Nothing Special   »   [go: up one dir, main page]

JP2004286266A - Refrigeration device and heat pump type cooling and heating machine - Google Patents

Refrigeration device and heat pump type cooling and heating machine Download PDF

Info

Publication number
JP2004286266A
JP2004286266A JP2003076767A JP2003076767A JP2004286266A JP 2004286266 A JP2004286266 A JP 2004286266A JP 2003076767 A JP2003076767 A JP 2003076767A JP 2003076767 A JP2003076767 A JP 2003076767A JP 2004286266 A JP2004286266 A JP 2004286266A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
subcooler
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076767A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ishiki
良和 石木
Shoji Kikuchi
昭治 菊地
Kyuhei Ishihane
久平 石羽根
Tadashi Katsumi
忠士 勝見
Tsunayuki Itagaki
綱之 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003076767A priority Critical patent/JP2004286266A/en
Publication of JP2004286266A publication Critical patent/JP2004286266A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable high-efficiency refrigeration cycle even in any temperature condition by improving load follow-up capability. <P>SOLUTION: A screw compressor 1, an air heat exchanger 2, a supercooler 8, an expansion valve 5 and a water heat exchanger 6 are sequentially connected by pipes; and a branch pipe 4 is installed branched from a part between the supercooler and the expansion valve and connected to an intermediated pressure chamber of the compressor after passing an electronic expansion valve 7 and the supercooler 8. The temperature of water supplied to a cool water load from the heat exchanger 6 is detected by a temperature sensor 10; the expansion valve 7 is controlled based on a signal from the temperature sensor to regulate the quantity of a branched refrigerant flowing to the supercooler 8. Thereby, the supercooling level of the refrigerant flowing through a main circuit is adjusted and cooling capability is controlled in line with the load. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水を冷却あるいは加熱して負荷に供給する冷凍装置またはヒートポンプ式冷温水機に係り、特に冷媒としてR407C等の非共沸混合冷媒を用いるものに関する。
【0002】
【従来の技術】
従来の過冷却器を有する空気調和機などの冷凍装置としては、例えば特許文献1に示すように、凝縮機下流側に過冷却器を設け、この過冷却器の下流側から分岐して膨張装置を通り、過冷却器を通過後、圧縮機の中間圧力室に接続されるようにした分岐冷媒配管を設けるものが知られている。この分岐冷媒配管に設ける膨張装置としては膨張弁が使用され、また膨張弁の上流には電磁弁を配設し、電磁弁の開閉により過冷却器に分岐冷媒を流すことで、主冷媒の過冷却を大きく確保し、冷却能力を向上させている。また、例えば特許文献2に示すように、分岐冷媒配管の膨張装置として電子膨張弁を使用し、前記電磁弁の機能も兼ねているものもある。
【0003】
【特許文献1】特開平11−248264号公報(図2)
【特許文献2】特開2001−296066号公報(図3)
【発明が解決しようとする課題】
温度勾配を持つ非共沸混合冷媒では、蒸発器入口冷媒温度は、同じ圧力下では、蒸発器入口におけるニ層状態での乾き度が小さい程温度は低くなる。したがって、冷却運転では、水と冷媒の対数平均温度差が大きくなり、熱交換性能が向上する。このことから、凝縮器において過冷却度を大きく確保した方が、効率の良い運転を行うことができるが、過冷却度を大きく与える為には、凝縮器の寸法を大きく取る必要があり製品寸法が大きくなる。また、凝縮液化させた冷媒温度は熱源温度以下には下がらない。このため、過冷却器を設けて液配管から冷媒を分岐し、この分岐した冷媒を減圧・膨張させた冷媒と、主回路の冷媒の熱交換により、主回路を流れる冷媒の過冷却度を大きく確保できる。これにより、蒸発器入口冷媒温度を下げることは、非共沸混合冷媒を使用した空気調和機では高効率サイクル運転を行う上で有効な手段である。
【0004】
また、加熱運転においては、液配管から分岐され、過冷却器からスクリュー圧縮機中間圧力室へ戻った冷媒は、主回路からスクリュー圧縮機へ吸入された冷媒と圧縮工程の中で合流し、凝縮器となる水熱交換器へ流入するため、水熱交換器へ流入する冷媒量が増加することになり、加熱性能はその分向上することになる。
【0005】
しかし、従来技術では、過冷却器容量と、膨張弁の容量及び開度は、規格に定められる温度条件を基準に決められる為、温度条件によっては、過熱度を維持できなくなることが考えられる。また、主回路を流れる冷媒の過冷却度が不十分となり、冷凍サイクルが安定しないことが考えられる。従って、空気調和機としての能力は、温度条件によって大きく変動し安定しない。また、過冷却器への分岐冷媒の供給は電磁弁等の遮断弁により、開閉されることにより制御されるため、冷却及び加熱能力の容量の差が大きくなり、負荷の変動に対し、追従性が悪く、負荷に対し大幅に能力過剰となる温度条件になった場合、温度調節機能を有する空気調和機では発停が頻繁に起こることになり、効率の悪い運転を行うことになるなど、温度条件に対する配慮が為されていない。
【0006】
また、過冷却器での熱交換が不十分であると、分岐冷媒が完全に蒸発せずスクリュー圧縮器の中間圧力室へ送られてしまい、液圧縮もしくは潤滑不良を引き起こす等の要因となっていた。
【0007】
本発明の目的は、如何なる温度条件下においても、スクリュー圧縮器の信頼性を確保しつつ、負荷への追従性を向上させ、過冷却器への供給分岐冷媒量を適切化して高性能で安定性のある冷凍サイクル運転が可能な冷凍装置及びヒートポンプ式冷温水器を得ることにある。
【0008】
【課題を決するための手段】
上記目的を達成するため、本発明は、冷媒を圧縮するスクリュー圧縮機、冷媒を凝縮液化させる空気熱交換器、凝縮された冷媒を更に冷却させる過冷却器、凝縮された冷媒を膨張させる膨張装置、及び前記膨張された冷媒と冷水負荷に供給される水とを熱交換させる水熱交換器を備えた冷凍装置において、前記過冷却器の下流側から分岐し前記過冷却器を通過後圧縮機の中間圧力室側に接続される分岐冷媒配管と、この分岐冷媒配管の前記過冷却器上流側に設けられた電子膨張弁と、この電子膨張弁を前記水熱交換器から冷水負荷に供給される水の温度に基づいて制御する制御手段とを備え、かつ前記冷媒は非共沸混合冷媒であることを特徴とするものである。
【0009】
本発明の他の特徴は、冷媒ガスを圧縮する容量制御型のスクリュー圧縮機、冷媒と空気を熱交換させ冷媒を凝縮液化させる空気熱交換器、凝縮液化された冷媒を更に冷却させる過冷却器、凝縮液化された冷媒を減圧・膨張させる膨張装置、及び冷水負荷に供給される水と熱交換させ冷媒を蒸発気化させる水熱交換器を配管接続して構成される冷凍装置において、前記過冷却器と膨張弁との間の主冷媒配管から分岐され、電子膨張弁及び前記過冷却器を通過後、圧縮機の中間圧力室側に接続される分岐冷媒配管と、前記水熱交換器から冷水負荷に供給される水の温度を検出する温度センサと、この温度センサからの信号に基づいて前記電子膨張弁を制御して過冷却器へ流れる冷媒量を調整する制御手段とを備え、前記冷媒として非共沸混合冷媒を用いることにある。
【0010】
ここで、前記制御手段は、前記電子膨張弁を制御することによって、分岐冷媒配管を流れる冷媒の過冷却器出口における過熱度を制御するようにすると良い。
【0011】
また、前記制御手段は、前記電子膨張弁を制御することによって、主冷媒配管を流れる冷媒の前記過冷却器出口過冷却度を制御し、負荷に合わせて冷却能力を制御するようにしても良い。
【0012】
本発明の更に他の特徴は、冷媒ガスを圧縮する容量制御型の圧縮機、冷媒と空気を熱交換させ冷媒を凝縮液化させる空気熱交換器、凝縮液化された冷媒を更に冷却させる過冷却器、凝縮液化された冷媒を減圧・膨張させる膨張装置、及び負荷と熱交換させる冷媒を蒸発させる熱交換器を配管接続して構成される冷凍装置において、前記過冷却器と膨張弁との間の主冷媒配管から分岐され、電子膨張弁及び前記過冷却器を通過後、圧縮機の中間圧力室側に接続される分岐冷媒配管と、前記圧縮機への吸入冷媒の圧力を検出する吸入圧力センサと、前記分岐冷媒配管の過冷却器出口側の冷媒温度を検出する温度センサと、前記中間圧力室の圧力に対応して予め設定された過熱度域に前記温度センサで検出された温度が収束するように前記電子膨張弁を制御する制御手段とを備えていることにある。
【0013】
ここで、圧縮機の吐出圧力を検出する吐出圧力センサと、過冷却器出口側の主冷媒配管の液冷媒温度を検出する温度センサとを備え、過冷却器出口側の主冷媒配管の液冷媒が、吐出圧力に応じて予め設定された過冷却度以上となるように前記電子膨張弁の開度調整をおこなうようにしても良い。
【0014】
また、圧縮機が部分負荷運転を行う場合には、前記電子膨張弁は全閉とし、圧縮機が100%運転に達し、さらに冷却能力が必要な場合には、電子膨張弁の開度調整を行い、前記過冷却器へ供給する分岐冷媒流量を調整するように制御すると良い。
【0015】
本発明の更に他の特徴は、冷媒ガスを圧縮するスクリュー圧縮機、冷媒と空気を熱交換させる空気熱交換器、凝縮液化された冷媒を減圧・膨張させる膨張装置、冷温水負荷に供給される水と冷媒の間で熱交換させる水熱交換器、系統内に循環する冷媒量を調整する冷媒量調整器、前記スクリュー圧縮機の冷媒吐出側に接続されて冷媒循環方向を切換える四方切換弁とを備えたヒートポンプ式冷温水器において、前記冷媒として非共沸混合冷媒を用い、かつ前記凝縮液化された冷媒からその一部を分岐させ前記スクリュー圧縮機の中間圧力室側へ送る分岐冷媒配管と、この分岐冷媒配管に設けられ、分岐冷媒を減圧・膨張させる電子膨張弁と、前記凝縮液化された冷媒と膨張後の前記分岐冷媒とを熱交換させる過冷却器とを備え、前記冷温水負荷に供給される水熱交換器における冷温水の温度を検出し、この温度に応じて前記過冷却器へ流れる分岐冷媒配管の流量を前記電子膨張弁で制御することにより、負荷に合わせて冷却及び加熱能力を制御するようにしたことにある。
【0016】
【発明の実施の形態】
本発明の具体的実施例を図1、図2を用いて説明する。図1及び図2はそれぞれ本発明を空気調和機としての冷凍装置或いはヒートポンプ式冷温水機に適用した実施例を示す冷凍サイクル系統図である。なお、図中の矢印は冷媒の流れ方向を示している。
【0017】
図1において、1はスクリュー圧縮機、2は空気熱交換器、3は主冷媒配管、4は主冷媒配管3を流れる液冷媒の一部を分岐する分岐管(分岐冷媒配管)、5は膨張弁、6は水熱交換器、7は分岐管4に設けられた分岐冷媒用の電子膨張弁、8は過冷却器である。前記分岐管4は過冷却器8と膨張弁5との間の主冷媒配管3とスクリュー圧縮機1の中間圧力室1bとを接続し、その途中には前記過冷却器8が設けられている。
【0018】
スクリュー圧縮機1から吐出された高温・高圧のガス冷媒は、空気熱交換器2により空気と熱交換されて凝縮・液化し、空気熱交換器2下流の配管3に設けられた過冷却器8で過冷却された後、膨張弁5により減圧・膨張されて水熱交換器6に流入する。この水熱交換器6で、ファンコイルユニットなどの負荷に供給される水9と熱交換されて蒸発し、再びガス冷媒となり、スクリュー圧縮器1の吸入口1aから該圧縮機に吸入される。(以下、この冷凍サイクルの主回路を循環する冷媒を、主冷媒と略称する。)
主冷媒のうち分岐管4に分岐された液冷媒は、電子膨張弁7により減圧・膨張され、過冷却器8において主冷媒と熱交換し、蒸発されてガス冷媒となり、スクリュー圧縮機1の中間圧力室1bに送られ、主冷媒と混合されて該圧縮機1により再び圧縮され、その吐出口1cから吐出される。
【0019】
スクリュー圧縮機1は容量制御機能(インバータ等による回転数制御機能や機械的な容量制御機能)を有しており、水出口温度センサ10により検知した水熱交換器6の水出口温度によって容量制御運転を行う。スクリュー圧縮機1が部分負荷運転を行う場合には、電子膨張弁7は全閉とし、スクリュー圧縮機1が100%運転に達し、さらに冷却能力が必要な場合には、電子膨張弁の開度調整を行い、過冷却器8へ供給する分岐冷媒流量を調整する。これにより、主冷媒の過冷却度を大きく確保し、エンタルピ差、及び水と冷媒の対数平均温度差を拡大し、冷却能力容量を制御することが可能となる。これにより、スクリュー圧縮機1が有する容量制御幅にさらに過冷却器による容量制御幅が追加され、空気調和機としての容量制御幅は拡大されることになり、より高精度な水温制御が可能となる。
【0020】
図2の実施例は図1と基本構造は同じであるが、図1のものに対して更に、吸入圧力センサ11、吐出圧力センサ12、過冷却器主回路出口液配管に設けられた温度センサ13、分岐管4の過冷却器8出口の温度を測定する温度センサ14を備え、これらの温度情報に基づきコントローラ15で分岐管4に設けた電子膨張弁7の開度を制御するようにしたものである。
【0021】
スクリュー圧縮機1の吸入冷媒圧力は吸入圧力センサ11により検知され、その検知された吸入圧力値はコントローラ15に入力され、コントローラ15内でスクリュー圧縮機中間圧力室の圧力に換算する。中間室圧力は、スクリュー圧縮機吸入圧力と、中間圧力室入口ポート1bの位置により、演算式が定義され、計算で求められる。過冷却器分岐冷媒出口温度は、分岐管4の過冷却器下流側に設けた分岐管出口温度センサ14により検知され、コントローラ15に入力され、前記中間圧力室に対応して予め設定された過熱度域に収束するように、電子膨張弁7の開度調整が行なわれる。これにより、如何なる温度条件においても、スクリュー圧縮機の中間圧力室1bに流れる冷媒の過熱度が安定化でき、圧縮機の信頼性を向上させることができる。
【0022】
スクリュー圧縮機1の吐出ガス冷媒圧力は吐出圧力センサ12により検知され、また過冷却器出口の主冷媒配管を流れる液冷媒の温度は温度センサ13で検知されて、それぞれコントローラ15に入力される。これにより、前記吐出圧力に対応して予め設定された過冷却度以上となるように電子膨張弁7の開度調整を行なうことができ、それによって如何なる温度条件においても、主冷媒配管3を流れる液冷媒の過冷却度を安定化させ、冷却能力を安定させることができる。なお、この時、前記分岐管4の過冷却器出口冷媒温度の過熱度も制御する。
【0023】
本実施例によれば、分岐管4に設けた分岐冷媒用の膨張装置を電子膨張弁7としたことにより、安定性のある冷凍サイクルを得ることができ、また空気調和機などの冷凍装置としての容量制御幅を拡大することも可能になり、ヒートポンプ式冷温水機として使用した場合には、高精度水温制御が可能となる。
【0024】
【発明の効果】
本発明によれば、分岐冷媒側の膨張装置を電子膨張弁としたことにより、負荷に合わせて過冷却器へ供給する分岐冷媒量を最適に調整することができ、これによって空気調和機としての容量制御幅を拡大することが可能になる。特に、容量制御型の圧縮機を併用することにより更に容量制御幅を拡大できる。
【0025】
また、あらゆる温度条件で、過冷却器における熱交換量を安定化でき、主冷媒配管での過冷却度も安定化させることができ、安定性のある冷凍サイクルの運転が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す冷凍サイクル系統図である。
【図2】本発明の他の実施例を示す冷凍サイクル系統図である。
【符号の説明】
1…スクリュー圧縮機、1a…圧縮機吸入口、1b…中間圧力室入口ポート、1c…圧縮機吐出口、2…空気熱交換器、3…主冷媒配管、4…分岐管(分岐冷媒配管)、5…膨張弁、6…水熱交換器、7…分岐冷媒用の電子膨張弁、8…過冷却器、9…水、10…水出口温度センサ、11…吸入圧力センサ、12…吐出圧力センサ、13,14…温度センサ、15…コントローラ(制御手段)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerating apparatus or a heat pump type water heater for cooling or heating water and supplying the same to a load, and more particularly to an apparatus using a non-azeotropic mixed refrigerant such as R407C as a refrigerant.
[0002]
[Prior art]
As a refrigerating device such as an air conditioner having a conventional subcooler, for example, as shown in Patent Document 1, a subcooler is provided on the downstream side of a condenser, and the expansion device branches off from the downstream side of the subcooler. And a branch refrigerant pipe connected to an intermediate pressure chamber of a compressor after passing through a subcooler is known. An expansion valve is used as an expansion device provided in the branch refrigerant pipe. An electromagnetic valve is provided upstream of the expansion valve, and the main refrigerant is supercooled by flowing the branch refrigerant to a subcooler by opening and closing the electromagnetic valve. The cooling is secured greatly and the cooling capacity is improved. Further, as shown in Patent Document 2, for example, an electronic expansion valve is used as an expansion device of a branch refrigerant pipe, and also has a function of the electromagnetic valve.
[0003]
[Patent Document 1] JP-A-11-248264 (FIG. 2)
[Patent Document 2] JP-A-2001-296066 (FIG. 3)
[Problems to be solved by the invention]
In a non-azeotropic refrigerant mixture having a temperature gradient, the evaporator inlet refrigerant temperature becomes lower as the dryness in a two-layer state at the evaporator inlet becomes smaller at the same pressure. Therefore, in the cooling operation, the logarithmic average temperature difference between the water and the refrigerant increases, and the heat exchange performance improves. For this reason, it is possible to operate more efficiently if the degree of supercooling is secured in the condenser.However, in order to increase the degree of supercooling, it is necessary to increase the size of the condenser. Becomes larger. The temperature of the condensed and liquefied refrigerant does not drop below the heat source temperature. For this reason, a supercooler is provided to branch the refrigerant from the liquid pipe, and the degree of supercooling of the refrigerant flowing in the main circuit is increased by heat exchange between the refrigerant in which the branched refrigerant is decompressed and expanded and the refrigerant in the main circuit. Can be secured. Thus, lowering the evaporator inlet refrigerant temperature is an effective means for performing an efficient cycle operation in an air conditioner using a non-azeotropic mixed refrigerant.
[0004]
In the heating operation, the refrigerant branched from the liquid pipe and returning from the subcooler to the screw compressor intermediate pressure chamber merges with the refrigerant sucked from the main circuit into the screw compressor in the compression process, and condenses. Since the refrigerant flows into the water heat exchanger serving as a heat exchanger, the amount of the refrigerant flowing into the water heat exchanger increases, and the heating performance improves accordingly.
[0005]
However, in the related art, since the capacity of the supercooler and the capacity and the opening of the expansion valve are determined based on the temperature conditions defined in the standard, it is conceivable that the superheat degree cannot be maintained depending on the temperature conditions. Further, it is conceivable that the degree of supercooling of the refrigerant flowing through the main circuit becomes insufficient, and the refrigeration cycle becomes unstable. Therefore, the performance as an air conditioner fluctuates greatly depending on temperature conditions and is not stable. In addition, the supply of the branched refrigerant to the subcooler is controlled by being opened and closed by a shutoff valve such as an electromagnetic valve, so that the difference in capacity between the cooling and heating capacities becomes large, and the ability to follow the load fluctuation. If the temperature condition is bad and the capacity becomes significantly excessive with respect to the load, the air conditioner with the temperature control function will frequently start and stop, causing inefficient operation. No consideration was given to the conditions.
[0006]
In addition, if the heat exchange in the subcooler is insufficient, the branched refrigerant is not completely evaporated and is sent to the intermediate pressure chamber of the screw compressor, causing liquid compression or poor lubrication. Was.
[0007]
The object of the present invention is to improve the followability of the load while ensuring the reliability of the screw compressor under any temperature conditions, and to optimize the amount of the branch refrigerant supplied to the subcooler to achieve high performance and stability. An object of the present invention is to provide a refrigeration apparatus and a heat pump type water heater / heater capable of performing a refrigeration cycle operation.
[0008]
[Means for determining the task]
In order to achieve the above object, the present invention provides a screw compressor for compressing a refrigerant, an air heat exchanger for condensing and liquefying the refrigerant, a supercooler for further cooling the condensed refrigerant, and an expansion device for expanding the condensed refrigerant. And a refrigeration apparatus including a water heat exchanger for exchanging heat between the expanded refrigerant and water supplied to a chilled water load, wherein the compressor branches off from a downstream side of the subcooler and passes through the subcooler. A branch refrigerant pipe connected to the intermediate pressure chamber side, an electronic expansion valve provided on the upstream side of the subcooler in the branch refrigerant pipe, and the electronic expansion valve is supplied from the water heat exchanger to the cold water load. And control means for controlling based on the temperature of the water, and the refrigerant is a non-azeotropic mixed refrigerant.
[0009]
Other features of the present invention include a capacity-controlled screw compressor for compressing refrigerant gas, an air heat exchanger for exchanging heat between the refrigerant and air to condense and liquefy the refrigerant, and a supercooler for further cooling the condensed and liquefied refrigerant. A refrigerating apparatus configured by connecting a pipe to an expansion device for decompressing and expanding the condensed and liquefied refrigerant and a water heat exchanger for evaporating and evaporating the refrigerant by exchanging heat with water supplied to the chilled water load. A branch refrigerant pipe branched from the main refrigerant pipe between the compressor and the expansion valve, and connected to the intermediate pressure chamber side of the compressor after passing through the electronic expansion valve and the supercooler; A temperature sensor for detecting the temperature of water supplied to the load, and control means for controlling the electronic expansion valve based on a signal from the temperature sensor to adjust the amount of refrigerant flowing to the supercooler, As non-azeotropic refrigerant There to be used.
[0010]
Here, it is preferable that the control means controls the degree of superheating of the refrigerant flowing through the branch refrigerant pipe at the subcooler outlet by controlling the electronic expansion valve.
[0011]
Further, the control unit may control the electronic expansion valve to control the degree of supercooling of the refrigerant flowing through the main refrigerant pipe at the supercooler outlet, and control the cooling capacity according to the load. .
[0012]
Still another feature of the present invention is a capacity control type compressor for compressing a refrigerant gas, an air heat exchanger for exchanging heat between the refrigerant and air to condense and liquefy the refrigerant, and a supercooler for further cooling the condensed and liquefied refrigerant. An expansion device that decompresses and expands the condensed and liquefied refrigerant, and a refrigeration device that is connected by pipe connection to a heat exchanger that evaporates the refrigerant that exchanges heat with the load. A branch refrigerant pipe branched from the main refrigerant pipe and connected to the intermediate pressure chamber side of the compressor after passing through the electronic expansion valve and the subcooler, and a suction pressure sensor for detecting a pressure of the refrigerant sucked into the compressor A temperature sensor for detecting a refrigerant temperature at a subcooler outlet side of the branch refrigerant pipe, and a temperature detected by the temperature sensor converging to a superheat degree region set in advance corresponding to the pressure of the intermediate pressure chamber. So that the electronic expansion In that it comprises a control means for controlling the.
[0013]
Here, there is provided a discharge pressure sensor for detecting a discharge pressure of the compressor, and a temperature sensor for detecting a liquid refrigerant temperature of a main refrigerant pipe on a subcooler outlet side, and a liquid refrigerant on a main refrigerant pipe on a subcooler outlet side. However, the degree of opening of the electronic expansion valve may be adjusted so that the degree of supercooling becomes equal to or higher than a preset degree of supercooling in accordance with the discharge pressure.
[0014]
When the compressor performs the partial load operation, the electronic expansion valve is fully closed, and when the compressor reaches 100% operation and further cooling capacity is required, the opening degree of the electronic expansion valve is adjusted. It is preferable to perform control so as to adjust the flow rate of the branch refrigerant supplied to the subcooler.
[0015]
Still another feature of the present invention is a screw compressor for compressing the refrigerant gas, an air heat exchanger for exchanging heat between the refrigerant and the air, an expansion device for decompressing and expanding the condensed and liquefied refrigerant, and a cold / hot water load. A water heat exchanger for exchanging heat between water and refrigerant, a refrigerant amount regulator for adjusting the amount of refrigerant circulating in the system, a four-way switching valve connected to the refrigerant discharge side of the screw compressor to switch the refrigerant circulation direction, In a heat pump type water heater with water, a non-azeotropic mixed refrigerant is used as the refrigerant, and a branch refrigerant pipe that branches a part of the condensed and liquefied refrigerant and sends it to the intermediate pressure chamber side of the screw compressor. An electronic expansion valve provided in the branch refrigerant pipe to decompress and expand the branch refrigerant; and a supercooler for exchanging heat between the condensed and liquefied refrigerant and the expanded branch refrigerant. Detecting the temperature of the cold and hot water in the water heat exchanger supplied to the, by controlling the flow rate of the branch refrigerant pipe flowing to the subcooler by the electronic expansion valve according to this temperature, cooling and cooling according to the load This is to control the heating capacity.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
A specific embodiment of the present invention will be described with reference to FIGS. FIGS. 1 and 2 are refrigeration cycle system diagrams each showing an embodiment in which the present invention is applied to a refrigeration apparatus as an air conditioner or a heat pump chiller / heater. The arrows in the figure indicate the flow direction of the refrigerant.
[0017]
In FIG. 1, 1 is a screw compressor, 2 is an air heat exchanger, 3 is a main refrigerant pipe, 4 is a branch pipe (branch refrigerant pipe) that branches a part of the liquid refrigerant flowing through the main refrigerant pipe 3, and 5 is expansion. A valve, 6 is a water heat exchanger, 7 is an electronic expansion valve for branch refrigerant provided in the branch pipe 4, and 8 is a subcooler. The branch pipe 4 connects the main refrigerant pipe 3 between the subcooler 8 and the expansion valve 5 and the intermediate pressure chamber 1b of the screw compressor 1, and the subcooler 8 is provided in the middle thereof. .
[0018]
The high-temperature and high-pressure gas refrigerant discharged from the screw compressor 1 is heat-exchanged with air by the air heat exchanger 2 to condense and liquefy, and the supercooler 8 provided in the pipe 3 downstream of the air heat exchanger 2 After being supercooled, the pressure is reduced and expanded by the expansion valve 5 and flows into the water heat exchanger 6. The water heat exchanger 6 exchanges heat with water 9 supplied to a load such as a fan coil unit, evaporates, becomes gas refrigerant again, and is sucked into the screw compressor 1 from the suction port 1 a of the screw compressor 1. (Hereinafter, the refrigerant circulating in the main circuit of the refrigeration cycle will be abbreviated as the main refrigerant.)
Among the main refrigerant, the liquid refrigerant branched to the branch pipe 4 is decompressed and expanded by the electronic expansion valve 7, exchanges heat with the main refrigerant in the subcooler 8, evaporates to a gas refrigerant, and the intermediate refrigerant of the screw compressor 1. It is sent to the pressure chamber 1b, mixed with the main refrigerant, compressed again by the compressor 1, and discharged from its discharge port 1c.
[0019]
The screw compressor 1 has a capacity control function (a rotation speed control function by an inverter or the like or a mechanical capacity control function), and the capacity is controlled by the water outlet temperature of the water heat exchanger 6 detected by the water outlet temperature sensor 10. Drive. When the screw compressor 1 performs the partial load operation, the electronic expansion valve 7 is fully closed, and when the screw compressor 1 reaches 100% operation and further cooling capacity is required, the opening degree of the electronic expansion valve is set. The adjustment is performed, and the flow rate of the branch refrigerant supplied to the subcooler 8 is adjusted. As a result, it is possible to secure a large degree of subcooling of the main refrigerant, increase the enthalpy difference and the logarithmic average temperature difference between water and the refrigerant, and control the cooling capacity. As a result, the capacity control width of the supercooler is added to the capacity control width of the screw compressor 1, and the capacity control width of the air conditioner is expanded, so that more accurate water temperature control becomes possible. Become.
[0020]
The embodiment of FIG. 2 has the same basic structure as that of FIG. 1, but is further provided with a suction pressure sensor 11, a discharge pressure sensor 12, and a temperature sensor provided at a subcooler main circuit outlet liquid pipe. 13, a temperature sensor 14 for measuring the temperature of the outlet of the subcooler 8 of the branch pipe 4 is provided, and the controller 15 controls the opening of the electronic expansion valve 7 provided in the branch pipe 4 based on the temperature information. Things.
[0021]
The suction refrigerant pressure of the screw compressor 1 is detected by a suction pressure sensor 11, and the detected suction pressure value is input to the controller 15 and is converted into the pressure of the screw compressor intermediate pressure chamber in the controller 15. The operation pressure of the intermediate chamber is defined by a calculation formula defined by the suction pressure of the screw compressor and the position of the intermediate pressure chamber inlet port 1b. The subcooler branch refrigerant outlet temperature is detected by a branch pipe outlet temperature sensor 14 provided on the downstream side of the subcooler of the branch pipe 4, input to the controller 15, and set in advance by the superheater corresponding to the intermediate pressure chamber. The degree of opening of the electronic expansion valve 7 is adjusted so as to converge to the degree range. Thus, the superheat degree of the refrigerant flowing in the intermediate pressure chamber 1b of the screw compressor can be stabilized under any temperature conditions, and the reliability of the compressor can be improved.
[0022]
The discharge gas refrigerant pressure of the screw compressor 1 is detected by the discharge pressure sensor 12, and the temperature of the liquid refrigerant flowing through the main refrigerant pipe at the outlet of the subcooler is detected by the temperature sensor 13 and input to the controller 15, respectively. Thereby, the degree of opening of the electronic expansion valve 7 can be adjusted so that the degree of supercooling becomes equal to or more than a preset degree of supercooling corresponding to the discharge pressure, whereby the main refrigerant pipe 3 flows under any temperature conditions. The degree of supercooling of the liquid refrigerant can be stabilized, and the cooling capacity can be stabilized. At this time, the degree of superheat of the subcooler outlet refrigerant temperature of the branch pipe 4 is also controlled.
[0023]
According to this embodiment, a stable refrigeration cycle can be obtained by using the electronic expansion valve 7 as the expansion device for the branch refrigerant provided in the branch pipe 4, and as a refrigeration device such as an air conditioner. It is also possible to expand the capacity control width of the above, and when used as a heat pump type chiller / heater, high precision water temperature control becomes possible.
[0024]
【The invention's effect】
According to the present invention, since the expansion device on the branch refrigerant side is an electronic expansion valve, it is possible to optimally adjust the amount of branch refrigerant supplied to the subcooler in accordance with the load, and thereby, as an air conditioner The capacity control width can be expanded. In particular, the capacity control width can be further expanded by using a capacity control type compressor together.
[0025]
Further, the amount of heat exchange in the supercooler can be stabilized under any temperature conditions, the degree of supercooling in the main refrigerant pipe can be stabilized, and a stable refrigeration cycle can be operated.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle system diagram showing one embodiment of the present invention.
FIG. 2 is a refrigeration cycle system diagram showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Screw compressor, 1a ... Compressor suction port, 1b ... Intermediate pressure chamber inlet port, 1c ... Compressor discharge port, 2 ... Air heat exchanger, 3 ... Main refrigerant pipe, 4 ... Branch pipe (branch refrigerant pipe) 5, expansion valve, 6: water heat exchanger, 7: electronic expansion valve for branch refrigerant, 8: subcooler, 9: water, 10: water outlet temperature sensor, 11: suction pressure sensor, 12: discharge pressure Sensors, 13, 14: temperature sensor, 15: controller (control means).

Claims (8)

冷媒を圧縮するスクリュー圧縮機、冷媒を凝縮液化させる空気熱交換器、凝縮された冷媒を更に冷却させる過冷却器、凝縮された冷媒を膨張させる膨張装置、及び前記膨張された冷媒と冷水負荷に供給される水とを熱交換させる水熱交換器を備えた冷凍装置において、
前記過冷却器の下流側から分岐し前記過冷却器を通過後圧縮機の中間圧力室側に接続される分岐冷媒配管と、
この分岐冷媒配管の前記過冷却器上流側に設けられた電子膨張弁と、
この電子膨張弁を前記水熱交換器から冷水負荷に供給される水の温度に基づいて制御する制御手段とを備え、かつ
前記冷媒は非共沸混合冷媒であることを特徴とする冷凍装置。
A screw compressor that compresses the refrigerant, an air heat exchanger that condenses and liquefies the refrigerant, a supercooler that further cools the condensed refrigerant, an expansion device that expands the condensed refrigerant, and the expanded refrigerant and the chilled water load In a refrigeration apparatus having a water heat exchanger for exchanging heat with supplied water,
A branch refrigerant pipe branched from the downstream side of the subcooler and connected to the intermediate pressure chamber side of the compressor after passing through the subcooler,
An electronic expansion valve provided upstream of the subcooler in the branch refrigerant pipe;
Control means for controlling the electronic expansion valve based on the temperature of water supplied from the water heat exchanger to the chilled water load, and the refrigerant is a non-azeotropic mixed refrigerant.
冷媒ガスを圧縮する容量制御型の圧縮機、冷媒と空気を熱交換させ冷媒を凝縮液化させる空気熱交換器、凝縮液化された冷媒を更に冷却させる過冷却器、凝縮液化された冷媒を減圧・膨張させる膨張装置、及び冷水負荷に供給される水と熱交換させ冷媒を蒸発気化させる水熱交換器を配管接続して構成される冷凍装置において、
前記過冷却器と膨張弁との間の主冷媒配管から分岐され、電子膨張弁及び前記過冷却器を通過後、圧縮機の中間圧力室側に接続される分岐冷媒配管と、
前記水熱交換器から冷水負荷に供給される水の温度を検出する温度センサと、
この温度センサからの信号に基づいて前記電子膨張弁を制御して過冷却器へ流れる冷媒量を調整する制御手段とを備え、
前記冷媒として非共沸混合冷媒を用いることを特徴とする冷凍装置。
A capacity control compressor that compresses refrigerant gas, an air heat exchanger that exchanges heat between refrigerant and air to condense and liquefy the refrigerant, a supercooler that further cools the condensed and liquefied refrigerant, and decompresses and decompresses the condensed and liquefied refrigerant. In an expansion device to expand, and a refrigerating device configured by pipe connection of a water heat exchanger that exchanges heat with water supplied to a chilled water load and evaporates and vaporizes a refrigerant,
A branch refrigerant pipe branched from the main refrigerant pipe between the subcooler and the expansion valve, and passing through the electronic expansion valve and the subcooler, and connected to the intermediate pressure chamber side of the compressor,
A temperature sensor for detecting the temperature of water supplied from the water heat exchanger to the chilled water load,
Control means for controlling the electronic expansion valve based on the signal from the temperature sensor to adjust the amount of refrigerant flowing to the subcooler,
A refrigeration apparatus using a non-azeotropic mixed refrigerant as the refrigerant.
請求項1又は2において、前記制御手段は、前記電子膨張弁を制御することによって、分岐冷媒配管を流れる冷媒の過冷却器出口における過熱度を制御することを特徴とする冷凍装置。3. The refrigeration apparatus according to claim 1, wherein the control unit controls the degree of superheating of the refrigerant flowing through the branch refrigerant pipe at a subcooler outlet by controlling the electronic expansion valve. 4. 請求項1又は2において、前記制御手段は、前記電子膨張弁を制御することによって、主冷媒配管を流れる冷媒の前記過冷却器出口過冷却度を制御し、負荷に合わせて冷却能力を制御することを特徴とする冷凍装置。3. The control device according to claim 1, wherein the control unit controls the electronic expansion valve to control the degree of subcooling of the refrigerant flowing through the main refrigerant pipe at the supercooler outlet, and controls the cooling capacity according to the load. A refrigeration apparatus characterized by the above-mentioned. 冷媒ガスを圧縮する容量制御型の圧縮機、冷媒と空気を熱交換させ冷媒を凝縮液化させる空気熱交換器、凝縮液化された冷媒を更に冷却させる過冷却器、凝縮液化された冷媒を減圧・膨張させる膨張装置、及び負荷と熱交換させる冷媒を蒸発させる熱交換器を配管接続して構成される冷凍装置において、
前記過冷却器と膨張弁との間の主冷媒配管から分岐され、電子膨張弁及び前記過冷却器を通過後、圧縮機の中間圧力室側に接続される分岐冷媒配管と、
前記圧縮機への吸入冷媒の圧力を検出する吸入圧力センサと、
前記分岐冷媒配管の過冷却器出口側の冷媒温度を検出する温度センサと、
前記中間圧力室の圧力に対応して予め設定された過熱度域に前記温度センサで検出された温度が収束するように前記電子膨張弁を制御する制御手段とを備えていることを特徴とする冷凍装置。
A capacity control compressor that compresses refrigerant gas, an air heat exchanger that exchanges heat between refrigerant and air to condense and liquefy the refrigerant, a supercooler that further cools the condensed and liquefied refrigerant, and decompresses and decompresses the condensed and liquefied refrigerant. In a refrigerating device configured by pipe connection of an expansion device for expanding, and a heat exchanger for evaporating a refrigerant for heat exchange with a load,
A branch refrigerant pipe branched from the main refrigerant pipe between the subcooler and the expansion valve, and passing through the electronic expansion valve and the subcooler, and connected to the intermediate pressure chamber side of the compressor,
A suction pressure sensor for detecting a pressure of the suction refrigerant to the compressor,
A temperature sensor for detecting a refrigerant temperature on the subcooler outlet side of the branch refrigerant pipe,
Control means for controlling the electronic expansion valve so that the temperature detected by the temperature sensor converges to a degree of superheat set in advance corresponding to the pressure of the intermediate pressure chamber. Refrigeration equipment.
請求項5において、圧縮機の吐出圧力を検出する吐出圧力センサと、過冷却器出口側の主冷媒配管の液冷媒温度を検出する温度センサとを備え、過冷却器出口側の主冷媒配管の液冷媒が、吐出圧力に応じて予め設定された過冷却度以上となるように前記電子膨張弁の開度調整をおこなうようにしたことを特徴とする冷凍装置。In Claim 5, a discharge pressure sensor for detecting a discharge pressure of the compressor, and a temperature sensor for detecting a liquid refrigerant temperature of a main refrigerant pipe on a subcooler outlet side, wherein a main refrigerant pipe on a subcooler outlet side is provided. A refrigerating apparatus, wherein the opening degree of the electronic expansion valve is adjusted so that the liquid refrigerant has a degree of supercooling set in advance according to a discharge pressure. 請求項2又は5において、圧縮機が部分負荷運転を行う場合には、前記電子膨張弁は全閉とし、圧縮機が100%運転に達し、さらに冷却能力が必要な場合には、電子膨張弁の開度調整を行い、前記過冷却器へ供給する分岐冷媒流量を調整することを特徴とする冷凍装置。The electronic expansion valve according to claim 2 or 5, wherein the electronic expansion valve is fully closed when the compressor performs a partial load operation, and when the compressor reaches 100% operation and further cooling capacity is required. A refrigerating apparatus that adjusts the opening degree of the refrigerant to adjust the flow rate of the branch refrigerant supplied to the subcooler. 冷媒ガスを圧縮するスクリュー圧縮機、冷媒と空気を熱交換させる空気熱交換器、凝縮液化された冷媒を減圧・膨張させる膨張装置、冷温水負荷に供給される水と冷媒の間で熱交換させる水熱交換器、系統内に循環する冷媒量を調整する冷媒量調整器、前記スクリュー圧縮機の冷媒吐出側に接続されて冷媒循環方向を切換える四方切換弁とを備えたヒートポンプ式冷温水器において、
前記冷媒として非共沸混合冷媒を用い、かつ
前記凝縮液化された冷媒からその一部を分岐させ前記スクリュー圧縮機の中間圧力室へ送る分岐冷媒配管と、
この分岐冷媒配管に設けられ、分岐冷媒を減圧・膨張させる電子膨張弁と、
前記凝縮液化された冷媒と膨張後の前記分岐冷媒とを熱交換させる過冷却器とを備え、
前記冷温水負荷に供給される水熱交換器における冷温水の温度を検出し、この温度に応じて前記過冷却器へ流れる分岐冷媒配管の流量を前記電子膨張弁で制御することにより、負荷に合わせて冷却及び加熱能力を制御するようにしたことを特徴とするヒートポンプ式冷温水機。
Screw compressor for compressing refrigerant gas, air heat exchanger for exchanging heat between refrigerant and air, expansion device for decompressing and expanding condensed and liquefied refrigerant, heat exchange between water and refrigerant supplied to cold / hot water load A water heat exchanger, a refrigerant amount regulator for adjusting the amount of refrigerant circulating in the system, and a four-way switching valve connected to the refrigerant discharge side of the screw compressor to switch the refrigerant circulation direction. ,
A branch refrigerant pipe that uses a non-azeotropic mixed refrigerant as the refrigerant, and branches a part of the condensed and liquefied refrigerant to an intermediate pressure chamber of the screw compressor,
An electronic expansion valve provided in the branch refrigerant pipe to decompress and expand the branch refrigerant;
A supercooler that performs heat exchange between the condensed and liquefied refrigerant and the branched refrigerant after expansion,
By detecting the temperature of the cold and hot water in the water heat exchanger supplied to the cold and hot water load, and controlling the flow rate of the branch refrigerant pipe flowing to the subcooler by the electronic expansion valve in accordance with this temperature, A heat pump type water cooler / heater characterized by controlling the cooling and heating capacity.
JP2003076767A 2003-03-20 2003-03-20 Refrigeration device and heat pump type cooling and heating machine Pending JP2004286266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003076767A JP2004286266A (en) 2003-03-20 2003-03-20 Refrigeration device and heat pump type cooling and heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076767A JP2004286266A (en) 2003-03-20 2003-03-20 Refrigeration device and heat pump type cooling and heating machine

Publications (1)

Publication Number Publication Date
JP2004286266A true JP2004286266A (en) 2004-10-14

Family

ID=33291700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076767A Pending JP2004286266A (en) 2003-03-20 2003-03-20 Refrigeration device and heat pump type cooling and heating machine

Country Status (1)

Country Link
JP (1) JP2004286266A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366992C (en) * 2005-11-25 2008-02-06 珠海格力电器股份有限公司 Low-temperature air-conditioning heat pump system and method for reducing temperature regulation fluctuation by using same
JP2011133207A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
US8997508B2 (en) 2009-12-25 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus
EP2399083A4 (en) * 2009-02-18 2015-07-29 Emerson Climate Technologies Condensing unit having fluid injection
WO2015136703A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating cycle device
WO2017002377A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Refrigeration cycle device
WO2019207618A1 (en) * 2018-04-23 2019-10-31 三菱電機株式会社 Refrigeration cycle device and refrigeration device
CN114740915A (en) * 2022-03-18 2022-07-12 北京京仪自动化装备技术股份有限公司 Temperature control equipment capable of achieving double precooling and temperature control method
CN115539391A (en) * 2022-03-18 2022-12-30 株式会社神户制钢所 Compressor unit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366992C (en) * 2005-11-25 2008-02-06 珠海格力电器股份有限公司 Low-temperature air-conditioning heat pump system and method for reducing temperature regulation fluctuation by using same
US9494356B2 (en) 2009-02-18 2016-11-15 Emerson Climate Technologies, Inc. Condensing unit having fluid injection
EP2399083A4 (en) * 2009-02-18 2015-07-29 Emerson Climate Technologies Condensing unit having fluid injection
JP2011133207A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
US8997508B2 (en) 2009-12-25 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Refrigerating apparatus
JPWO2015136703A1 (en) * 2014-03-14 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
US10508848B2 (en) 2014-03-14 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2015136703A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating cycle device
WO2017002238A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Refrigeration cycle device
JPWO2017002377A1 (en) * 2015-07-01 2017-11-02 三菱電機株式会社 Refrigeration cycle equipment
WO2017002377A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Refrigeration cycle device
CN112005062A (en) * 2018-04-23 2020-11-27 三菱电机株式会社 Refrigeration cycle device and refrigeration device
WO2019207618A1 (en) * 2018-04-23 2019-10-31 三菱電機株式会社 Refrigeration cycle device and refrigeration device
JPWO2019207618A1 (en) * 2018-04-23 2021-02-12 三菱電機株式会社 Refrigeration cycle equipment and refrigeration equipment
CN112005062B (en) * 2018-04-23 2022-06-14 三菱电机株式会社 Refrigeration cycle device and refrigeration device
CN114740915A (en) * 2022-03-18 2022-07-12 北京京仪自动化装备技术股份有限公司 Temperature control equipment capable of achieving double precooling and temperature control method
CN115539391A (en) * 2022-03-18 2022-12-30 株式会社神户制钢所 Compressor unit
CN115539391B (en) * 2022-03-18 2023-07-04 株式会社神户制钢所 Compressor unit
CN114740915B (en) * 2022-03-18 2023-12-22 北京京仪自动化装备技术股份有限公司 Temperature control equipment capable of realizing double precooling and temperature control method

Similar Documents

Publication Publication Date Title
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
US7316120B2 (en) Refrigeration/air conditioning equipment
WO2007110908A9 (en) Refrigeration air conditioning device
JP6223469B2 (en) Air conditioner
WO2006013938A1 (en) Freezing apparatus
JP2002081767A (en) Air conditioner
JP6234507B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP4550153B2 (en) Heat pump device and outdoor unit of heat pump device
CN102620458A (en) Refrigeration cycle apparatus
US11187447B2 (en) Refrigeration cycle apparatus
JP6712766B2 (en) Dual refrigeration system
WO2007102345A1 (en) Refrigeration device
JP5956326B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
JP2004286266A (en) Refrigeration device and heat pump type cooling and heating machine
JP2011196684A (en) Heat pump device and outdoor unit of the heat pump device
JP6758506B2 (en) Air conditioner
JP4767340B2 (en) Heat pump control device
JP2987951B2 (en) Operation control device for air conditioner
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP2004020070A (en) Heat pump type cold-hot water heater
JP2010159967A (en) Heat pump device and outdoor unit for the heat pump device
JP7375167B2 (en) heat pump
TWI807163B (en) Freezing device and operation method of the freezing device
JP6518467B2 (en) Refrigeration system
JP2013053849A (en) Heat pump device, and outdoor unit thereof