solve the problems of safety and mastery. An object of the present invention is to provide a non-destructive inspection device capable of detecting a deep defect even in a high resistivity material.
[0008]
[Means for Solving the Problems]
According to the present invention, the above-mentioned problem is solved by the following technical means.
(1) In a nondestructive inspection device using a SQUID element, a coil for applying an alternating magnetic field to a sample from outside, a magnetic flux density multiplying means for multiplying a magnetic flux density generated by the coil and applying the same to the inside of the sample, A nondestructive inspection device comprising: a refrigerator that is electrically operated to cool the SQUID element.
(2) The nondestructive inspection apparatus according to (1), wherein the magnetic flux density multiplying means is made of a material having high magnetic permeability.
(3) The non-destructive inspection device according to (2), wherein a U-shaped ferrite is used as the high magnetic permeability material.
(4) The nondestructive inspection device according to any one of (1) to (3), wherein the refrigerator is a pulse tube refrigerator.
(5) The refrigerator performs a pulse tube refrigerator main body, a detachable cryostat that keeps a cooling unit at a vacuum, a valve switching motor separated from the refrigerator main body, and carries cooling gas and gas cooling. The nondestructive inspection device according to the above (4), comprising a compressor.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the nondestructive inspection device of the present invention will be described in detail.
A nondestructive inspection apparatus according to the present invention is a nondestructive inspection apparatus using a SQUID element, wherein a coil for applying an external AC magnetic field to a sample and a magnetic flux applied to the inside of the sample by multiplying the magnetic flux density generated by the coil It is characterized by comprising a density multiplying means and a refrigerator electrically operated for cooling the SQUID element.
[0010]
The nondestructive inspection device of the present invention utilizes an eddy current induction system using an electromagnet in which a ferrite core and an induction coil are combined. In a nondestructive inspection using a general SQUID element, an AC magnetic field is generated from an induction coil, and this magnetic flux is linked to a conductive sample to induce an eddy current inside the inspection object. The turbulence of the eddy current due to the defect is detected by a SQUID element as a defect signal due to magnetism. In the present invention, an induction coil is used in combination with a ferrite core. As a result, a strong magnetic field is externally applied to the object to be measured, and a deep defect in the object to be measured made of a high-resistance material can be detected.
[0011]
When using eddy currents in nondestructive inspection using SQUIDs, generally, the magnetic flux of the induced magnetic field is directly linked to the SQUID element, and the magnetic flux due to the eddy current generated in a defect-free part is linked to the SQUID. As a result, the wide dynamic range of the SQUID element cannot be utilized, and when the amount of magnetic flux exceeds the dynamic range, the FLL circuit does not operate normally and a problem may occur that measurement becomes impossible. On the other hand, in one embodiment of the present invention, a SQUID gradiometer that detects a difference between magnetic fluxes linked to the two pickup coils is used, and the total amount of magnetic flux linked to the two pickup coils is zero. , The output of the SQUID gradiometer becomes zero even when an electromagnet that generates a magnetic field exists near the SQUID gradiometer, and the induction magnetic field is made insensitive to the SQUID. Further, by employing the U-shaped ferrite core, the magnetic flux due to the eddy current generated in the portion having no defect is made insensitive to the SQUID gradiometer. Only when the eddy current distribution is disturbed by a defect, the symmetry of the current is broken, and a non-destructive inspection is performed by detecting a defect signal of the defect.
[0012]
In the present invention, the frequency of the AC magnetic field applied to the measurement object is 1 Hz to several kHz, and the magnetic flux density applied to the measurement object is several to several tens mT. When the magnetic field frequency and the magnetic flux density are in such ranges, it is possible to detect a deep defect of the measurement target.
[0013]
In addition, the SQUID element must be cooled for the SQUID nondestructive inspection system that can be used in the field. In the present invention, the cooling is performed using a small pulse tube refrigerator. The superconducting critical temperature Tc of the HTS-SQUID used for the sensor of the nondestructive inspection is about 90K even in the case of high quality, and it is necessary to cool the temperature to 80K or less in order to use it with sufficient characteristics. For this reason, conventionally, liquid nitrogen or the like has been used. However, handling refrigerants such as liquid nitrogen requires avoiding dangers such as suffocation and frostbite, and requires knowledge and proficiency in handling them. In addition, a small and easy-to-handle SQUID cooling means is required for detecting a defect in a large structure. Therefore, in the present invention, a small-sized pulse tube refrigerator having a structure in which the magnetic motor is separated from the cooling unit and having low vibration compared to other refrigerators is used.
[0014]
FIG. 1 shows a schematic configuration of a pulse tube refrigerator used in the present invention. This pulse tube refrigerator has a pulse tube refrigerator main body, a removable cryostat (low-temperature vacuum vessel) for keeping a cooling unit (cold head) at a vacuum, a valve switching motor separated from the main body, and a cooling gas. It consists of a compressor that transports gas helium and cools gas. Such a pulse tube refrigerator has high temperature stability by reducing magnetic noise derived from the refrigerator, vibration of the refrigerator, and magnetic noise from the compressor and the motor as much as possible. The temperature at which the refrigerator reaches the cooling section is 55K. In the present invention, a mechanism in which the cooling unit and the sample stage are separated and connected by a copper wire is used, thereby keeping the SQUID element away from the magnetic noise source, reducing the influence of vibration, and ensuring the temperature stability of the SQUID element. . In order to further reduce the influence of the vibration, a coaxial pulse tube refrigerator having a small vibration of the gas pipe is used.
[0015]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
(Example 1)
FIG. 2 is a view schematically showing a schematic configuration of the nondestructive inspection apparatus according to the first embodiment of the present invention, in which a SQUID element, a refrigerator for cooling the SQUID element, and a U having an induction coil wound thereon. It consists of a letter-shaped ferrite core. In such a configuration, the non-destructive inspection apparatus is installed on a measurement object (sample), and an alternating current is applied to an induction coil wound around a ferrite core to generate an alternating-current induction magnetic field from an end surface of the ferrite core. This induction magnetic field is applied to the measurement object of the ferrite core to induce an eddy current in the measurement object. If the measurement object has no defects, the SQUID element is insensitive. If the measurement object has a defect, the defect disturbs the flow of the eddy current, and the defect is detected by the SQUID element cooled by the refrigerator.
According to such a configuration, it is possible to detect a deep defect of a high electrical resistance material such as carbon, and it is possible to perform a non-destructive inspection extremely safely without an inspector being exposed to a danger of suffocation or low-temperature burn due to a coolant. It can be carried out.
[0016]
(Example 2)
FIG. 3 is a view schematically showing a schematic configuration of a nondestructive inspection apparatus according to a second embodiment of the present invention, in which two U-shaped ferrite cores are used. An AC current is applied to an induction coil wound around a ferrite core disposed on both sides of the refrigerator to generate an AC induction magnetic field from an end surface of the ferrite core. This induction magnetic field is applied to the measurement object of the ferrite core to induce an eddy current in the measurement object. If the measurement object has no defects, the SQUID element is insensitive. If the measurement object has a defect, the defect disturbs the flow of the eddy current, which is detected by the SQUID element cooled by the refrigerator.
According to such a configuration, as in the first embodiment, it is possible to detect a deep defect of a high electrical resistance material such as carbon, and the inspector does not suffer from the danger of suffocation or low-temperature burn due to the coolant. In this way, nondestructive inspection can be performed extremely safely.
[0017]
(Example 3)
FIG. 4 is a diagram schematically illustrating a schematic configuration of a nondestructive inspection apparatus according to a third embodiment of the present invention, in which inspection is performed on a pipe-shaped measurement target such as a water pipe or a gas pipe. is there. This non-destructive inspection device is installed so that the object to be measured (sample) is sandwiched between both end surfaces of the ferrite core. An AC current is applied to the induction coil wound around the ferrite core, and an AC induction magnetic field is generated from the ferrite core end surface. Let it. This induction magnetic field is applied to the measurement object of the ferrite core to induce an eddy current in the measurement object. If the measurement object has no defects, the SQUID element is insensitive. If the measurement object has a defect, the defect disturbs the flow of the eddy current, which is detected by the SQUID element cooled by the refrigerator.
According to such a configuration, it is possible to detect a deep defect of the tubular high electric resistance material, and the inspector does not suffer from the risk of suffocation or low-temperature burn due to the coolant, and performs the nondestructive inspection extremely safely. be able to.
[0018]
【The invention's effect】
As described above in detail, according to the present invention, since the above configuration is employed, there is no danger that the inspector suffers suffocation or low-temperature burn due to the coolant, and safety and mastery problems can be solved. It is possible to provide a nondestructive inspection device capable of detecting a deep defect even with a high resistivity material.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a cooler used in a nondestructive inspection device of the present invention.
FIG. 2 is a view showing a schematic configuration of a nondestructive inspection apparatus according to a first embodiment of the present invention.
FIG. 3 is a diagram showing a schematic configuration of a nondestructive inspection apparatus according to a second embodiment of the present invention.
FIG. 4 is a diagram showing a schematic configuration of a nondestructive inspection apparatus according to a third embodiment of the present invention.

Claims (5)

SQUID素子を用いた非破壊検査装置において、試料に外部から交流磁界を印加するコイルと、該コイルで発生する磁束密度を増倍して試料内部に印加する磁束密度増倍手段と、SQUID素子を冷却するために電気的に作動する冷凍機とを具備することを特徴とする非破壊検査装置。In a nondestructive inspection apparatus using a SQUID element, a coil for applying an AC magnetic field to a sample from the outside, a magnetic flux density multiplying means for multiplying a magnetic flux density generated by the coil and applying the same to the inside of the sample, A non-destructive inspection device, comprising: a refrigerator that is electrically operated for cooling. 前記磁束密度増倍手段が高透磁率材料から構成されていることを特徴とする請求項1に記載の非破壊検査装置。The non-destructive inspection device according to claim 1, wherein the magnetic flux density multiplying means is made of a material having a high magnetic permeability. 前記高透磁率材料として、U字型形状のフェライトを用いることを特徴とする請求項2に記載の非破壊検査装置。The non-destructive inspection apparatus according to claim 2, wherein a U-shaped ferrite is used as the high magnetic permeability material. 前記冷凍機が、パルスチューブ冷凍機からなることを特徴とする請求項1〜3のいずれかに記載の非破壊検査装置。The said refrigerator is a pulse tube refrigerator, The non-destructive inspection apparatus in any one of Claims 1-3 characterized by the above-mentioned. 前記冷凍機が、パルスチューブ冷凍機本体と、冷却部を真空に保つ取外し可能なクライオスタットと、該冷凍機本体から切り離されたバルブ切り替えモータと、冷却用ガスの運搬及びガス冷却を行うコンプレッサーからなることを特徴とする請求項4に記載の非破壊検査装置。The refrigerator includes a pulse tube refrigerator main body, a detachable cryostat that keeps a cooling unit at a vacuum, a valve switching motor separated from the refrigerator main body, and a compressor that carries a cooling gas and performs gas cooling. The nondestructive inspection device according to claim 4, wherein:
JP2003080694A 2003-03-24 2003-03-24 Non-destructive inspection apparatus Pending JP2004286658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080694A JP2004286658A (en) 2003-03-24 2003-03-24 Non-destructive inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080694A JP2004286658A (en) 2003-03-24 2003-03-24 Non-destructive inspection apparatus

Publications (1)

Publication Number Publication Date
JP2004286658A true JP2004286658A (en) 2004-10-14

Family

ID=33294478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080694A Pending JP2004286658A (en) 2003-03-24 2003-03-24 Non-destructive inspection apparatus

Country Status (1)

Country Link
JP (1) JP2004286658A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539411A (en) * 2005-04-29 2008-11-13 ユニバーシティー カレッジ ロンドン Apparatus and method for measuring magnetic properties of materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539411A (en) * 2005-04-29 2008-11-13 ユニバーシティー カレッジ ロンドン Apparatus and method for measuring magnetic properties of materials

Similar Documents

Publication Publication Date Title
Krause et al. Recent developments in SQUID NDE
Sophian et al. Electromagnetic and eddy current NDT: a review
Nair et al. A GMR-based eddy current system for NDE of aircraft structures
JPH06324021A (en) Non-destructive inspection device
Tavrin et al. Eddy current technique with high temperature SQUID for non-destructive evaluation of non-magnetic metallic structures
Tsukada et al. Low-frequency eddy current imaging using MR sensor detecting tangential magnetic field components for nondestructive evaluation
Sasayama et al. Thickness measurement of an iron plate using low-frequency eddy current testing with an HTS coil
Hughes High-sensitivity eddy-current testing technology for defect detection in aerospace superalloys
Hatsukade et al. Mobile cryocooler-based SQUID NDE system utilizing active magnetic shielding
Nagendran et al. Optimum eddy current excitation frequency for subsurface defect detection in SQUID based non-destructive evaluation
Zhou et al. Differential eddy current method for full circumferential defect detection of small diameter steel pipe: Numerical analysis and experimental study
Hinken et al. Thermoelectric SQUID method for the detection of segregations
Mück et al. Eddy current nondestructive material evaluation based on HTS SQUIDs
JP2004286658A (en) Non-destructive inspection apparatus
Sasayama et al. Rectangular wave eddy current testing using for imaging of backside defects of steel plates
Carreon Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing
Matsunaga et al. Application of a HTS coil with a magnetic sensor to nondestructive testing using a low-frequency magnetic field
Claycomb et al. Theoretical investigation of eddy-current induction for nondestructive evaluation by superconducting quantum interference devices
Hirata et al. Development of a highly sensitive magnetic field detector with a wide frequency range for nondestructive testing using an HTS coil with magnetic sensors
Huang et al. A novel rectangular vertical probe with a conductive shell for eddy current testing
Allweins et al. Defect detection in thick aircraft samples based on HTS SQUID-magnetometry and pattern recognition
Alzayed et al. Deep nondestructive testing using a bulk high T/sub c/RF-SQUID
Zhou et al. Investigation on magnetic shield thickness of remote field eddy current probes for inspection of ferromagnetic and non-ferromagnetic plates
Rathod et al. Low field methods (GMR, Hall Probes, etc.)
Nagendran et al. Development of SQUID-based system for nondestructive evaluation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Effective date: 20070110

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20070110

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710