Nothing Special   »   [go: up one dir, main page]

JP2004281773A - Mos type color solid-state imaging device - Google Patents

Mos type color solid-state imaging device Download PDF

Info

Publication number
JP2004281773A
JP2004281773A JP2003072102A JP2003072102A JP2004281773A JP 2004281773 A JP2004281773 A JP 2004281773A JP 2003072102 A JP2003072102 A JP 2003072102A JP 2003072102 A JP2003072102 A JP 2003072102A JP 2004281773 A JP2004281773 A JP 2004281773A
Authority
JP
Japan
Prior art keywords
light receiving
color
light
filter
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003072102A
Other languages
Japanese (ja)
Other versions
JP4404561B2 (en
Inventor
Makoto Shizukuishi
誠 雫石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Fujifilm Microdevices Co Ltd
Original Assignee
Fujifilm Microdevices Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Microdevices Co Ltd, Fuji Photo Film Co Ltd filed Critical Fujifilm Microdevices Co Ltd
Priority to JP2003072102A priority Critical patent/JP4404561B2/en
Priority to US10/796,148 priority patent/US7554587B2/en
Publication of JP2004281773A publication Critical patent/JP2004281773A/en
Application granted granted Critical
Publication of JP4404561B2 publication Critical patent/JP4404561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/17Colour separation based on photon absorption depth, e.g. full colour resolution obtained simultaneously at each pixel location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14868CCD or CID colour imagers

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a MOS type color solid-state imaging device which is manufactured easily, and by which the area of the light-receiving section of the surface of a semiconductor substrate can be taken widely and the quality of the image is improved. <P>SOLUTION: In the MOS type color solid-state imaging device, a complementary-color filter which is laminated on the upper sections of the whole or partial light-receiving sections in the plural and prevents the incident light of one color in three primary colors, and through which the incident light of residual two colors is transmitted; a first high-concentration impurity layer detecting the color signal of one color in the two colors transmitted through the filter in first, and second high-concentration impurity layers formed while being separated in the depthwise direction of the light-receiving sections, on which the filter is laminated, the second high-concentration impurity layer detecting the color signal of the residual one color in the two colors; and a signal wiring being connected to each high-concentration impurity layer by an ohmic contact and discriminating and reading each color signal; are mounted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、単板式のカラー固体撮像装置に係り、特に、MOS型カラー固体撮像装置に関する。
【0002】
【従来の技術】
従来のCMOS型カラー固体撮像装置においては、半導体基板表面に多数の受光部を二次元アレー状に配列し、更に各受光部上に、ストライプ状あるいはモザイク状に異なる分光特性を有するカラーフィルタを積層することで、カラー画像を撮像することができるようにしている。
【0003】
カラーフィルタとしては、原色系カラーフィルタと補色系カラーフィルタがある。原色系カラーフィルタの場合、例えば、B(青色)のカラーフィルタを積層した画素では、主としてBの波長域(約480nmよりも短波長の入射光成分)の光のみが受光部に到達し、それ以外の波長成分(例えばG(緑)およびR(赤))については、受光部に入射しない様になっている。このため、B以外の波長成分(GとR)を含む入射光については、B以外の光信号成分(GとR)を有効に光電変換に利用できず、感度を低下させる原因となっている。
【0004】
これに対し、補色系カラーフィルタは、Bの補色関係にある色成分GとRを透過するイエロー(Ye)フィルタと、Gの補色関係にある色成分BとRを透過するマゼンタ(Mg)フィルタと、Rの補色関係にある色成分BとGを透過するシアン(Cy)フィルタで構成され、入射光の波長を原色系カラーフィルタに比べて広い範囲で利用でき、感度を高くすることができる。
【0005】
このため、フラッシュなどの補助光源を利用しにくいビデオムービーカメラ(動画の撮像)においては、補色系カラーフィルタを搭載したカラー固体撮像装置が多く採用されている。しかし、一の画素から得られる信号は、G+R,G+B,R+Bに対応する信号であるため、これらの信号を読み出し後に、外部回路において、R,G,Bの各原色信号成分に分離する色信号分離演算処理を行う必要が生じる。
【0006】
従って、補色系カラーフィルタを用いるカラー固体撮像装置は、各色成分(R,G,B)を直接読み出すことができる原色系カラーフィルタを用いたカラー固体撮像装置に比べ、忠実な色再現性やノイズの点で劣るという問題がある。このため、スチルカメラ(静止画の撮像)においては、色再現性に優れている原色系カラーフィルタを搭載した固体撮像装置が多く採用され、感度に関しては補助光源でカバーするようになっている。
【0007】
一方、フォトダイオードの光電変換特性が入射光の波長及びシリコン基板の深さ方向の位置に依存することが下記の非特許文献1に開示されており、このシリコン基板の光学的性質を利用することでカラーフィルタを搭載せずに各色信号を分離して読み出すことができるCMOS型カラー固体撮像装置が下記の特許文献1に開示されている。以下、この従来のCMOS型カラー固体撮像装置を説明する。
【0008】
図26(a)は、下記の非特許文献2に記載されている一般的なCMOS型固体撮像装置の等価回路図である。CMOS型固体撮像装置では、受光部フォトダイオード(PN接合部D)の容量成分(C)に予めリセットトランジスタ(M3)をオンにすることによって蓄えられた電荷が入射光によってフォトダイオード部近傍で発生したフォトキャリアにより放電し、その後、この容量Cの電荷量変化をソースフォロアアンプ(M1,M2)によって読み出す構造になっている。
【0009】
図26(b)は、図26(a)に示す一般的構造に非特許文献1で開示された原理を応用して構成された特許文献1記載のCMOS型カラー固体撮像装置の構成図である。このカラー固体撮像装置においては、P型半導体基板101の表面側にNウェル層102が形成され、このNウェル層102の表面側にPウェル層103が形成され、このPウェル層103の表面側にN層104が形成される断面構造を持っている。
【0010】
そして、Pウェル層103とN層104との間に形成されるPN接合でブルー(B)の色信号を検出し、Pウェル層103とNウェル層102との間に形成されるPN接合でグリーン(G)の色信号を検出し、P型基板101とNウェル層102との間に形成されるPN接合でレッド(R)の色信号を検出する様になっている。
【0011】
更に詳しく見ると、青(B)の色信号検出には、表面のN層104に電気的接点(オーミックコンタクト)を設け、PN接合部における電子(マジョリティキャリア)の充放電を周辺回路部のソースフォロアアンプで読み出している。緑(G)の色信号検出には、Pウェル層103に対して素子表面に同様の電気的接点を設け、PN接合部における正孔(マジョリティキャリア)の充放電を周辺回路部のソースフォロアアンプで読み出している。赤(R)の色信号検出には、青(B)と同様に、深部のNウェル層102に対して、素子表面に同様の電気的な接点を設け、PN接合部における電子の充放電を周辺回路部のソースフォロアアンプで読み出している。
【0012】
【特許文献1】
米国特許第5965875号公報
【非特許文献1】
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.ED−15,NO.1,JANUARY 1968 の”A Planar Silicon Photosensor with an Optimal Spectral Response for Detecting Printed Material”PAUL A.GARY and JOHN G.LINVILL
【非特許文献2】
PSIE Vol.3019.pp115−124”An 800K−Pixel Color CMOS Senser For Consumer Still Cameras.”J.E.D.Hurwitz.et.al(1997)
【0013】
【発明が解決しようとする課題】
上述した図26(b)に示す従来のCMOS型カラー固体撮像装置は、一画素単位で見ると、青(B),緑(G),赤(R)の3信号を読み出すことができるが、素子表面に設ける必要のある上記オーミックコンタクトに要する面積や、リセットトランジスタやソースフォロアアンプ等の周辺回路に要する面積、即ち、受光部以外の面積が3倍になるため、半導体基板表面の受光部面積が圧迫されてしまうという問題がある。
【0014】
更に、素子駆動や信号読み出しのために配線数が増加してしまい、受光部表面とその上に設けるマイクロレンズとの間に積層される多層配線層が複雑になり、製造が困難になると共に、マイクロレンズと受光部表面との間の入射光の通路が狭くなってしまうという問題がある。この問題は、小型のデジタルスチルカメラや携帯電話機等の小型電子機器に搭載するカラー固体撮像装置ほど、即ち、小面積の半導体基板に形成されるカラー固体撮像装置ほど顕著になる。
【0015】
更にまた、カラーフィルタを搭載しないために、各色成分(R,G,B)出力信号の分光スペクトルが互いに大きくオーバーラップしてしまい、忠実な色再現が困難で高画質化を図ることが難しいという問題もある。
【0016】
本発明の目的は、製造が容易で半導体基板表面の受光部面積を広くとることができ、色信号分離演算処理が不要で、しかも撮像画像の高画質化を容易に図ることが可能なMOS型カラー固体撮像装置を提供することにある。
【0017】
【課題を解決するための手段】
本発明のMOS型カラー固体撮像装置は、複数の受光部が半導体基板の表面に二次元アレー状に配列されたMOS型カラー固体撮像装置において、前記複数のうちの全部または一部の受光部の上部に積層され3原色のうちの1色の入射光を阻止し残り2色の入射光を透過する補色フィルタと、該補色フィルタが積層された受光部の深さ方向に分離して形成される第1,第2の前記高濃度不純物層であって、前記補色フィルタを透過した前記2色のうちの1色の前記色信号を検出する第1の高濃度不純物層と、前記補色フィルタを透過した前記2色のうちの残り1色の前記色信号を検出する第2の高濃度不純物層と、前記各高濃度不純物層に接続され前記各色信号を区別して読み出す信号配線とを備えることを特徴とする。
【0018】
この構成により、補色フィルタを用いることで入射光成分を有効に利用できるため感度が向上し、且つ原色の色信号が直接得られるために色信号分離演算処理が不要となり、しかも、カラーフィルタを使用することで、各色信号の分光感度スペクトルにおけるオーバーラップが低減して忠実な色再現が更に可能となり、高画質化も達成可能となる。
【0019】
本発明のMOS型カラー固体撮像装置は、半導体基板に高濃度不純物層を設けることで形成されたPN接合部に電荷を蓄積し、該電荷を入射光によって発生したフォトキャリアで放電させ、該放電により変化する電荷変化量を色信号として読み出すものであることを特徴とする。この構成によっても、感度が向上し、且つ原色の色信号が直接得られるために色信号分離演算処理が不要となり、しかも、カラーフィルタを使用することで、各色信号の分光感度スペクトルにおけるオーバーラップが低減して忠実な色再現が更に可能となり、高画質化も達成可能となる。
【0020】
本発明のMOS型カラー固体撮像装置は、3原色のうち前記補色フィルタが積層された受光部で検出される前記2色の残り1色の色信号については、該受光部の周りに設けられ該受光部と異なる色信号を検出する受光部の検出信号を補間演算して求めることを特徴とする。この構成により、各受光部位置において3原色信号が得られ、色情報を再現することが可能となる。
【0021】
本発明のMOS型カラー固体撮像装置は、ブルー(B)の光を阻止するイエローフィルタが積層された受光部とレッド(R)の光を阻止するシアンフィルタが積層された受光部とグリーン(G)の光を阻止するマゼンタフィルタが積層された受光部の3種類の受光部が前記半導体基板の表面に配列されたことを特徴とする。
【0022】
この構成により、各受光部では、R,G,Bの3原色の内の2色の信号成分を直接得ることができ、残りの1色の信号成分を周りの受光部の信号成分から補間演算で求めることができる。
【0023】
本発明のMOS型カラー固体撮像装置は、イエローフィルタが積層された受光部とシアンフィルタが積層された受光部の2種類の受光部が前記半導体基板の表面に配列されたことを特徴とする。
【0024】
この構成によっても、各受光部では、R,G,Bの3原色の内の2色の信号成分を直接得ることができ、残りの1色の信号成分は周りの受光部の信号成分を補間演算することで得ることができる。また、全ての受光部からグリーン(G)の信号成分が得られるため、このグリーン信号を輝度信号として画像処理することで、解像度の高い画像を得ることができる。
【0025】
本発明のMOS型カラー固体撮像装置は、マゼンタフィルタが積層された受光部とグリーン(G)の光を透過するグリーンフィルタが積層された受光部の2種類の受光部が前記半導体基板の表面に配列されたことを特徴とする。
【0026】
この構成によっても、各受光部位置においてR,G,Bの3原色の信号成分が得られる。しかも、マゼンダフィルタを透過するレッド(R)とブルー(B)の波長成分は離れているため、夫々の色信号を蓄積する高濃度不純物層を半導体基板の深さ方向に分離して形成するのが容易になると共に、レッドとブルーの分光感度およびグリーンフィルタを透過して得られるグリーンの分光感度のスペクトルにおけるオーバーラップを更に少なくでき、このため、更に忠実な色再現を図ることが可能となる。
【0027】
本発明のMOS型カラー固体撮像装置は、マゼンタフィルタが積層された受光部とカラーフィルタの代わりに透明平坦化膜が積層された受光部の2種類の受光部が前記半導体基板の表面に配列されたことを特徴とする。
【0028】
この構成により、カラーフィルタの代わりに透明平坦化膜が積層された受光部から白色信号すなわち輝度信号が得られ、撮像画像の一層の高感度化を図ることが可能となる。
【0029】
本発明のMOS型カラー固体撮像装置は、グリーンフィルタが積層された受光部とイエローフィルタが積層された受光部とマゼンタフィルタが積層された受光部とシアンフィルタが積層された受光部の4種類の受光部が前記半導体基板の表面に配列されたことを特徴とする。
【0030】
この構成により、色差線順次に各受光部から信号電荷を読み出すことができ、信号処理の高速化などを図ることが可能となる。
【0031】
本発明のMOS型カラー固体撮像装置は、前記高濃度不純物層のうち前記半導体基板の内部に設けられる高濃度不純物層には該半導体基板の表面まで連続する高濃度不純物領域でなる電荷通路が設けられることを特徴とする。
【0032】
この構成により、半導体基板の深い場所に設けた高濃度不純物層からの色信号の読み出しが容易となる。
【0033】
本発明のMOS型カラー固体撮像装置は、前記第1,第2の高濃度不純物層の夫々の深さが、前記補色フィルタを透過した前記2色のうちの夫々の色の波長に対応して設定されることを特徴とする。
【0034】
この構成により、各高濃度不純物層の分光特性を設定通りにすることが可能となる。
【0035】
本発明のMOS型カラー固体撮像装置は、ブルー(B)の色信号を検出する高濃度不純物層の深さが0.1〜0.3μmであり、グリーン(G)の色信号を検出する高濃度不純物層の深さが0.3〜0.8μmであり、レッド(R)の色信号を検出する高濃度不純物層の深さが0.8〜2.5μmであることを特徴とする。
【0036】
この構成により、各高濃度不純物層の深さが、R,G,Bの入射光量に応じた電荷を蓄積するのに最適化される。
【0037】
本発明のMOS型カラー固体撮像装置は、前記の各受光部の上部には夫々オンチップ集光光学系が設けられ、前記の各受光部に夫々遮光膜の1つの開口が対応することを特徴とする。
【0038】
この構成により、更に入射光のロスが少なくなり、入射光の利用効率が更に向上する。
【0039】
本発明のMOS型カラー固体撮像装置は、ブルー(B)の色信号を検出する高濃度不純物層に重ねて設けられ該高濃度不純物層と前記信号配線とをオーミックコンタクトする不純物領域が該高濃度不純物層より深く形成されることを特徴とする。
【0040】
この構成により、オーミックコンタクト部分における電気接続が良好に行われ、装置の信頼性が向上する。
【0041】
【発明の実施の形態】
以下、本発明の一実施形態を図面を参照して説明する。
【0042】
(第1実施形態)
図1は、本発明の第1実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。このCMOS型カラー固体撮像装置は、n型半導体基板10の表面上に形成され、受光領域11と、受光領域11脇に形成された垂直走査回路12と、半導体基板10の底辺側に形成された水平走査回路等(信号増幅回路,A/D変換回路,同期信号発生回路等)13とを備える。
【0043】
受光領域11には、多数の後述する受光部が二次元アレー状に、この例では正方格子状に配列形成されており、各受光部の上面に夫々一色のカラーフィルタが積層されている。カラーフィルタとしては、補色系カラーフィルタであるシアン(Cy)、イエロー(Ye)、マゼンタ(Mg)、グリーン(G)の4色のカラーフィルタが用いられ、奇数行にはGフィルタとMgフィルタが交互に、偶数行にはYeフィルタとCyフィルタが交互に配列されている。これは、一般に、色差順次配列と呼ばれるカラーフィルタ配列であるが、Gフィルタを含まないYe,Cy,Mg(3色)のカラーフィルタの組み合わせも可能である。以下、上記4色の場合について説明する。
【0044】
図2(a)は図1のIIa―IIa線断面模式図すなわちCyフィルタ51を積層した受光部の断面模式図であり、図2(b)は図1のIIb―IIb線断面模式図すなわちMgフィルタ52を積層した受光部の断面模式図である。同様に、図3(a)は図1のIIIa―IIIa線断面模式図すなわちYeフィルタ53を積層した受光部の断面模式図であり、図3(b)は図1のIIIb―IIIb線断模式面図すなわちGフィルタ54を積層した受光部の断面模式図である。
【0045】
図2(a)に示す様に、Cy(シアン)フィルタ51を積層した受光部では、入射光のうちR(赤)のみが阻止され、B(青)とG(緑)が受光部に達する。この受光部では、n型半導体基板10の表面側にPウェル層15が形成され、Pウェル層15内の表面に深さ0.1〜0.3μmのN層(n1)16が形成され、更にPウェル層15内の少し深部に深さ0.3〜0.8μmのN層(n2)17がN層16と分離して形成されている。N層17は、端部において表面まで立ち上がる電荷通路17aが設けられている。
【0046】
層16,17,17aは、この例では、不純物(リンまたは砒素(P又はAs))濃度を、約5×101617/cmとしている。尚、各N層16,17の深さは、この不純物濃度にも依存する。
【0047】
層16とN層17との間にはポテンシャル障壁となるP領域があり、このP領域はPウェル層15と同電位に保たれている。このポテンシャル障壁の高さを変えるために、N層16とN層17との間におけるP領域の不純物(ボロン)濃度(1×101516/cm)を、Pウェル層15の不純物濃度(7×101415/cm)と異なるようにしてもよい。
【0048】
層16はオーミックコンタクト21によりB信号検出用アンプ22に接続され、N層17の電荷通路17aがオーミックコンタクト23によりG信号検出用アンプ24に接続される。このオーミックコンタクト21,23を良好に行うために、N層16,17aのうちこのコンタクト部分の不純物濃度を、この例では1×1019/cm以上としている。
【0049】
斯かる受光部の断面構造により、カラー画像撮像前にリセットトランジスタがONされて各N層16,17の夫々のPN接合部に所定量の電荷が蓄積される。そして、N層16のPN接合部における蓄積電荷は、受光部に達した入射光のうち、B(青)の入射光量に応じて発生したフォトキャリア分だけ放電し、N層17のPN接合部における蓄積電荷は、G(緑)の入射光量に応じて発生したフォトキャリア分だけ放電し、各N層16,17の各PN接合部における電荷変化量が、B信号,G信号としてアンプ22,23によって独立に読み出される。
【0050】
図2(b)に示す様に、Mg(マゼンタ)フィルタ52を積層した受光部では、入射光のうちG(緑)のみが阻止され、B(青)とR(赤)が受光部に達する。この受光部では、n型半導体基板10の表面側に形成されたPウェル層15内に、図2(a)で説明したのと同様のN層(n1)16が形成され、更に深部に、深さ0.8〜2.5μmのN層(n3)18がN層16と分離して形成されている。N層18は、端部において表面まで立ち上がる電荷通路18aが設けられている。
【0051】
層16はオーミックコンタクト21によりアンプ22に接続され、電荷通路18aはオーミックコンタクト25によりR信号検出用アンプ26に接続される。N層16,18間のP領域の不純物濃度をPウェル層15の不純物濃度と変えても良いことは図2(a)の説明と同様であり、また、N層16,18,18aの不純物濃度やオーミックコンタクト部分の不純物濃度についても図2(a)の説明と同様である。尚、不純物濃度については以下の説明でも同様である。
【0052】
斯かる受光部の断面構造により、カラー画像撮像前にリセットトランジスタがONされて各N層16,18の夫々のPN接合部に所定量の電荷が蓄積される。そして、N層16のPN接合部における蓄積電荷は、受光部に達した入射光のうち、B(青)の入射光量に応じて発生したフォトキャリア分だけ放電し、N層18のPN接合部における蓄積電荷は、R(赤)の入射光量に応じて発生したフォトキャリア分だけ放電し、これらの電荷変化量が、B信号,R信号としてアンプ22,26によって独立に読み出される。
【0053】
図3(a)に示す様に、Ye(イエロー)フィルタ53を積層した受光部では、入射光のうちB(青)のみが阻止され、G(緑)とR(赤)が受光部に達する。この受光部では、n型半導体基板10の表面側に形成されたPウェル層15内に、図2(b)で説明したのと同様のN層(n3)18が形成され、表面には、深さ0.1〜0.8μmのN層(n2’)19がN層18と分離して形成されている。このN層19には、オーミックコンタクト27によってG信号検出用アンプ28が接続される。
【0054】
斯かる受光部の断面構造により、カラー画像撮像前にリセットトランジスタがONされて各N層19,18の夫々のPN接合部に所定量の電荷が蓄積される。そして、N層19の蓄積電荷は、受光部に達した入射光のうち、G(緑)の入射光量に応じて発生したフォトキャリア分だけ放電し、N層18に蓄積された電荷は、R(赤)の入射光量に応じて発生したフォトキャリア分だけ放電し、各N層19,18の電荷量変化が、G信号,R信号としてアンプ28,26によって独立に読み出される。
【0055】
尚、本実施形態では、G信号検出用のN層19を表面から0.1〜0.8μmの深さとしたが、図2(a)に示すN層17と同じ様に、深さ0.3〜0.8μmの範囲に形成してもよい。しかし、N層19の構造でも、入射光のうちB(青)光はYeフィルタによって阻止されるため、N層19ではG(緑)の入射光量に応じた電荷量変化が生じ、BとGの混色が生じることはない。
【0056】
図3(b)に示す様に、G(グリーン)フィルタ54を積層した受光部では、入射光のうちG(緑)のみが透過し、B(青)とR(赤)は阻止されて受光部に到達しない。この受光部では、n型半導体基板10に形成されたPウェル層15の表面に、図3(a)で説明したと同様の深さ0.1〜0.8μmのN層(n2’)19が形成され、このN層19に、オーミックコンタクト27によってG信号検出用アンプ28が接続される。
【0057】
斯かる受光部の断面構造により、カラー画像撮像前にリセットトランジスタがONされて各N層19のPN接合部に所定量の電荷が蓄積される。この蓄積電荷は、Gフィルタを透過したGの光量に応じて発生したフォトキャリア分だけ放電し、この電荷変化量に応じた信号がG信号とてしアンプ28によって読み出される。
【0058】
この受光部では、G信号のみを読み出せばよいため、N層19に対するオーミックコンタクトと周辺回路はいずれも一系統だけ設ければ良く、構成が簡略化される。尚、Gフィルタの形成法には、原色フィルタとしてもよく、また、補色系フィルタであるイエローフィルタとシアンフィルタを重ねることでGのみが透過するフィルタ特性としてもよい。
【0059】
尚、上述し各アンプ22,24,26,28の構成は、図4に等価回路を示す様に、図26に示す従来例と同じである。また、図2,図3では図示を省略したが、半導体基板の最表面のうちコンタクト部分以外は、保護用のSiO膜で覆われている。
【0060】
図5(a)(b)及び図6(a)(b)の夫々は、本実施形態に係るカラー固体撮像装置におけるCyフィルタ,Mgフィルタ,Yeフィルタ,Gフィルタが積層された受光部における基板深さ方向のポテンシャルプロファイルと入射光の侵入深さの関係を示す図である。補色系フィルタが積層された本実施形態の受光部は、従来のCMOSセンサと異なり、基板深さ方向に2段のN領域と、両N領域間を隔てるP領域を有していることが特徴であり、各N領域(n1,n2,n3)は、積層されている補色系フィルタによって、その深さが異なっている。
【0061】
即ち、補色系フィルタによって阻止されなかった入射光波長について光電変換された信号をそれぞれ独立に読み出す必要があるので、この入射光を最も効率的に光電変換するように、それぞれの不純物層の深さが決定され、読み出し回路が接続される。最も波長の短いB光は、シリコン基板の最も浅い領域で吸収されるので、n1層(N層16)の近傍にフォトキャリアを発生させる。中間の波長からなるG光はB光よりも深い位置まで到達するので、中間の深さにあるn2層(N層17)の近傍においてフォトキャリアを発生させる。同様に、シリコン基板の最も深部にあるn3層(N層18)の近傍において、最も波長の長いR光によるフォトキャリアを発生させる。
【0062】
G光の場合は、B光がGフィルタやYeフィルタで阻止されるため、n1層とn2層に分ける必要がなく、n2層の深さに略等しいn2’層で示すN領域19が設定される。本実施形態では、浅い方からn1層、n2層(n2’層)、n3層となっており、浅い方から、B光,G光,R光について最も光電変換効率が高くなるように各N層の深さが設定される。
【0063】
図7(a)(b)及び図8(a)(b)は、夫々、Cyフィルタ,Mgフィルタ,Yeフィルタ,Gフィルタが積層された受光部で得られる信号の分光感度スペクトルを示す図である。横軸は入射光波長(nm)、縦軸は出力信号の相対感度(%)である。
【0064】
各受光部は、積層されたカラーフィルタの分光透過率によって出力信号の波長依存性が支配されるが、更に本実施形態に係るカラー固体撮像装置の補色系フィルタが積層された受光部では、N層間を隔てるポテンシャル障壁、即ち、N層に挟まれたP領域が存在するため、このP領域において発生した電荷(電子)はこのポテンシャルバリアによって隣接するN層に振り分けられ、分光スペクトル相互間にオーバーラップが少ないという利点がある。
【0065】
即ち、従来の特許文献1記載のCMOS型カラー固体撮像装置の様に、P領域で発生した電荷(正孔)をP領域表面から直接読み出す場合に比べ、本実施形態のカラー固体撮像装置では、二つのN層のみから得られる信号だけを使用するため、色信号の分離性能が高くなると利点がある。
【0066】
シアン(Cy)フィルタを積層した受光部では、Rに相当する波長の光が殆どCyフィルタによって遮断されるので、受光部からの出力信号の波長依存性は、この波長領域においてシャープに減衰している。従って、B出力信号とG出力信号はRの波長域の光の影響を受けないことがわかる。
【0067】
マゼンタ(Mg)フィルタを積層した受光部では、Gに相当する波長の光が殆どMgフィルタによって遮断されるので、受光部からの出力信号の波長依存性は、この波長領域においてシャープに減衰している。従って、B出力信号とR出力信号は互いにオーバーラップが殆どない分光スペクトルを示している。
【0068】
イエロー(Ye)フィルタを積層した受光部では、Bに相当する波長の光が殆どYeフィルタによって遮断されるので、受光部からの出力信号の波長依存性は、この波長領域においてシャープに減衰している。従って、G出力信号とR出力信号はBの波長域の光の影響を受けないことがわかる。
【0069】
グリーン(G)フィルタを積層した受光部では、BとRに相当する波長の光の殆どがGフィルタによって遮断されるので、受光部からの出力信号の波長依存性は、この波長領域においてシャープに減衰している。従って、G出力信号はBとRの波長域の光の影響を受けず理想的な分光特性であることがわかる。
【0070】
即ち、Cyフィルタを積層した受光部からは混色の少ない分離されたB信号とG信号が得られ、Mgフィルタを積層した受光部からは混色の少ない分離されたB信号とR信号が得られ、Yeフィルタを積層した受光部からは混色の少ない分離されたG信号とR信号が得られ、Gフィルタを積層した受光部からはG信号のみが得られる。
【0071】
図9は、各受光部位置で、R,G,Bの3色の信号を得て色情報の再現を行う説明図である。上述した様に、本実施形態に係る各受光部は、原色の2色あるいは1色の信号を一の受光部から直接読み出す構成になっている。即ち、Gフィルタを積層した受光部位置では、R信号成分とB信号成分が不足し、Yeフィルタを積層した受光部位置ではB信号成分が不足し、Cyフィルタを積層した受光部位置ではR信号成分が不足し、Mgフィルタを積層した受光部位置ではG信号成分が不足する。
【0072】
このため、本実施形態に係るカラー固体撮像装置では、図9に示す様に、不足する信号成分を、隣接する周りの受光部で得られた信号成分から補間演算により求める。Cyフィルタを積層した受光部位置で不足するR信号成分は、この受光部の上下左右の受光部で得られた4つのR信号成分を加算平均した値を用いる。
【0073】
同様に、Mgフィルタを積層した受光部位置で不足するG信号成分は、この受光部の上下左右の受光部で得られた4つのG信号成分を加算平均した値を用い、Yeフィルタを積層した受光部位置で不足するB信号成分は、この受光部の左右または斜め方向に隣接する受光部で得られたB信号成分を加算平均した値を用いる。Gフィルタを積層した受光部位置で不足するR信号成分,B信号成分も、この受光部の上下左右,斜め方向に隣接する受光部で得られたR信号成分を加算平均した値とB信号成分を加算平均した値を用いる。
【0074】
このようにして得られる各受光部位置におけるR,G,Bの3原色信号を外部色信号処理回路で処理することで、本実施形態に係るカラー固体撮像装置では忠実な色再現が可能となる。
【0075】
図10は、本実施形態に係るカラー固体撮像装置の4画素分(Mg,Cy,Ye,G)に対応する二次元平面図である。半導体基板の表面は、縦横に延びるLOCOSによる素子分離帯30によって碁盤の目の様に各受光部が素子分離されており、図示する例では、各受光部はほぼ正方形をなしている。
【0076】
各受光部面積のうち、大部分に上述した各N層16,17,18,19が形成され、補色系フィルタMg,Ye,Cyが積層される受光部では、右端に短冊状の周辺回路部31が設けられ、原色系フィルタGが積層される受光部では、右端の上部側にのみ周辺回路部31’が設けられる。この周辺回路部31,31’に、上述したアンプ(ソースフォロアアンプ)22〜28等が設けられ、夫々、各受光部に設けたコンタクトホール37を介して接続されたN層から色信号が読み出される。
【0077】
図面上、縦方向に設けられた素子分離帯30の上に、信号出力線33と電源線34とリセット線35が敷設され、横方向に設けられた素子分離帯30の上に、選択信号線36が設けられる。信号出力線33は各アンプ22〜28の出力に接続され、電源線34には電源電圧が印加され、リセット線33にはリセット信号が印加される。
【0078】
これらの選択信号やリセット信号は、図1に示す垂直走査回路12や水平走査回路等13等によって制御される。尚、各受光部上に記載した点線矩形枠38は、遮光膜の開口部位置を示しており、この内側のみに光が通過し、その外側すなわち周辺回路部31,31’やコンタクトホール37は遮光されている。この図に示されるように、一の受光部に設ける必要のある信号配線数や周辺回路数は、図26(b)に示す従来のカラー固体撮像装置より少なくて済むため、本実施形態のカラー固体撮像装置では、受光部面積を広くすることができ、明るい画像が撮像可能となる。
【0079】
図11(a)(b)及び図12(a)(b)は、夫々対応する図2(a)(b)及び図12(a)(b)に示す断面模式図に、更に、マイクロレンズ40、遮光膜41、コンタクトホール37に設けたコンタクト部42、コンタクト部42に接続する金属配線層43を加えた断面図である。
【0080】
各カラーフィルタ51,52,53,54上には透明平坦化膜45を介してマイクロレンズ40が形成されている。カラーフィルタ51〜54と遮光膜41との間には透明平坦化膜層46が設けられ、この透明平坦化膜層46は信号配線層でもあり、層間絶縁膜を介して信号線33,34,35,36が互いに接触しない様に例えば3層構造に設けられている(図示せず)。
【0081】
遮光膜41の開口38は、光電変換部であるPN接合領域のほぼ中央部に位置し、アンプ22〜28等の周辺回路部は、この遮光膜41の下に配置されている。最も浅いN層(n1層)16に対するコンタクト部42の下部のみ、そのN層16の深さを深く形成してある。これは、コンタクト部42における金属電極と基板シリコンとの間で金属の突き抜けまたは合金形成により、PN接合が破壊されることを防止するためである。この部分は遮光膜41に覆われるため、光電変換特性の波長依存性(分光特性)には影響を与えない。
【0082】
(第2実施形態)
図13は、本発明の第2実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。第1実施形態と異なる点は、受光部上に積層する補色系フィルタの配列だけである。本実施形態では、シアン(Cy)フィルタとイエロー(Ye)フィルタのみを使用し、CyフィルタとYeフィルタを垂直方向及び水平方向に交互に配列している。
【0083】
Cyフィルタが積層された受光部の断面構造は図2(a)(図11(a))と同じであり、そのポテンシャルプロファイルは図5(a)と同じであり、分光スペクトルは図7(a)と同じである。即ち、Cyフィルタが積層された受光部からは、入射光のうち、B信号成分とG信号成分が出力される。
【0084】
Yeフィルタが積層された受光部の断面は図3(a)(図12(a))と同じであり、そのポテンシャルプロファイルは図6(a)と同じであり、分光スペクトルは図8(a)と同じである。即ち、Yeフィルタが積層された受光部からは、入射光のうち、G信号成分とR信号成分が出力される。
【0085】
従って、本実施形態のCMOS型カラー固体撮像装置では、全ての受光部からG信号成分が出力され、Cyフィルタが積層された受光部位置ではR信号成分が不足し、Yeフィルタが積層された受光部位置ではB信号成分が不足することになる。
【0086】
そこで、各受光部から色信号の読み出しを2回行って一の受光部から夫々2色の原色信号成分を独立に得た後、図14に示す様に、不足する1色の信号成分を、上下左右に隣接する周りの4つの信号成分を加算平均して求める。これにより、外部色信号処理回路によって忠実な色再現が可能になる。
【0087】
図15は、図10と同様の、第2実施形態に係るCMOS型カラー固体撮像装置の4画素分(Ye×2,Cy×2)に対応する二次元平面図である。補色系フィルタYeまたはCyを夫々積層した全ての画素(受光部)から2色の原色信号を読み出すことができるので、夫々2系統の読み出し信号増幅回路(22,24または26,28)が設けられている。
【0088】
本実施形態によれば、カラーフィルタの種類が2種類で済み、従来の3種類または4種類のカラーフィルタを用いる場合に比べて少なくて済み、製造が容易によるという利点がある。また、全ての受光部からG信号が直接得られるので、このG信号を輝度信号として信号処理することで、撮像画像の解像度を高めることが可能となる。
【0089】
(第3実施形態)
図16は、本発明の第3実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。第1,第2実施形態と異なる点は、受光部上に積層するカラーフィルタの配列だけである。本実施形態では、補色系のマゼンタ(Mg)フィルタと原色系のグリーン(G)フィルタのみを使用し、MgフィルタとGフィルタとを垂直方向及び水平方向に交互に配列している。
【0090】
Mgフィルタが積層された受光部の断面は図2(b)(図11(b))と同じであり、そのポテンシャルプロファイルは図5(b)と同じであり、分光スペクトルは図7(b)と同じである。即ち、Mgフィルタが積層された受光部からは、入射光のうち、B信号成分とR信号成分が出力される。
【0091】
Gフィルタが積層された受光部の断面構造は図3(b)(図12(b))と同じであり、そのポテンシャルプロファイルは図6(b)と同じであり、分光スペクトルは図8(b)と同じである。即ち、Gフィルタが積層された受光部からは、入射光のうち、G信号成分のみが出力される。本実施形態では、原色系のGフィルタを使用することにより、B光とR光の影響を受けない理想に近いG信号成分が得られる
即ち、本実施形態のCMOS型カラー固体撮像装置では、Mgフィルタが積層された受光部ではG信号成分が不足し、Gフィルタが積層された受光部では、B信号成分とR信号成分とが不足することになる。
【0092】
そこで、図17に示す様に、Gフィルタが積層された受光部位置では、1回目の色信号読み出しで直接得られたG信号成分と、1回目の色信号読み出しで上下左右に隣接する受光部から得られたR信号成分を加算平均した値と、2回目の色信号読み出しで上下左右に隣接する受光部から得られたB信号成分を加算平均した値とを用いて色情報の再現を行う。Mgフィルタが積層された受光部位置では、直接得られたB信号成分及びR信号成分と、上下左右に隣接する受光部で得られたG信号成分を加算平均した値とを用いて色情報の再現を行う。
【0093】
図18は、図10,図15と同様の、第3実施形態に係るCMOS型カラー固体撮像装置の4画素分(G×2,Mg×2)に対応する二次元平面図である。受光部内の構成は、図10に示す対応するカラーフィルタを持つ受光部と同一である。
【0094】
図19は、本実施形態に係るCMOS型カラー固体撮像装置の分光スペクトルである。基本的には、図7(b)の分光スペクトルと図8(b)の分光スペクトルを組み合わせたものになり、原色系フィルタのみを用いた従来のイメージセンサの分光特性とほぼ同様の特性すなわち忠実な色再現が実現可能である。
【0095】
(第4実施形態)
図20は、本発明の第4実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。第1,第2,第3実施形態と異なる点は、受光部上に積層するカラーフィルタの配列だけである。本実施形態では、補色系のマゼンタ(Mg)フィルタを積層した受光部と、単に透明平坦化膜(以下、ホワイトフィルタ(W)ともいう。)を積層しカラーフィルタを用いない受光部とを、垂直方向及び水平方向に交互に配列している。
【0096】
Mgフィルタが積層された受光部の断面は図2(b)(図11(b))と同じであり、そのポテンシャルプロファイルは図5(b)と同じであり、分光スペクトルは図7(b)と同じである。即ち、Mgフィルタが積層された受光部からは、入射光のうち、B信号成分とR信号成分が出力される。
【0097】
カラーフィルタを用いない受光部からは、入射光のB信号成分,G信号成分,R信号成分の全て含む信号すなわち輝度信号(Y)が出力される。
【0098】
即ち、本実施形態のCMOS型カラー固体撮像装置では、Mgフィルタが積層された受光部ではG信号成分が不足し、ホワイトフィルタ(透明平坦化膜)が積層された受光部では、輝度信号のみが得られる。
【0099】
そこで、図21に示す様に、Mgフィルタが積層された受光部位置では、1回目の信号読み出しで直接得られたR信号成分と、2回目の信号読み出しで直接得られたB信号成分と、1回目の信号読み出しで上下左右に隣接する周りの受光部から得られた輝度信号(B+G+R)を加算平均した値から、上記直接得られたR信号成分とB信号成分とを減算することでG信号成分を得て、色情報の再現を行う。
【0100】
ホワイトフィルタが積層された受光部位置では、上下左右に隣接する周りの受光部で得られたB信号成分の加算平均値及びR信号成分の加算平均値と、直接得られた輝度信号からこれらのB信号成分とR信号成分とを減算して得たG信号成分とを用いて色情報の再現を行う。
【0101】
図22は、図20のXXII―XXII線の断面模式図であり、図23は、マイクロレンズ及び遮光膜,透明平坦化膜を積層した状態の断面図である。第1実施形態と同じ部分には同一符号を付してその説明は省略する。
【0102】
透明平坦化膜(W)55を透過したR光,G光,B光の全ての入射光量に応じた信号電荷を蓄積するN層(n3’)56は、半導体基板10の表面側に設けられたPウェル層15の表面側に、0.5〜1.5μmの深さに形成される。
【0103】
図24は、カラーフィルタを設けない受光部のポテンシャルプロファイルを示す図である。N層(n3’)56より深い箇所まで侵入した赤色光により発生する電荷は、ポテンシャルプロファイルに沿って井戸内に落ち込むため、N層(n3’)56の深さを0.5μmと浅く設定しても、R信号成分まで含んだ輝度信号を得ることができる。しかし、N層(n3’)56の深さは、R,G,Bのそれぞれの波長域において人間の視感度に近い分光感度を呈するように設定するのがよい。
【0104】
図25は、本実施形態に係るCMOS型カラー固体撮像装置の分光感度スペクトルを示す図である。マゼンタフィルタMgを透過したB信号とR信号はオーバーラップ無く分離しており、ホワイトフィルタを透過した光(B+G+R)の信号(W)は、全ての可視光波長域を含みG信号(波長540nm付近)にピークを持つスペクトルとなっている。
【0105】
本実施形態では、特にホワイト(W)に対応する受光部で、全ての可視域の波長成分を利用できるため、入射光成分のロスが殆どなく、第1実施形態の様に全受光部に補色フィルタを積層する場合に比べ、更に高感度化が図れる。また、特に複雑な信号処理をすることなく、直接、高感度の輝度信号(R+G+B)が得られるという特徴もある。更に、カラーフィルタとしてMgフィルタのみを使用するため、カラーフィルタの積層工程が容易となる。
【0106】
尚、以上の各実施形態では、MOS型カラー固体撮像装置としてCMOS型を例に説明したが、他の種類のNMOS型やPMOS型にも本発明を適用可能である。
【0107】
【発明の効果】
本発明によれば、以下の効果が得られる。
(1)補色系カラーフィルタを積層した一の受光部(画素)から2色の色信号成分を独立に検出できるため、入射光を有効に電気信号に変換でき、高感度化を達成することが可能となる。
(2)補色系カラーフィルタを使用した固体撮像素子から原色系色信号を直接取り出すことができるので、忠実な色再現が可能になり、さらに色信号処理回路が簡略化できる。
(3)基板深さ方向に対する分光特性を利用すると共に補色系カラーフィルタを使用したため、各分光スペクトル(R,G,B)相互のオーバーラップ量が少なくなり、忠実な色再現が可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。
【図2】(a)は図1のIIa―IIa線断面模式図である。
(b)は図1のIIb―IIb線断面模式図である。
【図3】(a)は図1のIIIa―IIIa線断面模式図である。
(b)は図1のIIIb―IIIb線断面模式図である。
【図4】図2(a)(b),図3(a)(b)に示すアンプ(増幅回路(ソースフォロアアンプ))の等価回路図である。
【図5】(a)は図1のCyフィルタ積層受光部におけるポテンシャルプロファイルを示す図である。
(b)は図1のMgフィルタ積層受光部におけるポテンシャルプロファイルを示す図である。
【図6】(a)は図1のYeフィルタ積層受光部におけるポテンシャルプロファイルを示す図である。
(b)は図1のGフィルタ積層受光部におけるポテンシャルプロファイルを示す図である。
【図7】(a)は図1におけるCyフィルタ積層受光部の分光特性を示すグラフである。
(b)は図1におけるMgフィルタ積層受光部の分光特性を示すグラフである。
【図8】(a)は図1におけるYeフィルタ積層受光部の分光特性を示すグラフである。
(b)は図1におけるGフィルタ積層受光部の分光特性を示すグラフである。
【図9】図1に示す各カラーフィルタ(Cy,Mg,Ye,G)積層受光部位置でR,G,Bの3色信号を得て色情報の再現を行う説明図である。
【図10】図1に示すカラー固体撮像装置のCy,Mg,Ye,Gフィルタ積層受光部4画素分に対応する二次元平面図である。
【図11】(a)は図2(a)にマイクロレンズ,遮光膜等を積層した断面図である。
(b)は図2(b)にマイクロレンズ,遮光膜等を積層した断面図である。
【図12】(a)は図3(a)にマイクロレンズ,遮光膜等を積層した断面図である。
(b)は図3(b)にマイクロレンズ,遮光膜等を積層した断面図である。
【図13】本発明の第2実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。
【図14】図13に示す各カラーフィルタ(Cy,Ye)積層受光部位置でR,G,Bの3色信号を得て色情報の再現を行う説明図である。
【図15】図13に示すカラー固体撮像装置のCy,Yeフィルタ積層受光部4画素分に対応する二次元平面図である。
【図16】本発明の第3実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。
【図17】図16に示す各カラーフィルタ(Mg,G)積層受光部位置でR,G,Bの3色信号を得て色情報の再現を行う説明図である。
【図18】図16に示すカラー固体撮像装置のMg,Gフィルタ積層受光部4画素分に対応する二次元平面図である。
【図19】図16に示すカラー固体撮像装置の分光感度を示すグラフである。
【図20】本発明の第4実施形態に係るCMOS型カラー固体撮像装置の表面模式図である。
【図21】図20に示すフィルタ(Mg,W)積層受光部位置でR,G,Bの3色信号を得て色情報の再現を行う説明図である。
【図22】図20のXXII―XXII線断面模式図である。
【図23】図22にマイクロレンズ,遮光膜等を積層した状態の断面図である。
【図24】図20に示すWフィルタ積層受光部のポテンシャルプロファイルを示す図である。
【図25】図20に示すCMOS型カラー固体撮像装置の分光特性を示すグラフである。
【図26】従来のCMOS型カラー固体撮像装置の説明図である。
【符号の説明】
10 半導体基板
15 Pウェル層
16,17,18,19 N層(高濃度不純物層)
21,23,25,27 オーミックコンタクト部
22,24,26,28 ソースフォロアアンプ
31,31’ 周辺回路部
33 色信号出力線
35 リセット線
36 選択信号線
37 コンタクトホール
38 遮光膜開口
40 マイクロレンズ
41 遮光膜
46 透明平坦化膜(信号配線層)
51,Cy シアンフィルタ(補色系フィルタ)
52,Mg マゼンタフィルタ(補色系フィルタ)
53,Ye イエローフィルタ(補色系フィルタ)
54,G グリーンフィルタ(原色系フィルタ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single-plate color solid-state imaging device, and more particularly to a MOS type color solid-state imaging device.
[0002]
[Prior art]
In a conventional CMOS color solid-state imaging device, a large number of light receiving portions are arranged in a two-dimensional array on the surface of a semiconductor substrate, and color filters having different spectral characteristics in a stripe shape or a mosaic shape are stacked on each light receiving portion. By doing so, a color image can be taken.
[0003]
The color filter includes a primary color filter and a complementary color filter. In the case of a primary color filter, for example, in a pixel in which a B (blue) color filter is stacked, only light in the B wavelength region (incident light component having a wavelength shorter than about 480 nm) reaches the light receiving unit. Other wavelength components (for example, G (green) and R (red)) are not incident on the light receiving unit. For this reason, with respect to incident light including wavelength components (G and R) other than B, optical signal components (G and R) other than B cannot be effectively used for photoelectric conversion, which causes a decrease in sensitivity. .
[0004]
On the other hand, the complementary color filter includes a yellow (Ye) filter that transmits the color components G and R that are complementary to B, and a magenta (Mg) filter that transmits the color components B and R that are complementary to G. And a cyan (Cy) filter that transmits the color components B and G that are complementary to R, and the wavelength of the incident light can be used in a wider range than the primary color filter, and the sensitivity can be increased. .
[0005]
For this reason, in a video movie camera (moving image pickup) in which an auxiliary light source such as a flash is difficult to use, a color solid-state image pickup device equipped with a complementary color filter is often used. However, since signals obtained from one pixel are signals corresponding to G + R, G + B, and R + B, after reading these signals, color signals that are separated into R, G, and B primary color signal components in an external circuit. It is necessary to perform a separation operation process.
[0006]
Therefore, a color solid-state imaging device using a complementary color filter is more faithful in color reproducibility and noise than a color solid-state imaging device using a primary color filter that can directly read out each color component (R, G, B). There is a problem that inferior. For this reason, many still cameras (still image capturing) employ a solid-state imaging device equipped with a primary color filter having excellent color reproducibility, and the sensitivity is covered by an auxiliary light source.
[0007]
On the other hand, it is disclosed in the following Non-Patent Document 1 that the photoelectric conversion characteristics of a photodiode depend on the wavelength of incident light and the position in the depth direction of the silicon substrate, and the optical properties of this silicon substrate are utilized. A CMOS color solid-state imaging device capable of separating and reading out each color signal without mounting a color filter is disclosed in Patent Document 1 below. The conventional CMOS color solid-state imaging device will be described below.
[0008]
FIG. 26A is an equivalent circuit diagram of a general CMOS solid-state imaging device described in Non-Patent Document 2 below. In the CMOS type solid-state imaging device, the charge stored by turning on the reset transistor (M3) in advance in the capacitance component (C) of the light receiving portion photodiode (PN junction portion D) is generated near the photodiode portion by incident light. In this structure, the photocarrier discharges, and then the change in the amount of charge in the capacitor C is read out by the source follower amplifiers (M1, M2).
[0009]
FIG. 26B is a configuration diagram of a CMOS color solid-state imaging device described in Patent Document 1 configured by applying the principle disclosed in Non-Patent Document 1 to the general structure shown in FIG. . In this color solid-state imaging device, an N-well layer 102 is formed on the surface side of a P-type semiconductor substrate 101, a P-well layer 103 is formed on the surface side of the N-well layer 102, and the surface side of the P-well layer 103 And has a cross-sectional structure in which the N layer 104 is formed.
[0010]
Then, a blue (B) color signal is detected by a PN junction formed between the P well layer 103 and the N layer 104, and a PN junction formed between the P well layer 103 and the N well layer 102. A green (G) color signal is detected, and a red (R) color signal is detected by a PN junction formed between the P-type substrate 101 and the N-well layer 102.
[0011]
More specifically, the blue (B) color signal detection uses N on the surface. + An electrical contact (ohmic contact) is provided on the layer 104, and charge / discharge of electrons (majority carriers) at the PN junction is read by a source follower amplifier in the peripheral circuit portion. For green (G) color signal detection, a similar electrical contact is provided on the element surface with respect to the P well layer 103, and charge / discharge of holes (majority carriers) at the PN junction is performed as a source follower amplifier in the peripheral circuit section. Is read out. For red (R) color signal detection, similar to blue (B), the same electrical contact is provided on the element surface for the deep N well layer 102 to charge / discharge electrons at the PN junction. Reading is performed by the source follower amplifier in the peripheral circuit section.
[0012]
[Patent Document 1]
US Pat. No. 5,965,875
[Non-Patent Document 1]
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-15, NO. 1, JANUARY 1968, “A Planar Silicon Photosensor with an Optimal Spectral Response for Detecting Printed Material” PAUL A. GARY and JOHN G. LINVILL
[Non-Patent Document 2]
PSIE Vol. 3019. pp 115-124 "An 800K-Pixel Color CMOS Sensor For Consumer Still Cameras." E. D. Hurwitz. et. al (1997)
[0013]
[Problems to be solved by the invention]
The conventional CMOS color solid-state imaging device shown in FIG. 26B described above can read three signals of blue (B), green (G), and red (R) when viewed in units of one pixel. The area required for the ohmic contact that needs to be provided on the element surface, and the area required for peripheral circuits such as a reset transistor and a source follower amplifier, that is, the area other than the light receiving part is tripled. There is a problem of being pressed.
[0014]
Furthermore, the number of wirings increases for element driving and signal reading, and the multilayer wiring layer laminated between the light receiving unit surface and the microlenses provided thereon becomes complicated, making manufacturing difficult, There is a problem that the path of incident light between the microlens and the surface of the light receiving unit becomes narrow. This problem becomes more prominent in color solid-state imaging devices mounted on small electronic devices such as small digital still cameras and mobile phones, that is, color solid-state imaging devices formed on a small-sized semiconductor substrate.
[0015]
Furthermore, since no color filter is mounted, the spectral spectra of the output signals of each color component (R, G, B) greatly overlap each other, and it is difficult to faithfully reproduce colors and it is difficult to achieve high image quality. There is also a problem.
[0016]
An object of the present invention is a MOS type that is easy to manufacture, can take a large light receiving area on the surface of a semiconductor substrate, does not require color signal separation calculation processing, and can easily achieve high image quality of captured images. The object is to provide a color solid-state imaging device.
[0017]
[Means for Solving the Problems]
The MOS type color solid-state imaging device of the present invention is a MOS type color solid-state imaging device in which a plurality of light receiving parts are arranged in a two-dimensional array on the surface of a semiconductor substrate. A complementary color filter that is stacked on the top and blocks incident light of one of the three primary colors and transmits the remaining two colors of incident light, and a light receiving unit in which the complementary color filters are stacked are separated in the depth direction. First and second high-concentration impurity layers, a first high-concentration impurity layer that detects the color signal of one of the two colors that has passed through the complementary color filter, and the transparent color filter that is transmitted A second high-concentration impurity layer that detects the color signal of the remaining one of the two colors, and a signal wiring that is connected to each high-concentration impurity layer and that reads out each color signal separately. And
[0018]
With this configuration, the incident light component can be effectively used by using the complementary color filter, so the sensitivity is improved and the color signal of the primary color is directly obtained, so the color signal separation calculation process is not required, and the color filter is used. By doing so, the overlap in the spectral sensitivity spectrum of each color signal is reduced, and faithful color reproduction is further possible, and high image quality can be achieved.
[0019]
The MOS type color solid-state imaging device of the present invention accumulates charges in a PN junction formed by providing a high concentration impurity layer on a semiconductor substrate, and discharges the charges with photocarriers generated by incident light. It is characterized in that the amount of change in charge that changes due to the above is read out as a color signal. Even with this configuration, since the sensitivity is improved and the primary color signal can be obtained directly, the color signal separation calculation process is not required, and the use of the color filter allows the spectral sensitivity spectrum of each color signal to be overlapped. Reduced and faithful color reproduction is further possible, and high image quality can be achieved.
[0020]
In the MOS type color solid-state imaging device of the present invention, the remaining one color signal of the two colors detected by the light receiving unit in which the complementary color filters are stacked among the three primary colors is provided around the light receiving unit. The detection signal of the light receiving unit that detects a color signal different from that of the light receiving unit is obtained by interpolation calculation. With this configuration, three primary color signals are obtained at each light receiving portion position, and color information can be reproduced.
[0021]
The MOS type color solid-state imaging device according to the present invention includes a light receiving unit in which a yellow filter for blocking blue (B) light is stacked, a light receiving unit in which a cyan filter for blocking red (R) light is stacked, and a green (G ), Three types of light receiving portions on which a magenta filter for blocking light is stacked are arranged on the surface of the semiconductor substrate.
[0022]
With this configuration, each light receiving unit can directly obtain signal components of two of the three primary colors R, G, and B, and interpolate the remaining one color signal component from the signal components of the surrounding light receiving units. Can be obtained.
[0023]
The MOS type color solid-state imaging device of the present invention is characterized in that two types of light receiving portions, that is, a light receiving portion in which yellow filters are stacked and a light receiving portion in which cyan filters are stacked are arranged on the surface of the semiconductor substrate.
[0024]
Even with this configuration, each light receiving unit can directly obtain signal components of two of the three primary colors R, G, and B, and the remaining one color signal component interpolates the signal components of the surrounding light receiving units. It can be obtained by calculation. Further, since a green (G) signal component is obtained from all the light receiving units, an image with high resolution can be obtained by performing image processing using the green signal as a luminance signal.
[0025]
The MOS type color solid-state imaging device of the present invention has two types of light receiving portions on the surface of the semiconductor substrate: a light receiving portion in which magenta filters are stacked and a light receiving portion in which green filters that transmit green (G) light are stacked. It is characterized by being arranged.
[0026]
Also with this configuration, signal components of the three primary colors R, G, and B are obtained at each light receiving portion position. Moreover, since the red (R) and blue (B) wavelength components that pass through the magenta filter are separated, the high-concentration impurity layers that accumulate the respective color signals are formed separately in the depth direction of the semiconductor substrate. In addition, it is possible to further reduce the overlap in the spectrum of the spectral sensitivity of red and blue and the spectral sensitivity of green obtained by transmitting through the green filter, and thus it is possible to achieve more faithful color reproduction. .
[0027]
In the MOS type color solid-state imaging device of the present invention, two types of light receiving portions are arranged on the surface of the semiconductor substrate, a light receiving portion in which magenta filters are stacked and a light receiving portion in which transparent flattening films are stacked instead of color filters. It is characterized by that.
[0028]
With this configuration, a white color signal, that is, a luminance signal is obtained from the light receiving portion in which a transparent flattening film is laminated instead of the color filter, and the sensitivity of the captured image can be further increased.
[0029]
The MOS type color solid-state imaging device according to the present invention has four types of light receiving units including a green filter, a light receiving unit including a yellow filter, a light receiving unit including a magenta filter, and a light receiving unit including a cyan filter. The light receiving portion is arranged on the surface of the semiconductor substrate.
[0030]
With this configuration, it is possible to read out signal charges from each light receiving unit sequentially in the color difference lines, and it is possible to increase the speed of signal processing.
[0031]
In the MOS type color solid-state imaging device of the present invention, the high concentration impurity layer provided in the semiconductor substrate of the high concentration impurity layer is provided with a charge path including a high concentration impurity region continuous to the surface of the semiconductor substrate. It is characterized by being able to.
[0032]
With this configuration, it is easy to read out color signals from a high-concentration impurity layer provided deep in the semiconductor substrate.
[0033]
In the MOS type color solid-state imaging device according to the present invention, the depth of each of the first and second high-concentration impurity layers corresponds to the wavelength of each of the two colors transmitted through the complementary color filter. It is characterized by being set.
[0034]
With this configuration, the spectral characteristics of each high-concentration impurity layer can be set as set.
[0035]
In the MOS type color solid-state imaging device of the present invention, the depth of the high-concentration impurity layer for detecting the blue (B) color signal is 0.1 to 0.3 μm, and the high color signal for detecting the green (G) color signal. The depth of the concentration impurity layer is 0.3 to 0.8 μm, and the depth of the high concentration impurity layer for detecting a red (R) color signal is 0.8 to 2.5 μm.
[0036]
With this configuration, the depth of each high-concentration impurity layer is optimized to accumulate charges corresponding to the amounts of R, G, and B incident light.
[0037]
The MOS type color solid-state imaging device of the present invention is characterized in that an on-chip condensing optical system is provided above each of the light receiving portions, and one opening of the light shielding film corresponds to each of the light receiving portions. And
[0038]
With this configuration, the loss of incident light is further reduced, and the utilization efficiency of incident light is further improved.
[0039]
In the MOS type color solid-state imaging device of the present invention, an impurity region provided so as to overlap the high-concentration impurity layer for detecting a blue (B) color signal and having an ohmic contact between the high-concentration impurity layer and the signal wiring is provided in the high-concentration impurity layer. It is characterized by being formed deeper than the impurity layer.
[0040]
With this configuration, the electrical connection in the ohmic contact portion is satisfactorily performed, and the reliability of the device is improved.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0042]
(First embodiment)
FIG. 1 is a schematic view of the surface of a CMOS color solid-state imaging device according to the first embodiment of the present invention. This CMOS color solid-state imaging device is formed on the surface of an n-type semiconductor substrate 10, and is formed on the light receiving region 11, the vertical scanning circuit 12 formed on the side of the light receiving region 11, and the bottom side of the semiconductor substrate 10. And a horizontal scanning circuit (signal amplification circuit, A / D conversion circuit, synchronization signal generation circuit, etc.) 13.
[0043]
In the light receiving region 11, a large number of light receiving portions, which will be described later, are arranged in a two-dimensional array, in this example a square lattice, and a color filter of one color is laminated on the upper surface of each light receiving portion. As the color filters, four color filters of cyan (Cy), yellow (Ye), magenta (Mg), and green (G), which are complementary color filters, are used, and G filters and Mg filters are provided in odd rows. Alternately, Ye filters and Cy filters are alternately arranged in even rows. This is a color filter array generally called a color difference sequential array, but a combination of Ye, Cy, Mg (three colors) color filters not including a G filter is also possible. The case of the above four colors will be described below.
[0044]
2A is a schematic cross-sectional view taken along a line IIa-IIa in FIG. 1, that is, a schematic cross-sectional view of a light receiving portion on which a Cy filter 51 is stacked. FIG. 2B is a schematic cross-sectional view taken along a line IIb-IIb in FIG. 6 is a schematic cross-sectional view of a light receiving unit in which filters 52 are stacked. FIG. Similarly, FIG. 3A is a schematic cross-sectional view taken along the line IIIa-IIIa in FIG. 1, that is, a schematic cross-sectional view of the light receiving section on which the Ye filter 53 is laminated, and FIG. It is a sectional view, that is, a schematic cross-sectional view of a light receiving section in which G filters 54 are stacked.
[0045]
As shown in FIG. 2A, in the light receiving section in which the Cy (cyan) filters 51 are stacked, only R (red) of the incident light is blocked, and B (blue) and G (green) reach the light receiving section. . In this light receiving portion, a P-well layer 15 is formed on the surface side of the n-type semiconductor substrate 10, and a depth of 0.1 to 0.3 μm is formed on the surface in the P-well layer 15. + The layer (n1) 16 is formed, and further, N having a depth of 0.3 to 0.8 μm is formed slightly deep in the P well layer 15. + Layer (n2) 17 is N + It is formed separately from the layer 16. N + The layer 17 is provided with a charge passage 17a that rises to the surface at the end.
[0046]
N + In this example, the layers 16, 17, and 17 a have an impurity (phosphorus or arsenic (P or As)) concentration of about 5 × 10 5. 16 ~ 17 / Cm 3 It is said. Each N + The depth of the layers 16 and 17 also depends on this impurity concentration.
[0047]
N + Layer 16 and N + There is a P region serving as a potential barrier between the layer 17 and this P region is kept at the same potential as the P well layer 15. To change the height of this potential barrier, + Layer 16 and N + Impurity (boron) concentration of P region between layers 17 (1 × 10 15 ~ 16 / Cm 3 ) For the impurity concentration of P well layer 15 (7 × 10 14 ~ 15 / Cm 3 ) May be different.
[0048]
N + The layer 16 is connected to the B signal detection amplifier 22 by an ohmic contact 21, and N + The charge path 17 a of the layer 17 is connected to the G signal detection amplifier 24 by the ohmic contact 23. In order to make the ohmic contacts 21 and 23 well, N + The impurity concentration of this contact portion of the layers 16 and 17a is set to 1 × 10 in this example. 19 / Cm 3 That's it.
[0049]
Due to the cross-sectional structure of the light receiving unit, the reset transistor is turned on before each color image is captured, and each N + A predetermined amount of charge is accumulated at the PN junctions of the layers 16 and 17. And N + The accumulated charge in the PN junction of the layer 16 is discharged by the amount of photocarriers generated according to the incident light quantity of B (blue) in the incident light reaching the light receiving part, + The accumulated charge at the PN junction of the layer 17 is discharged by the amount of photocarriers generated according to the incident light quantity of G (green). + The amount of change in charge at each PN junction of the layers 16 and 17 is read out independently by the amplifiers 22 and 23 as a B signal and a G signal.
[0050]
As shown in FIG. 2 (b), in the light receiving part in which the Mg (magenta) filter 52 is laminated, only G (green) of the incident light is blocked, and B (blue) and R (red) reach the light receiving part. . In this light receiving portion, the same N as described in FIG. 2A is provided in the P well layer 15 formed on the surface side of the n-type semiconductor substrate 10. + The layer (n1) 16 is formed, and further, in the deep part, N having a depth of 0.8 to 2.5 μm + Layer (n3) 18 is N + It is formed separately from the layer 16. N + The layer 18 is provided with a charge passage 18a that rises to the surface at the end.
[0051]
N + The layer 16 is connected to the amplifier 22 by the ohmic contact 21, and the charge path 18 a is connected to the R signal detection amplifier 26 by the ohmic contact 25. N + The impurity concentration of the P region between the layers 16 and 18 may be changed to the impurity concentration of the P well layer 15 as in the description of FIG. + The impurity concentrations of the layers 16, 18, and 18a and the impurity concentration of the ohmic contact portion are the same as described with reference to FIG. The impurity concentration is the same in the following description.
[0052]
Due to the cross-sectional structure of the light receiving unit, the reset transistor is turned on before each color image is captured, and each N + A predetermined amount of charge is accumulated at the PN junctions of layers 16 and 18 respectively. And N + The accumulated charge in the PN junction of the layer 16 is discharged by the amount of photocarriers generated according to the incident light quantity of B (blue) in the incident light reaching the light receiving part, + The accumulated charge at the PN junction of the layer 18 is discharged by the amount of photocarriers generated according to the incident light quantity of R (red), and these charge change amounts are independently obtained by the amplifiers 22 and 26 as B and R signals. Read out.
[0053]
As shown in FIG. 3A, in the light receiving section in which the Ye (yellow) filter 53 is laminated, only B (blue) of the incident light is blocked, and G (green) and R (red) reach the light receiving section. . In this light receiving portion, the same N as described in FIG. 2B is provided in the P well layer 15 formed on the surface side of the n-type semiconductor substrate 10. + Layer (n3) 18 is formed, and the surface has N depth of 0.1 to 0.8 μm. + Layer (n2 ′) 19 is N + It is formed separately from the layer 18. This N + A G signal detection amplifier 28 is connected to the layer 19 through an ohmic contact 27.
[0054]
Due to the cross-sectional structure of the light receiving unit, the reset transistor is turned on before each color image is captured, and each N + A predetermined amount of charge is accumulated at the respective PN junctions of layers 19 and 18. And N + The accumulated charge of the layer 19 is discharged by the amount of photocarriers generated according to the incident light amount of G (green) out of the incident light reaching the light receiving portion, and N + The charges accumulated in the layer 18 are discharged by the amount of photocarriers generated according to the incident light quantity of R (red), and each N + Changes in the charge amount of the layers 19 and 18 are read out independently by the amplifiers 28 and 26 as G and R signals.
[0055]
In the present embodiment, N for G signal detection is used. + The layer 19 has a depth of 0.1 to 0.8 μm from the surface, but the N shown in FIG. + Similarly to the layer 17, the depth may be in the range of 0.3 to 0.8 μm. But N + Even in the structure of the layer 19, B (blue) light of the incident light is blocked by the Ye filter. + In the layer 19, a change in the amount of charge according to the amount of incident light of G (green) occurs, and no color mixture of B and G occurs.
[0056]
As shown in FIG. 3 (b), in the light receiving section where the G (green) filter 54 is laminated, only G (green) of the incident light is transmitted, and B (blue) and R (red) are blocked and received. Does not reach the department. In this light receiving portion, the surface of the P well layer 15 formed on the n-type semiconductor substrate 10 has an N depth of 0.1 to 0.8 μm similar to that described with reference to FIG. + Layer (n2 ′) 19 is formed and this N + A G signal detection amplifier 28 is connected to the layer 19 through an ohmic contact 27.
[0057]
Due to the cross-sectional structure of the light receiving unit, the reset transistor is turned on before each color image is captured, and each N + A predetermined amount of charge is accumulated at the PN junction of layer 19. This accumulated charge is discharged by the amount of photocarriers generated according to the amount of G light that has passed through the G filter, and a signal corresponding to the amount of change in this charge is read as a G signal by the amplifier 28.
[0058]
In this light receiving unit, only the G signal needs to be read. + Only one system is required for the ohmic contact and the peripheral circuit for the layer 19, and the configuration is simplified. The G filter may be formed by using a primary color filter or a filter characteristic that transmits only G by overlapping a yellow filter and a cyan filter which are complementary color filters.
[0059]
The configuration of each of the amplifiers 22, 24, 26, and 28 described above is the same as the conventional example shown in FIG. 26, as shown in an equivalent circuit in FIG. Although not shown in FIGS. 2 and 3, the protective SiO 2 other than the contact portion of the outermost surface of the semiconductor substrate is used. 2 It is covered with a film.
[0060]
FIGS. 5A and 5B and FIGS. 6A and 6B are substrates in a light receiving unit in which a Cy filter, a Mg filter, a Ye filter, and a G filter are stacked in the color solid-state imaging device according to the present embodiment. It is a figure which shows the relationship between the potential profile of a depth direction, and the penetration depth of incident light. Unlike the conventional CMOS sensor, the light receiving unit of the present embodiment in which complementary color filters are stacked has two stages of N in the substrate depth direction. + Area and both N + It is characterized by having P regions separating the regions, and each N + The depths of the regions (n1, n2, n3) differ depending on the complementary color filters that are stacked.
[0061]
That is, since it is necessary to independently read out the signals photoelectrically converted with respect to the incident light wavelength not blocked by the complementary color filter, the depth of each impurity layer is set so that the incident light is most efficiently photoelectrically converted. Is determined and the readout circuit is connected. B light having the shortest wavelength is absorbed in the shallowest region of the silicon substrate, so that the n1 layer (N + Photocarriers are generated in the vicinity of the layer 16). Since G light having an intermediate wavelength reaches a position deeper than B light, the n2 layer (N + Photo carriers are generated in the vicinity of the layer 17). Similarly, the n3 layer (N + In the vicinity of the layer 18), photocarriers are generated by R light having the longest wavelength.
[0062]
In the case of G light, since B light is blocked by the G filter or Ye filter, it is not necessary to divide into the n1 layer and the n2 layer, and N shown by the n2 ′ layer substantially equal to the depth of the n2 layer. + Area 19 is set. In this embodiment, the layers are n1, n2 (n2 ′ layer), and n3 layers from the shallower side, and each of the N light sources has the highest photoelectric conversion efficiency for B light, G light, and R light from the shallower side. + The depth of the layer is set.
[0063]
FIGS. 7A and 7B and FIGS. 8A and 8B are diagrams showing spectral sensitivity spectra of signals obtained by a light receiving unit in which a Cy filter, an Mg filter, a Ye filter, and a G filter are stacked, respectively. is there. The horizontal axis represents the incident light wavelength (nm), and the vertical axis represents the relative sensitivity (%) of the output signal.
[0064]
In each light receiving unit, the wavelength dependency of the output signal is governed by the spectral transmittance of the stacked color filters. However, in the light receiving unit in which the complementary color filters of the color solid-state imaging device according to the present embodiment are stacked, N + The potential barrier separating the layers, ie N + Since there is a P region sandwiched between layers, charges (electrons) generated in this P region are adjacent to each other by this potential barrier. + There is an advantage that there is little overlap between the spectroscopic spectra because the layers are distributed.
[0065]
That is, as compared with the case of reading the charges (holes) generated in the P region directly from the surface of the P region as in the conventional CMOS type color solid state imaging device described in Patent Document 1, the color solid state imaging device of the present embodiment Two N + Since only the signal obtained from the layers is used, there is an advantage when the color signal separation performance is improved.
[0066]
In the light receiving unit in which the cyan (Cy) filters are stacked, light having a wavelength corresponding to R is almost blocked by the Cy filter. Therefore, the wavelength dependency of the output signal from the light receiving unit is sharply attenuated in this wavelength region. Yes. Therefore, it can be seen that the B output signal and the G output signal are not affected by light in the R wavelength region.
[0067]
In the light-receiving unit in which magenta (Mg) filters are stacked, light with a wavelength corresponding to G is almost blocked by the Mg filter, so the wavelength dependence of the output signal from the light-receiving unit is sharply attenuated in this wavelength region. Yes. Therefore, the B output signal and the R output signal show spectral spectra that hardly overlap each other.
[0068]
In the light receiving section in which the yellow (Ye) filters are laminated, light having a wavelength corresponding to B is almost blocked by the Ye filter, and therefore the wavelength dependence of the output signal from the light receiving section is sharply attenuated in this wavelength region. Yes. Therefore, it can be seen that the G output signal and the R output signal are not affected by light in the B wavelength region.
[0069]
In the light receiving section where green (G) filters are stacked, most of the light of the wavelengths corresponding to B and R are blocked by the G filter, so the wavelength dependence of the output signal from the light receiving section is sharp in this wavelength region. It is decaying. Therefore, it can be seen that the G output signal is not affected by light in the B and R wavelength regions and has ideal spectral characteristics.
[0070]
That is, a separated B signal and a G signal with less color mixing are obtained from the light receiving section on which the Cy filters are stacked, and a separated B signal and an R signal with less color mixing are obtained from the light receiving section on which the Mg filters are stacked, A separated G signal and R signal with less color mixing are obtained from the light receiving section on which the Ye filters are stacked, and only a G signal is obtained from the light receiving section on which the G filters are stacked.
[0071]
FIG. 9 is an explanatory diagram for reproducing color information by obtaining signals of three colors R, G, and B at each light receiving portion position. As described above, each light receiving unit according to the present embodiment is configured to directly read signals of two primary colors or one color from one light receiving unit. That is, the R signal component and the B signal component are insufficient at the light receiving portion position where the G filter is laminated, the B signal component is insufficient at the light receiving portion position where the Ye filter is laminated, and the R signal is present at the light receiving portion position where the Cy filter is laminated. The component is insufficient, and the G signal component is insufficient at the light receiving portion where the Mg filters are stacked.
[0072]
For this reason, in the color solid-state imaging device according to the present embodiment, as shown in FIG. 9, an insufficient signal component is obtained from the signal components obtained by the adjacent light receiving units by interpolation. As the R signal component that is insufficient at the position of the light receiving portion where the Cy filters are stacked, a value obtained by averaging the four R signal components obtained by the light receiving portions on the upper, lower, left, and right sides of the light receiving portion is used.
[0073]
Similarly, the G signal component that is insufficient at the position of the light receiving unit where the Mg filters are stacked is obtained by averaging the four G signal components obtained by the light receiving units at the top, bottom, left, and right of the light receiving unit, and the Ye filters are stacked. For the B signal component that is insufficient at the position of the light receiving portion, a value obtained by averaging the B signal components obtained by the light receiving portions adjacent to the light receiving portion in the left-right or diagonal direction is used. The R signal component and B signal component that are insufficient at the position of the light receiving portion where the G filters are stacked are also obtained by averaging the R signal components obtained by the light receiving portions adjacent to the light receiving portion in the upper, lower, left, and right directions, and the diagonal direction. The value obtained by averaging is used.
[0074]
By processing the three primary color signals of R, G, and B at the respective light receiving unit positions obtained in this way by the external color signal processing circuit, the color solid-state imaging device according to the present embodiment enables faithful color reproduction. .
[0075]
FIG. 10 is a two-dimensional plan view corresponding to four pixels (Mg, Cy, Ye, G) of the color solid-state imaging device according to the present embodiment. On the surface of the semiconductor substrate, each light receiving part is isolated like a grid by element isolation bands 30 by LOCOS extending vertically and horizontally. In the example shown in the figure, each light receiving part is substantially square.
[0076]
Of each light receiving area, most of the above-mentioned N + In the light receiving portion where the layers 16, 17, 18, 19 are formed and the complementary color filters Mg, Ye, and Cy are stacked, a strip-shaped peripheral circuit portion 31 is provided at the right end, and the light receiving portion where the primary color filter G is stacked. In the part, the peripheral circuit part 31 ′ is provided only on the upper side of the right end. The peripheral circuit units 31 and 31 ′ are provided with the above-described amplifiers (source follower amplifiers) 22 to 28 and the like, and N connected through contact holes 37 provided in the respective light receiving units. + A color signal is read from the layer.
[0077]
In the drawing, a signal output line 33, a power supply line 34, and a reset line 35 are laid on an element isolation band 30 provided in the vertical direction, and a selection signal line is provided on the element isolation band 30 provided in the horizontal direction. 36 is provided. The signal output line 33 is connected to the outputs of the amplifiers 22 to 28, a power supply voltage is applied to the power supply line 34, and a reset signal is applied to the reset line 33.
[0078]
These selection signals and reset signals are controlled by the vertical scanning circuit 12 and the horizontal scanning circuit 13 shown in FIG. The dotted rectangular frame 38 described on each light receiving portion indicates the position of the opening of the light shielding film, and light passes only inside this, and the outside, that is, the peripheral circuit portions 31, 31 ′ and the contact holes 37 Shaded. As shown in this figure, the number of signal lines and the number of peripheral circuits that need to be provided in one light receiving unit are smaller than those of the conventional color solid-state imaging device shown in FIG. In the solid-state imaging device, the area of the light receiving portion can be increased, and a bright image can be captured.
[0079]
FIGS. 11A, 11B, 12A, and 12B are cross-sectional schematic views shown in FIGS. 2A, 2B, 12A, and 12B, respectively. 40 is a sectional view in which a light shielding film 41, a contact portion 42 provided in the contact hole 37, and a metal wiring layer 43 connected to the contact portion 42 are added.
[0080]
A microlens 40 is formed on each color filter 51, 52, 53, 54 via a transparent flattening film 45. A transparent flattening film layer 46 is provided between the color filters 51 to 54 and the light shielding film 41. The transparent flattening film layer 46 is also a signal wiring layer, and the signal lines 33, 34,. For example, a three-layer structure (not shown) is provided so that 35 and 36 do not contact each other.
[0081]
The opening 38 of the light shielding film 41 is located substantially at the center of the PN junction region that is a photoelectric conversion portion, and peripheral circuit portions such as the amplifiers 22 to 28 are disposed below the light shielding film 41. Shallowest N + Only the lower part of the contact part 42 for the layer (n1 layer) 16 is N + The depth of the layer 16 is deeply formed. This is to prevent the PN junction from being broken due to metal penetration or alloy formation between the metal electrode in the contact portion 42 and the substrate silicon. Since this portion is covered with the light shielding film 41, the wavelength dependence (spectral characteristics) of the photoelectric conversion characteristics is not affected.
[0082]
(Second Embodiment)
FIG. 13 is a schematic surface view of a CMOS color solid-state imaging device according to the second embodiment of the present invention. The only difference from the first embodiment is the arrangement of complementary color filters stacked on the light receiving unit. In this embodiment, only a cyan (Cy) filter and a yellow (Ye) filter are used, and the Cy filter and the Ye filter are alternately arranged in the vertical direction and the horizontal direction.
[0083]
The cross-sectional structure of the light receiving section on which the Cy filter is laminated is the same as that in FIG. 2A (FIG. 11A), the potential profile thereof is the same as that in FIG. 5A, and the spectrum is shown in FIG. ). That is, the B signal component and the G signal component of the incident light are output from the light receiving unit on which the Cy filters are stacked.
[0084]
The cross section of the light receiving section on which the Ye filter is laminated is the same as that in FIG. 3A (FIG. 12A), the potential profile thereof is the same as in FIG. 6A, and the spectrum is shown in FIG. Is the same. That is, the G signal component and the R signal component of the incident light are output from the light receiving unit on which the Ye filters are stacked.
[0085]
Therefore, in the CMOS color solid-state imaging device of this embodiment, the G signal component is output from all the light receiving units, the R signal component is insufficient at the light receiving unit position where the Cy filter is stacked, and the light receiving unit where the Ye filter is stacked. The B signal component is insufficient at the part position.
[0086]
Therefore, after the color signal is read out twice from each light receiving unit and two primary color signal components are obtained independently from one light receiving unit, as shown in FIG. It is obtained by averaging four signal components around the top, bottom, left and right. This enables faithful color reproduction by the external color signal processing circuit.
[0087]
FIG. 15 is a two-dimensional plan view corresponding to four pixels (Ye × 2, Cy × 2) of the CMOS color solid-state imaging device according to the second embodiment, similar to FIG. Since the two primary color signals can be read out from all the pixels (light receiving portions) each of which the complementary color filters Ye or Cy are stacked, two readout signal amplification circuits (22, 24 or 26, 28) are provided, respectively. ing.
[0088]
According to the present embodiment, only two types of color filters are required, which is less than the case of using three or four types of conventional color filters, and there is an advantage that manufacturing is easy. In addition, since the G signal is directly obtained from all the light receiving units, it is possible to increase the resolution of the captured image by processing the G signal as a luminance signal.
[0089]
(Third embodiment)
FIG. 16 is a schematic surface view of a CMOS color solid-state imaging device according to the third embodiment of the present invention. The difference from the first and second embodiments is only the arrangement of the color filters stacked on the light receiving unit. In this embodiment, only the complementary color magenta (Mg) filter and the primary color green (G) filter are used, and the Mg filter and the G filter are alternately arranged in the vertical direction and the horizontal direction.
[0090]
The cross-section of the light receiving section on which the Mg filter is laminated is the same as that in FIG. 2B (FIG. 11B), the potential profile thereof is the same as in FIG. 5B, and the spectrum is shown in FIG. Is the same. That is, the B signal component and the R signal component of the incident light are output from the light receiving unit on which the Mg filters are stacked.
[0091]
The cross-sectional structure of the light receiving section on which the G filters are stacked is the same as that in FIG. 3B (FIG. 12B), the potential profile thereof is the same as in FIG. 6B, and the spectrum is shown in FIG. ). That is, only the G signal component of the incident light is output from the light receiving unit on which the G filters are stacked. In the present embodiment, an ideal G signal component that is not affected by B light and R light can be obtained by using a primary color G filter.
That is, in the CMOS color solid-state imaging device according to the present embodiment, the G signal component is insufficient in the light receiving portion on which the Mg filters are stacked, and the B signal component and the R signal component are insufficient on the light receiving portion in which the G filters are stacked. Will do.
[0092]
Therefore, as shown in FIG. 17, at the position of the light receiving unit where the G filters are stacked, the G signal component directly obtained by the first color signal readout and the light receiving unit adjacent vertically and horizontally by the first color signal readout. The color information is reproduced using the value obtained by adding and averaging the R signal components obtained from the above and the value obtained by adding and averaging the B signal components obtained from the light receiving units adjacent to the top, bottom, left and right in the second color signal readout. . At the position of the light receiving section where the Mg filters are stacked, the B signal component and R signal component obtained directly and the value obtained by averaging the G signal components obtained by the light receiving sections adjacent in the vertical and horizontal directions are used. Reproduce.
[0093]
FIG. 18 is a two-dimensional plan view corresponding to four pixels (G × 2, Mg × 2) of the CMOS color solid-state imaging device according to the third embodiment, similar to FIGS. The configuration inside the light receiving unit is the same as that of the light receiving unit having the corresponding color filter shown in FIG.
[0094]
FIG. 19 is a spectrum of the CMOS color solid-state imaging device according to this embodiment. Basically, it is a combination of the spectral spectrum shown in FIG. 7B and the spectral spectrum shown in FIG. 8B, which is substantially the same as the spectral characteristics of a conventional image sensor using only primary color filters, ie, faithful. Color reproduction is possible.
[0095]
(Fourth embodiment)
FIG. 20 is a schematic surface view of a CMOS color solid-state imaging device according to the fourth embodiment of the present invention. The only difference from the first, second and third embodiments is the arrangement of color filters stacked on the light receiving part. In the present embodiment, a light receiving unit in which complementary color magenta (Mg) filters are stacked, and a light receiving unit in which a transparent flattening film (hereinafter also referred to as white filter (W)) is stacked and a color filter is not used. They are arranged alternately in the vertical and horizontal directions.
[0096]
The cross-section of the light receiving section on which the Mg filter is laminated is the same as that in FIG. 2B (FIG. 11B), the potential profile thereof is the same as in FIG. 5B, and the spectrum is shown in FIG. Is the same. That is, the B signal component and the R signal component of the incident light are output from the light receiving unit on which the Mg filters are stacked.
[0097]
From the light receiving unit not using the color filter, a signal including all of the B signal component, the G signal component, and the R signal component of incident light, that is, a luminance signal (Y) is output.
[0098]
That is, in the CMOS color solid-state imaging device according to the present embodiment, the G signal component is insufficient in the light receiving unit on which the Mg filter is stacked, and only the luminance signal is output on the light receiving unit on which the white filter (transparent flattening film) is stacked. can get.
[0099]
Therefore, as shown in FIG. 21, at the light receiving unit position where the Mg filters are stacked, the R signal component directly obtained by the first signal readout, the B signal component obtained directly by the second signal readout, By subtracting the directly obtained R signal component and B signal component from the value obtained by averaging the luminance signals (B + G + R) obtained from surrounding light receiving units adjacent in the first, second, left, right, and right directions in the first signal readout. The signal component is obtained and color information is reproduced.
[0100]
At the position of the light receiving section where the white filters are stacked, the addition average value of the B signal component and the addition average value of the R signal component obtained by the surrounding light receiving sections adjacent vertically and horizontally, and the luminance signal obtained directly from these Color information is reproduced using the G signal component obtained by subtracting the B signal component and the R signal component.
[0101]
22 is a schematic cross-sectional view taken along the line XXII-XXII in FIG. 20, and FIG. 23 is a cross-sectional view in a state where a microlens, a light shielding film, and a transparent planarizing film are stacked. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0102]
N for accumulating signal charges corresponding to all incident light amounts of R light, G light, and B light transmitted through the transparent flattening film (W) 55 + The layer (n3 ′) 56 is formed on the surface side of the P well layer 15 provided on the surface side of the semiconductor substrate 10 to a depth of 0.5 to 1.5 μm.
[0103]
FIG. 24 is a diagram illustrating a potential profile of a light receiving unit without a color filter. N + The charge generated by the red light that has penetrated deeper than the layer (n3 ′) 56 falls into the well along the potential profile. + Even if the depth of the layer (n3 ′) 56 is set as shallow as 0.5 μm, a luminance signal including even the R signal component can be obtained. But N + The depth of the layer (n3 ′) 56 is preferably set so as to exhibit spectral sensitivity close to human visibility in each of the R, G, and B wavelength ranges.
[0104]
FIG. 25 is a diagram showing a spectral sensitivity spectrum of the CMOS color solid-state imaging device according to the present embodiment. The B signal and R signal that have passed through the magenta filter Mg are separated without overlap, and the signal (W) of the light (B + G + R) that has passed through the white filter includes all visible light wavelength ranges and is a G signal (wavelength around 540 nm). ) Has a peak.
[0105]
In the present embodiment, since all visible wavelength components can be used particularly in the light receiving unit corresponding to white (W), there is almost no loss of the incident light component, and all the light receiving units are complementary as in the first embodiment. Higher sensitivity can be achieved compared to the case of stacking filters. In addition, there is also a feature that a highly sensitive luminance signal (R + G + B) can be obtained directly without particularly complicated signal processing. Furthermore, since only the Mg filter is used as the color filter, the color filter stacking process becomes easy.
[0106]
In each of the above embodiments, the CMOS type solid-state imaging device has been described by taking the CMOS type as an example. However, the present invention can also be applied to other types of NMOS type and PMOS type.
[0107]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) Since two color signal components can be independently detected from one light receiving section (pixel) in which complementary color filters are stacked, incident light can be effectively converted into an electrical signal and high sensitivity can be achieved. It becomes possible.
(2) Since a primary color signal can be directly extracted from a solid-state imaging device using a complementary color filter, faithful color reproduction is possible, and the color signal processing circuit can be simplified.
(3) Since the spectral characteristics with respect to the substrate depth direction are used and the complementary color system color filter is used, the amount of overlap between the spectral spectra (R, G, B) is reduced, and faithful color reproduction is possible.
[Brief description of the drawings]
FIG. 1 is a schematic surface view of a CMOS color solid-state imaging device according to a first embodiment of the present invention.
2A is a schematic sectional view taken along line IIa-IIa in FIG.
(B) is the IIb-IIb sectional schematic diagram of FIG.
3A is a schematic sectional view taken along line IIIa-IIIa in FIG.
(B) is the IIIb-IIIb sectional schematic drawing of FIG.
4 is an equivalent circuit diagram of the amplifier (amplifier circuit (source follower amplifier)) shown in FIGS. 2 (a), 2 (b) and 3 (a), 3 (b). FIG.
5A is a diagram showing a potential profile in the Cy filter laminated light receiving section of FIG. 1; FIG.
(B) is a figure which shows the potential profile in the Mg filter lamination | stacking light-receiving part of FIG.
6A is a diagram showing a potential profile in the Ye filter laminated light receiving section of FIG. 1; FIG.
(B) is a figure which shows the potential profile in the G filter lamination | stacking light-receiving part of FIG.
7A is a graph showing spectral characteristics of the Cy filter laminated light receiving section in FIG. 1; FIG.
(B) is a graph which shows the spectral characteristic of the Mg filter lamination | stacking light-receiving part in FIG.
8A is a graph showing the spectral characteristics of the Ye filter laminated light receiving section in FIG. 1; FIG.
(B) is a graph which shows the spectral characteristic of the G filter lamination | stacking light-receiving part in FIG.
FIG. 9 is an explanatory diagram for reproducing color information by obtaining three color signals of R, G, and B at each color filter (Cy, Mg, Ye, G) laminated light receiving portion position shown in FIG. 1;
10 is a two-dimensional plan view corresponding to four pixels of the Cy, Mg, Ye, and G filter stacked light receiving portions of the color solid-state imaging device shown in FIG. 1;
FIG. 11A is a cross-sectional view in which a microlens, a light shielding film, and the like are stacked in FIG. 2A.
FIG. 2B is a cross-sectional view in which a microlens, a light shielding film and the like are stacked on FIG.
12A is a cross-sectional view in which a microlens, a light shielding film, and the like are stacked in FIG. 3A. FIG.
FIG. 3B is a cross-sectional view in which a microlens, a light shielding film, and the like are stacked in FIG.
FIG. 13 is a schematic surface view of a CMOS color solid-state imaging device according to a second embodiment of the present invention.
14 is an explanatory diagram for reproducing color information by obtaining three color signals of R, G, and B at each color filter (Cy, Ye) stacked light receiving portion position shown in FIG. 13;
15 is a two-dimensional plan view corresponding to 4 pixels of Cy, Ye filter laminated light receiving portions of the color solid-state imaging device shown in FIG.
FIG. 16 is a schematic surface view of a CMOS color solid-state imaging device according to a third embodiment of the present invention.
17 is an explanatory diagram for reproducing color information by obtaining three color signals of R, G, and B at each color filter (Mg, G) laminated light receiving portion position shown in FIG. 16;
18 is a two-dimensional plan view corresponding to 4 pixels of the Mg, G filter stacked light receiving section of the color solid-state imaging device shown in FIG. 16;
19 is a graph showing the spectral sensitivity of the color solid-state imaging device shown in FIG.
FIG. 20 is a schematic surface view of a CMOS color solid-state imaging device according to a fourth embodiment of the present invention.
FIG. 21 is an explanatory diagram for reproducing color information by obtaining three color signals of R, G, and B at the filter (Mg, W) laminated light receiving portion position shown in FIG. 20;
22 is a schematic sectional view taken along line XXII-XXII in FIG.
23 is a cross-sectional view showing a state in which a microlens, a light shielding film, and the like are stacked in FIG.
24 is a diagram showing a potential profile of the W filter laminated light receiving section shown in FIG. 20;
25 is a graph showing the spectral characteristics of the CMOS color solid-state imaging device shown in FIG.
FIG. 26 is an explanatory diagram of a conventional CMOS color solid-state imaging device.
[Explanation of symbols]
10 Semiconductor substrate
15 P well layer
16, 17, 18, 19 N + Layer (High-concentration impurity layer)
21, 23, 25, 27 Ohmic contact
22, 24, 26, 28 Source follower amplifier
31, 31 'peripheral circuit section
33 color signal output line
35 Reset line
36 Selection signal line
37 Contact hole
38 Shading film opening
40 micro lens
41 Shading film
46 Transparent planarization film (signal wiring layer)
51, Cy cyan filter (complementary color filter)
52, Mg Magenta filter (complementary color filter)
53, Ye Yellow filter (complementary color filter)
54, G Green filter (primary color filter)

Claims (13)

複数の受光部が半導体基板の表面に二次元アレー状に配列されたMOS型カラー固体撮像装置において、前記複数のうちの全部または一部の受光部の上部に積層され3原色のうちの1色の入射光を阻止し残り2色の入射光を透過する補色フィルタと、該補色フィルタが積層された受光部の深さ方向に分離して形成される第1,第2の前記高濃度不純物層であって、前記補色フィルタを透過した前記2色のうちの1色の前記色信号を検出する第1の高濃度不純物層と、前記補色フィルタを透過した前記2色のうちの残り1色の前記色信号を検出する第2の高濃度不純物層と、前記各高濃度不純物層に接続され前記各色信号を区別して読み出す信号配線とを備えることを特徴とするMOS型カラー固体撮像装置。In a MOS type color solid-state imaging device in which a plurality of light receiving parts are arranged in a two-dimensional array on the surface of a semiconductor substrate, one of three primary colors is stacked on top of all or part of the plurality of light receiving parts. Complementary color filters that block incident light and transmit the remaining two colors of incident light, and the first and second high-concentration impurity layers formed separately in the depth direction of the light receiving section on which the complementary color filters are stacked A first high-concentration impurity layer for detecting the color signal of one of the two colors transmitted through the complementary color filter, and the remaining one of the two colors transmitted through the complementary color filter. A MOS color solid-state imaging device comprising: a second high-concentration impurity layer that detects the color signal; and a signal wiring that is connected to each high-concentration impurity layer and reads out each color signal. 前記受光部は、半導体基板に高濃度不純物層を設けることで形成されたPN接合部に電荷を蓄積し、該電荷を入射光によって発生したフォトキャリアで放電させ、該放電により変化する電荷変化量を色信号として読み出すものであることを特徴とする請求項1に記載のMOS型カラー固体撮像装置。The light receiving unit accumulates electric charge in a PN junction formed by providing a high concentration impurity layer on a semiconductor substrate, discharges the electric charge with photocarriers generated by incident light, and changes in electric charge that change due to the discharge The MOS color solid-state imaging device according to claim 1, wherein the color signal is read out as a color signal. 3原色のうち前記補色フィルタが積層された受光部で検出される前記2色の残り1色の色信号については、該受光部の周りに設けられ該受光部と異なる色信号を検出する受光部の検出信号を補間演算して求めることを特徴とする請求項1または請求項2に記載のMOS型カラー固体撮像装置。A light receiving unit that is provided around the light receiving unit and detects a color signal different from the light receiving unit for the remaining one color signal detected by the light receiving unit in which the complementary color filters are stacked among the three primary colors. The MOS type color solid-state imaging device according to claim 1, wherein the detection signal is obtained by interpolation calculation. ブルー(B)の光を阻止するイエローフィルタが積層された受光部とレッド(R)の光を阻止するシアンフィルタが積層された受光部とグリーン(G)の光を阻止するマゼンタフィルタが積層された受光部の3種類の受光部が前記半導体基板の表面に配列されたことを特徴とする請求項1乃至請求項3のいずれかに記載のMOS型カラー固体撮像装置。A light-receiving unit in which a yellow filter that blocks blue (B) light is stacked, a light-receiving unit in which a cyan filter that blocks red (R) light is stacked, and a magenta filter that blocks green (G) light are stacked. 4. The MOS color solid-state imaging device according to claim 1, wherein three types of light receiving portions of the light receiving portions are arranged on the surface of the semiconductor substrate. イエローフィルタが積層された受光部とシアンフィルタが積層された受光部の2種類の受光部が前記半導体基板の表面に配列されたことを特徴とする請求項1乃至請求項3のいずれかに記載のMOS型カラー固体撮像装置。4. The light receiving unit with a yellow filter and a light receiving unit with a cyan filter are arranged on the surface of the semiconductor substrate. 5. MOS type color solid-state imaging device. マゼンタフィルタが積層された受光部とグリーン(G)の光を透過するグリーンフィルタが積層された受光部の2種類の受光部が前記半導体基板の表面に配列されたことを特徴とする請求項1乃至請求項3のいずれかに記載のMOS型カラー固体撮像装置。2. The two types of light receiving portions, which are a light receiving portion on which a magenta filter is stacked and a light receiving portion on which a green filter that transmits green (G) light is stacked, are arranged on the surface of the semiconductor substrate. The MOS type color solid-state imaging device according to claim 3. マゼンタフィルタが積層された受光部とカラーフィルタの代わりに透明平坦化膜が積層された受光部の2種類の受光部が前記半導体基板の表面に配列されたことを特徴とする請求項1乃至請求項3のいずれかに記載のMOS型カラー固体撮像装置。The two types of light-receiving portions, which are a light-receiving portion on which a magenta filter is stacked and a light-receiving portion on which a transparent flattening film is stacked instead of a color filter, are arranged on the surface of the semiconductor substrate. 4. The MOS type color solid-state imaging device according to any one of items 3. グリーンフィルタが積層された受光部とイエローフィルタが積層された受光部とマゼンタフィルタが積層された受光部とシアンフィルタが積層された受光部の4種類の受光部が前記半導体基板の表面に配列されたことを特徴とする請求項1乃至請求項3のいずれかに記載のMOS型カラー固体撮像装置。Four types of light receiving parts are arranged on the surface of the semiconductor substrate: a light receiving part in which green filters are stacked, a light receiving part in which yellow filters are stacked, a light receiving part in which magenta filters are stacked, and a light receiving part in which cyan filters are stacked. 4. The MOS type color solid-state imaging device according to claim 1, wherein the MOS type color solid-state imaging device is provided. 前記高濃度不純物層のうち前記半導体基板の内部に設けられる高濃度不純物層には該半導体基板の表面まで連続する高濃度不純物領域でなる電荷通路が設けられることを特徴とする請求項1乃至請求項8のいずれかに記載のMOS型カラー固体撮像装置。The high-concentration impurity layer provided inside the semiconductor substrate in the high-concentration impurity layer is provided with a charge path including a high-concentration impurity region continuing to the surface of the semiconductor substrate. Item 10. The MOS color solid-state imaging device according to any one of Items 8 to 8. 前記第1,第2の高濃度不純物層の夫々の深さが、前記補色フィルタを透過した前記2色のうちの夫々の色の波長に対応して設定されることを特徴とする請求項1乃至請求項9のいずれかに記載のMOS型カラー固体撮像装置。2. The depth of each of the first and second high-concentration impurity layers is set corresponding to the wavelength of each of the two colors transmitted through the complementary color filter. The MOS type color solid-state imaging device according to claim 9. ブルー(B)の色信号を検出する前記高濃度不純物層の深さが0.1〜0.3μmであり、グリーン(G)の色信号を検出する高濃度不純物層の深さが0.3〜0.8μmであり、レッド(R)の色信号を検出する高濃度不純物層の深さが0.8〜2.5μmであることを特徴とする請求項10に記載のMOS型カラー固体撮像装置。The depth of the high-concentration impurity layer for detecting a blue (B) color signal is 0.1 to 0.3 μm, and the depth of the high-concentration impurity layer for detecting a green (G) color signal is 0.3. 11. The MOS type color solid-state imaging according to claim 10, wherein the depth of the high-concentration impurity layer for detecting a red (R) color signal is 0.8 to 2.5 μm. apparatus. 前記の各受光部の上部には夫々オンチップ集光光学系が設けられ、前記の各受光部に夫々遮光膜の1つの開口が対応することを特徴とする請求項1乃至請求項11のいずれかに記載のMOS型カラー固体撮像装置。The on-chip condensing optical system is provided above each of the light receiving portions, and one opening of a light shielding film corresponds to each of the light receiving portions. The MOS type color solid-state imaging device according to claim 1. ブルー(B)の色信号を検出する高濃度不純物層に重ねて設けられ該高濃度不純物層と前記信号配線とをオーミックコンタクトする不純物領域が該高濃度不純物層より深く形成されることを特徴とする請求項1乃至請求項12のいずれかに記載のMOS型カラー固体撮像装置。An impurity region that is provided so as to overlap with a high concentration impurity layer that detects a blue (B) color signal and that makes ohmic contact between the high concentration impurity layer and the signal wiring is formed deeper than the high concentration impurity layer. The MOS type color solid-state imaging device according to any one of claims 1 to 12.
JP2003072102A 2003-03-11 2003-03-17 MOS type color solid-state imaging device Expired - Fee Related JP4404561B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003072102A JP4404561B2 (en) 2003-03-17 2003-03-17 MOS type color solid-state imaging device
US10/796,148 US7554587B2 (en) 2003-03-11 2004-03-10 Color solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072102A JP4404561B2 (en) 2003-03-17 2003-03-17 MOS type color solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2004281773A true JP2004281773A (en) 2004-10-07
JP4404561B2 JP4404561B2 (en) 2010-01-27

Family

ID=33288389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072102A Expired - Fee Related JP4404561B2 (en) 2003-03-11 2003-03-17 MOS type color solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4404561B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165362A (en) * 2004-12-09 2006-06-22 Sony Corp Solid-state imaging element
JP2006165663A (en) * 2004-12-02 2006-06-22 Fuji Photo Film Co Ltd Image pickup apparatus, digital camera and color image data generating method
JP2006261402A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Photoelectric conversion film layered color solid-state image pickup element
JP2007027667A (en) * 2005-06-17 2007-02-01 Toppan Printing Co Ltd Imaging element
JP2007036202A (en) * 2005-07-27 2007-02-08 Magnachip Semiconductor Ltd Stacked type pixel for high-resolution cmos image sensor
JP2007049224A (en) * 2005-08-05 2007-02-22 Toppan Printing Co Ltd Imaging element
JP2007088265A (en) * 2005-09-22 2007-04-05 Sony Corp Semiconductor image sensor
JP2007180539A (en) * 2005-12-28 2007-07-12 Dongbu Electronics Co Ltd Cmos image sensor and method of manufacturing the same
KR100800310B1 (en) * 2006-02-16 2008-02-01 마루엘에스아이 주식회사 Light sensing device for sensing visible light and infrared light, and method for fabricating the same
JP2008072098A (en) * 2006-08-17 2008-03-27 Sony Corp Semiconductor image sensor
JP2008258474A (en) * 2007-04-06 2008-10-23 Sony Corp Solid-state image pickup device and imaging apparatus
WO2010004683A1 (en) * 2008-07-11 2010-01-14 パナソニック株式会社 Solid-state imaging device
JP2011249825A (en) * 2011-07-19 2011-12-08 Sony Corp Semiconductor image sensor
JP2011254090A (en) * 2011-07-19 2011-12-15 Sony Corp Semiconductor image sensor
JP2013539294A (en) * 2010-09-26 2013-10-17 ナム タイ,ヒョク Color image sampling and reproduction
JP2019004001A (en) * 2017-06-13 2019-01-10 ルネサスエレクトロニクス株式会社 Solid-state imaging element and method of manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165663A (en) * 2004-12-02 2006-06-22 Fuji Photo Film Co Ltd Image pickup apparatus, digital camera and color image data generating method
JP2006165362A (en) * 2004-12-09 2006-06-22 Sony Corp Solid-state imaging element
US8253830B2 (en) 2004-12-09 2012-08-28 Sony Corporation Solid state image device having multiple PN junctions in a depth direction, each of which provides an output signal
JP2006261402A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Photoelectric conversion film layered color solid-state image pickup element
JP4580789B2 (en) * 2005-03-17 2010-11-17 富士フイルム株式会社 Photoelectric conversion film stacked color solid-state imaging device
JP2007027667A (en) * 2005-06-17 2007-02-01 Toppan Printing Co Ltd Imaging element
JP2007036202A (en) * 2005-07-27 2007-02-08 Magnachip Semiconductor Ltd Stacked type pixel for high-resolution cmos image sensor
JP2013153174A (en) * 2005-07-27 2013-08-08 Intellectual Venturesii Llc Stacked pixel for high resolution cmos image sensor
JP2007049224A (en) * 2005-08-05 2007-02-22 Toppan Printing Co Ltd Imaging element
JP2007088265A (en) * 2005-09-22 2007-04-05 Sony Corp Semiconductor image sensor
JP2007180539A (en) * 2005-12-28 2007-07-12 Dongbu Electronics Co Ltd Cmos image sensor and method of manufacturing the same
KR100800310B1 (en) * 2006-02-16 2008-02-01 마루엘에스아이 주식회사 Light sensing device for sensing visible light and infrared light, and method for fabricating the same
JP2008072098A (en) * 2006-08-17 2008-03-27 Sony Corp Semiconductor image sensor
JP2008258474A (en) * 2007-04-06 2008-10-23 Sony Corp Solid-state image pickup device and imaging apparatus
US8035708B2 (en) 2007-04-06 2011-10-11 Sony Corporation Solid-state imaging device with an organic photoelectric conversion film and imaging apparatus
US8243176B2 (en) 2008-07-11 2012-08-14 Panasonic Corporation Solid-state image sensor
WO2010004683A1 (en) * 2008-07-11 2010-01-14 パナソニック株式会社 Solid-state imaging device
JP2013539294A (en) * 2010-09-26 2013-10-17 ナム タイ,ヒョク Color image sampling and reproduction
JP2011249825A (en) * 2011-07-19 2011-12-08 Sony Corp Semiconductor image sensor
JP2011254090A (en) * 2011-07-19 2011-12-15 Sony Corp Semiconductor image sensor
JP2019004001A (en) * 2017-06-13 2019-01-10 ルネサスエレクトロニクス株式会社 Solid-state imaging element and method of manufacturing the same

Also Published As

Publication number Publication date
JP4404561B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US7667750B2 (en) Photoelectric-conversion-layer-stack-type color solid-state imaging device
JP5793688B2 (en) Solid-state imaging device
JP4491323B2 (en) Photoelectric conversion film stacked color solid-state imaging device
US7348539B2 (en) Image sensor for semiconductor light-sensing device and image processing apparatus using the same
KR102586247B1 (en) Solid-state imaging device and imaging device
JP4507769B2 (en) Solid-state image sensor, camera module, and electronic device module
US7554587B2 (en) Color solid-state image pickup device
KR101067303B1 (en) Photoelectric conversion layer stack type solid-state imaging device
JP4404561B2 (en) MOS type color solid-state imaging device
US7208811B2 (en) Photo-detecting device
JP2006278446A (en) Single ccd color solid-state imaging device
US8981515B2 (en) Solid-state imaging device and electronic apparatus
JP2003298102A (en) Photoelectric conversion element and solid image pick-up device using the same
JP2008060476A (en) Solid state imaging apparatus, and electronic information apparatus
JP4388752B2 (en) CCD color solid-state imaging device
US20110001207A1 (en) Solid state image sensor and manufacturing method thereof
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP4070639B2 (en) CCD color solid-state imaging device
JP2005151077A (en) Two-plate type color solid state imaging apparatus and digital camera
JP2004186311A (en) Mos-type image sensor and digital camera
US20130193312A1 (en) Solid-state imaging device and method of manufacturing the same
JP2007066962A (en) Color solid-state imaging device and digital camera
JP2006269922A (en) Single plate color solid-state image sensor
JP2011243785A (en) Solid state imaging device
JP2008047608A (en) Single-plate solid-state image sensing element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees